Little attention has been paid to the finite-sample properties of tests for overidentifying restrictions in linear regression models with a single endogenous regressor and weak instruments. We study several such tests in models estimated by instrumental variables (IV) and limited-information maximum likelihood (LIML). Under the assumption of Gaussian disturbances, we derive expressions for a variety of test statistics as functions of eight mutually independent random variables and two nuisance parameters. The distributions of the statistics are shown to have an ill-defined limit as the parameter that determines the strength of the instruments tends to zero and as the correlation between the disturbances of the structural and reduced-form equations tends to plus or minus one. Simulation experiments demonstrate that this makes it impossible to perform reliable inference near the point at which the limit is ill-defined. Several bootstrap procedures are proposed. They alleviate the problem and allow reliable inference when the instruments are not too weak. We also study the power properties of the bootstrap tests.
QED Working Paper Number
1318
Sargan test
Basmann test
Anderson-Rubin test
weak instruments
bootstrap P value
Download [PDF]
(392.39 KB)