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Abstract

In an important generalization of zero frequency autoregressive unit root
tests, Hylleberg, Engle, Granger & Yoo (1990) developed regression-based
tests for unit roots at the seasonal frequencies in quarterly time series. We de-
velop likelihood ratio tests for seasonal unit roots and show that these tests are
“nearly efficient” in the sense of Elliott, Rothenberg & Stock (1996), i.e. that
their asymptotic local power functions are indistinguishable from the Gaussian
power envelope. Nearly efficient testing procedures for seasonal unit roots
have been developed, including point optimal tests based on the Neyman-
Pearson Lemma as well as regression-based tests, e.g. Rodrigues & Taylor
(2007). However, both require the choice of a GLS detrending parameter,
which our likelihood ratio tests do not.
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1 Introduction

Determining the number and locations of unit roots in non-annual economic time
series is a problem that has attracted considerable attention over the last couple
of decades. In a important generalization of the work of Dickey and Fuller (1979,
1981) and Dickey, Hasza & Fuller (1984), Hylleberg et al. (1990, henceforth HEGY)
developed regression-based tests of the subhypotheses comprising the seasonal unit
root hypothesis in a quarterly context. Subsequent work has further generalized the
HEGY tests in various ways, including to models with seasonal intercepts and/or
trends and to non-quarterly seasonal models (e.g., Beaulieu & Miron (1993), Ro-
drigues & Taylor (2004), and Smith, Taylor & Castro (2009)).

From the point of view of statistical efficiency, the properties of the HEGY tests
are analogous to those of their zero frequency counterparts, the Dickey-Fuller tests.
In particular, in models without deterministic components the HEGY t-tests are
“nearly efficient” in the sense of Elliott et al. (1996, henceforth ERS), i.e. their
asymptotic local power functions are indistinguishable from the Gaussian power
envelope. However, the HEGY t-tests are asymptotically inefficient in models with
intercepts and/or trends. To improve power of seasonal unit root tests, Gregoir
(2006) and Rodrigues & Taylor (2007, henceforth RT) have extended the asymp-
totic power envelopes of ERS to seasonal models and have developed feasible tests
that are nearly efficient in seasonal contexts. As do their zero frequency coun-
terparts due to ERS, the nearly efficient tests of Gregoir (2006) and RT involve
so-called GLS detrending, implementation of which requires the choice of a vec-
tor of “non-centrality” parameters. The purpose of this paper is to propose nearly
efficient seasonal unit root tests that enjoy the (aesthethically as well as scientifi-
cally) appealing feature that they do not require the choice of such non-centrality
parameters.

To do so, we generalize the analysis of Jansson & Nielsen (2009, henceforth
JN), who propose nearly efficient likelihood ratio tests of the zero frequency unit
root hypothesis, to models appropriate for testing for seasonal unit roots. Specif-
ically, the paper proceeds as follows. Section 2 is concerned with testing for sea-
sonal unit roots in quarterly time series in the simplest possible setting, namely a
Gaussian AR(4) model with standard normal innovations and with presample ob-
servations assumed to be equal to their expected values. We develop likelihood ratio
unit root tests in this model and show that these tests are nearly efficient. Section 3
discusses extensions to models with serially correlated and/or non-Gaussian errors
and to tests for seasonal unit roots in non-quarterly time series. Proofs of our results
are provided in Section 4.



2 Likelihood Ratio Tests for Seasonal Unit Roots

2.1 No Deterministic Component

Suppose {y; : 1 <t < T} is an observed univariate quarterly time series generated
by the zero-mean Gaussian AR(4) model

p L)yt = &, 1)

where p (L) is a lag polynomial of order four, & ~ i.i.d. .47 (0,1), and the initial
conditions are y 3 = ... = yo = 0.1 Following RT we assume that p (L) admits the
factorization

p (L) =(1—pzL) (14 pnb) (L+pal?), )

where pz, pn, and pa are (unknown) parameters.?
Under the quarterly unit root hypothesis

HO:PZ - 17pN :17pA: 17

the polynomial p (L) simplifies to Ay = 1 — L*, implying that {y;} is a quarterly
random walk process. Defining Hg : px =1 for k € {Z,N,A}, the quarterly unit
root hypothesis Hg can be expressed as

Ho = H§ NHY' NHg.

The hypotheses HZ and H) correspond to a unit root at the zero and Nyquist
frequencies ® = 0 and @ = 7, respectively, while H/' yields a pair of complex
conjugate unit roots at the frequencies w = x/2 (i.e., the annual frequency) and
w=23n/2.

The alternative corresponding to the single frequency unit root null hypothesis
H('§ Is given by H{‘ :px < 1forke {Z,N,A}. However, we consider also the interme-
diate alternative hypotheses Hfo pz<l,pn=pa=1, H{“’O pn< l,pz=pa=1,

1The initial values assumption can be relaxed to max (|y_s| ..., [yo|) = op (v/T) without invali-
dating the asymptotic results reported in Theorem 1 below.

2In the notation of RT, we study a model with periodicity S = 4 and parameters pz, pn, and pa
given by pz = o, pn = o2, and pa = alz, respectively. The local-to-unity parameters in Theorems
1 and 2 of this paper are related to those in (2.5) — (2.6) of RT as follows: ¢z = ¢g, ty = 2, and
Ca = Cl—‘rO(T*l) .



and H7', : pa < 1,pz = pn = 1, where unit roots are assumed present at the frequen-
cies not being tested.

Specifically, the likelihood ratio test statistic associated with the problem of
testing Ho vs. Hf : pz < 1,pn = pa = 1 is given by

LR = maxz,<1Lt (pz,1,1) — Lt (1,1,1),

where Lt (pz,pn.pa) = — Y1 [(1—pzL) (1+pnL) (1+ pal?) yt]2/2 is the log
likelihood function. Developing a likelihood ratio test of Hg under the “as if”
assumption that py = pa = 1 is analytically convenient because Lt (-,1,1) is a
quadratic function. Moreover, because Remark 3.2 of RT shows that the large sam-
ple properties of the point optimal test statistics Ly (1+T‘1c_z,1,1) —Lr(1,1,1)
are invariant with respect to local departures of py and/or pa from unity (for any
Cz), it seems plausible that a similar invariance property will be enjoyed by LR%.
Theorem 1 below confirms this conjecture and further shows that the test which
rejects for large values of LRZ is a nearly efficient test of Hg vs. HZ 1 pz < 1.
By analogy with LR% define

LRY = maxz,<1 Lt (1,pn,1) — L7 (1,1,1)

and

LR$ = MmaXp,<1 Lt (1,17ISA) —Lr (171’1) :

As defined, LRY is the likelihood ratio test statistic associated with the problem
of testing Hp vs. H{\‘O :pN < 1,pz = pa =1, but it will be shown below that the

test based on LRY is nearly efficient when testing H(’)\l Vs, H{\‘ : pn < 1. Again,
asymptotic invariance of LR$‘ with respect to local departures of pz and/or pa from
unity is expected in light of the invariance result for point optimal test statistics
reported in Remark 3.2 of RT. Similarly, it turns out that a nearly efficient test of
H& vs. H2' 1 pa < 1 can be based on LR%, the likelihood ratio test statistic associated
with the problem of testing Ho vs. H2, 1 pa < 1,p7 = py = 1.

Note that the alternative hypothesés for our likelihood ratio tests are composite,
e.g. pz < 1 for the zero frequency test. On the other hand, the alternatives for the
nearly efficient tests in RT are point alternatives, e.g. pz = pz < 1.

To characterize the local-to-unity asymptotic behavior of the likelihood ratio
statistics LR%, LRY, and LR%, we proceed as in JN. For k € {Z,N,A}, the likelihood
ratio statistic LRX admits a representation of the form



_ 1_
LRY = maxz<g {cS? — ECZH‘T‘} , (3)

where S# and H'T‘ are the score and Hessian, respectively, of the log-likelihood
function Lt (pz, pn, pa) With respect to py, k € {Z,N,A}, evaluated under the null
hypothesis, see (13)-(15) in the proof of Theorem 1. The large-sample behavior
of the pair (S&,HX) is well understood from the work of RT (and others). As a
consequence, we obtain the following result, in which

WE (r) = /Orexp[ck(r—s)]dwk(s), k=Z,N,A,

where WZ (-), WN (-), and WA (-) are independent Wiener processes of dimensions
1, 1, and 2, respectively.

Theorem 1 Suppose {y;} is generated by (1). Ifcz=T (pz—1),cn=T (on — 1),
andca =T (pa—1) /2 are held fixed as T — e, then the following hold jointly:

LR-kr —¢ MaXg<o A'ék (c) fork =Z,N,A,

where

AS (C)=cC-tr {/ WE (r)dwg (r) } ~citr {/ WE (r) ) dr

Theorem 1 implies in particular that the local asymptotic properties of each LR-kr
depends on the local-to-unity parameters (cz,cn,ca) only through cy. This result,
which is unsurprising in light of Remark 3.2 of RT, provides a (partial) statisti-
cal justification for developing tests of each HO under the “as if” assumptlon that
the parameters not under test are equal to unity, as it implies that LR is asymp-
totically pivotal under Hk In particular, the test which rejects when LRk exceeds
k has asymptotic null rejection probability given by Pr [maxagoA'(‘J (c) > K] under
the assumptions of Theorem 1. Therefore, if o < Pr [maxego/\'é (C) > 0] then the
(asymptotic) size o test based on LR-kr has a critical value K'CR (a) defined by the
requirement Pr [maxz<o A§ (C) > ki ()] = .2

In addition to being asymptotically pivotal under HO, the statistic LRT enjoys
the property that it can be used to perform nearly efficient tests of HO VS. Hk In the

3The condition o < Pr [maxego AO () > 0] is satisfied at conventional significance levels since
Pr [maxg<o A§ () > 0] = Pr[maxz<o A} (€) > 0] ~ 0.6827 and Pr [maxz<o Ag () > 0] ~ 0.6322.
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case of k € {Z,N}, this optimality result follows from Theorem 3.1 of RT and the
discussion following Theorem 1 of JN. Moreover, a variant of the same argument
establishes optimality when k = A. For completeness, we briefly discuss the k = A
case here. In all cases, we can exploit the fact (also used in the proof of Theorem 1)
that maxz<o A('§k (C) admits the representation

maxeco Al (©) = min (tr [f(l)lwckk (r)dwg (,—)/} ,0>2. .
2tr [ JEWE (rywik (r)'dr}

The representation (4) shows that (for conventional significance levels) the test
based on LR? is asymptotically equivalent to the HEGY t-test, which in turn im-
plies that the likelihood ratio test is nearly efficient because it follows from Gregoir
(2006, Figure 1) and Theorem 3.1 of RT that the HEGY t-test is nearly efficient in
the absence of deterministic terms.

Theorem 1 is mostly of theoretical interest, as the model (1) makes a num-
ber of unrealistic simplifying assumptions, including (a) the assumption that de-
terministics are absent, (b) the assumption that the errors & are i.i.d. .4#7(0,1),
and (c) the assumption y_3 = ... = yo = 0 made about the most recent presam-
ple values. The assumption that deterministics are absent will be relaxed in the
next subsection, while Section 3.1 will describe how certain types of serial corre-
lation and/or an unknown error distribution can be accommodated. In assuming
y_3=...=Yo =0, we are following Gregoir (2006) and RT as well as most of the
literature on zero frequency unit roots and cointegration, e.g. ERS and Johansen
(1995, Chapter 14). As is well understood (e.g., RT), the initial values assumption
can be relaxed to max (|y_s|,..., |yo|) = op (v/T) without invalidating the asymp-
totic results reported in Theorem 1. Similarly, Theorem 2 below remains valid if the
initial values assumption made in (5) is relaxed to max (Ju_s ..., [ug|) = op (VT).
On the other hand, different distributional results and hence different local power
properties will generally be obtained if max (|y_s|,...,|yo|) # op(v/T) in (1) or
max (|u_s|,...,|Uo|) # op(+v/T) in (5). This has been shown in the context of zero
frequency unit root testing by Elliott (1999), Miller & Elliott (2003), and Harvey,
Leybourne & Taylor (2009), among others. We leave for future work the develop-
ment of seasonal analogues of the results obtained in those papers.

Remark. For specificity we have only considered tests for a unit root at a sin-
gle frequency. Tests of joint hypotheses, such as Hp, can be based on the sum of
the relevant single frequency statistics. It is an open question whether such tests are
nearly efficient, but because Remark 3.3 of RT shows that a point optimal test sta-
tistic for a hypothesis involving multiple frequencies is asymptotically equivalent
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to the sum of the relevant single frequency (point optimal) test statistics, it is not
inconceivable that this might be the case.

2.2 Deterministics

To explore the extent to which the “near efficiency” results of the previous subsec-
tion extend to models with deterministics, we consider a model in which {y; : 1 <t <T}
is generated by the Gaussian AR(4) model

yo=pB'd+u, pL)u =g, )

where d¢ = 1 or d; = (1,t)", B is an unknown parameter, p (L) is parameterized as
in(2), & ~i.i.d. .4 (0,1),andu_3=...=up=0.*
In this case, the log likelihood function L% (+) is conveniently expressed as

LY (pz,pn,pn,B) = —% (Yo —DpB) (Yp —DpB),

where, settingy_3 =...=yp=0andd_3=... =dg =0, Y, and D, are matrices
withrowt =1,...,T given by p (L)y and p (L) d{, respectively.

The likelihood ratio test associated with the problem of testing Hg vs. le.o
rejects for large values of ’

d —
LR? = maxﬁzgl,ﬁ L?’ (PZ, 17 17ﬁ) - L%i' <l7 17 17ﬁ)
= maxg,<1.2F (pz,1,1) — 4 (1,1,1),
where

2L (pz,pn,pa) = maxg LY (pz. pn, pa, B)

1 / 1 / / 1 /
—SYpYo+5 (Ypr> (Dpr) (Dpvp>

4To conserve space we do not consider seasonal frequency intercepts and/or trends. Accommo-
dating such d; should be conceptually straightforward, but is left for future research.




is the profile log likelihood function obtained by maximizing LY (pz, pn, pa, B) with
respect to the nuisance parameter 3. Analogously, the likelihood ratio statistics as-
sociated with tests of Hp against H{“o and Hﬁo are given by

LRy = maxp, <127 (1,pn, 1) — 4 (1,1,1)

and

LR?’d = MaXp,<1 .ﬁ,ﬁqg (17 1713A) - g‘lg (17 1, 1) )

respectively.
As in the case of LR'-‘r, the large sample behavior of LR-"r’d can be analyzed by
proceeding as in JN.

Theorem 2 Suppose {y;} is generated by (5) and suppose ¢z =T (pz—1), cn =
T(pn—1),andca =T (pa—1)/2 are held fixed as T — co.

() If d; = 1, then the following hold jointly:

LR — 4 maxs<o AL (€) for k =Z,N,A.

(b) If dy = (1,t)", then the following hold jointly:

LR — 4 maxs<o AL (€) fork =N,A

and
LRE? — 4 maxe<o AL (€),
where
2
= Z =2 rl Z
) p|a-owZ+@gmEmd]T g
AGT(C)=AL (C)+5 — WS (1)°.

2 1-c+c?2/3 2



Table 1: Simulated critical values of the LR-kr’OI statistic

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%
Panel A: k € {Z,N} without trend or k = N with trend
100 1.14 147 193 269 342 434 502 6.54
200 093 124 168 244 319 415 4.87 6.50
400 0.83 1.10 149 221 294 391 464 6.32
1000 0.79 1.02 137 201 2.69 361 432 5.99
oo 0.76 098 1.31 1.88 2.48  3.29 3.92 5.40
Panel B: k = A with or without trend
100 068 090 122 1.78 235 3.12 3.70 5.03
200 069 091 124 181 2.40  3.19 3.79 5.21
400 069 092 125 1.83 243 3.23 385 5.29
1000 0.70 093 126 184 244 325 3.86 5.32
oo 0.70 093 126 184 245 3.27 3.90 5.38
Panel C: k = Z with trend
100 290 329 381 465 544 644 7.16 8.74
200 273 3.11 364 451 534 640 7.18 8.91
400 259 297 348 434 517 6.25 7.05 8.85
1000 251 286 335 417 498 6.04 6.83 8.65
oo 245 279 326 4.05 482 582 6.57 8.30

Note: Entries for finite T are simulated quantiles of LR-"r’OI with & ~i.i.d..4(0,1).
In Panel A it is the k = Z test that is simulated. Entries for T = oo are simulated
quantiles of the corresponding asymptotic distributions, where Wiener processes
are approximated by 10,000 discrete steps with standard Gaussian white noise in-
novations. All entries are based on ten million Monte Carlo replications.

It follows from Theorem 2 that each LR-kr’OI enjoys properties that are qualita-
tively similar to those enjoyed by LR-kr in the model without deterministics. Specifi-

cally, Theorem 2 implies that each LR-"r’“I is asymptotically pivotal under H(')‘. More-
over, Theorem 3.2 of RT and the discussion following Theorem 2 of JN implies that
LR#’d can be used to perform nearly efficient tests of HX vs. HX.

Simulated critical values K'Cﬁ(oc) associated with LR-kr’d are reported in Table 1.

The profile log likelihood function O%T‘j (pz, PN, pa) is invariant under transfor-
mations of the form y; — y; +b’d;, so that LR#’d and any other test statistic that
can expressed as a functional of ,?Td (pz,pN,pa) shares this invariance property.
It therefore makes sense to compare the asymptotic local power properties of the



Figure 1: Power envelope and asymptotic local power of seasonal unit root LR tests
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Note: Simulated power envelopes and asymptotic local power functions based on
one million Monte Carlo replications, where Wiener processes were approximated
by T = 10,000 discrete steps with standard Gaussian white noise innovations.

likelihood ratio tests LR-kr’d with the Gaussian power envelopes for invariant tests
derived in ERS, Gregoir (2006), and RT.

The asymptotic local power function (with argument ¢ < 0) of the size « likeli-
hood ratio test is given by Pr[maxe<o A('§k (c) > K'L‘f (a)] in case of d; = 1 (any k) or
di = (1,t)’ ,k=N,Aand by Primaxz<o As;" (€) > ki (e)] in case of dy = (1,t) k=
Z, where K'L‘,’f (a) satisfies Pr[maxagoA'(‘)’d (c) > K'L"F? (a)] = o and K‘El’;((x) satis-
fies Primaxg<oAg'* (€) > K% ()] = a. Figure 1 plots these functions for @ =
0.05 in the three cases: k € {Z,N} without trend or k = N with trend (Panel A),
k = A with or without trend (Panel B), and k = Z with trend (Panel C). Also plot-

ted in each panel of Figure 1 are the corresponding Gaussian power envelopes,
which (for size « tests) are given by Pr[A'gk (c) > K(I;-(’d (a)]’_ incase of dy =1
c

(any k) or dy = (1,t)’ .k = N, A and by Pr{AL" () > k27 (a)]‘_ in case of d; =
C=C,
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(1,t)',k = Z, where Ké"d (o) satisfies Pr[Ag’d (c) > K'C—"d (a)] = o and K‘EZ’T (a) sat-

isfies Pr[AS"™ (€) > k2% ()] = a.

In each panel of Figure 1, the asymptotic local power functions of the likelihood
ratio tests are indistinguishable from the Gaussian power envelopes, so that near
optimality claims can be made on the part of the likelihood ratio tests for each
case. To avoid cluttering the figure we have not plotted the asymptotic local power
functions of the modified point optimal invariant tests and GLS-HEGY tests of RT.
However, if plotted, these would also appear indistinguishable from the Gaussian
power envelope, see RT (Remark 5.2). In addition, the asymptotic local power
functions of the OLS-HEGY tests can be found in Rodrigues & Taylor (2004).

3 Extensions

The results of the previous section can be generalized in a variety of ways. This
section briefly discusses two such extensions.

3.1 Serial Correlation and Unknown Error Distribution

One natural extension is to relax the AR(4) specification and the normality assump-
tion on the part of the innovations {&}. To that end, suppose {y;:1<t<T} is
generated by the model

yi = B'di + Uy, p(L)y(L)u =&, (6)

where d; = 1 or d; = (1,t)’, B is an unknown parameter, p (L) is parameterized as

in (2), y(L)=1—yL—...—yLPis a lag polynomial of (known, finite) order p

satisfying minj; <1 |y(z)| > 0, the initial conditions are u_p_3=... =uUp =0, and

the & are i.i.d. errors from a distribution with mean zero and unknown variance 2.
In this case, the Gaussian quasi-log likelihood function can be expressed as

T 1
LY (pz,pN,pa. B 6°,7) = —log 0% — 752 (Yoy—DpyB) Yoy —DpyB),

where, settingy_p_3=...=Yyo=0andd_p 3=...=dp=0,Y,,and D, , are

matrices withrowt =1,.... T given by p (L) y(L)y: and p (L) y(L)d{, respectively.

The profile quasi-log likelihood function obtained by profiling out 3 is given by
L (pz,pn, par02,7) = maxg LY (pz.pn. pa, B3 62,7)
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T , 1 1 !
=—51090° — oY Yot 5z <YI;7YDP77> <D2>7YDPV7'> (D;WYN) '

By analogy with JN, it seems natural to consider likelihood ratio-type test statistics
of the form

[RT" = maxp, <1 29 (pz,1.1:62.7r) — 28 (1.1,1;62. 7).
Eﬁ-’?’d = max§N§1$T‘j (1,[32,1;6127'}7I') _g'lg (17171;6127%) ’
[RT = maxp, <128 (1.L,pni 62, 9r) — 28 (LL 162,31,

where 62 and #r are plug-in estimators of 62 and y = (y1,...,7p)’, respectively.

The statistic fﬁ-kr’d is straightforward to compute, requiring only maximization
with respect to the scalar parameter py. Proceeding as in the proof of Theorem 3 of
JN, it should be possible to show that if {y;} is generated by (6),¢cz =T (pz —1),
cN=T(pn—1),andca =T (pa—1)/2are held fixedas T — e and if

(6.71) —p (0%,7), (7)
then
—~k.d K =
LRy —q MaxXs<oAg, (C) fork=2,N,A (8)
if d; = 1, while
Ry maxg<o A (C) fork =N,A 9)
and
/\Z,d Z T/=
LRt —g maxz<o Ag;" (C) (10)

when d; = (1,t)".
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Remarks. (i) The consistency condition (7) is mild. For instance, it is satisfied
by

T

1 - 2 - -
f = T_p_4 Y (Aayi—1rZe)", ¥r=(0,lp) 17,
t=p+5

A

where

T 1/ 7
nr = < ) th{) ( ) ZtAYt>, Zy = (1,A4Yt-1, .., Aayr—p)'.

t=p+5 t=p+5
(i) The assumption Uu_p_3 = ... = Up = 0 made when deriving the quasi-log
likelihood function can be relaxed to max (|u_p_3|,...,|uo|) = op (VT) without

invalidating (8) — (10).

(iif) While the distributional results (8) — (10) remain valid under departures
from normality, relaxing the assumption of normality of the error distribution does
affect the shapes of the power envelopes. This has been shown in the context of
zero frequency unit root testing by Rothenberg & Stock (1997) and Jansson (2008),
among others.

To assess the size control of the likelihood ratio tests in finite samples we con-
duct a small Monte Carlo experiment. For specificity and because the presence of a
negative moving average component is known to be problematic in unit root testing,
we consider as in RT the DGP

Agyr = (14 6L2)g, (11)

where yo=y_1 =y 2=Yy.-3=0and & ~ i.i.d. 4 (0,1). For the parameter 6
we consider values 8 € {—0.75,—0.50,...,0.75}. When 6 is large and positive
there is near-cancellation of the unit root at the annual frequency, whereas when
0 is large and negative there is near-cancellation of the unit roots at the zero and
Nyquist frequencies. We simulate the model with sample sizes T € {100,200,400}
and conduct two separate experiments where we allow for a constant mean in one
experiment and for a linear trend in the other.

. . . . —d . . ..
In the simulations the likelihood ratio test LRy is compared with the modified
point optimal test (denoted PC-®) and GLS-HEGY (denoted to-S and FSLS) tests of
RT, and OLS-HEGY (denoted t21° and FOM5) tests of Hylleberg et al. (1990) using
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one million replications of the model (11). As in RT the lag length for the HEGY
tests is chosen by a general-to-specific approach starting with an initial four, six,
and eight lags for T =100, T = 200, and T = 400, respectively, and progressively
deleting those which are insignificant at the 5% level. To calculate the long-run
variance in the modified point optimal tests we use an autoregressive spectral den-
sity estimator as in RT with the lag length chosen by the GLS-HEGY regression,
and to calculate the plug-in values for the likelihood ratio test we use the lag length
chosen by the OLS-HEGY regression (the lag lengths chosen by the GLS-HEGY
and OLS-HEGY regressions are the same in the vast majority of the replications).
The results of the simulations are presented in Table 2 for the constant mean case
and Table 3 for the linear trend case.

In both the constant mean and linear trend cases the null rejection frequencies

. " . ~d
are seen to be quite sensitive to 6, especially so when T = 100. Overall, LRy com-
pares very favorably to the point optimal and GLS-HEGY tests of RT in terms of

size control, especially for the zero frequency test. However, I:ﬁ?d and Eﬁ? . are
quite conservative for positive values of 8. We interpret this evidence as suggesting
that the new tests developed in this paper should be viewed as serious contenders to
currently employed seasonal unit root tests.

3.2 Non-Quarterly Models

Another natural extension is to consider a model with periodicity S # 4. Following
RT, a natural generalization of (5) is given by the Gaussian AR(S) model

yt = B'dt + Uy, p(L)u = &, (12)

where dy = 1 or d¢ = (1,t)’, B is an unknown parameter, u;_s = ... = Uug = 0,
& ~i.i.d. 47(0,1),and p (L) is parameterized as

[(5-1)/2]

p(L)=1—pzL)(1+pnk) ] (1-2pccosaxl+pfl?)  (Seven),
k=1

[(5=1)/2]
p(Ly=(1-pzL) ] (1—2pccosaxl+pfLl?)  (Sodd),
k=1
where ax =27k /Sfork=1,...,|(S—1)/2].
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In perfect analogy with the quarterly case, the profile log likelihood function
implied by the model (12) can be expressed as

1, 1 / / -1 /
—SYaYo+3 (Ypr> (Dpr> (Dpvp) :

where, settingy;_s=...=yg=0andd;_s=...=do=0,Y, and D, are matrices
withrowt=1,...,T given by p (L)y: and p (L) d{, respectively. Tests of individual
unit root hypotheses can be based on the natural counterparts of the LR-kr’d statistics
considered in the quarterly case and Theorem 2 should generalize in a natural way
to the model (12).° Specifically, the results for test statistics associated with pz and
pn should coincide with those for LR%’OI and LR#"OI in the quarterly case, while the
test statistics associated with py, k =1,...,[(S—1) /2], should exhibit the same
large sample behavior as LR??OI does in the quarterly case.

4 Proofs
4.1 Proof of Theorem 1
Let
z 1 L Z Z 1 ¢ Z \2
ST = T Y ¥ 1Ay, Hy = T2 Y (1), (13)
t=1 t=1
N1 ! N N 1 ¢ N \2
St = ?Zyt,lAm, HY == ) (n) (14)
=1 t=1
and
1 J 1 & 2
A= VA Ay,  HA= yio) (15)
P WGl O

with the definitions y7 = (14L) (1+L2)y;, yN = — (1 —L) (14+L?)y;, and y{* =
—(1-D(1+L)ye

The validity of (3) follows from the fact that the log likelihood function Lt (-)
admits the expansions

SThe statistics derived in the current environment are similar to the LR'-‘r’d statistics in the sense
that they can be expressed as maximizers of rational polynomial functions, so they should be
amenable to asymptotic analysis using a slight modification of the proof of Theorem 2.

17



Lt (P2.1.1) =Lt (LL1) +T (52~ 1)S% — 3 [T (2 - DPHE.

Lt (Lw.1) = Lr (L12) 4 T (o~ 1)SY — 2 [T (o~ P HY,

_ T _ 1T 2
Lr (LLpa) =Ly (LLD+ 3 (oa- )= | 5 (=) W,
Under the assumptions of Theorem 1, the following hold jointly (e.g., RT):
(S5, HK) —a (78 25),  k=Z.NA (16)

where

[ rl
A=t | [ w0

S =1tr / WE (r) dr}

Theorem 1 follows from (3), (16), and the continuous mapping theorem (CMT)
because

. 1
LRY = maxz<o [cS-kr - ECZH'T‘}

min (,0)°  min(.7X,0)

— -_~AK (¢
2HE = MaxXg<o Ag, (C),

where the second and third equalities use simple facts about quadratic functions.

4.2 Proof of Theorem 2

Because XT" (+) is invariant under transformations of the form y; — y; + b’d, we
can assume without loss of generality that f = 0. The proofs of parts (a) and (b) are

18



very similar, the latter being slightly more involved, so to conserve space we omit
the details for part (a). Likewise, the proofs for k = N and k = A are very similar,
S0 to conserve space we omit the details for k = A.

Accordingly, suppose k € {Z,N} and d; = (1,t)’. Let y& be as in the proof of
Theorem 1 and define d4, = (1+L) (1+L?)dr¢ and df, = — (1 —L) (1 +L?) dr,
where dr; = %diag(l,l/\/f)dt. The linear trend likelihood ratio statistic can be
written as LR-"r’d = maxg<o F (C, X&), where

Xt = (¥, HE, AL BY ).
Af = (A5 (0), A% (1), 4% )],

Bf = [B% (0).B% (1).Bf (2)].

for
T ~
A (0) = Y AsdriAgyr,
=1
K 1¢ vk *
At (1) = T Y (Agdriyfg +0F 1 _1Aan),
=1

1 T
A'kr (2) = T2 Z d”?,t_ly't‘_l,
t=1

;
BY (0) = Y AudriAqdyy,
t=1

.
BY (1) = Z(A4thdjT«,t—1 +d~1<|',t—lA4d'/|',t)7

t=1

=~
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D(c,b) =D[c,b(0),b(1),b(2)] =b(0)—cb(1)+¢%b(2).
It follows from standard results (e.g., RT) that

Xk —q 2% = (78,8 T H), k=2,

under the assumptions of Theorem 2, where

e [(ufi) (o) ko))

RIS
a-[(uda) (2 )
(4 D(8)(32)

(e1+e+e3+&) /4
The result now follows as in the proof of Theorem 2 of JN.
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