In an important generalization of zero frequency autoregressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed regression-based tests for unit roots at the seasonal frequencies in quarterly time series. We develop likelihood ratio tests for seasonal unit roots and show that these tests are "nearly efficient" in the sense of Elliott, Rothenberg, and Stock (1996), i.e. that their asymptotic local power functions are indistinguishable from the Gaussian power envelope. Nearly efficient testing procedures for seasonal unit roots have been developed, including point optimal tests based on the Neyman-Pearson Lemma as well as regression-based tests, e.g. Rodrigues and Taylor (2007). However, both require the choice of a GLS detrending parameter, which our likelihood ratio tests do not. In an important generalization of zero frequency autoregressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed regression-based tests for unit roots at the seasonal frequencies in quarterly time series. We develop likelihood ratio tests for seasonal unit roots and show that these tests are "nearly efficient" in the sense of Elliott, Rothenberg, and Stock (1996), i.e. that their asymptotic local power functions are indistinguishable from the Gaussian power envelope. Nearly efficient testing procedures for seasonal unit roots have been developed, including point optimal tests based on the Neyman-Pearson Lemma as well as regression-based tests, e.g. Rodrigues and Taylor (2007). However, both require the choice of a GLS detrending parameter, which our likelihood ratio tests do not.
QED Working Paper Number
1224
Likelihood Ratio Test
Seasonal Unit Root Hypothesis
Download [PDF]
(143.33 KB)