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Abstract

We study large sample properties of likelihood ratio tests of the unit root hypoth-

esis in an autoregressive model of arbitrary order. Earlier research on this testing

problem has developed likelihood ratio tests in the autoregressive model of order one,

but resorted to a plug-in approach when dealing with higher-order models. In con-

trast, we consider the full model and derive the relevant large sample properties of

likelihood ratio tests under a local to unity asymptotic framework. As in the simpler

model, we show that the full likelihood ratio tests are nearly efficient, in the sense that

their asymptotic local power functions are virtually indistinguishable from the Gaus-

sian power envelopes. Extensions to sieve-type approximations and different classes of

alternatives are also considered.
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1 Introduction

In their seminal contribution, Elliott, Rothenberg, and Stock (1996, henceforth ERS) de-

rived Gaussian power envelopes for the unit root testing problem in autoregressive models,

and demonstrated how to construct tests that are “nearly efficient” in the sense that their

asymptotic local power functions are virtually indistinguishable from the Gaussian power

envelopes. In particular, they showed that GLS-detrended versions of the well-known Aug-

mented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1979, 1981) are nearly efficient. More

recently, Jansson and Nielsen (2012, henceforth JN) developed a class of tests that are also

nearly efficient, yet distinct from the tests proposed by ERS. In the autoregressive model of

order one, the tests proposed by JN admit a quasi-likelihood ratio (QLR) interpretation, but

for higher-order autoregressive models the method of proof employed by JN forces them to

use a “two-step”/“plug-in” approach, where the nuisance parameters arising from the lag-

augmentation are replaced with consistent estimators when defining the criterion function

used to construct the test.

Although nearly efficient, the tests of JN therefore do not admit a QLR interpretation

in the higher-order case. In fact, even after several decades of intense research into this

testing problem, it would appear that a nearly efficient QLR test of the unit root hypothesis

in an autoregressive model of arbitrary order has still not been developed and investigated.

In this paper, we fill this apparent hole in the literature. Our analysis is motivated partly

by a desire to make the theory of univariate unit root testing more complete by developing

QLR tests in the workhorse model of the literature, and showing that these tests belong to

the class of nearly efficient tests. Moreover, and perhaps just as importantly, with an eye

towards other non-standard testing problems it is of interest to understand the consequences

of (and demonstrate the feasibility of) handling all nuisance parameters in a unified way in

this canonical non-standard testing problem.

The remainder of the paper is organized as follows. In the next section, we present the

model, derive the test statistics, and characterize their large sample properties. In Section 3

we analyze a sieve version of our QLR test. In Section 4, we present the results of a small

simulation study of the finite-sample properties of the new test and compare with some

existing tests. Section 5 discusses different classes of alternatives, and Section 6 offers some

concluding remarks. Finally, the proofs of our main results are given in the appendix.

2 Model and QLR Test Statistic

Our goal is to develop unit root tests that are of QLR type, are easy to implement, and

enjoy good size and power properties in a model of the type considered in ERS. To this end,
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suppose the observed time series {yt : 1 ≤ t ≤ T} is generated as

yt = β′dt + ut, (1)

where dt = 1 or dt = (1, t)′, β is an unknown parameter, and where the error term ut is

generated by the AR(p+ 1) model

(1− ρL)γ(L)ut = εt, (2)

with ρ ≤ 1 a scalar parameter of interest and γ(z) = 1−γ1z−. . .−γpzp a lag polynomial of or-

der p satisfying the stability condition γ = (γ1, . . . , γp)
′ ∈
{
γ ∈ Rp : min|z|≤1 |γ(z)| > 0

}
= Γ.

When developing formal results, we will complete the specification of the model by assuming

that max {|u0|, . . . , |u−p|} = op(T
1/2) and that the εt form a conditionally homoskedastic mar-

tingale difference sequence with (unknown) variance σ2 and suptE|εt|r <∞ for some r > 2.

In the model characterized by (1) and (2), an implication of assuming γ ∈ Γ is that the

order of integration of ut is governed solely by ρ. In particular, the unit root testing problem

is the problem of testing

H0 : ρ = 1 versus H1 : ρ < 1.

The Gaussian quasi-log likelihood function corresponding to the model given by (1) and (2)

with initial conditions u0 = . . . = u−p = 0 depends on the parameter of interest, ρ, and

the nuisance parameters β, γ, and σ2. To be specific, setting y0 = . . . = y−p = 0 and

d0 = . . . = d−p = 0, the Gaussian quasi-log likelihood function can be expressed, up to an

additive constant, as

LT (ρ, β, γ, σ
2) = −T

2
log σ2 − 1

2σ2

T∑
t=1

((1− ρL)γ(L)(yt − β′dt))
2.

The QLR test statistic associated with the problem of testing H0 versus H1 is

LRT = max
ρ≤1,β,γ∈Γ,σ2>0

LT (ρ, β, γ, σ
2)− max

β,γ∈Γ,σ2>0
LT (1, β, γ, σ

2).

In general, the problem of maximizing LT (ρ, β, γ, σ
2) with respect to γ ∈ Γ does not have a

closed form solution. For this reason, LRT can be tedious to compute unless p is small, which

reduces the practical usefulness of LRT . A separate concern of a more technical nature is

that the lack of a closed form expression for maxγ∈Γ LT (ρ, β, γ, σ
2) makes the development

of large sample theory for LRT quite challenging when p is allowed to grow with the sample

size; see Section 3. For these reasons, it is natural to ask whether the model (2) can be
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embedded in a model whose associated QLR unit root test statistic is analytically tractable

even when p is large, yet enjoys attractive large sample (power) properties.

Analytical tractability could be restored by simply dropping the constraint γ ∈ Γ, as

the problem of maximizing LT (ρ, β, γ, σ
2) with respect to γ ∈ Rp has a well known solution.

Because the constraint γ ∈ Γ implies that the order of integration of ut is governed solely

by ρ, dropping the constraint could have consequences for power, however. To anticipate

those consequence, notice that when p = 1, ρ and γ are not separately identified in (2),

implying that maximizing the quasi-likelihood with a restriction on ρ, but not on γ, is

equivalent to maximizing it with a restriction on γ, but not on ρ. The associated test

statistic is therefore equivalent to a statistic associated with the two-sided problem of testing

H0 : ρ = 1 versus H2 : ρ ̸= 1. In fact, it can be shown that the QLR test statistic

implemented without restrictions on γ behaves like a “two-sided” test statistic in the sense

that its limiting distribution is that of maxc̄∈R Λc(c̄) (maxc̄∈R Λ
τ
c (c̄)) under the assumptions

of part (a) (part (b)) of Theorem 1. In other words, although dropping the constraint γ ∈ Γ

is computationally convenient, the resulting model is not asymptotically equivalent (in the

appropriate sense) to the model imposing γ ∈ Γ.

Fortunately, the model (2) can be embedded in a model that is locally equivalent to it

in a suitable sense, yet generates a QLR test statistic that is relatively easy to compute. To

be specific, the model (2) can be embedded in a model of ADF type, namely

η(L)∆ut = πut−1 + εt, (3)

where {ut} and {εt} are as before, π ≤ 0, and where η (z) = 1 − η1z − . . . − ηpz
p is an

unrestricted lag polynomial of order p; that is, η = (η1, . . . , ηp)
′ ∈ Rp.

When (ρ, γ) and (π, η) are unrestricted, the models (2) and (3) are equivalent in the sense

that one is a reparametrization of the other. In particular, as pointed out by a referee, (3)

can be obtained from (2) by setting π = (ρ− 1)γ(1) and

η(z) = (1− ρ)γ(1) +
(1− ρz)γ(z)− (1− ρ)γ(1)

1− z
.

However, the equivalence between (2) and (3) breaks down once the parameter restrictions

mentioned in the above text are imposed. On the one hand, when ρ ≤ 1 and γ ∈ Γ in

(2), the parameter π in (3) satisfies π = (ρ − 1)γ(1) ≤ 0, so the (single) restriction π ≤ 0

imposed in (3) is implied by restrictions ρ ≤ 1 and γ ∈ Γ imposed in (2). On the other

hand, not all models of the form (3) with π ≤ 0 can be written in the form (2) with ρ ≤ 1

and γ ∈ Γ. Perhaps the easiest way to see this is to observe that, whereas the model (3) can

generate I(d) processes for any d = 0, 1, . . . , p+ 1, the model (2) can only generate I(0) and
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I(1) processes (when −1 < ρ ≤ 1). There is therefore a meaningful “global” sense in which

the models (2) and (3) differ (once the parameter restrictions mentioned in the above text

are imposed), with the latter being a strict generalization of the former.

Precisely for this reason, one might reasonably worry that QLR tests developed for the

model (3) would suffer from power losses when applied to data generated by the model of

interest in this paper, namely (2). Fortunately, and perhaps surprisingly, that turns out not

to happen. Indeed, Theorem 1 below implies, among other things, that QLR tests developed

for the model (3) are nearly efficient in the model (2). Loosely speaking, the model (3) (with

π ≤ 0) therefore enjoys the “Goldilocks” property of being just flexible enough relative to

the model (2) (with ρ ≤ 1 and γ ∈ Γ) to achieve tractability on the part of QLR statistics,

yet restrictive enough to ensure that no loss of power is suffered by the resulting QLR

test. More precisely, our findings demonstrate by example that the models (2) and (3) are

“locally” equivalent in a neighborhood of the null hypothesis ρ = 1 in a meaningful sense.

In particular, although (2) imposes multiple restrictions on the parameters ρ ≤ 1 and γ ∈ Γ

that are not imposed by (3), an implication of our results is that the only asymptotically

relevant restriction imposed in (2) is captured by the single restriction π ≤ 0 imposed in (3).

To summarize, following ERS (and many others) we are interested in developing tests

that are powerful in the model (2). To this end, it turns out to be attractive to use the

model (3) because it gives rise to QLR test statistics that are not only (computationally

and analytically) tractable, but also powerful when applied to data generated by the model

of interest, namely (2). In large part, the fact that working with (3) enables us to achieve

the dual objectives of tractability and power is attributable to the property of the model (3)

that, with or without restrictions on η, the restriction π ≤ 0 turns out to incorporate the

main statistical content of the restrictions ρ ≤ 1 and γ(1) > 0 imposed in (2).

The problem of testing H0 versus H1 in the model characterized by (1) and (2) is sub-

sumed in the problem of testing

HADF
0 : π = 0 versus HADF

1 : π < 0

in the model characterized by (1) and (3). In terms of the parameter of interest π and the

nuisance parameters β, η, and σ2, the Gaussian quasi-log likelihood function associated with

the model given by (1) and (3) with initial conditions u0 = . . . = u−p = 0 can be expressed,

up to an additive constant, as

LADF
T (π, β, η, σ2) = −T

2
log σ2 − 1

2σ2

T∑
t=1

((η(L)(1− L)− πL)(yt − β′dt))
2,
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and the QLR test statistic associated with the problem of testing HADF
0 versus HADF

1 is

LRADF
T = max

π≤0,β,η,σ2>0
LADF
T (π, β, η, σ2)− max

β,η,σ2>0
LADF
T (0, β, η, σ2).

The statistic LRADF
T is relatively easy to compute and analyze. The main reason is that,

because η is unrestricted, the profile quasi-log likelihood for (π, β) obtained by maximizing

LADF
T (π, β, η, σ2) with respect to (η, σ2) is available in closed form. For any (π, β), define

Vπ,β and Zβ as the matrices with row t = 1, . . . , T given by (1−L− πL)(yt − β′dt) and (1−
L)(yt−1 − β′dt−1, . . . , yt−p − β′dt−p), respectively. Employing this notation, LADF

T (π, β, η, σ2)

can be written as

LADF
T (π, β, η, σ2) = −T

2
log σ2 − 1

2σ2
(V − Zη)′(V − Zη)|V=Vπ,β ,Z=Zβ

.

It follows from standard least-squares arguments that

argmaxη L
ADF
T (π, β, η, σ2) = (Z ′Z)−1Z ′V

∣∣
V=Vπ,β ,Z=Zβ

and

argmaxσ2 LADF
T (π, β, η, σ2) =

1

T
(V − Zη)′(V − Zη)|V=Vπ,β ,Z=Zβ

.

As a consequence, up to an additive constant, the profile quasi-log likelihood for (π, β) is

given by

LADF
T (π, β) = −T

2
log (V ′V − V ′Z((Z ′Z)−1Z ′V )

∣∣
V=Vπ,β ,Z=Zβ

.

Therefore, the statistic LRADF
T admits the representation

LRADF
T = max

π≤0,β
LADF

T (π, β)−max
β

LADF
T (0, β), (4)

where both terms on the right-hand side are relatively easy to evaluate numerically.

In addition, and perhaps more importantly, LRADF
T turns out to have attractive large

sample power properties. For any c, let Wc denote the Ornstein-Uhlenbeck process given by

Wc(r) =

∫ r

0

exp(c(r − s))dW (s), (5)

where W is a standard Wiener process.

Theorem 1 Suppose {yt} is generated by (1) and (2) and that c = T (ρ− 1) is held fixed as

T → ∞.
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Table 1: Quantiles of the distribution of LRADF
T

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%
Panel A: constant mean case, dt = 1

100 0.81 1.07 1.45 2.14 2.84 3.74 4.42 5.93
250 0.78 1.02 1.36 1.99 2.65 3.56 4.25 5.86
500 0.77 1.00 1.33 1.93 2.56 3.44 4.11 5.70
1000 0.77 0.99 1.32 1.91 2.52 3.36 4.01 5.57
∞ 0.76 0.98 1.31 1.88 2.48 3.29 3.92 5.40

Panel B: linear trend case, dt = (1, t)′

100 2.50 2.86 3.34 4.14 4.91 5.89 6.60 8.17
250 2.47 2.82 3.29 4.09 4.88 5.89 6.65 8.38
500 2.46 2.80 3.28 4.07 4.85 5.86 6.63 8.36
1000 2.46 2.80 3.27 4.05 4.83 5.84 6.59 8.31
∞ 2.45 2.79 3.26 4.05 4.82 5.82 6.57 8.29

Notes: This table is taken from JN, Table 1. Entries for finite T are simulated quantiles of LRADF
T with

known (γ, σ2) and with εt ∼ i.i.d.N(0, 1). Entries for T = ∞ are simulated quantiles of maxc̄≤0 Λ0(c̄) and

maxc̄≤0 Λ
τ
0(c̄), respectively, where Wiener processes are approximated by 104 discrete steps with standard

Gaussian innovations. All entries are based on 107 Monte Carlo replications.

(a) If dt = 1, then LRADF
T →d maxc̄≤0 Λc(c̄), where

Λc(c̄) = c̄

∫ 1

0

Wc(r)dWc(r)−
1

2
c̄2
∫ 1

0

Wc(r)
2dr.

(b) If dt = (1, t)′, then LRADF
T →d maxc̄≤0 Λ

τ
c (c̄), where

Λτ
c (c̄) = Λc(c̄) +

1

2

(
(1− c̄)Wc(1) + c̄2

∫ 1

0
rWc(r)dr

)2
1− c̄+ c̄2/3

− 1

2
Wc(1)

2.

A proof of Theorem 1 is provided in the appendix. The asymptotic distributions obtained

in the theorem coincide with those obtained by JN for their statistic L̂R
d

T . As a consequence,

LRADF
T shares with L̂R

d

T the property that a test based upon it is nearly efficient in the

sense that its asymptotic local power function is indistinguishable from the Gaussian power

envelope. Moreover, the critical values obtained by JN are applicable to LRADF
T as well. For

completeness, we reproduce these in Table 1.

In the spirit of JN, one can obtain statistics that are asymptotically equivalent to LRADF
T

by replacing judiciously chosen nuisance parameters with estimators and then maximizing

the resulting plug-in version of the quasi-likelihood under HADF
0 and HADF

1 . To be specific,

a natural ADF version of the statistic L̂R
d

T of JN is given by

max
π≤0,β

LADF
T (π, β, η̃T , σ̃

2
T )−max

β
LADF
T (0, β, η̃T , σ̃

2
T ),
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where η̃T and σ̃2
T are estimators of η and σ2, respectively. It can be shown that, under the

assumptions of Theorem 1, this statistic is asymptotically equivalent to LRADF
T if η̃T and σ̃2

T

are consistent.

The ADF test and the DF-GLS test of ERS are both asymptotically equivalent to tests

based on a statistic of the form

max
π≤0,η,σ2>0

LADF
T (π, β̃T , η, σ

2)− max
η,σ2>0

LADF
T (0, β̃T , η, σ

2),

where β̃T is an estimator of β. This statistic differs from LRADF
T (only) because the nuisance

parameter β has been replaced by the estimator β̃T . The ADF test employs an OLS estimator

of β while the DF-GLS test employs a GLS-type estimator, but irrespective of the choice of

β̃T the displayed statistic turns out be asymptotically distinct from LRADF
T when dt = (1, t)′.

In other words, although η and/or σ2 can be replaced with well-behaved estimators without

any asymptotic consequences, a plug-in version of LRADF
T in which β has been replaced by

an estimator turns out to be distinct from LRADF
T , even in the limit. Similarly, the point

optimal test statistic of ERS is asymptotically distinct from LRADF
T , being of the form

max
β

LADF
T (T−1c̄ERS, β, 0, ω̃

2
T )−max

β
LADF
T (0, β, 0, ω̃2

T ),

where c̄ERS is a negative constant and where ω̃2
T is an estimator of γ(1)−2σ2, the long-run

variance of (1− ρL)ut. For additional details and further discussion, see Section 3 of JN.

3 Sieve QLR Test Statistic

It would be of interest, both practically and theoretically, to allow for more general short-

run dynamics than the AR(p) model considered in (2). In particular, as alluded to earlier,

the fact that the dimension of (π, β) does not depend on p suggests that LRADF
T will be

well behaved also when p is allowed to grow with T , in which case the model (2) can be

interpreted as a sieve-type approximation to a more general model (e.g., Berk, 1974; Said

and Dickey, 1984). Following Chang and Park (2002), these heuristics can be made precise

by replacing (2) with the ARMA(1,∞) model

(1− ρL)ut = ψ(L)εt, (6)

where u0 = Op(1), the εt form a conditionally homoskedastic martingale difference sequence

with (unknown) variance σ2 and suptEε
4
t < ∞, and where ψ(z) =

∑∞
j=0 ψjz

j satisfies∑∞
j=0 j|ψj| <∞ and min|z|≤1 |ψ(z)| > 0.

In this more general situation, the model (2) with a finite lag order p is a sieve approxi-

mation to the process (6), c.f. Remark 2.1 of Chang and Park (2002). The quality of the ap-
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proximation improves as p increases, so we let p increase with the sample size, and to make

this explicit we sometimes write p = pT . Letting LR
ADF
T be calculated as in (4), the method

of proof of Theorem 1 can be adapted with the help of results from Chang and Park (2002)

and Phillips and Solo (1992) to show the following result (the proof of which is given in the

appendix).

Theorem 2 Suppose {yt} is generated by (1) and (6) and that c = T (ρ− 1) is held fixed as

T → ∞. Suppose also that p = pT satisfies pT → ∞ and pT = o(T 1/3) as T → ∞. Then the

results of Theorem 1 parts (a) and (b) continue to hold.

4 Monte Carlo Simulations

To assess the finite sample properties of LRADF
T and some of its rivals, we conduct a small

Monte Carlo simulation experiment. For specificity, we consider data generating processes

(DGPs) of the form (1) and (2) with β = 0, p = 3, u0 = u−1 = . . . = u−3 = 0, and

εt ∼ i.i.d.N (0, 1). For each of 105 replications, we simulate data from the model with sample

size T ∈ {300, 1000} and the parameter of interest ρ either equal to one, mildly explosive,

or belonging to a grid chosen to ensure that the rejection frequencies of the various tests

are around 0.4, 0.7, and 0.9, respectively. Regarding the nuisance parameter γ, we employ

a parameterization of the form γ(z) =
∏3

i=1(1 − ϕiz), where ϕi are the inverse roots of the

polynomial γ(z). A range of values of ϕ = (ϕ1, ϕ2, ϕ3) was considered, but to conserve space

we only report results for some representative cases, where ϕ equals (0, 0, 0), (0.2, 0.4, 0.6),

(0.4, 0.4, 0.4), and (0.6, 0.6, 0.6), respectively. These all correspond to roots that are outside

the unit circle.

For each DGP, we implement three tests. The first of these is the test based on LRADF
T

using a lag length selected by applying the Modified Akaike Information Criterion (MAIC)

of Perron and Qu (2007), see also Ng and Perron (2001), to the ADF model characterized

by (1) and (3). The other two are the tests based on the statistic L̂R
d

T of JN and the DF-

GLS statistic of ERS, each using the lag length chosen by the MAIC applied to the DF-GLS

regression. In all cases, the maximum lag order is pmax =
⌊
12(T/100)1/4

⌋
. Table 2 reports

rejection frequencies of tests with nominal size 5% for the constant mean case, while the

corresponding results for the linear trend case are reported in Table 3.

The LRADF
T test exhibits excellent size and power properties across all cases considered

in Tables 2 and 3. The other tests also have good power properties, but tend to exhibit size

distortions, especially so in the model with the largest degree of persistence, namely when

ϕ = (0.6, 0.6, 0.6).

Because the testing problem is one-sided one might expect good tests to have low power

against those alternatives that are on the “wrong” side of the null (as happens when testing

9



Table 2: Rejection frequencies of unit root tests, constant mean case

DGP T = 300 T = 1000

ϕ1, ϕ2, ϕ3 ρ LRADF
T L̂R

d

T DF-GLS ρ LRADF
T L̂R

d

T DF-GLS

0, 0, 0 1.020 0.001 0.835 0.001 1.006 0.001 0.775 0.001
1.000 0.043 0.040 0.048 1.000 0.048 0.047 0.050
0.980 0.338 0.321 0.367 0.994 0.384 0.376 0.391
0.960 0.747 0.725 0.770 0.988 0.840 0.831 0.843
0.940 0.911 0.899 0.916 0.982 0.980 0.977 0.980

0.2, 0.4, 0.6 1.020 0.001 0.811 0.002 1.006 0.001 0.805 0.002
1.000 0.034 0.041 0.100 1.000 0.044 0.075 0.095
0.980 0.268 0.265 0.448 0.994 0.351 0.430 0.493
0.960 0.632 0.552 0.708 0.988 0.798 0.787 0.826
0.940 0.848 0.781 0.877 0.982 0.967 0.958 0.970

0.4, 0.4, 0.4 1.020 0.001 0.818 0.002 1.006 0.001 0.801 0.001
1.000 0.033 0.035 0.084 1.000 0.045 0.060 0.078
0.980 0.267 0.235 0.393 0.994 0.356 0.370 0.427
0.960 0.637 0.549 0.697 0.988 0.802 0.769 0.808
0.940 0.854 0.794 0.883 0.982 0.969 0.958 0.969

0.6, 0.6, 0.6 1.020 0.001 0.769 0.003 1.006 0.001 0.824 0.003
1.000 0.038 0.056 0.160 1.000 0.046 0.135 0.153
0.980 0.265 0.329 0.550 0.994 0.359 0.535 0.569
0.960 0.576 0.521 0.692 0.988 0.787 0.775 0.813
0.940 0.774 0.663 0.805 0.982 0.959 0.919 0.938

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d

T ), and
the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive DGP, allowing for
a constant mean only in the regression model. The lag orders are chosen by minimization of the MAIC of
Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test, and to the DF-GLS regression for
the other two tests.

hypotheses about the mean of a normal distribution, for instance). Interestingly, the L̂R
d

T

test seems to reject against ρ > 1. This happens because the plug-in estimates of the

autoregressive parameters capture the explosive root, which leaves only stationary roots and

hence cause rejection. This phenomenon does not occur for the LRADF
T test.

We next report some results for the notoriously difficult case of a moving average pro-

cess with a negative root. The DGP is similar to that above, except we replace (2) with

(6), for which we simulate from the moving average model ψ(z) = 1 + ψz with ψ ∈
{−0.25,−0.50,−0.75}.

The simulation results for the moving average DGP are reported in Table 4. These show

a clear size-power tradeoff. For the smaller sample size and largest negative root, the QLR

test is somewhat oversized, but has much higher power than the DF-GLS test. The size

distortion is reduced for the larger sample size.

Results for other values of the autoregressive parameter ϕ and the moving average pa-
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Table 3: Rejection frequencies of unit root tests, linear trend case

DGP T = 300 T = 1000

ϕ1, ϕ2, ϕ3 ρ LRADF
T L̂R

d

T DF-GLS ρ LRADF
T L̂R

d

T DF-GLS

0, 0, 0 1.020 0.001 0.801 0.000 1.006 0.001 0.774 0.000
1.000 0.039 0.034 0.029 1.000 0.045 0.042 0.032
0.950 0.471 0.429 0.394 0.985 0.552 0.529 0.451
0.900 0.861 0.832 0.820 0.970 0.972 0.963 0.939
0.850 0.913 0.886 0.884 0.955 0.996 0.992 0.988

0.2, 0.4, 0.6 1.020 0.000 0.626 0.001 1.006 0.000 0.797 0.001
1.000 0.028 0.021 0.110 1.000 0.039 0.096 0.109
0.950 0.303 0.193 0.355 0.985 0.472 0.490 0.485
0.900 0.712 0.541 0.652 0.970 0.943 0.913 0.893
0.850 0.851 0.761 0.811 0.955 0.993 0.986 0.980

0.4, 0.4, 0.4 1.020 0.000 0.664 0.001 1.006 0.000 0.793 0.001
1.000 0.025 0.020 0.089 1.000 0.040 0.075 0.084
0.950 0.301 0.184 0.312 0.985 0.476 0.444 0.432
0.900 0.726 0.575 0.668 0.970 0.945 0.914 0.892
0.850 0.864 0.788 0.826 0.955 0.994 0.987 0.982

0.6, 0.6, 0.6 1.020 0.000 0.374 0.003 1.006 0.001 0.769 0.002
1.000 0.028 0.003 0.233 1.000 0.043 0.163 0.203
0.950 0.231 0.059 0.466 0.985 0.460 0.532 0.551
0.900 0.512 0.288 0.538 0.970 0.918 0.833 0.826
0.850 0.678 0.508 0.655 0.955 0.988 0.962 0.952

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d

T ), and
the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive DGP, allowing for
a constant mean and linear trend in the regression model. The lag orders are chosen by minimization of
the MAIC of Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test, and to the DF-GLS
regression for the other two tests.

rameter ψ are qualitatively similar and are omitted to conserve space. Overall, the simula-

tion results are consistent with the theory developed in this paper, suggesting in particular

that the test based on LRADF
T is competitive with (if not superior to) its natural rivals also

in samples of moderate size.

5 Different Classes of Alternatives

The models considered so far all have the feature that, under local departures from the unit

root hypothesis, the weak limit of the process T 1/2u⌊T ·⌋ is the Ornstein-Uhlenbeck process (5).

This section briefly explores the properties of QLR tests in two distinct types of models giving

rise to different weak limits on the part of T 1/2u⌊T ·⌋. More specifically, Section 5.1 allows for

a non-negligible initial condition in the model for {ut}, while Section 5.2 is concerned with

functional local to unity models.

To conserve space and focus on the main issues, we abstract from the presence of short-
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Table 4: Rejection frequencies of unit root tests, linear trend case, moving average DGP

DGP T = 300 T = 1000

ψ ρ LRADF
T L̂RT DF-GLS ρ LRADF

T L̂RT DF-GLS

−0.25 1.030 0.000 0.954 0.000 1.010 0.000 0.997 0.797
1.000 0.047 0.040 0.035 1.000 0.049 0.045 0.035
0.940 0.592 0.536 0.503 0.985 0.562 0.534 0.459
0.920 0.754 0.700 0.670 0.980 0.791 0.765 0.693
0.860 0.896 0.852 0.828 0.970 0.966 0.954 0.927

−0.50 1.030 0.000 0.972 0.000 1.010 0.000 0.997 0.779
1.000 0.060 0.046 0.039 1.000 0.058 0.052 0.039
0.940 0.578 0.495 0.436 0.985 0.576 0.537 0.454
0.920 0.724 0.641 0.572 0.980 0.790 0.755 0.671
0.860 0.895 0.821 0.722 0.970 0.960 0.944 0.897

−0.75 1.030 0.000 0.989 0.000 1.010 0.000 0.996 0.714
1.000 0.092 0.063 0.045 1.000 0.076 0.064 0.044
0.940 0.611 0.475 0.325 0.985 0.602 0.541 0.403
0.920 0.763 0.623 0.419 0.980 0.790 0.735 0.564
0.860 0.952 0.872 0.582 0.970 0.951 0.923 0.756

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d

T ), and
the DF-GLS test of ERS. Simulations are based on 105 replications of the moving average DGP, allowing
for a constant mean and linear trend in the regression model. The lag orders are chosen by minimization of
the MAIC of Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test, and to the DF-GLS
regression for the other two tests.

run dynamics and consider models for {ut} that can be interpreted as generalizations of the

AR(1) version of the model (2). In other words, our point of departure in both subsections

of this section is the model characterized by (1) and (2) with γ(z) = 1 and u0 = op(T
1/2).

We would expect, though, that very similar results could be obtained for the model with

p > 1 and for the model characterized by (3) instead of (2).

5.1 (Possibly) Non-negligible Initial Condition

As noted by Elliott (1999), if u0 is drawn from the stationary distribution of the model (2) un-

der local departures from the unit root hypothesis, then the initial condition is non-negligible

in the sense that T−1/2u0 = Op(1) but T
−1/2u0 ̸= op(1). Following Müller and Elliott (2003),

an interesting way of accommodating a (possibly) non-negligible initial condition is to model

u0 as a (possibly diverging) parameter. Doing so, the initial condition acts as an unidenti-

fied nuisance parameter under the null hypothesis of a unit root. Even in otherwise standard

testing problems, the presence of nuisance parameters that are unidentified under the null

renders these testing problems nonstandard (e.g., Andrews and Ploberger, 1994) and affects

the optimality properties of likelihood ratio tests (e.g., Andrews and Ploberger, 1995).

As shown by Müller and Elliott (2003), similar phenoma occur in a unit root testing

12



context. We have no new results regarding general optimality theory for testing problems of

this sort. Instead, the purpose of this subsection is to document the consequences of treating

u0 as an unknown/unrestricted nuisance parameter when developing QLR tests associated

with the problem of testing H0 versus H1 in the model characterized by (1) and (2). As

already indicated, we simplify the exposition by setting γ(z) = 1 in (2).

Setting γ(z) = 1 and letting ξ denote the value of u0, the Gaussian quasi-log likelihood

function corresponding to the model given by (1) and (2) can be expressed, up to an additive

constant, as

LIC
T (ρ, β, σ2, ξ) = −T

2
log σ2 − 1

2σ2
(Y IC

ρ −DIC
ρ β)′(Y IC

ρ −DIC
ρ β)− 1

2σ2
(y1 − β′d1 − ρξ)2,

where Y IC
ρ and DIC

ρ are defined as the matrices with row t = 1, . . . , T −1 given by yt+1−ρyt
and dt+1 − ρdt, respectively. Under H0 (i.e., when ρ = 1), the first column of DIC

ρ is

zero and ξ is not separately identified, although the sum of ξ and the first element of β is

identified. More importantly (for the present purposes at least), for any ρ ̸= 0 it is remarkably

straightforward to eliminate ξ by profiling it out. Thus, setting ξ = ρ−1(y1 − β′d1) the last

term in LIC
T (ρ, β, ξ, σ2) drops out and we obtain

max
ξ
LIC
T (ρ, β, σ2, ξ) = −T

2
log σ2 − 1

2σ2
(Y IC

ρ −DIC
ρ β)′(Y IC

ρ −DIC
ρ β).

We therefore find that the QLR test statistic associated with the problem of testing H0

versus H1 satisfies

LRIC
T = max

ρ≤1,β,ξ,σ2>0
LIC
T (ρ, β, σ2, ξ)− max

β,ξ,σ2>0
LIC
T (1, β, σ2, ξ)

= max
ρ≤1

LIC
T (ρ)− LIC

T (1),

where, up to an additive constant,

LIC
T (ρ) = −T

2
log (Y ′Y − Y ′D(D′D)−D′Y )

∣∣
Y=Y IC

ρ ,D=DIC
ρ

is the profile quasi-log likelihood obtained by maximizing maxξ L
IC
T (ρ, β, σ2, ξ) with respect

to (β, σ2). Note that LIC
T (ρ) involves the Moore-Penrose inverse, denoted (·)−, because

D′D|D=DIC
ρ

is singular when ρ = 1.

To interpret LRIC
T , we re-write it as

LRIC
T =

T

T − 1
LRCL

T ,
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where

LRCL
T = max

ρ≤1,β,σ2>0
LCL
T (ρ, β, σ2)− max

β,σ2>0
LCL
T (1, β, σ2)

is the QLR test statistic based on

LCL
T (ρ, β, σ2) = −T − 1

2
log σ2 − 1

2σ2
(Y IC

ρ −DIC
ρ β)′(Y IC

ρ −DIC
ρ β).

Here, LCL
T (ρ, β, σ2) is the conditional (on y1) quasi-likelihood function corresponding to the

model given by (1) and (2). The latter is precisely the quasi-likelihood upon which the

Dickey and Fuller (1979, 1981) tests are based. Thus, apart from the factor T/(T − 1),

the QLR statistic LRIC
T is numerically identical to the conditional QLR statistic LRCL

T , and

consequently LRIC
T is asymptotically equivalent to the one-sided Dickey-Fuller t-statistic.

In other words, treating the initial condition as a nuisance parameter and profiling it out

of the likelihood in the ERS-type model results in the same QLR test as when conditioning

on the first observation as in the work of Dickey and Fuller (1979, 1981). Although expected

in hindsight, this is an interesting and, to the best of our knowledge, a new insight.

The advantages and disadvantages of the Dickey-Fuller t-statistic are well understood in

models with and without a non-negligible initial condition. As a practical matter, Harvey,

Leybourne, and Taylor (2009) recommend combining a test of DF-GLS type with the Dickey-

Fuller t-test (using a union of rejections decision rule) when there is uncertainty about

whether the initial condition is asymptotically negligible or not. A (purely) likelihood-based

version of their proposal could employ a union of rejections decision rule based on LRADF
T

and a version of LRIC
T (or LRCL

T ) adapted to a model with γ(z) ̸= 1.

5.2 Functional Local to Unity Models

Setting γ(z) = 1 and assuming that c = T (ρ−1) is held fixed, the model (2) can be written as

∆ut =
c

T
ut−1 + εt.

As an interesting generalization of this model, Bykhovskaya and Phillips (2020) proposed

the functional local to unity model

∆ut =
C(t/T )

T
ut−1 + εt, (7)

where C(·) is some (possibly) non-constant function; see also Bykhovskaya and Phillips

(2018). Letting C denote a set of functions containing the zero function, we assume that the

maintained hypothesis is of the form C(·) ∈ C, in which case the unit root testing problem
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is the problem of testing

HFLU
0 : C(·) = 0 versus HFLU

1 : C(·) ∈ C\{0}.

Specializing to the case where HFLU
1 is simple, Bykhovskaya and Phillips (2020) charac-

terized the large sample properties of QLR tests in the case where β in (1) is known (and

normalized to zero), εt ∼ i.i.d.N (0, σ2) with σ2 known (and normalized to one) in (7), and

the initial condition is u0 = 0. By the Neyman-Pearson lemma, these tests are point opti-

mal and the power of the tests can therefore be used to obtain Gaussian power envelopes.

In this subsection, our goal is to describe (some of) the consequences of allowing HFLU
1 to

be composite. To facilitate comparison with our earlier results, we once again treat β and

σ2 as unknown nuisance parameters.

The Gaussian quasi-log likelihood function corresponding to the model given by (1) and

(7) with initial condition u0 = 0 can be expressed, up to an additive constant, as

LFLU
T (C̄, β, σ2) = −T

2
log σ2 − 1

2σ2
(Y FLU

C̄ −DFLU
C̄ β)′(Y FLU

C̄ −DFLU
C̄ β),

where, setting y0 = 0 and d0 = 0, Y FLU
C̄

and DFLU
C̄

are defined as the matrices with row

t = 1, . . . , T given by ∆yt − T−1C̄(t/T )yt−1 and ∆dt − T−1C̄(t/T )dt−1, respectively. The

corresponding QLR test statistic associated with the problem of testing HFLU
0 versus HFLU

1

is therefore given by

LRFLU
T = max

C̄(·)∈C,β,σ2>0
LFLU
T (C̄, β, σ2)− max

β,σ2>0
LFLU
T (0, β, σ2)

= max
C̄(·)∈C

LFLU
T (C̄)− LFLU

T (0),

where, up to an additive constant,

LFLU
T (C̄) = −T

2
log (Y ′Y − Y ′D(D′D)−1D′Y )

∣∣
Y=Y FLU

C̄
,D=DFLU

C̄

is the profile quasi-log likelihood obtained by maximizing LFLU
T (C̄, β, σ2) with respect to

(β, σ2).

In important respects, the distributional properties of LRFLU
T are similar to those ob-

tained for LRADF
T in Theorem 1. To state the results, let

WC(r) =

∫ r

0

exp

(∫ r

s

C(τ)dτ

)
dW (s),

where W is a standard Wiener process. If dt = 1, then it follows as in Lemma 2 of
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Bykhovskaya and Phillips (2020) that, under mild conditions on C(·) and C̄(·), we have

LFLU
T (C̄)− LFLU

T (0) →d Λ
FLU
C (C̄),

where

ΛFLU
C (C̄) =

∫ 1

0

C̄(r)WC(r)dWC(r)−
1

2

∫ 1

0

C̄(r)2WC(r)
2dr.

Under mild conditions on C(·) and C, we therefore obtain the following generalization of the

result reported in Theorem 1(a):

LRFLU
T →d maxC̄∈C Λ

FLU
C (C̄).

Similarly, if dt = (1, t)′ and under mild conditions on C(·) and C, we obtain the following

generalization of the result reported in Theorem 1(b):

LRFLU
T →d maxC̄∈C Λ

FLU,τ
C (C̄),

where

ΛFLU,τ
C (C̄) = ΛFLU

C (C̄)

+
1

2

(
WC(1)−

∫ 1

0
C̄(r)(rdWC(r) +WC(r)dr) +

∫ 1

0
C̄(r)2rWC(r)dr

)2
1− 2

∫ 1

0
C̄(r)rdr +

∫ 1

0
C̄(r)2r2dr

− 1

2
WC(1)

2

is the pointwise (in C̄(·)) weak limit of LFLU
T (C̄)− LFLU

T (0).

As observed by JN, the fact that Λc(c̄) is quadratic in c̄ implies that the functional

maxc̄≤0 Λc(c̄) in Theorem 1(a) admits the closed form representation

maxc̄≤0 Λc(c̄) =
1

2

min
{∫ 1

0
Wc(r)dWc(r), 0

}2

∫ 1

0
Wc(r)2dr

.

A similar representation is available for maxC̄∈C Λ
FLU
C (C̄) in many cases. To be specific,

suppose C is a cone of the form

C =
{
c̄C̄λ(·) : c̄ ≤ 0, λ ∈ Λ

}
, (8)

where, for each λ in some set Λ, C̄λ(·) is a known function. In this case, the parameter of
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interest is c̄, while λ is a nuisance parameter that is unidentified under the null, and we have

maxC̄∈C Λ
FLU
C (C̄) = max

λ∈Λ

1

2

min
{∫ 1

0
C̄λ(r)WC(r)dWC(r), 0

}2

∫ 1

0
C̄λ(r)2WC(r)2dr

.

In particular, if Λ = {1/2} (implying in particular that there are no unidentified nuisance

parameters under HFLU
0 ), then

maxC̄∈C Λ
FLU
C (C̄) =

1

2

min
{∫ 1

0
C̄1/2(r)WC(r)dWC(r), 0

}2

∫ 1

0
C̄1/2(r)2WC(r)2dr

.

On the other hand, maxC̄∈C Λ
FLU,τ
C (C̄) shares with maxc̄≤0 Λ

τ
c (c̄) in Theorem 1(b) the prop-

erty that it does not seem to admit a closed form representation.

The list of classes C satisfying (8) is long, but for specificity we mention some prominent

examples here. A particularly simple class is the one where Λ = {1/2} and C̄1/2(·) is given
by the triangular function,

C̄1/2(τ) = min {τ, 1− τ} = λmin

{
τ

λ
,
1− τ

1− λ

}∣∣∣∣
λ=1/2

.

This class is motivated by Section 2.2.2 of Bykhovskaya and Phillips (2020), wherein the

function c̄C̄1/2(·) is denoted c∗c̄/2(·). Similarly, the following classes exhibiting a (possibly)

non-trivial dependence on λ, are inspired by Section 2.2.1 of Bykhovskaya and Phillips (2020):

C̄λ(τ) = I(τ < λ), Λ ⊂ (0, 1),

C̄λ(τ) = I(τ > λ), Λ ⊂ (0, 1),

C̄λ(τ) = I(|τ − 1/2| < λ), Λ ⊂ (0, 1/2), and

C̄λ(τ) = I(|τ − 1/2| > λ), Λ ⊂ (0, 1/2),

where I(·) denotes the indicator function.

It would be of interest to explore the power properties of LRFLU
T for various choices of C.

Among other things, it may be useful to isolate a class C for which LRFLU
T is nearly efficient

in the sense that its local asymptotic power function is indistinguishable from the Gaussian

power envelope. For instance, it seems natural to ask whether LRFLU
T is nearly efficient when

C is of the form (8) with Λ = {1/2} and C̄1/2(·) equal to the triangular function or some other

plausible alternative to the conventional constant function. In addition, and perhaps even

more so, it would be interesting to know whether it is possible to isolate a class C for which

LRFLU
T has good power properties even when C is misspecified. Bykhovskaya and Phillips
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Table 5: Rejection frequencies of unit root tests, functional case

ρ LRADF
T L̂R

d

T DF-GLS LRFLU
T

λ = 0.25 λ = 0.5 λ = 0.75

Panel A: constant mean case

1.000 0.048 0.047 0.049 0.047 0.048 0.050
0.993 0.472 0.462 0.479 0.352 0.366 0.374
0.990 0.721 0.710 0.726 0.547 0.557 0.565
0.985 0.940 0.934 0.940 0.801 0.808 0.807

1− 0.03C̄1/2(·) 0.737 0.728 0.735 0.876 0.947 0.828

Panel B: linear trend case

1.000 0.045 0.042 0.031 0.035 0.044 0.054
0.990 0.277 0.263 0.212 0.179 0.207 0.233
0.980 0.795 0.773 0.700 0.547 0.588 0.616
0.970 0.972 0.963 0.940 0.834 0.858 0.869

1− 0.06C̄1/2(·) 0.763 0.744 0.641 0.885 0.976 0.906

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d

T ),
the DF-GLS test of ERS, and the QLR test with triangular functional alternatives (LRFLU

T with λ ∈
{0.25, 0.5, 0.75}). Simulations are based on 105 replications of the autoregressive DGP with γ(z) = 1 and
T = 1000, allowing for either a constant mean only (Panel A) or a linear trend (Panel B) in the regression
model. The lag orders are chosen by minimization of the MAIC of Perron and Qu (2007) applied to the
relevant model.

(2020) argue convincingly that this property fails when C consists only of constant functions

and present evidence to suggest that setting Λ = {1/2} and letting C̄1/2(·) be given by the

triangular function might be an attractive alternative to the more conventional approach of

(implictly) letting C consist only of constant functions.

Although it is beyond the scope of this paper to do so, we hope that future work will an-

swer these questions and more generally shed additional light on the properties of functional

local to unity models. To motivate such analysis, we report in Table 5 rejection frequencies

for the LRADF
T test, the L̂R

d

T test of JN, the DF-GLS test, and the QLR test with triangular

functional alternatives, i.e. LRFLU
T with λ ∈ {0.25, 0.5, 0.75}. The results in Table 5 show

that the LRFLU
T tests suffer some power loss relative to the other tests under the “usual”

alternatives with ρ < 1 being constant. On the other hand, the LRFLU
T tests are more pow-

erful against the functional alternative. Moreover, the LRFLU
T test with correctly specified

λ = 0.5 is substantially more powerful than the LRFLU
T tests with λ = 0.25 and λ = 0.75.

6 Concluding Remarks

This paper has developed and analyzed QLR test statistics in an autoregressive model of

arbitrary order, whose deterministic components and short-run dynamics are governed by

unknown nuisance parameters. Previous work, notably that of ERS and JN, has developed
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tests that can be interpreted as “plug-in” versions of QLR test statistics, developed under

the counterfactual assumption that nuisance parameters governing either deterministic com-

ponents or short-run dynamics are known. In particular, our work generalizes that of JN by

allowing the nuisance parameters that are “profiled out” to include those of a finite-order au-

toregressive process governing short-run dynamics. Our main theoretical result shows that

this generalization can be achieved without sacrificing analytical tractability or statistical

efficiency. In addition, the resulting test is attractive from a practical point of view, being

simple to compute and enjoying good properties in a simulation experiment. We have also

considered extensions of the finite order autoregressive model to sieve-type approximations

and to different classes of alternatives.

Although doing so is beyond the scope of this paper, it would be of both theoretical and

practical interest to explore whether the generalizations of Jansson and Nielsen (2012) devel-

oped in this paper could be extended to other unit root type models. For example, an inter-

esting model related to the functional local to unity model considered in Section 5.2 is the hy-

brid stochastic local unit root model of Lieberman and Phillips (2020), which leads to nonlin-

ear diffusions that match certain financial models with high kurtosis; see also Lieberman and

Phillips (2014, 2017). It would be of interest to develop and study QLR tests of the unit root

hypothesis also in models of that type. Furthermore, it seems likely that the methods could

be developed to cover seasonally integrated models as in Jansson and Nielsen (2011) or coin-

tegrated vector autoregressive models as in Boswijk, Jansson, and Nielsen (2015). It would

also be of interest to develop and analyze QLR tests for unit roots in more complicated set-

tings such as panel data models. Important progress on understanding optimal unit root test-

ing in such models has been made by, among others, Moon, Perron, and Phillips (2007, 2014)

and Becheri, Drost, and van den Akker (2015), but to the best of our knowledge it is still an

open question whether optimality can be achieved by tests admitting a QLR interpretation.

Appendix A Proofs of Main Results

A.1 Proof of Theorem 1

Because LADF
T (·) is invariant under transformations of the form yt → yt+b

′dt, we can assume

without loss of generality that β = 0. Also, the proof of part (a) is a special case of the proof

of part (b), so we only give the proof of part (b).

In what follows, we employ a local (around π = 0, β = 0, and η = γ) reparameterization

of the form π = πT (c̄) = γ(1)c̄/T , β = βT (b̄) = γ(1)−1b̄ diag(1, T−1/2), and η = ηT (h̄) =

γ + h̄T−1/2, where c̄ ∈ R, b̄ ∈ R2, and h̄ ∈ Rp. To reiterate, the model of interest is that

given by (1) and (2) with γ and c = T (ρ − 1) kept fixed, but (solely) for the purpose of

analyzing LADF
T it is natural to work with (and reparameterize) η and π.
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For any (π, β), define V γ
π,β as the vector with row t = 1, . . . , T given by (γ(L)(1 − L) −

πL)(yt − β′dt). Also, define

σ̃2
T =

1

T
(V ′V − V ′Z(Z ′Z)−1Z ′V )

∣∣
V=V γ

0,0,Z=Z0
= T−1

T∑
t=1

ε2t + op(1) →p σ
2,

and for any (c̄, b̄), let

λADF
T (c̄, b̄) = λDF

T (c̄, b̄) +
1

2σ̃2
T

(V ′Z(Z ′Z)−1Z ′V )
∣∣
V=V γ

πT (c̄),βT (b̄)
,Z=ZβT (b̄)

− 1

2σ̃2
T

(V ′Z(Z ′Z)−1Z ′V )
∣∣
V=V γ

0,0,Z=Z0
,

where

λDF
T (c̄, b̄) =

1

2σ̃2
T

V ′V |V=V γ
0,0

− 1

2σ̃2
T

V ′V |V=V γ

πT (c̄),βT (b̄)
.

Because

LADF
T (πT (c̄), βT (b̄))− LADF

T (0, 0) = GT (λ
ADF
T (c̄, b̄)),

where

GT (x) = −T
2
log

(
1− 2

T
x

)
, x <

T

2
,

is monotonically increasing in x, the statistic LRADF
T admits the representation

LRADF
T = GT

(
max
c̄≤0,b̄

λADF
T (c̄, b̄)

)
−GT

(
max

b̄
λADF
T (0, b̄)

)
.

Suppose(
max
c̄≤0,b̄

λADF
T (c̄, b̄),max

b̄
λADF
T (0, b̄)

)
→d

(
max
c̄≤0,b̄

ΛADF
c (c̄, b̄),max

b̄
ΛADF

c (0, b̄)

)
, (9)

where the process ΛADF
c is of the form

ΛADF
c (c̄, b̄) = Λc(c̄) + b̄′

(
E

(1− c̄)Wc(1) + c̄2
∫ 1

0
rWc(r)dr

)
− 1

2
b̄′

(
K 0

0 1− c̄+ c̄2/3

)
b̄,

with K a positive constant (possibly depending on γ) and E a random variable independent
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of Wc (but possibly depending on γ). Then

LRADF
T = max

c̄≤0,b̄
λADF
T (c̄, b̄)−max

b̄
λADF
T (0, b̄) + op(1)

→d max
c̄≤0,b̄

ΛADF
c (c̄, b̄)−max

b̄
ΛADF

c (0, b̄)

= max
c̄≤0

Λc(c̄) +
1

2

(
(1− c̄)Wc(1) + c̄2

∫ 1

0
rWc(r)dr

)2
(1− c̄+ c̄2/3)

+
1

2

E2

K

−
(
1

2
Wc(1)

2 +
1

2

E2

K

)
= max

c̄≤0
Λτ

c (c̄),

where the first equality follows from the facts that (i) the left-hand side of (9) is Op(1) and

(ii) limT→∞ sup|x|≤M |GT (x) − x| = 0 for any 0 ≤ M < ∞. The proof can therefore be

completed by verifying (9). We shall do so by showing that

(ĉT , b̂T ) = argmax
c̄≤0,b̄

λADF
T (c̄, b̄) = Op(1) and b̃T = argmax

b̄
λADF
T (0, b̄) = Op(1), (10)

and that λADF
T converges to ΛADF

c in the topology of uniform convergence on compacta.

We first show (10). To this end, let

et = γ(L)∆yt, QTt = (q′Tt, r
′
Tt, s

′
Tt)

′, θT = (θ′q,T , θ
′
r,T , θ

′
s,T )

′,

with

qTt =


T−1γ(1)yt−1

I(t = 1)−
∑p

j=1 γjI(t = j + 1)

T−1/2

T−3/2(t− 1)

 , rTt =


I(t = 2)

...

I(t = p+ 1)

 , sTt =


T−1/2∆yt−1

...

T−1/2∆yt−p

 ,

and

θq,T (c̄, b̄, h̄) =


c̄

γ(1)−1(1 + T−1c̄γ(1))b̄1 + T−1/2γ(1)−1b̄2ι
′ηT (h̄)

γ(1)−1(1− T−1/2ι′h̄)b̄2 − T−1/2c̄b̄1

−c̄b̄2

 ,

θr,T (c̄, b̄, h̄) = T−1c̄b̄1γ + T−1/2γ(1)−1b̄2ι
′ηT (h̄)γ

− T−1/2γ(1)−1b̄1h̄+ T−1/2γ(1)−1b̄2UηT (h̄),

θs,T (c̄, b̄, h̄) = h̄,

where I(·) is the indicator function, ι is a p-vector of ones, and U is a p × p strictly upper
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triangular matrix with ones above the main diagonal.

The pair (ĉT , b̂T ) satisfies

(ĉT , b̂T , ĥT ) = arg min
c̄≤0,b̄,h̄

λT (c̄, b̄, h̄),

where

λT (c̄, b̄, h̄) =
T∑
t=1

(et −Q′
TtθT (c̄, b̄, h̄))

2 −
T∑
t=1

e2t

= −2G′
T θ + θ′HT θ|θ=θT (c̄,b̄,h̄) ,

with

GT =

 Gq,T

Gr,T

Gs,T

 =
T∑
t=1

 qTt

rTt

sTt

 et =
T∑
t=1

QTtet

and

HT =

 Hqq,T Hqr,T Hqs,T

Hrq,T Hrr,T Hrs,T

Hsq,T Hsr,T Hss,T

 =
T∑
t=1

 qTt

rTt

sTt


 qTt

rTt

sTt


′

=
T∑
t=1

QTtQ
′
Tt.

Defining θ̂T = θT (ĉT , b̂T , ĥT ), we therefore have

0 ≥ λT (ĉT , b̂T , ĥT ) = −2G′
T θ̂T + θ̂′THT θ̂T

≥ −2∥GT∥∥θ̂T∥+ λmin(HT )∥θ̂T∥2 (11)

by the Rayleigh-Ritz Theorem, where ∥·∥ denotes the Euclidean norm and where λmin (·)
denotes the smallest eigenvalue of the argument. This rearranges straightforwardly as

∥θ̂T∥ ≤ 2∥GT∥/λmin(HT ).

It follows from standard results (e.g., Chan and Wei, 1987; Phillips, 1987) that (GT , HT ) →d

(Gc,Hc) for some (Gc,Hc) depending on c (and γ) with Hc positive definite. In particular,

GT = Op(1) and 1/λmin(HT ) = Op(1), and therefore θ̂T = Op(1).

Consequently, ĥT = Op(1), ĉT = Op(1), and (1 + op(1))b̂1,T + b̂2,Top(1)

(1 + op1))b̂2,T − ĉT b̂1,To(1)

−ĉT b̂2,T

 = Op(1),

implying in turn that also b̂T = Op(1). This proves the first statement of (10).
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Similarly, the representation

(b̃T , h̃T ) = argmin
b̄,h̄

λT (0, b̄, h̄)

can be used to show that h̃T = Op(1) and(
b̃1,T + b̃2,Top(1)

(1 + op(1))b̃2,T

)
= Op(1),

which implies that b̃T = Op(1). This proves the second statement of (10).

Next, we prove that λADF
T converges to ΛADF

c in the topology of uniform convergence on

compacta. For any compact set K, it can be shown that

sup
(c̄,b̄′)′∈K

∣∣λADF
T (c̄, b̄)− λDF

T (c̄, b̄)
∣∣ = Op(T

−1/2) = op(1).

It therefore follows from Prohorov’s Theorem (e.g., Kallenberg, 2002, Theorem 16.5) that

λADF
T converges to ΛADF

c in the topology of uniform convergence on compacta if λDF
T con-

verges to ΛADF
c in the sense of weak convergence of finite-dimensional projections and if the

process
{
λDF
T (c̄, b̄) : (c̄, b̄′)′ ∈ K

}
is tight for any compact set K.

For any fixed (c̄, b̄), it follows from standard results (e.g., Chan and Wei, 1987; Phillips,

1987) that

λDF
T (c̄, b̄) →d Λ

ADF
c (c̄, b̄).

Moreover, the Cramér-Wold device can be used to show that λDF
T converges to ΛADF

c in the

sense of weak convergence of finite-dimensional projections. Finally, letting VT , V̇T , DT , and

ḊT be matrices with row t = 1, . . . , T given by γ(L)∆yt, T
−1γ(1)yt−1, γ(1)

−1γ(L)∆d′t diag(1, T
−1/2),

and d′t−1 diag(T
−3/2, T 2), respectively, λDF

T admits a representation of the form

λDF
T (c̄, b̄) = F (c̄, b̄,ST ),

where F is continuous and where

ST =
(
V ′
T V̇T , V̇ ′

T V̇T ,V ′
TDT ,V ′

T ḊT , V̇ ′
TDT , V̇ ′

T ḊT ,D′
TDT ,D′

T ḊT , Ḋ′
T ḊT

)
= Op(1)

by standard results (e.g., Chan and Wei, 1987; Phillips, 1987). Because F is continuous, it

follows from the Arzelà-Ascoli Theorem (Dudley, 2002, Theorem 2.4.7) that for any com-

pact sets K and K, the set {F (·,S)|K : S ∈ K} is relatively compact (i.e., has compact clo-

sure), where F (·,S)|K is the restriction of F (·,S) to K. As a consequence, the fact that

ST = Op(1) implies that, for any compact set K, the process
{
λADF
T (c̄, h) : (c̄, h′)′ ∈ K

}
=
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{F (c̄, h,ST ) : (c̄, h
′)′ ∈ K} is tight.

A.2 Proof of Theorem 2

Define γ̄(z) = 1 −
∑∞

j=1 γ̄jz
j = ψ(z)−1, which exists under our conditions on ψ(z). For

any p, letting γ = (γ1, . . . , γp)
′ = (γ̄1, . . . , γ̄p)

′ and proceeding as in the proof of Theorem 1, it

suffices to show that (10) holds and that λADF
T converges to ΛADF

c in the topology of uniform

convergence on compacta.

The fact that λADF
T converges to ΛADF

c in the topology of uniform convergence on com-

pacta can be shown by adapting the proof of Theorem 1 with the help of results and ideas

from Chang and Park (2002) and Phillips and Solo (1992). Specifically, when p = pT → ∞
it holds that (i) for any compact set K,

sup
(c̄,b̄′)′∈K

∣∣λADF
T (c̄, b̄)− λDF

T (c̄, b̄)
∣∣ = Op(T

−1/2pT ),

which is op(1) because pT = o(T 1/3), (ii) λDF
T converges to ΛADF

c in the sense of weak

convergence of finite-dimensional projections, and (iii) ST = Op(1). To conserve space we

do not report the details of those derivations.

Relative to the proof of Theorem 1, the most difficult part of the proof of Theorem 2 is

to show that (10) holds. Proceeding as in the proof of Theorem 1, and using in particular

the argument in (11), we have that

∥θ̂T∥ ≤ 2∥GT∥/λmin(HT ) = Op(p
1/2
T ).

Here, the equality uses the facts that, when p = pT → ∞,

∥Gq,T∥+ p
−1/2
T ∥Gr,T∥+ p

−1/2
T ∥Gs,T∥ = Op(1)

and

λmax(HT ) + 1/λmin(HT ) = Op(1),

where λmax(·) denotes the largest eigenvalue of the argument, the first display follows from the

Chebyshev inequality and the fact that the elements of GT have bounded second moments,

and the second display uses
∑∞

j=1 γ̄
2
j <∞ and the fact (also noted by Berk (1974)) that

λmax(Σ) + 1/λmin(Σ) = O(1),

where

Σ = E(v̆tv̆
′
t), v̆t = γ(L)−1(εt, . . . , εt−p+1)

′.
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In particular, this implies that ĥT = Op(p
1/2
T ), ĉT = Op(p

1/2
T ), and, using pT = o(T ), (1 + op(1))b̂1,T + b̂2,Top(1)

(1 + op(1))b̂2,T − ĉT b̂1,TO(T
−1/2)

−ĉT b̂2,T

 = Op(p
1/2
T ),

implying in turn that also b̂T = Op(p
1/2
T ).

To sharpen these rates and prove that (10) holds, we first note that ĥT = Op(p
1/2
T ),

ĉT = Op(p
1/2
T ), and b̂T = Op(p

1/2
T ) together with pT = o(T 1/3) imply that

G′
T θ̂T = G′

q,T θ̂q,T +G′
s,T θ̂s,T + op(1)

and

θ̂′THT θ̂T = θ̂′q,THqq,T θ̂q,T + θ̂′s,THss,T θ̂s,T + op(1).

Consequently,

min
c̄≤0,b̄,h̄

λT (c̄, b̄, h̄) = −2G′
T θ̂T + θ̂′THT θ̂T

= −2G′
q,T θ̂q,T + θ̂′q,THqq,T θ̂q,T − 2G′

s,T θ̂s,T + θ̂′s,THss,T θ̂s,T + op(1),

where

−2G′
s,T θ̂s,T + θ̂′s,THss,T θ̂s,T = λT (0, 0, h̄) ≥ min

h̄
λT (0, 0, h̄).

Therefore,

0 ≥ min
c̄≤0,b̄,h̄

λT (c̄, b̄, h̄)−min
h̄
λT (0, 0, h̄)

≥ −2G′
q,T θ̂q,T + θ̂′q,THqq,T θ̂q,T + op(1),

which implies that, with probability converging to one,

∥θ̂q,T∥ ≤ 2∥Gq,T∥/λmin(Hqq,T ) + op(1)/∥θ̂q,T∥ ≤ 2∥Gq,T∥/λmin(Hqq,T ) + 1 = Op(1). (12)

Here, the first inequality follows by the Rayleigh-Ritz Theorem as in (11), the second inequal-

ity follows by noting that the op(1) term is smaller than one in absolute value with probabil-

ity converging to one and then considering separately the cases ∥θ̂q,T∥ ≤ 1 and ∥θ̂q,T∥ ≥ 1,

and the equality follows because Gq,T = Op(1) and 1/λmin(Hqq,T ) = Op(1).
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Using (12) and the fact that

θ̂q,T =


ĉT

γ(1)−1b̂1,T

γ(1)−1b̂2,T

−ĉT b̂2,T

+ op(1),

we have ∥∥∥∥∥∥∥∥∥∥


ĉT

γ(1)−1b̂1,T

γ(1)−1b̂2,T

−ĉT b̂2,T


∥∥∥∥∥∥∥∥∥∥
≤ ∥θ̂q,T∥+ op(1) = Op(1),

implying in particular that ĉT = Op(1) and b̂T = Op(1). By a very similar proof, it can be

shown that b̃T = Op(1).
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