We study large sample properties of likelihood ratio tests of the unit root hypothesis in an autoregressive model of arbitrary order. Earlier research on this testing problem has developed likelihood ratio tests in the autoregressive model of order one,but resorted to a plug-in approach when dealing with higher-order models. In contrast, we consider the full model and derive the relevant large sample properties of likelihood ratio tests under a local to unity asymptotic framework. As in the simpler model, we show that the full likelihood ratio tests are nearly ecient, in the sense that their asymptotic local power functions are virtually indistinguishable from the Gaussian power envelopes. Extensions to sieve-type approximations and different classes of alternatives are also considered.
QED Working Paper Number
1429
Efficiency
Likelihood ratio test
Nuisance parameters
Unit root hypothesis
Download [PDF]
(407.24 KB)