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Abstract 

 

 This paper offers a tool box of disaggregative measures of distributional change, 

including population shares, income shares, quantile mean incomes and relative mean incomes of 

different income groups. It highlights median-based measures along with quintiles and deciles. It 

also offers formulas for the measures’ standard errors and a common framework for statistical 

inference on these measures.  Illustrating these tools with Census and LFS microdata, the paper 

highlights the substantial decline in earnings shares and relative mean earnings levels of middle-

class workers in Canada since 1980 and the corresponding dramatic rise in these measures for 

higher earners in the labour market. 
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1. Introduction 

This is a time of complex distributional changes to the economy and its workforce. In the 

longer run, the forces of automation are at work along with underlying trade, demographic, 

policy and institutional evolutions. Gathering evidence indicates that the current COVID-19 

pandemic is hitting different economic, racial, social and demographic groups with very different 

impacts. And the various policy responses (and their changes) are having massive effects as well. 

These all affect different groups of the population and different regions of the income/earnings 

distributions in ways that can only be analyzed in quite disaggregative fashion, i.e., by breaking 

down the aggregate population into different groups and by examining the experiences of 

individuals or households across different regions of each of these group distributions (e.g., 

Acemoglu et al., 2016; Autor, Dorn and Hanson, 2013; Beach, 2016; Beaudry and Green, 2006; 

Beaudry, Green and Sand, 2016; Boudarbat, Lemieux and Riddell, 2010; DiNardo, Fortin and 

Lemieux, 1996; Goos, Manning and Salomons, 2014; Green, Riddell and St. Hilaire, 2016; and 

Green and Sand, 2015). Disaggregative measures of distributional change or detailed differences 

between income distributions can also serve as the basis for making social welfare judgements 

(or stochastic dominance evaluations) of distributional change or differences (e.g., Bishop, 

Formby, and Thistle, 1989, 1991, and 1992; Jenkins, 1991, Saposnik, 1981; and Shorrocks, 

1983).  

The principal objective of this paper is to provide an empirical tool box of statistical 

measures that can be used to undertake such disaggregative empirical distributional analysis. The 

traditional approach has been to look at quintile or decile distributional statistics provided by 

official statistical agencies such as Statistics Canada or the U.S. Bureau of the Census. Such 

measures are all percentile-based in how they disaggregate an income distribution, and estimated 



4 

 

standard errors on these measures are not provided so that observed differences in measures 

across time or between groups are hard to evaluate in terms of statistical reliability. This paper 

seeks to extend this traditional approach in two respects: (i) by complementing the percentile 

measures typically used by a useful set or tool box of median-based distributional measures, and 

(ii) by gathering together (and in some cases deriving) the formulas for the empirical standard 

errors for both the percentile-based and the median-based distributional measures in one place 

based on a common quantile-function approach for ease of reference by applied practitioners. It 

is hoped that this way, conventional descriptive analysis in the area can be reoriented around a 

more formal statistical inference perspective. The paper also provides some empirical results 

using these tools so as to illustrate some of the benefits and insights from the use of these 

measures and the formulas provided. 

The paper proceeds as follows. The next section sets out the tool box set of measures of 

distributional analysis that is being proposed, and provides standard error formulas for these 

measures. Section 3 then illustrates an empirical analysis of the distributional change in earnings 

in Canada over 1970-2015. Section 4 provides some concluding observations. The technical 

appendices set out the formal development of the proposed inference formulas based on the 

quantile-function approach and include some novel observations for the formulas provided in the 

paper. 
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2.  Tool Box Measures of Distributional Analysis and Their Standard Errors 

2.1  The Tool Box Measures Used 

 The sets of measures of disaggregative distributional analysis can be broken into those 

based on two approaches: percentile-based measures and median-based measures. The former 

are based on dividing up an income distribution into percentage groups with equal numbers of 

recipient units (individuals, workers, families, households) in each group, typically decile or 

quintile, where the recipient units are ordered from lowest income to highest income levels. So, 

for example, the bottom decile contains the lowest-income ten percent of recipient units and the 

top quintile contains the highest-income 20 percent in the distribution. The latter approach breaks 

up the distribution of ordered recipient units into groups defined relative to the median income 

level in the distribution. So the middle-income group or so-called Middle Class of the income 

distribution, for example, could consist of families whose incomes lie between 50% and 150% 

(or 50% to 200%) of the median family income level. Official government statistical agencies 

typically provide distributional statistics based only on the percentile-based approach. But recent 

work has noted the benefits of looking at median-based measures as well (e.g., Beach, 2016). 

 Within each approach, one can view there as being four types of (disaggregative) 

distributional statistics: 

i. income shares (and population shares in the median-based approach), 

ii. quantile means and income cut-offs,  

iii. relative mean income ratios, and 

iv. income gaps and differentials. 

Income shares are the proportions of total income in the distribution being received by recipient 

units within a particular income group (e.g., the top decile of the distribution or by the Middle 
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Class in the distribution). Population shares are the proportions of recipient units lying within a 

specified income group. In the percentile approach, this is simply prespecified as, say, 10% or 

20% of recipient units. In the median-based approach, however, the proportion needs to be 

calculated from the data as a separate statistic. Cut-off statistics are the income levels that 

separate one income group from an adjacent one. So the first decile cut-off is that income level 

that separates recipient units in the lowest and second decile income groups. Conditional or 

quantile means are the average or mean incomes of the recipient units within a given income 

group. So the mean middle-class income is the average of all incomes belonging to the middle-

class income group. Relative mean income ratios are the ratios of quantile means to the overall 

mean income of the distribution. Income gaps are the differences between the quantile mean 

incomes of two specified income groups, and income differentials are the ratios of selected 

quantile mean incomes. 

 The two approaches are geometrically closely linked. Imagine a Lorenz curve with the 

cumulative share of income recipients along the horizontal or base axis and their cumulative 

share of total income measured vertically. The Lorenz curve is uniformly upward sloped with an 

ever increasing slope. The percentile approach identifies points on the horizontal axis (such as 

0.2, 0.5, 0.8) and these are then mapped via the Lorenz curve into points on the vertical axis to 

indicate corresponding income shares. 

 Now draw a second curve from the origin of the derivative or slope of the Lorenz curve 

and measure it vertically downward. So the horizontal base axis has a graph or curve (i.e., the 

Lorenz curve) above it and a second graph or curve (i.e., the derivative curve) reflected below it. 

It turns out that the derivative of the Lorenz curve is the so-called relative-mean income curve 

which is the ratio of the quantile income level (corresponding to a point on the horizontal axis) 
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divided by the mean income level of the distribution as a whole. Since the slope of the Lorenz 

curve is strictly positive and increasing, the relative-mean income curve is a monotonic 

transform of the Lorenz curve itself. The mid-point along the horizontal axis of this two-panel 

diagram is the median. Projecting this point downward onto the relative-mean income curve 

yields a corresponding point onto the downward vertical axis. The median-based approach then 

takes multiples of this point (e.g., 50 percent, 150 percent or 200 percent) measured vertically 

downward. These new ordinates then map back via the relative-mean income curve onto the 

horizontal axis (to yield corresponding population shares) and thence via the Lorenz curve onto 

the upward vertical axis (to yield corresponding income shares). The two approaches are thus 

completely linked via the Lorenz curve and its derivative or relative-mean income curve. 

 More formally, we use the following notation to represent the above measures: 

 PSi - population share of the i’th income group, i=1,…,K  

 ISi - income share of the i’th income group, i=1,…,K 

 𝜉𝑖 - upper income cut-off of the i’th income group, i=1,…,K-1 

 µ i - conditional or quantile mean income of the i’th income group, i=1,…,K 

  µ i - µ j - income gap between the (quantile) mean incomes of the i’th and j’th income 
  groups, i≠j 

 
 µ i / µ - ratio of the i’th (quantile) mean income to the overall mean, i=1,…,K . 
 
Sample estimates of each of these measures will be indicated in what follows by putting 

superscript hats on top of each of these symbols. 

 Percentile-based distributional measures are typically conveniently available from official 

statistical agencies and far and away most frequently cited in the applied literature and in the 

media. However, median-based measures allow for a more insightful interpretation of empirical 

results as they allow one to analyze both the size and the relative prosperity of the income groups 
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separately. Percentile-based measures, by construction, assign the size of income groups as a 

prespecified percent (e.g., top 10%) of all income recipients. But characterizing group size and 

prosperity separately allows one to see quite distinct distributional patterns. In economic terms, 

the size effect captures the quantity dimension of a change in the group’s total income, while the 

prosperity effect captures the (relative) price dimension. This in turn can be used to help identify 

on net the relative strength of demand-side or supply-side driving factors behind observed 

distributional changes in income shares (Katz and Murphy, 1992; Beach, 2016). 

 

2.2 Conventional Approach to Estimating Percentile-Based Measures’ Standard 

Errors 

 Disaggregative distributional measures are typically computed from large cross-sectional 

microdata files based on official national government surveys or censuses of households or 

individuals (e.g., Survey of Consumer Income or the Labour Force Survey) with large numbers 

of observations. With such large surveys, often seemingly minor changes over time in such 

statistics can still be statistically significant and estimates provided with considerable statistical 

confidence. But it would be useful to be able to confirm if such estimates are indeed quite so 

reliable. This section (and the next two) present the statistical tools to be able to do so by 

providing the formulas for (asymptotic) standard errors for each of the above measures.1 Note 

also that the sample estimates of all of the tool box measures discussed in this paper have been 

found to be asymptotically normally distributed, so that conventional statistical inference 

procedures can be applied to all of them to at least an approximate degree. Hence the focus of 

                                                           

1 We assume in what follows that the data samples used are random samples. If the survey records are 
indeed weighted, the formulas can be readily adjusted by replacing sums of observations by sums of the 
sample weights of the observations. 
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this and the next two sections will be on how standard errors can be calculated for each of these 

estimated measures so that such inferences can proceed. 

 Presentation of the standard error formulas is broken into several separate sections 

because the percentile-based approach and the median-based approach involve rather different 

statistical techniques in their derivations. As will be seen below, they also have an important 

difference in the nature of the formulas that result; more specifically, many of the percentile-

based formulas turn out to be distribution-free in that the standard error formulas can be 

implemented without having to know or make an assumption about the underlying statistical 

distribution of the data, whereas the median-based standard error formulas do need to provide 

some such information in order to apply them. 

 Formal derivation of the standard error formulas for the percentile-based approach is 

provided in the Technical Appendix A which follows Beach and Davidson (1983) and Beach et 

al. (1994). Users are assumed to have a microdata sample of N observations of the income 

variable Y whose overall mean and variance are µ and 𝜎2, respectively. In terms of applying the 

required formulas, one needs to calculate the following sequence of terms, where K is the 

number of (equal sized) percentile groups (e.g., K=10 for deciles), pi is the percentile proportion 

of individuals (e.g., p8 = .80), 𝜉𝑗 is the j’th percentile cut-off income level (p1,…,pK-1), γi is the 

(cumulative) mean for the i’th (cumulative) percentile group (i.e., γi = E(Y/Y ≤ 𝜉𝑖) and 𝜆𝑖2 is the 

(cumulative) variance for the i’th (cumulative) percentile group (i.e., 𝜆𝑖2 = var (Y/Y ≤ 𝜉𝑖). The 

quantile mean then is µ𝑖 = 𝐸(𝑌 | 𝜉𝑖−1  < 𝑌 ≤  𝜉𝑖).  

To calculate the standard errors required, first calculate sample estimates of the variance-

covariance terms  𝜔𝑖𝑗 = 𝑝𝑖[𝜆𝑖2 + (1 − 𝑝𝑖)(𝜉𝑖 − 𝛾𝑖)(𝜉𝑗 − 𝛾𝑗) + (𝜉𝑖 − 𝛾𝑖)(𝛾𝑗 − 𝛾𝑖)]    (1a) 
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𝑓𝑜𝑟 𝑖 ≤ 𝑗 = 1,… , 𝐾 .        

Call the full matrix of 𝜔𝑖𝑗 terms the matrix Ω. 

In the case where i = j, this reduces to  𝜔𝑖𝑖 = 𝑝𝑖[𝜆𝑖2 + (1 − 𝑝𝑖)(𝜉𝑖 − 𝛾𝑖)2]          𝑓𝑜𝑟 𝑖 = 1,… , 𝐾 .     (1b) 

For the sample quantile means µ̂1, … , µ̂𝐾 themselves, then,  

 Asy. var (µ̂1) = 100 𝜔11        (2a) 

 Asy. var (µ̂𝑖) = 100 (𝜔𝑖𝑖 + 𝜔𝑖−1,𝑖−1 −  2𝜔𝑖,𝑖−1)       for i=2,…,K   (2b) 

again for K=10 deciles. More generally, call the (asymptotic) variance-covariance matrix of the 

full set of K sample quantile means the matrix 

 𝑉 =  [𝑣𝑖𝑗] 
where  V = R Ω R′             

and 𝑅 = [  
 1𝑝1 0⋱0 1𝑝𝐾]  

 
  •  [  

  1 0 0 ⋯ 0 0−1 2 0 ⋯ 0 00 −2 3 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 −(𝐾 − 1) 𝐾]  
  

.  

 Thus the standard errors of the quantile means are 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(µ̂𝑖) / 𝑁]1/2          i=1,…,K ,      (3) 

     

where all unknowns are replaced by their samples estimates. 

 In the case of income shares (ISi), one needs to make use of the full KxK (asymptotic) 

variance-covariance matrix of Lorenz curve ordinates 𝛳𝐿 = [𝛳𝑖𝑗]     where 

 𝛳𝑖𝑗 = ( 1µ2) 𝜔𝑖𝑗 + (𝑝𝑖𝛾𝑖µ2 ) (𝑝𝑗𝛾𝑗µ2 )𝜎2 − (𝑝𝑖𝛾𝑖µ3 ) 𝜔𝑗 , 𝐾 + 1 − (𝑝𝑗𝛾𝑗µ3 ) 𝜔𝑖, 𝐾 + 1 (4) 

where 𝜔𝑗 , 𝐾 + 1 =  𝑝𝑗[𝜆𝑗 + 𝜉𝑗 − 𝛾𝑗)(µ − 𝛾𝑗)] . 
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Then 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂1) =  𝛳11 

and  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝛳𝑖𝑖 + 𝛳𝑖−1,𝑖−1 − 2𝛳𝑖,,𝑖−1      for  i=2,…,K .   (5) 

Hence, 

 𝑆. 𝐸. (𝐼𝑆̂𝑖)  =  [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝐼𝑆̂𝑖) / 𝑁]1/2  ,      (6) 

where again all unknowns are replaced by their sample estimates. Since relative quantile means µ𝑖  /  µ are identically 𝐾 • 𝐼𝑆𝑖 , the standard error of estimates of relative quantile means is also 

given by 

 𝑆. 𝐸. (µ̂𝑖 / µ̂ )  =  𝐾 • 𝑆. 𝐸. (𝐼𝑆̂𝑖) .       (7) 

 In the case of quantile mean differences (µ̂𝑖 − µ̂𝑗  ), again one needs to go back to the full 

(asymptotic) variance-covariance matrix V, so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) = 𝑣𝑖𝑖 + 𝑣𝑗𝑗 −  2𝑣𝑖𝑗  .         (8) 

Consequently, 

 𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) = [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) / 𝑁]1/2 
 

    = [𝑣𝑖𝑖 + 𝑣𝑗𝑗 − 2𝑣𝑖𝑗]1/2 / √𝑁 .     (9) 

 Since this percentile-based approach to calculating standard errors involves first 

calculating cumulative sample means and variances for each quantile group, this can also be 

referred to as a “cumulative moments approach”. This can be contrasted to an alternative 

“quantile function approach” that is developed in the next section for standard errors of median-

based measures. 
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2.3  Median-Based Measures’ Standard Errors 

 Derivation of the various formulas to calculate standard errors for the disaggregative 

median-based measures of income inequality is provided in Technical Appendix B. 

 The typical application of median-based measures is to compare how, say, the Middle 

Class is doing relative to those with high incomes or relative to the poor. Consequently, we 

illustrate this approach by dividing the distributions of income into three income groups – low 

incomes (L), middle incomes (M), and high incomes (H) – by two income cut-off levels 

expressed as multiples of the median income level, 𝜉, generally expressed as “a𝜉” for the lower 

cut-off and “𝑏𝜉” as the upper cut-off (where, as before, the superscript hat indicates the sample 

estimate of the median): 

 lower incomes are less than 𝑎𝜉, 

 middle incomes are between 𝑎𝜉 and 𝑏𝜉, 

and  higher incomes are greater than 𝑏𝜉. 

Typically, a is a fraction such as 0.5, while the upper cut-off has variously been posited as 1.5 or 

2.0 (i.e., 150% or 200% of the median). For generality of presentation here, we will simply refer 

to 𝑎𝜉 and 𝑏𝜉. 

 Since the cut-offs are not specified in terms of percentiles of the distribution of income 

recipients, the proportions of the sample falling into the designated three groups are no longer 

given and need to be estimated as population shares, PSi, i = L,M,H, along with estimates of the 

shares of total income going to the three groups as well, income shares ISi, i = L,M,H. 

 Quantile-based distributional measures benefit from a different approach to 

characterizing standard errors of these estimated measures. This approach is based on 

recognizing that the formal definition of these measures in terms of integral functions of the 
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underlying quantiles can be used to link the (asymptotic) distribution of sample estimates of the 

measures to the known (asymptotic) distribution of the estimated underlying quantiles. Hence 

this approach for calculating standard errors of quantile-based measures will be referred to as a 

“quantile function approach”. It may be useful to begin by considering a very simple illustrative 

case.  

It is shown in Appendix B that the asymptotic variance of the sample estimate 𝑃𝑆̂𝑀 of the 

population share for the middle-income group is 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  [𝑓(𝑏𝜉)(𝑏) −  𝑓(𝑎𝜉)(𝑎)]2  •  [0.25 / 𝑓(𝜉)2]   (10) 

where f(•) is the underlying income distribution density function from which the data sample is 

drawn. 𝑓(𝑎𝜉) and 𝑓(𝑏𝜉) are then the values of this income density function evaluated at the cut-

offs 𝑎𝜉 and 𝑏𝜉. 

 But the function f(•) and hence its evaluations are not known to the analyst. A way 

around this problem in order to be able to implement eq. (10) is to assume a functional form for 

f(•) that appears historically to be quite reasonable for income, wage and earnings distributions – 

a lognormal distribution. So the approach forwarded is to assume a lognormal form for the 

underlying income distribution, and use the available data sample to estimate the mean and 

variance of the (natural) log of incomes to determine estimates of the two key parameters of this 

distribution. Given these parameter estimates, one can generate an estimated 𝑓(•) – as shown in 

Appendix B – which can then be used to evaluate the income density at the desired values 𝑎𝜉, 𝑏𝜉, and 𝜉 to get 𝑓(𝑎𝜉)̂, 𝑓(𝑏𝜉)̂, and 𝑓(𝜉)̂. Replacing the unknowns in eq. (10) by these sample 

estimates then yields the estimated (asymptotic) variance 

 𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  [𝑏 • 𝑓(𝑏𝜉) −  𝑎 • 𝑓(𝑎𝜉)]2  •  [0.25 / 𝑓(𝜉)2] .    

So the estimated standard error for 𝑃𝑆̂𝑀 is then 



14 

 

 𝑆. 𝐸. (𝑃𝑆̂𝑀) =  [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝑃𝑆̂𝑀) / 𝑁]1/2   
       

where N is the size of the available income data sample used in the estimation. 

 Similarly for the lower and higher income groups: 

 𝑆. 𝐸. (𝑃𝑆̂𝐿) =  [𝑎 • 𝑓(𝑎𝜉)]  •  [0.5 / 𝑓(𝜉)] / √𝑁       

  

and  𝑆. 𝐸. (𝑃𝑆̂𝐻) =  [𝑏 • 𝑓(𝑏𝜉)]  •  [0.5 / 𝑓(𝜉)] / √𝑁 .      

 More formally, the derivations in Appendix B show that, for the lower, middle, and 

higher income shares: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐿) =  (1µ)2 [𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]2  • [(0.5)(0.5)𝑓(𝜉)2 ] + (1µ)2 𝐼𝑆𝐿2  •  𝜎2   (11)  

  − 2 (1µ)2 [𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  •  𝐼𝑆𝐿  • [𝜉−(0.5)µ𝑓(𝜉) ] , 
𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑀) =  (1µ)2 [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉) ]2  • [(0.5)(0.5)𝑓(𝜉)2 ] 

+ (1µ)2 𝐼𝑆𝑀2  •  𝜎2       (12)  

  − 2 (1µ)2 [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  •  𝐼𝑆𝑀  • [𝜉−(0.5)µ𝑓(𝜉) ] , 
and 

𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐻) =  (1µ)2 [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉)]2  • [(0.5)(0.5)𝑓(𝜉)2 ] 
+ (1µ)2 𝐼𝑆𝐻2  •  𝜎2       (13)  

  − 2 (1µ)2 [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉)]  •  𝐼𝑆𝐻  • [𝜉−(0.5)µ𝑓(𝜉) ] . 
For completeness, the formulas for population shares are: 
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𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿) =  [𝑎 • 𝑓(𝑎𝜉)]2  • [(0.5)(0.5)𝑓(𝜉)2 ] ,     (14)

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀) = [𝑏 • 𝑓(𝑏𝜉) − 𝑎 • 𝑓(𝑎𝜉)]2  • [(0.5)(0.5)𝑓(𝜉)2 ] ,     (15) 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) = [𝑏 • 𝑓(𝑏𝜉)]2  • [(0.5)(0.5)𝑓(𝜉)2 ] .     (16)   

Note that the common term in square brackets, (0.5)2  /  𝑓(𝜉)2  ≡  𝛳 , is the asymptotic variance 

of the sample median, 𝜉 . 

 Thus the corresponding standard errors are 

  𝑆. 𝐸. (𝐼𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝐼𝑆̂𝑖)𝑁 ]1/2
         (17) 

and 𝑆. 𝐸. (𝑃𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑃𝑆̂𝑖)𝑁 ]1/2
       (18) 

for i = L, M, H where all the unknowns in eq. (11)-(16) are replaced by their sample estimates – 

as indicated by the “hat” on top of the asymptotic variances in (17) and (18). 

 Next consider the quantile means (µ𝑖) of the three income groups. The derivations in 

Appendix B then show that, for i = L, M, H, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) =  ( 1𝑃𝑆𝑖)2  •   𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝑖) + ( 1𝑃𝑆𝑖)2 µ𝑖2  •   
𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑖) −  2 ( 1𝑃𝑆𝑖)2 µ𝑖  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑖, 𝐷̂𝑖)  (19) 

where 𝑁𝑖 refers to a numerator term and 𝐷𝑖 refers to a denominator term in the derivations. 

Specifically, for i = L : 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐿) = [𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]2  •  𝛳  

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝐷̂𝐿) = [𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  • [𝑎 • 𝑓(𝑎𝜉)] • 𝛳 ; 

for i = M : 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝑀) = [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]2  •  𝛳  
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 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝑀) = [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  • [𝑏 • 𝑓(𝑏𝜉) − 𝑎 • 𝑓(𝑎𝜉) ] • 𝛳 ; 

and for i = H : 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐻) = [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉)]2  •  𝛳  

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐻, 𝐷̂𝐻) = [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉)]  • [𝑏 • 𝑓(𝑏𝜉) ] • 𝛳  

where, as before, 𝛳 is the asymptotic variance of the sample median. Consequently, the 

corresponding standard errors are  

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/2
   

for i = L, M, H, where again all unknowns in (19) are replaced by their sample estimates. 

 Turn next to the case of the relative mean income ratio 𝑅𝑀𝐼𝑖 ≡ µ𝑖 /  µ for the three 

income groups. Again, the derivatives in Appendix B establish that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) =  ( 1𝑃𝑆𝑖)2  •   𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) + (𝑅𝑀𝐼𝑃𝑆𝑖 )2 •   
𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑖) −  2 (𝑅𝑀𝐼𝑃𝑆𝑖2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝑃𝑆̂𝑖)  (20) 

for i = L, M, H, where the (asymptotic) covariance term again differs across income groups. 

for i = L: 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝐿 , 𝑃𝑆̂𝐿) = [(1µ) 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  • [𝑎 • 𝑓(𝑎𝜉)] • 𝛳 

− (1µ) 𝐼𝑆𝐿  •  [𝑎 • 𝑓(𝑎𝜉)]  • 𝜎12 ; 

for i = M : 

𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑀, 𝑃𝑆̂𝑀) = (1µ) [𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)]  
• [𝑏 • 𝑓(𝑏𝜉) − 𝑎 • 𝑓(𝑎𝜉) ] • 𝛳 − (1µ) 𝐼𝑆𝑀  • [𝑏 • 𝑓(𝑏𝜉) − 𝑎 • 𝑓(𝑎𝜉) ]  • 𝜎12 ; 

and for i = H : 
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 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝐻, 𝑃𝑆̂𝐻) =  [(1µ) 𝑏(𝑏𝜉) • 𝑓(𝑏𝜉)]  • [𝑏 • 𝑓(𝑏𝜉) ] • 𝛳  

+ (1µ) 𝐼𝑆𝐻  • [𝑏 • 𝑓(𝑏𝜉)]  • 𝜎12 . 

 The 𝜎12 term common in these three expressions is 

 𝜎12 = 𝜉−(0.5)µ𝑓(𝜉)  

the (asymptotic) covariance between 𝜉 and µ̂ , the estimated median and means of the income 

distribution. It then follows that for i = L, M, H, 

𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖) = 𝑆. 𝐸. (µ̂𝑖 /  µ̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑅𝑀̂𝐼𝑖)𝑁 ]1/2
     (21)  

where again all unknown terms are replaced by their sample estimates. 

 The presentation of the calculations for the standard errors of quantile mean income gaps, µ̂𝑖 − µ̂𝑗 for 𝑖 ≠ 𝑗 is somewhat tedious, but worth setting out so as to make explicit some of the 

terms in the formal derivation of Appendix B. There it is shown that: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) = 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) − 2 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) + 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗)   (22) 

where the (asymptotic) variance terms have already been stated in eq. (19). But now 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) = ( 1𝑃𝑆𝑗) ( 1𝑃𝑆𝑖) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑗 , 𝑁̂𝑖) − ( 1𝑃𝑆𝑗) ( µ𝑖𝑃𝑆𝑖)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑗 , 𝐷̂𝑖) 

  − ( 1𝑃𝑆𝑖) ( µ𝑗𝑃𝑆𝑗) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑗 , 𝑁̂𝑖) + ( µ𝑗𝑃𝑆𝑗) ( µ𝑖𝑃𝑆𝑖)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑗 , 𝐷̂𝑖) 

where the various specific income-group terms need to be set out explicitly (from eq. (b15) in 

Appendix B): 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝑁̂𝑀) =  𝑔1′𝑔3′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝐷̂𝑀) =  𝑔1′𝑔4′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝑀) =  𝑔2′𝑔3′  𝛳 
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 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝑀) =  𝑔2′𝑔4′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝑁̂𝐻) =  𝑔3′𝑔5′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝐻) =  𝑔3′𝑔6′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀, 𝑁̂𝐻) =  𝑔4′𝑔5′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀, 𝐷̂𝐻) =  𝑔4′𝑔6′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝑁̂𝐻) =  𝑔1′𝑔5′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝐷̂𝐻) =  𝑔1′𝑔6′  𝛳 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝐻) =  𝑔2′𝑔5′  𝛳 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝐻) =  𝑔2′𝑔6′  𝛳 

where again 𝛳 is the (asymptotic) variance of the median 𝜉, and the 𝑔𝑖′ terms are: 

 𝑔1′ =  𝑎(𝑎𝜉) • 𝑓(𝑎𝜉)  
 𝑔2′ =  𝑎 • 𝑓(𝑎𝜉) 

 𝑔3′ =  𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) − 𝑎(𝑎𝜉) • 𝑓(𝑎𝜉) 

 𝑔4′ =  𝑏 • 𝑓(𝑏𝜉) − 𝑎 • 𝑓(𝑎𝜉) 

 𝑔5′ = − 𝑏(𝑏𝜉) • 𝑓(𝑏𝜉) 

and 𝑔6′ = − 𝑏 • 𝑓(𝑏𝜉) . 

As a result, then, 

 𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖−µ̂𝑗)𝑁 ]1/2
 .      (23) 

 In the case of the relative or proportional mean income differential, 

 𝑞̂ =  µ̂𝑖−µ̂𝑗µ̂𝑗 = µ̂𝑖µ̂𝑗 − 1       for  𝑖 > 𝑗 , 
 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) =  ( 1µ𝑗)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) + (µ𝑖µ𝑗2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗)   (24) 



19 

 

  − 2 ( 1µ𝑗) (µ𝑖µ𝑗2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) , 

so that again  

 𝑆. 𝐸. (𝑞̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/2
 .        (25) 

 The development in Appendix B also allows one to calculate standard errors for measures 

of polarization and skewness of the income distribution. In the case of the polarization measure 

 𝑃𝑂̂𝐿 = 𝑃𝑆̂𝐿 +  𝑃𝑆̂𝐻 , 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑂̂𝐿) = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) + 2 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑃𝑆̂𝐿 , 𝑃𝑆̂𝐻) (26)  

where the first two terms were provided in eq. (14) and (16) above and 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑃𝑆̂𝐿 , 𝑃𝑆̂𝐻) = −[𝑎 • 𝑓(𝑎𝜉)] • [𝑏 • 𝑓(𝑏𝜉)] •  𝛳 . 
It then follows again that 

 𝑆. 𝐸. (𝑃𝑂̂𝐿) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑃𝑂̂𝐿)𝑁 ]1/2
 .       (27) 

 A simple measure of the degree of skewness or non-symmetry in the income distribution 

is the ratio of the sample median to the mean, 𝜉 /  µ̂ . If the distribution were perfectly 

symmetric, the two would be exactly the same. Thus the degree to which the mean is pulled up 

by the distribution’s long right-hand tail is picked up by the degree to which this sample ratio 

falls below one. A formula for the asymptotic variance of this sample ratio is provided in Lin, 

Wu and Ahmad (1980): 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉 / µ̂) =  [(𝜉µ)2  𝜎2 − 2(𝜉µ) 𝜎12 + 𝜎11] /  µ2     (28) 

where  𝜎11 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉) = (0.5)(0.5)𝑓(𝜉)2 =  𝛳 

 𝜎12 = 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉,̂ µ̂) = [𝜉− µ(1−0.5)]𝑓(𝜉)  

and 𝜎2 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂) . 
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Consequently, 

 𝑆. 𝐸. (𝜉 /  µ̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟 (𝜉̂ /  µ̂)𝑁 ]1/2
       (29) 

where sample estimates replace all the unknowns. 

 

 

2.4 A Blended Approach to Estimating Standard Errors of Percentile Cut-Offs and 

Percentile-Based Statistics 

 Another approach to calculating standard errors of percentile cut-offs and percentile-

based distributional statistics involves blending aspects of the percentile-based formulation of 

section 2.2 and the quantile function approach of section 2.3. The result is a simplified set of 

formulas for such percentile-based statistics. Formal development of this blended approach and 

the resulting standard error formulas are found in the Technical Appendix C. 

 Using similar notations to section 2.2, let there be K (ordered) percentile income groups 

indexed by i=1, …, K. Let pi represent the (cumulative) proportions of the ordered income 

groups. For deciles, p1 = 0.1,  p2 = 0.2, …, p10 = 1.0. And again, let the income cut-offs or 

deciles that divide the different income groups be 𝜉1, 𝜉2, … , 𝜉𝐾−1, and let 𝜉 =  (𝜉1,  𝜉2, … 𝜉𝐾−1)′
 

be a vector of K-1 sample quantile cut-off estimates. Then it is well established in the statistics 

literature (e.g., Wilks, 1962, p. 274) that vector 𝜉 drawn from a random sample of size N is 

asymptotically joint normally distributed with an (asymptotic) variance-covariance matrix Λ with 

the elements  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖) =  𝜆𝑖𝑖 = 𝑝𝑖(1 − 𝑝𝑖) /  𝑓𝑖2       (30) 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉𝑖, 𝜉𝑗) =  𝜆𝑖𝑗 = 𝑝𝑖(1 − 𝑝𝑗) / 𝑓𝑖 •  𝑓𝑗 = 𝜆𝑗𝑖     for i < j 
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where 𝑓𝑖  ≡ 𝑓(𝜉𝑖) ˃ 0 for the underlying income distribution density function 𝑓(•) . Clearly, 

these formulas are not distribution-free as the denominators involve the 𝑓(•) function. 

 But if one uses the quantile function approach based on a lognormal density of the 

previous sections, one can calculate 𝑓(𝜉𝑖) for any quantile 𝜉𝑖 based on estimated lognormal 

distributions. Hence, 

𝑆. 𝐸. (𝜉𝑖)  =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂𝑖)𝑁 ]1/2
    

     = [𝑝𝑖(1 − 𝑝𝑖) / 𝑁 •  𝑓(𝜉𝑖)2]1/2
.        (31) 

 One can similarly use this approach to calculate standard errors for percentile income 

gaps 

 𝜉𝑗 − 𝜉𝑖 for i ≠ j 

as 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗 − 𝜉𝑖) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖) − 2𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉𝑖 ,  𝜉𝑗) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗) , (32) 

so that 

𝑆. 𝐸. (𝜉𝑗 − 𝜉𝑖)  =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂𝑗− 𝜉̂𝑖)𝑁 ]1/2
        (33) 

where again each of the density terms in the denominators of eq. (32) is estimated by the 

lognormal density. 

Similarly, in the case of relative or proportional income differential 𝑞 = (𝜉𝑗 − 𝜉𝑖) /  𝜉𝑖   for i < j , 

𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) =  (𝜉𝑗𝜉𝑖2)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖) − 2 (1𝜉𝑖) (𝜉𝑗𝜉𝑖2) •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖,  𝜉𝑗)  
  + (1𝜉𝑖)2 • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗) .     (34) 
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Consequently, 

 𝑆. 𝐸. (𝑞̂)  =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/2
          (35) 

where all unknowns in eq. (36) are estimated by the lognormal density. 

 For income shares based on the percentile approach, now divide the income distribution 

into three income groups: L, M, and H. And now let the L group consist of the lower 100 pa 

percent, the top 100(1-pb) percent or H group, and the middle 100(pb - pa) percent as the M group 

where pb ˃ pa. In empirical work, it is often taken as the bottom 20 percent, the top 20 percent, 

and the middle 60 percent of income recipients. In this case, pa = 0.2 and pb = 0.8. The 

corresponding percentile cut-off between the L and M income groups is 𝜉𝑎 and that between the 

M and H groups is 𝜉𝑏 . 

 Since percentage shares are prespecified in the percentile approach, population shares are 

given and have no standard errors. 

 Consider now the quantile mean incomes, µ̂𝐿 , µ̂𝑀 , and µ̂𝐻 , of the three income groups. 

The development in Appendix C shows that their asymptotic variances, in this case, turn out to 

be surprisingly simple: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐿) =  (1− 𝑝𝑎𝑝𝑎 )  •  𝜉𝑎2       (36) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐻) =  ( 𝑝𝑏1− 𝑝𝑏)  •  𝜉𝑏2       (37) 

and 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑀) =  ( 1𝑝𝑏 − 𝑝𝑎)2  • [𝑝𝑎(1 − 𝑝𝑎)  •  𝜉𝑎2 + 𝑝𝑏(1 − 𝑝𝑏)  •  𝜉𝑏2 

  − 2 𝑝𝑎(1 − 𝑝𝑏)  •  𝜉𝑎𝜉𝑏] .       (38) 

Consequently, their standard errors are 
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 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/2
        (39) 

for i = L, M, H. 

 For the estimated relative mean income ratios, 𝑅𝑀̂𝐼𝑖 = µ̂𝑖  /  µ̂ , it can also be derived 

that: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝐿) =  (1− 𝑝𝑎𝑝𝑎 ) (𝜉𝑎µ )2 + 𝑅𝑀𝐼𝐿2µ2  •  𝜎2      (40) 

  + 2 [(1− 𝑝𝑎𝑝𝑎 ) (𝜉𝑎µ ) •  𝑅𝑀𝐼𝐿 − (𝜉𝑎µ )2  •  𝑅𝑀𝐼𝐿𝑝𝑎 ] , 
 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝐻) =  ( 𝑝𝑏1− 𝑝𝑏) (𝜉𝑏µ )2 + 𝑅𝑀𝐼𝐻2µ2  •  𝜎2      (41) 

  + 2 [(𝜉𝑏µ )2  •  𝑅𝑀𝐼𝐻(1 − 𝑝𝑏) − (𝜉𝑏µ ) •  𝑅𝑀𝐼𝐻] , 
and 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑀) =  ( 1𝐷𝑀2 ) [𝑝𝑎(1 − 𝑝𝑎) (𝜉𝑎µ )2] + ( 1𝐷𝑀2 ) [𝑝𝑏(1 − 𝑝𝑏) (𝜉𝑏µ )2] 
+ (𝑅𝑀𝐼𝑀µ )2  •  𝜎2 

  − 2 ( 1𝐷𝑀2 ) [𝑝𝑎(1 − 𝑝𝑏) (𝜉𝑎µ ) (𝜉𝑏µ )]      (42) 

+ 2 ( 1𝐷𝑀) (𝜉𝑎µ ) (𝑅𝑀𝐼𝑀µ ) [𝜉𝑎 −  µ(1 − 𝑝𝑎)]  

− 2 ( 1𝐷𝑀) (𝜉𝑏µ ) (𝑅𝑀𝐼𝑀µ ) [𝜉𝑏 −  µ(1 − 𝑝𝑏)] 
where 𝐷𝑀 = 𝑝𝑏 − 𝑝𝑎 . 

Therefore, again, 

 𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑅𝑀̂𝐼𝑖)𝑁 ]1/2
 .        (43) 

 In the case of the income shares, 𝐼𝑆𝑖 , since by definition of the various tool box measures 
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 𝑅𝑀𝐼𝑖  ≡  µ𝑖µ = 𝐼𝑆𝑖𝑃𝑆𝑖 , 
then 𝐼𝑆𝑖 = 𝑃𝑆𝑖  • (µ𝑖 /  µ) =  𝐷𝑖  •  𝑅𝑀𝐼𝑖 
where the given population shares are also referred to as the denominator term 𝐷𝑖 . 
Consequently, it follows immediate that  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝐷𝑖2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖)       (44) 

and hence 

 𝑆. 𝐸. (𝐼𝑆̂𝑖) =  𝐷𝑖  •  𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖)       (45) 

for i = L, M, H, so that 𝐷𝐿 = 𝑝𝑎 ,  𝐷𝑀 =  𝑝𝑏 − 𝑝𝑎, and 𝐷𝐻 = 1 − 𝑝𝑏 . 

 Next consider the quantile mean income gaps,  µ̂𝑖 − µ̂𝑗 for  𝑖 ≠ 𝑗 . Since the gap is the 

difference between two quantile means, it follows that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) − 2 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) + 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗) . (46) 

The (asymptotic) variance terms are already provided in eq. (36)-(38). For the (asymptotic) 

covariances, Appendix C shows that 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝑀) =  𝜉𝑎(𝑝𝑏− 𝑝𝑎)  [(1 − 𝑝𝑎)𝜉𝑏 − (1 − 𝑝𝑎)𝜉𝑎 ] ,     (47) 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑀, µ̂𝐻) =  𝜉𝑏(𝑝𝑏− 𝑝𝑎)  [𝑝𝑎 𝜉𝑎 − 𝑝𝑏 𝜉𝑏 ] ,     (48) 

and 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝐻) =  − 𝜉𝑎 𝜉𝑏 .       (49) 

It thus follows that 

 𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖 − µ̂𝑗)𝑁 ]1/2
      (50) 

where again all unknowns are replaced by their sample estimates. 

 Similarly, if one calculates the gap in relative or proportional terms as the differential 
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 𝑞̂ =  µ̂𝑖− µ̂𝑗µ̂𝑗 = µ̂𝑖µ̂𝑗 = −1        for  𝑖 ˃ 𝑗 , 
it can be seen that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) =  ( 1µ𝑗)2 • 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) + (µ𝑖µ𝑗2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗) 

  − 2 ( 1µ𝑗) (µ𝑖µ𝑗2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) .      (51) 

So once again, 

 𝑆. 𝐸. (𝑞̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/2
 .        (52) 

Note, incidentally that, for all of the quantile means (µ̂𝑖), relative mean ratios (𝑅𝑀̂𝐼𝑖), income 

shares (𝐼𝑆̂𝑖) and quantile income gaps, their standard errors do not depend on evaluating a 

specified 𝑓(•) function, so statistical inference for these measures is distribution-free. This 

contrasts to the case of median-based measures in the previous section. Note also that the 

standard error formulas for the above measures are generally simpler to calculate here than in the 

previous section. This is because in section 2.3 the population shares need to be estimated and 

have to be treated as random variables as well, whereas in this section they are given as non-

random 𝐷𝑖’s expressed in terms of 𝑝𝑎 and 𝑝𝑏 . 

 Finally, work by Lin, Wu and Ahmad (1980) also allows us to undertake statistical 

inferences on relative mean quantile ratios, 𝜉𝑖 /  µ̂ . More specifically, they show that 𝜉𝑎 /  µ̂ and 𝜉𝑏 /  µ̂ are asymptotically normally distributed with (asymptotic) variances: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑎/  µ̂)  =  [(𝜉𝑎µ )2 𝜎2 − 2(𝜉𝑎µ ) 𝜎13 + 𝜎11] / µ2     (53) 

and 

𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑏/  µ̂)  =  [(𝜉𝑏µ )2 𝜎2 − 2(𝜉𝑏µ ) 𝜎23 + 𝜎22] / µ2    (54) 
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where 𝜎11  =  𝑝𝑎(1− 𝑝𝑎)𝑓(𝜉𝑎)2   𝜎22  =  𝑝𝑏(1− 𝑝𝑏)𝑓(𝜉𝑏)2   

 𝜎13  =  𝜉𝑎− µ(1− 𝑝𝑎)𝑓(𝜉𝑎)   𝜎23  =  𝜉𝑏− µ(1− 𝑝𝑏)𝑓(𝜉𝑏)  . 

It then follows that 

 𝑆. 𝐸. (𝜉𝑖/ µ̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟 (𝜉̂𝑖 / µ̂)𝑁 ]1/2
       (55) 

for i = a, b, where again all unknowns are replaced by their sample estimates. 

 Note that these standard error formulas, however, are definitely not distribution-free as 

the 𝜎𝑖𝑗  terms all involve density ordinates in their denominators. 

  

 

3. Illustrative Empirical Analysis of Distributional Change in Earnings 

    in Canada, 1970-2015 

3.1 Basic Data Sources and Sample Groups 

 The data used for this study come from Canadian Census Public Use Microdata Files 

(PUMF) for Individuals for 1971, 1981, 1991, 2001, and 2006, and from monthly Labour Force 

Survey (LFS) microdata files (for May) for each year over 2000-2015. The variable of interest is 

individual worker’s earnings. In the Census files, earnings refers to total wage and salary income 

plus net self-employment income in the previous calendar year. In the LFS files, earnings refers 

to usual weekly wage and salary income of paid employees who are not currently full-time 

students. The latter thus excludes net self-employment income and the former aggregates 

earnings over a full year. The Census samples also refer to full-time full-year workers aged 25-

59 in the earnings year, while the LFS samples refer to full-time workers (also aged 25-59) in the 
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LFS survey week. They are collectively referred to as full-time workers. The empirical analysis 

also treats male and female workers separately. 

 Workers in the labour market are allocated into three earnings groups – referred to as 

lower earners (L), middle-class earners (M), and higher earners (H) on the basis of their sex-

specific earnings. In the case of median-based statistics: 

 Lower earners – those with earnings below 50% of the median (i.e., a = 0.5) 

 Middle earners – those with earnings between 50% and 150% of the median (i.e., a = 0.5,  

       b = 1.5) 

 Higher earners – those with earnings above 200% of the median (i.e., c = 2.0). 

 Illustrative cut-off values – all in 2015 dollars – for the three median-based earnings 

groups (in earnings per week) in May 2015 are: 

 Males Females 

Lower $553 $441 

Middle $533 - $1658 $441 - $1323 

Higher $2211 $1764 

Median $1105.4 $881.8 

 

More detailed summary statistics for the analysis samples of this study appear in Appendix 

Tables D1-D2. 

 In terms of annual figures, these cut-offs for mid 2015 correspond to: 

 Males Females 

Lower $28,741 $22,927 

Middle $28,741 - $86,221 $22,927 - $68,781 

Higher $114,962 $91,707 

Median $57,481 $45,854 
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 At a modal hours worked per week of 37.5, these cut-offs for full-time workers also 

correspond to hourly cut-off values of: 

 Males Females 

Lower $14.74 $11.76 

Middle $14.74 - $44.22 $11.76 - $35.27 

Higher $58.96 $47.02 

Median $29.48 $23.51 

 

 The paper also looks at percentile-based distribution statistics. In this case: 

Lower earners – those with earnings in the lower 20% of workers (i.e., a = 0.2) 

 Middle earners – those with earnings in the middle 60% of workers (i.e., a = 0.2,  

       b = 0.8) 

 Higher earners – those with earnings in the top 20% of workers (i.e., b = 0.8). 

Illustrative cut-off values – again in 2015 dollars – for the three percentile-based earnings 

groups for full-time workers (again in earnings per week) in May 2015 are: 

 Males Females 

Lower $719 $599 

Middle $719 - $1633 $599 - $1371 

Higher $1633 $1371 

 

More detailed summary percentile-based statistics for the samples used in the study are found in 

Appendix Tables D3-D4. Evidently, since the lower group cut-offs for the percentile-based 

approach are considerably larger than for the median-based approach, the latter group includes a 

much smaller proportion of workers than the former. Similarly, the higher group cut-offs for the 

percentile-based approach are substantially smaller than for the median-based approach, so the 

latter group again includes a smaller proportion of workers than the former. That is to say, the L 
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and H groups are relatively smaller – less than 20 percent each – (and hence more extreme) in 

the median-based approach than for the percentile-based statistics. 

 In terms of annual earnings figures, the percentile cut-offs correspond to: 

 Males Females 

Lower $37,398 $31,164 

Middle $37,398 - $84,900 $31,164 - $71,276 

Higher $84,900 $71,276 

 

And based on the modal hours worked of 37.5 hours per week, the percentile cut-offs correspond 

to hourly cut-off values of: 

 Males Females 

Lower $19.18 $15.98 

Middle $19.18 - $43.54 $15.98 - $36.55 

Higher $43.54 $36.55 

 

 

3.2 Changes in Earnings Distributional Shares in Canada 

 We begin by looking at the significance – both economic and statistical – of changes in 

distributional shares for workers’ earnings in Canada over the period 1970-2015 using both 

Census and Labour Force Survey data and looking at both median-based and percentile-based 

approaches to breaking up the distribution into earnings groups. Consider first population shares 

from median-based estimates. Table 1 shows the percentages of (full-time) workers, separately 

for men and women, in the lower earnings, middle earnings, and higher earnings groups by 

decade over the 1970-2005 period from the Census data. Table 2 shows similar results over 5-

year intervals over 2000-2015 from the LFS data. Figures in parentheses are (estimated) standard 
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errors as specified in Appendix B of this paper. Figures in square brackets are absolute values of 

(asymptotic) “t-ratios” of the estimated changes in population shares. 

 The principal story both tables tell is that there has been a very substantial decline in the 

fraction of middle earners or middle-class workers in the Canadian labour market and 

corresponding increases in the proportions of lower-earning and higher-earning workers. This 

growing polarization in the labour market has been especially marked since 1980, and these 

changes are highly statistically significant. While this pattern holds for both male and female 

full-time workers, since 2005 the lower-earnings share of female workers has stopped increasing 

and reversed direction to start declining. The evidence is consistent with a declining proportion 

of middle-class workers in Canada. 

 Tables 3 and 4 report earnings shares of the three earnings groups estimated with the 

same median-based cut-offs. The tables are organized the same as for the first two tables. What 

results in Tables 3 and 4 show is that there has been an even larger more dramatic shift in 

earnings shares away from middle-class workers and to higher earners in the Canadian labour 

market. This is shown for both Census and LFS data sets, and again this is especially marked 

since 1980. Lower earnings shares also increased up until 2005 (consistent with formerly middle-

class workers slipping down the earnings distributions), but since then have shown more mixed 

pattern of changes. There has thus been a markedly widening gap between top earnings levels 

and the rest of the workers in the labour market. 

 Why such dramatic changes have been occurring since about 1980 in the labour market – 

not just in Canada, but also and even moreso in the United States and in most developed 

economies – has produced a vast literature of contributing explanations and hypotheses. These 

have been extensively review in Beach (2016) and elsewhere, so will not be discussed here 
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where the focus of the present paper is on statistical characterization of such changes. Suffice it 

to say here that the leading explanations for the above observed patterns of distributional change 

involve (i) automation and technological change arising from chip-based information and 

computer technology developments; (ii) increased globalization and the off-shoring of much 

goods production (especially in manufacturing) to areas of the world with cheaper labour costs; 

and (iii) changes in various institutional and policy-related matters such as deregulation in 

several major sectors, tax regulations affecting compensation packages, mid-1990s cut-backs in 

generosity and access to EI and social assistance, antiquated labour and workplace regulations, 

and free-trade agreements (in the U.S., declining private-sector unionization rates and falling real 

minimum wage rates also contributed). 

 The empirical results so far have been based on the median-based approach to 

characterizing distributional change. But as the development in Section 2 shows, an alternative 

percentile-based approach can also be followed, and indeed is more commonly used in published 

official data series (e.g., reporting series on quintile or decile income shares). We implement this 

here with cut-offs at the 20th percentile and 80th percentile levels. Since the percentile shares of 

workers are given in this approach, no population share tables (corresponding to Tables 1 and 2 

above) are needed. 

 Earnings shares for the three percentile-based earnings groups, however, are presented in 

Tables 5 and 6. Again, the tables are organized the same as before. The first thing to note from 

these tables is that the estimated earnings shares are quite different in magnitude from those in 

Tables 3 and 4. The lower and higher earnings shares are much larger, consistent with many 

more workers being placed in these much broader categories of workers. As a result, the middle-

class earnings shares are correspondingly smaller. 
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 The second thing to note (when comparing Tables 5 and 3) is that the percentile-based 

results show the same pattern of falling middle-class earnings shares and rising higher earnings 

shares as above, but the results are more muted – though the changes are still highly statistically 

significant. This muting of the changes in the middle-class and higher earnings shares also shows 

up in Table 6 vs Table 4 for the 2000-2015 time period. 

 The third point of note is that changes in the lower earnings shares over the 1980-2005 

period are much stronger and more dramatic in Table 5 than in Table 3 and indeed show a highly 

statistically significant decline in the lower earnings shares. Since 2005, however, the changes in 

the lower earnings shares are mixed and often not significant in Table 6. 

 The conclusions to be drawn are (i) the marked decline in the middle-class earnings share 

and corresponding dramatic rise in the higher earnings share appear quite robust to how these are 

measured – whether median-based or percentile-based – and (ii) what has happened to the lower 

earnings share, however, does appear to depend on the specifics of how the shares are estimated. 

 

3.3 Changes in Earnings Levels and Relative Earnings by Earnings Group 

 The rather dramatic changes in earnings shares that have been revealed begs the question 

of what has actually been happening to actual earnings levels over the different regions of the 

earnings distribution. This can usefully be looked at in terms of conditional mean earnings, i.e., 

the mean earnings levels of workers in each of the three broad earnings groups (µ i , i = L, M, H, 

in Section 2 above). Results on these conditional or quantile mean (real) earnings levels are 

presented in Tables 7 and 8 for the median-based estimates and in Tables 9 and 10 for the 

percentile-based estimates. The layouts of the tables are again the same. 
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 The two sets of tables show virtually the same broad results. First, for male workers over 

the 1980s and 1990s, actual decrease in real (CPI adjusted) earnings levels occurred over the 

lower and middle-class regions of the earnings distribution and these were quite substantial: 

 

 Median-Based 
(Table 7) 

Percentile-Based 
(Table 9) 

 
 

 
Lower 

 
Middle 

 
Lower 

 
Middle 

 
1980-1990 

 
-$1664. 
[8.38] 

 
-$1547. 
[10.03] 

 
-$3586. 
[9.37] 

 
-$1189. 
[4.47] 

 
1990-2000 

 
-$82. 
[0.47] 

 
-$1718. 
[11.23] 

 
-$2327. 
[7.82] 

 
-$739. 
[3.25] 

  

Figures in brackets are (absolute values of asymptotic) “t-ratios” of changes in indicated real 

earnings levels. As can be seen they are almost all highly statistically significant. For ten-year 

interval changes, these are historically highly unusual. In terms of percentile-based estimates, 

these real earnings declines have indeed continued on to 2005 as well. 

 Second, since 2005, real earnings increases have occurred and been fairly broadly shared 

across all earnings groups and for both male and female workers, though the increases have 

occurred at a much reduced rate than seen in the 1970s. This holds for both median-based and 

percentile-based results. 

 It was a common saying in the 1960s and 1970s that “a rising tide raises all boats”. Is this 

true over more recent decades? To address this, we look next at relative-mean income ratios (i.e., 

RMIi, i = L, M, H in Section 2) or, in the present paper, the ratios of conditional mean earnings 

levels to the mean earnings of the earnings distribution as a whole. Results on the relative-mean 
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earnings ratios are presented in Tables 11 and 12 for the median-based estimates and in Tables 

13 and 14 for the percentile-based estimates. 

 First off, one sees that the relative-mean earnings (RME) ratios over the 1980-2005 

interval markedly declined for lower-earnings and middle-class earnings workers, while very 

strongly rising for higher-earnings workers. This general result holds for both male and female 

workers and for both median-based and percentile-based sets of estimates (though the RMEL 

declines are larger when measured by the percentile approach). These changes are also highly 

statistically significant in all cases. The most consistent pattern of change since 1980 has been 

the quite marked decline in relative mean earnings for middle-class workers, which has 

continued since 2005 and remains highly statistically significant. Quite evidently, since the 

1980s, a rising tide of generally increasing real earnings levels for the economy over the period 

as a whole has not lifted all levels evenly. Middle-class workers, especially male workers, have 

lost out relatively to top earners in the Canadian labour market. 

 

3.4 Changes to the Female-to-Male Earnings Gap by Earnings Group 

 It is evident from the last section that there have been very marked differences between 

male and female earnings levels and changes in earnings levels over the entire period covered, 

but especially since the 1980s when women entered the Canadian full-time workforce in much 

greater numbers. Full-time earnings levels for women are (still) much lower than those for men, 

but they have generally been rising faster in percentage terms than men’s full-time earnings 

levels. 

 These two patterns are highlighted in Table 15 which shows, at an aggregate level, what 

has happened to the female-to-male full-time earnings ratio in the Canadian labour market 



35 

 

overall since 1970. The first column looks at relative mean earnings levels, while the second 

column shows the relative medians. In 1970, the female-to-male full-time earnings ratios were 

only 59-62 percent. By 2015, the ratios had moved up substantially to 80-82 percent (while the 

female participation rate had risen markedly as well). This has been quite a change in the labour 

market and a vast literature has been devoted to this major development. In this paper, we’ll 

focus just on the statistics themselves. Note also that, over a 45-year interval, the full-time 

earnings gap has narrowed by only about half. These summary results also beg the questions of 

whether these relative earnings increases have been broadly experienced across the earnings 

distribution, or have they been driven by certain pockets or subgroups of workers. 

 Tables 16 and 17 address this issue. Both tables report ratios of conditional or quantile 

mean earnings between women and men in the full-time workforce broken down by the three 

earnings groups L, M, and H. The first table refers to median-based estimates and the second to 

percentile-based estimates. Both tables show essentially the same pattern of results. Yes, the 

relatively greater increases in earnings for female full-time workers show up broadly across all 

three earnings groups. Back in 1970, the relative earnings ratio of the highest earnings group was 

the lowest – at 53-54 percent. Over the next 45 years it went up by the greatest amount – by 25-

28 percentage points. However, it still remains the most resistant to leading the rise. Among the 

lowest earnings group, the ratio rose by 20-23 points to a 2015 ratio of 84-85 percent, the highest 

ratio among the three groups. These changes are all highly statistically significant – see the last 

line in each table. But again, the full-time earnings gap has only about half closed. 
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4. Overview, Findings, and Conclusions 

 This paper calls for a rethink about how much of empirical income distribution analysis is 

performed. In an era when complex distributional changes have been occurring so that summary 

income inequality measures (such as, say, a Gini coefficient) cannot adequately capture what has 

been happening, more disaggregative measures of distributional change are much more useful. 

This paper offers a tool box of such disaggregative measures including income shares, 

population shares, quantile mean incomes and relative mean incomes. As can be seen from the 

illustrative empirical work, all of these tools can be usefully employed together to highlight 

different complementary aspects of distributional change and distributional differences, such as, 

say between men and women in the labour market. While the present study has illustrated such 

measures with the income (or earnings) distribution broken into three income groups (simply 

called Lower, Middle, and Higher), more extensive and refined breakdowns (e.g., Beach, 2018) 

can readily be applied given the development of the tools outlined in this paper. 

 Secondly, the paper calls for standard use of a statistical inferential framework for 

empirical distributional analysis, i.e., calculating standard errors that can be applied to all the 

disaggregative measures provided in the present tool box. This allows for, not just the study of 

the magnitudes of detailed distributional changes and differences, but also interpreting such 

calculated changes and differences in terms of their statistical significance (or prob-values if one 

wishes). This study has also developed a consistent inferential framework based on a quantile-

function approach applied to each of the proposed tool box measures. In an era of broadly 

available public use microdata files such as from the Census and regular Labour Force Surveys, 

these standard error formulas can be readily calculated and implemented. 
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 And thirdly, the paper argues for a broader use of median-based distributional statistics 

for detailed empirical work rather than the more readily available percentile-based statistics 

(such as quintiles and deciles) typically provided by official statistical agencies. Both sets of 

statistics can be readily grounded in a conventional statistical inference framework – as shown in 

the appendices of this study – but the median-based approach also allows for estimates of 

numbers of people (or population shares) in each income group and hence separate analysis of 

the degree of polarization within an income distribution and not just analysis of income 

differences and income inequality. It turns out, as well, that such an approach allows one to 

distinguish between a quantity (of workers) dimension and a price (income level or wage level) 

dimension. As shown in Beach (2016), this distinction can provide valuable insights into an 

interpretation of the underlying economic forces driving observed changes in income shares such 

as have occurred in the Canadian and U.S. labour markets over the last fifty years. 

 Several major empirical findings have been obtained when this tool box of measures has 

been applied to the distribution of workers’ earnings in Canada over the 1970-2015 period. The 

empirical analysis has made use of Canadian Census public use microdata files for 1971, 1981, 

1991, 2001, and 2006 (reporting earnings for the preceding years) and of monthly Labour Force 

Survey (LFS) public use microdata files for May of 2000, 2005, 2010, and 2015 (reporting 

earnings for a specified survey week). Several major results were found. 

 First, there has been a very substantial decline in the proportion of middle earners or 

middle-class workers in the Canadian labour market since the 1980s and a corresponding 

increase in the proportion of higher earners – for both male and female workers – and these 

changes are highly statistically significant. The result has been a growing degree of polarization 

in the labour market and a widening gap between top earnings levels and the rest of the workers 
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in the labour market. The evidence is consistent with a declining fraction of middle-class 

workers in Canada. 

 Second, for male workers over the 1980s and 1990s, actual decreases in real earnings 

levels occurred over the lower and middle-class regions of the earnings distributions; these were 

quite substantial and historic and highly statistically significant. Since 2005, however, real 

earnings increases have occurred and been fairly broadly shared across all earnings groups and 

for both male and female workers. 

 Third, since the 1980s, a rising tide of a generally increasing real earnings level overall 

for the economy has not lifted all boats evenly. Relative-mean earnings ratios over the 1980-

2005 period markedly declined for lower earnings and middle-class earnings workers, while very 

strongly rising for higher earnings workers. These changes are also highly statistically 

significant. The most consistent pattern of change since 1980 has been the quite marked decline 

in relative-mean earnings for middle-class workers, which has continued since 2005 and remains 

highly statistically significant. 

 Fourth, the increase in relative earnings of female compared to male full-time workers 

since 1970 has been broadly shared across all three earnings groups, but over a period of 45 

years the gap has only been halved in size to about 20 percent. 

 The practical conclusions or recommendations that arise from these very strong and 

robust results are twofold. One, official statistical agencies (such as Statistics Canada or the U.S. 

Bureau of the Census) should provide distributional statistics on median-based measures of 

disaggregative change in addition to their current statistics based on quintile or decile 

breakdowns. And two, microdata users should use the formulas developed in this paper to 
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compute standard errors for their various distributional statistics so they can base their analysis 

on more formal principles of statistical inference. 
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Table 1 
Percentage of Male and Female Full-Time Workers by Earnings Level, 

Canada, 1970-2005 
Census Data on Annual Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   1970 9.14 (0.175) 8.14 (0.313) 
   1980 9.35 (0.115) 8.51 (0.167) 
   1990 11.09 (0.130) 12.75 (0.103) 
   2000 13.33 (0.112) 13.24 (0.131) 
   2005 14.20 (0.113) 13.83 (0.127) 
Change 1970-2005 +5.06 [24.3] +5.68 [16.8] 
Change 1980-2005 +4.85 [29.9] +5.10 [24.3] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   1970 74.34 (0.0523) 76.53 (0.0839) 
   1980 75.14 (0.0312) 75.21 (0.0467) 
   1990 71.46 (0.0128) 68.14 (0.0123) 
   2000 65.35 (0.0085) 65.52 (0.0088) 
   2005 62.78 (0.0108) 63.06 (0.0133) 
Change 1970-2005 -11.56 [216.] -13.47 [158.] 
Change 1980-2005 -12.36 [374.] -12.15 [250.] 
   
Higher Earnings 
(above 200% of median) 

  

   1970 6.73 (0.1452) 4.64 (0.2418) 
   1980 5.56 (0.0949) 4.60 (0.1326) 
   1990 6.46 (0.1013) 5.66 (0.0820) 
   2000 8.89 (0.0927) 7.83 (0.1047) 
   2005 10.14 (0.1010) 9.53 (0.1112) 
Change 1970-2005 +3.41 [19.3] +4.89 [18.4] 
Change 1980-2005 +4.58 [33.0] +4.93 [28.5] 

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 2 
Percentage of Male and Female Full-Time Workers by Earnings Level, 

Canada, 2000-2015 
LFS Data on Weekly Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   2000 7.41 (0.137) 7.26 (0.151) 
   2005 8.12 (0.101) 8.06 (0.113) 
   2010 8.22 (0.077) 7.03 (0.079) 
   2015 7.89 (0.047) 6.55 (0.041) 
Change 2000-2015 +0.48 [3.31] -0.71 [4.53] 
Change 2000-2010 +0.81 [5.15] -0.23 [1.46] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   2000 76.17 (0.066) 73.89 (0.092) 
   2005 75.06 (0.167) 73.05 (0.189) 
   2010 72.59 (0.244) 72.50 (0.268) 
   2015 73.41 (0.223) 71.41 (0.266) 
Change 2000-2015 -2.76 [11.9] -2.48 [8.81] 
Change 2000-2010 -3.58 [14.16] -1.39 [4.91] 
   
Higher Earnings 
(above 200% of median) 

  

   2000 4.79 (0.083) 6.16 (0.103) 
   2005 5.88 (0.135) 6.58 (0.159) 
   2010 5.91 (0.188) 6.73 (0.204) 
   2015 6.31 (0.178) 7.31 (0.207) 
Change 2000-2015 +1.52 [7.75] +1.15 [4.96] 
Change 2000-2010 +1.12 [5.45] +0.57 [2.49] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 3 
Male and Female Earnings Shares of Full-Time Workers by Earnings Level, 

Canada, 1970-2005 (Percent) 
Census Data on Annual Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   1970 2.52 (0.0780) 2.34 (0.1461) 
   1980 2.71 (0.0527) 2.40 (0.0775) 
   1990 2.96 (0.0598) 3.65 (0.0464) 
   2000 3.50 (0.0491) 3.59 (0.0590) 
   2005 3.40 (0.0444) 3.72 (0.0537) 
Change 1970-2005 +0.88 [9.81] +1.38 [8.86] 
Change 1980-2005 +0.69 [10.01] +1.32 [14.00] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   1970 64.19 (0.226) 69.34 (0.410) 
   1980 67.62 (0.148) 68.44 (0.220) 
   1990 63.22 (0.137) 61.58 (0.109) 
   2000 55.43 (0.109) 57.45 (0.130) 
   2005 47.33 (0.102) 51.50 (0.124) 
Change 1970-2005 -16.86 [68.0] -17.84 [41.7] 
Change 1980-2005 -20.19 [112.4] -16.94 [67.1] 
   
Higher Earnings 
(above 200% of median) 

  

   1970 18.51 (0.259) 11.41 (0.451) 
   1980 14.19 (0.173) 10.59 (0.246) 
   1990 16.88 (0.187) 13.54 (0.148) 
   2000 22.51 (0.162) 18.14 (0.189) 
   2005 32.00 (0.158) 24.97 (0.188) 
Change 1970-2005 +13.49 [44.4] +13.56 [27.7] 
Change 1980-2005 +17.81 [76.0] +14.38 [46.4] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 4 
Male and Female Earnings Shares of Full-Time Workers by Earnings Level, 

Canada, 2000-2015 
LFS Data on Weekly Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   2000 2.80 (0.064) 2.82 (0.069) 
   2005 3.04 (0.046) 3.06 (0.051) 
   2010 3.09 (0.035) 2.67 (0.035) 
   2015 2.94 (0.021) 2.52 (0.018) 
Change 2000-2015 +0.14 [2.09] -0.30 [4.22] 
Change 2000-2010 +0.29 [3.98] -0.15 [1.94] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   2000 68.18 (0.220) 64.52 (0.263) 
   2005 66.72 (0.323) 63.16 (0.360) 
   2010 63.16 (0.402) 61.53 (0.432) 
   2015 63.48 (0.346) 59.23 (0.389) 
Change 2000-2015 -4.70 [11.5] -5.29 [11.3] 
Change 2000-2010 -5.02 [10.9] -2.99 [5.91] 
   
Higher Earnings 
(above 200% of median) 

  

   2000 10.36 (0.153) 13.05 (0.188) 
   2005 13.16 (0.249) 14.59 (0.287) 
   2010 13.17 (0.341) 14.58 (0.367) 
   2015 14.37 (0.324) 15.77 (0.366) 
Change 2000-2015 +3.51 [9.80] +2.72 [6.60] 
Change 2000-2010 +2.31 [6.18] +1.53 [3.93] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 5 
Male and Female Earnings Shares of Full-Time Workers by Earnings Level, 

Canada, 1970-2005 (Percent) 
Census Data on Annual Earnings 

(Percentile-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%) 

  

   1970 8.32 (0.145) 9.05 (0.279) 
   1980 8.62 (0.096) 8.88 (0.149) 
   1990 7.60 (0.068) 7.48 (0.084) 
   2000 6.80 (0.062) 7.01 (0.076) 
   2005 5.91 (0.053) 6.60 (0.065) 
Change 1970-2005 -2.41 [15.7] -2.45 [8.54] 
Change 1980-2005 -2.71 [24.7] -2.28 [14.0] 
   
Middle-Class Earnings 
(middle 60%) 

  

   1970 53.93 (0.294) 56.33 (0.566) 
   1980 55.77 (0.196) 56.86 (0.304) 
   1990 55.20 (0.148) 56.53 (0.192) 
   2000 53.89 (0.149) 55.74 (0.187) 
   2005 48.48 (0.139) 52.68 (0.171) 
Change 1970-2005 -5.45 [16.8] -3.65 [6.19] 
Change 1980-2005 -7.29 [30.3] -4.18 [12.0] 
   
Higher Earnings 
(top 20%) 

  

   1970 37.75 (0.295) 34.62 (0.567) 
   1980 35.61 (0.196) 34.26 (0.305) 
   1990 37.20 (0.149) 35.98 (0.194) 
   2000 39.32 (0.152) 37.26 (0.190) 
   2005 45.62 (0.142) 40.72 (0.175) 
Change 1970-2005 +7.87 [24.1] +6.10 [10.3] 
Change 1980-2005 +10.01 [41.4] +6.46 [18.4] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 6 
Male and Female Earnings Shares of Full-Time Workers by Earnings Level, 

Canada, 2000-2015 
LFS Data on Weekly Earnings 
(Percentile-Based Estimates) 

  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%)   

  

   2000 9.83 (0.180) 9.67 (0.199) 
   2005 9.55 (0.179) 9.35 (0.192) 
   2010 9.49 (0.175) 9.76 (0.182) 
   2015 9.78 (0.124) 10.23 (0.134) 
Change 2000-2015 -0.05 [0.19] +0.56 [2.33] 
Change 2000-2010 -0.34 [1.35] +0.09 [0.33] 
   
Middle-Class Earnings 
(middle 60%) 

  

   2000 56.43 (0.371) 56.11 (0.437) 
   2005 55.94 (0.380) 55.42 (0.424) 
   2010 55.68 (0.383) 55.09 (0.409) 
   2015 54.91 (0.277) 54.29 (0.303) 
Change 2000-2015 -1.52 [3.28] -1.82 [3.44] 
Change 2000-2010 -0.75 [1.41] -1.02 [1.70] 
   
Higher Earnings 
(top 20%) 

  

   2000 33.74 (0.373) 34.22 (0.442) 
   2005 34.51 (0.383) 35.23 (0.429) 
   2010 34.82 (0.387) 35.15 (0.414) 
   2015 35.30 (0.281) 35.49 (0.307) 
Change 2000-2015 +1.56 [3.35] +1.27 [2.36] 
Change 2000-2010 +1.08 [2.01] +0.93 [1.54] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 7 
Conditional Mean Earnings of Full-Time Male and Female Workers by 

Earnings Level, Canada, 1970-2005  
Census Data on Annual Earnings (real 2015$) 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   1970 15,316. (181.0) 9476. (227.0) 
   1980 18,909. (133.9) 11,863. (150.4) 
   1990 17,245. (146.5) 12,618. (58.9) 
   2000 17,163. (96.4) 12,820. (84.3) 
   2005 17,832. (90.5) 14,007. (73.5) 
Change 1970-2005 +2516. [12.43] +4540. [19.03] 
Change 1980-2005 -1077. [6.67] +2144. [12.80] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   1970 47,967. (135.1) 29,838. (143.6) 
   1980 58,709. (104.1) 38,279. (99.3) 
   1990 57,162. (113.9) 38,833. (63.7) 
   2000 55,444. (102.2) 41,456. (88.2) 
   2005 56,146. (110.8) 42,530. (93.6) 
Change 1970-2005 +8179. [46.81] +12,962. [74.04] 
Change 1980-2005 -2563. [16.86] +4251. [31.15] 
   
Higher Earnings 
(above 200% of median) 

  

   1970 152,789. (1159.) 80,982. (1017.) 
   1980 166,498. (810.6) 96,841. (539.2) 
   1990 168,831. (781.1) 105,440. (372.1) 
   2000 165,511. (531.4) 109,533. (322.5) 
   2005 235,026. (1179.) 136,447. (564.7) 
Change 1970-2005 +82,237. [49.75] +55,465. [47.68] 
Change 1980-2005 +68,528. [47.90] +39,606. [50.73] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 8 
Conditional Mean Earnings of Full-Time Male and Female Workers by 

Earnings Level, Canada, 2000-2015 
LFS Data on Weekly Earnings (real 2015$) 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   2000 418.1 (1.75) 328.8 (1.16) 
   2005 415.8 (1.18) 334.3 (0.91) 
   2010 445.5 (0.87) 364.6 (0.75) 
   2015 452.9 (0.59) 384.0 (0.36) 
Change 2000-2015 +34.8 [18.83] +55.2 [45.44] 
Change 2000-2010 +27.4 [14.00] +35.8 [25.92] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   2000 990.4 (2.33) 739.2 (2.09) 
   2005 987.1 (2.58) 761.4 (2.36) 
   2010 1031.1 (3.10) 814.7 (2.71) 
   2015 1051.1 (2.54) 827.8 (2.35) 
Change 2000-2015 +60.7 [17.59] +88.6 [28.16] 
Change 2000-2010 +40.7 [10.50] +75.5 [22.06] 
   
Higher Earnings 
(above 200% of median) 

  

   2000 2508.7 (7.89) 1793.3 (4.29) 
   2005 2485.4 (10.17) 1952.6 (8.59) 
   2010 2640.9 (15.56) 2079.5 (10.70) 
   2015 2768.1 (15.73) 2153.0 (11.04) 
Change 2000-2015 +259.4 [14.74] +359.7 [30.36] 
Change 2000-2010 +132.2 [7.58] +286.2 [24.82] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 9 
Conditional Mean Earnings of Full-Time Male and Female Workers by 

Earnings Level, Canada, 1970-2005  
Census Data on Annual Earnings (real 2015$) 

(Percentile-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%) 

  

   1970 23,122. (402.7) 14,901. (459.7) 
   1980 28,130. (313.5) 18,677. (313.9) 
   1990 24,544. (219.3) 16,492. (185.3) 
   2000 22,217. (201.0) 16,570. (180.1) 
   2005 21,992. (196.6) 17,196. (170.2) 
Change 1970-2005 -1129. [2.80] +2294. [4.99] 
Change 1980-2005 -6138. [16.59] +1481. [4.15] 
   
Middle-Class Earnings 
(middle 60%) 

  

   1970 49,931. (272.4) 30,919. (310.4) 
   1980 60,634. (213.0) 39,867. (213.2) 
   1990 59,445. (159.0) 41,529. (140.7) 
   2000 58,706. (162.4) 43,918. (147.1) 
   2005 60,170. (172.0) 45,719. (148.5) 
Change 1970-2005 +10,239. [31.76] +14,800. [42.90] 
Change 1980-2005 -464. [1.69] +5852. [22.53] 
   
Higher Earnings 
(top 20%) 

  

   1970 104,847. (818.8) 56,988. (932.9) 
   1980 116,151. (640.8) 72,041. (641.3) 
   1990 120,179. (481.9) 79,300. (428.4) 
   2000 128,490. (496.9) 88,072. (450.3) 
   2005 169,863 (528.8) 106,025. (456.3) 
Change 1970-2005 +65,016. [66.74] +49,037. [47.23] 
Change 1980-2005 +53,712. [64.65] +33,984. [43.18] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 10 
Conditional Mean Earnings of Full-Time Male and Female Workers by 

Earnings Level, Canada, 2000-2015 
LFS Data on Weekly Earnings (real 2015$) 

(Percentile-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%) 

  

   2000 540.3 (9.95) 408.7 (8.40) 
   2005 531.3 (9.94) 412.3 (8.47) 
   2010 559.8 (10.36) 457.1 (8.75) 
   2015 572.6 (7.51) 482.7 (6.69) 
Change 2000-2015 +32.4 [2.59] +74.0 [6.89] 
Change 2000-2010 +19.5 [1.36] +48.4 [3.99] 
   
Middle-Class Earnings 
(middle 60%) 

  

   2000 1044.9 (6.84) 794.0 (6.17) 
   2005 1037.6 (7.03) 814.6 (6.22) 
   2010 1104.3 (7.57) 890.9 (6.54) 
   2015 1129.6 (5.61) 922.9 (5.03) 
Change 2000-2015 +84.7 [9.57] +128.9 [16.19] 
Change 2000-2010 +59.4 [5.82] +96.9 [10.78] 
   
Higher Earnings 
(top 20%) 

  

   2000 1874.4 (20.61) 1451.8 (18.72) 
   2005 1919.9 (21.26) 1557.0 (18.87) 
   2010 2068.9 (22.95) 1690.7 (19.87) 
   2015 2152.2 (17.05) 1774.5 (15.31) 
Change 2000-2015 +277.8 [10.38] +322.7 [13.34] 
Change 2000-2010 +194.5 [6.31] +238.9 [8.75] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 11 
Relative Mean Earnings of Full-Time Male and Female Workers by Earnings 

Level, Canada, 1970-2005  
Census Data on Annual Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   1970 .2757 (.00326) .2875 (.00639) 
   1980 .2898 (.00205) .2820 (.00358) 
   1990 .2669 (.00227) .2863 (.00134) 
   2000 .2626 (.00148) .2711 (.00178) 
   2005 .2394 (.00122) .2690 (.00141) 
Change 1970-2005 -.0363 [10.43] -.0185 [2.63] 
Change 1980-2005 -.0504 [21.14] -.0130 [3.38] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   1970 .8635 (.00248) .9060 (.00436) 
   1980 .8999 (.00160) .9100 (.00236) 
   1990 .8847 (.00176) .9037 (.00144) 
   2000 .8482 (.00156) .8768 (.00187) 
   2005 .7539 (.00149) .8167 (.00180) 
Change 1970-2005 -.1096 [38.43] -.0893 [18.95] 
Change 1980-2005 -.1460 [66.92] -.0933 [31.44] 
   
Higher Earnings 
(above 200% of median) 

  

   1970 2.7504 (.02086) 2.4591 (.03088) 
   1980 2.5522 (.01242) 2.3022 (.01282) 
   1990 2.6130 (.01209) 2.3922 (.00844) 
   2000 2.5321 (.00813) 2.3167 (.00682) 
   2005 3.1588 (.01583) 2.6201 (.01084) 
Change 1970-2005 +.4054 [15.48] +.1611 [4.92] 
Change 1980-2005 +.6036 [30.00] +.3179 [18.93] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 12 
Relative Mean Earnings of Full-Time Male and Female Workers by Earnings 

Level, Canada, 2000-2015 
LFS Data on Weekly Earnings 

(Median-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(below 50% of median) 

  

   2000 .3779 (.00158) .3884 (.00137) 
   2005 .3744 (.00106) .3797 (.00103) 
   2010 .3759 (.00073) .3798 (.00078) 
   2015 .3726 (.00048) .3847 (.00036) 
Change 2000-2015 -.0053 [3.17] -.0037 [2.61] 
Change 2000-2010 -.0020 [1.15] -.0086 [5.45] 
   
Middle-Class Earnings 
(within 50% of median) 

  

   2000 .8951 (.00210) .8732 (.00247) 
   2005 .8889 (.00233) .8646 (.00268) 
   2010 .8701 (.00262) .8487 (.00282) 
   2015 .8647 (.00209) .8294 (.00236) 
Change 2000-2015 -.0304 [10.24] -.0438 [12.81] 
Change 2000-2010 -.0250 [7.45] -.0245 [6.53] 
   
Higher Earnings 
(above 200% of median) 

  

   2000 2.2672 (.00713) 2.1185 (.00506) 
   2005 2.2381 (.00916) 2.2173 (.00976) 
   2010 2.2284 (.01313) 2.1664 (.01115) 
   2015 2.2773 (.01294) 2.1573 (.01107) 
Change 2000-2015 +.0101 [0.68] +.0388 [3.19] 
Change 2000-2010 -.0388 [2.60] +.0479 [3.91] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix B. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 13 
Relative Mean Earnings of Full-Time Male and Female Workers by Earnings 

Level, Canada, 1970-2005 
Census Data on Annual Earnings 

(Percentile-Based Estimates) 
  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%) 

  

   1970 .4162 (.00725) .4526 (.01396) 
   1980 .4312 (.00481) .4440 (.00746) 
   1990 .3798 (.00339) .3742 (.00420) 
   2000 .3399 (.00307) .3505 (.00381) 
   2005 .2953 (.00264) .3302 (.00327) 
Change 1970-2005 -.1209 [15.67] -.1224 [8.54] 
Change 1980-2005 -.1359 [24.77] -.1138 [13.97] 
   
Middle-Class Earnings 
(middle 60%) 

  

   1970 .8988 (.00480) .9388 (.00943) 
   1980 .9294 (.00327) .9478 (.00507) 
   1990 .9200 (.00246) .9422 (.00319) 
   2000 .8981 (.00248) .9289 (.00311) 
   2005 .8079 (.00231) .8779 (.00285) 
Change 1970-2005 -.0909 [16.77] -.0609 [6.19] 
Change 1980-2005 -.1215 [30.34] -.0699 [12.02] 
   
Higher Earnings 
(top 20%) 

  

   1970 1.8873 (.01474) 1.7309 (.02833) 
   1980 1.7805 (.00982) 1.7127 (.01525) 
   1990 1.8601 (.00746) 1.7992 (.00972) 
   2000 1.9658 (.00760) 1.8628 (.00952) 
   2005 2.2809 (.00710) 2.0360 (.00876) 
Change 1970-2005 +.3936 [24.05] +.3051 [10.29] 
Change 1980-2005 +.5004 [41.29] +.3233 [18.38] 
   

 
Source: Statistics Canada, Census of Canada Individual PUMF files for 1971, 1981, 1991, 2001, 
and 2006. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 14 
Relative Mean Earnings of Full-Time Male and Female Workers by Earnings 

Level, Canada, 2000-2015 
LFS Data on Weekly Earnings 
(Percentile-Based Estimates) 

  
 

  
Males 

 
Females 

 
Lower Earnings 
(bottom 20%) 

  

   2000 .4913 (.00900) .4833 (.00993) 
   2005 .4777 (.00895) .4674 (.00962) 
   2010 .4747 (.00874) .4881 (.00912) 
   2015 .4891 (.00618) .5112 (.00671) 
Change 2000-2015 -.0022 [0.19] +.0279 [2.33] 
Change 2000-2010 -.0166 [1.32] +.0048 [0.36] 
   
Middle-Class Earnings 
(middle 60%) 

  

   2000 .9406 (.00618) .9353 (.00728) 
   2005 .9323 (.00633) .9236 (.00706) 
   2010 .9280 (.00638) .9181 (.00681) 
   2015 .9152 (.00461) .9048 (.00504) 
Change 2000-2015 -.0254 [3.29] -.0305 [3.44] 
Change 2000-2010 -.0126 [1.42] -.0172 [1.73] 
   
Higher Earnings 
(top 20%) 

  

   2000 1.6871 (.01863) 1.7109 (.02211) 
   2005 1.7253 (.01914) 1.7617 (.02143) 
   2010 1.7412 (.01937) 1.7576 (.02070) 
   2015 1.7652 (.01403) 1.7745 (.01534) 
Change 2000-2015 +.0781 [3.35] +.0636 [2.36] 
Change 2000-2010 +.0541 [2.01] +.0467 [1.54] 

 
Source: Based on Statistics Canada, PUMF files for May Labour Force Surveys. 
Figures in parentheses are (asymptotic) standard errors as specified in Appendix C. 
Figures in square brackets are absolute (asymptotic) “t-ratios”. 
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Table 15 
Female-to-Male Earnings Ratios for Full-Time Workers Based on Mean and 

Median Earnings, Canada, 1970-2015 
 
 

  

Relative Mean Earnings 

 

Relative Median Earnings 

 

1970 

 

.5928 

 

.6203 

1980 .6448 .6567 

1990 .6822 .6944 

2000 .7233 .7459 

2005 .6993 .7551 

   

2000 .7650 .7500 

2005 .7930 .7813 

2010 .8100 .8024 

2015 .8211 .7977 

 
Source: See Appendix Tables D1 – D4. 
 
Note: Top panel of figures from Census data; bottom panel of figures from LFS data. 
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Table 16 
Female-to-Male Earnings Ratios for Full-Time Workers by Earnings Level, Canada, 1970-2015 

(Median-Based Estimates) 
 
  

Lower Earners 

 

Middle Earners 

 

Higher Earners 

1970 .6187 (.0165) .6221 (.00347) .5300 (.00778) 

1980 .6274 (.00911) .6520 (.00205) .5816 (.00430) 

1990 .7317 (.00709) .6968 (.00178) .6245 (.00363) 

2000 .7470 (.00646) .7477 (.00210) .6618 (.00288) 

2005 .7855 (.00573) .7575 (.00224) .5806 (.00378) 

    

2000 .7864 (.00431) .7464 (.00275) .7148 (.00282) 

2005 .8040 (.00316) .7714 (.00312) .7856 (.00472) 

2010 .8184 (.00232) .7901 (.00354) .7874 (.00616) 

2015 .8479 (.00136) .7876 (.00294) .7778 (.00595) 

Change 1970-2015 +.2279 [13.82] +.1655 [36.42] +.2478 [25.30] 

 
Source: See Tables 7 and 8. 
 
Note: Top panel of figures from Census data; bottom panel of figures from LFS data. 
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Table 17 
Female-to-Male Earnings Ratios for Full-Time Workers by Earnings Level, Canada, 1970-2015 

(Percentile-Based Estimates) 
 
  

Lower Earners 

 

Middle Earners 

 

Higher Earners 

1970 .6445 (.0228) .6192 (.00708) .5435 (.00986) 

1980 .6640 (.0134) .6575 (.00421) .6202 (.00650) 

1990 .6719 (.0096) .6986 (.00302) .6598 (.00444) 

2000 .7458 (.0106) .7481 (.00325) .6854 (.00439) 

2005 .7819 (.0104) .7598 (.00329) .6242 (.00332) 

    

2000 .7564 (.0209) .7599 (.00772) .7745 (.0133) 

2005 .7760 (.0216) .7851 (.00801) .8110 (.0133) 

2010 .8165 (.0217) .8068 (.00810) .8172 (.0132) 

2015 .8430 (.0161) .8170 (.00602) .8245 (.00966) 

Change 1970-2015 +.1985 [7.11] +.1978 [21.29] +.2810 [20.36] 

 
Source: See Tables 9 and 10. 
 
Note: Top panel of figures from Census data; bottom panel of figures from LFS data. 
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Technical Appendix A 
 

Percentile-Based Statistics 
 
 This appendix sets out what may be viewed as the conventional approach to 

implementing statistical inference to disaggregative distributional measures such as income 

shares or quantile mean income levels, arising from the work of Beach and Davidson (1983) and 

Beach et al. (1994). This approach seems not to have been actually used much in empirical 

distributional studies, perhaps in part because the formulas in the former paper may not seem 

very user-friendly to regular empirical practitioners. This appendix seeks to make this approach 

more accessible to such users. But it also sets out a foil or contrast to an alternative “quantile 

function” approach to disaggregative statistical inference provided in the following two 

appendices. 

 

A.1 Standard Errors for Quantile Means 

 The exposition of how (asymptotic) standard errors of quantile income shares are 

obtained follows two steps. 

 

Step 1: Asymptotic Distribution of Cumulative Quantile Means 

 A formal derivation of the key result in Step 1 is provided in Beach and Davidson (1983), 

but some exposition and notation will be needed here. Suppose there are K (ordered) percentile 

income groups indexed by i, from the lowest-income group i=1 up to the top group K. In the case 

of decile income groups, K=10; for quintiles, K=5. Let pi represent the (cumulative) proportion 

of the ordered income groups. So for deciles, p1 = 0.1, p2 = 0.2, …, p9 = 0.9. The income cut-

offs that divide the different income groups will be called 𝜉1, 𝜉2, … , 𝜉𝐾−1, and the cumulative 



60 

 

quantile means are 𝛾1, 𝛾2, … , 𝛾𝐾 where 𝛾𝑖 = 𝐸(𝑌 | 𝑌 ≤  𝜉𝑖) for incomes less than or equal to 𝜉𝑖 
and 𝛾𝐾 =  µ the overall mean of the distribution of sample incomes Y. Cumulative quantile 

variances are denoted 𝜆𝑖2 = 𝑣𝑎𝑟(𝑌 | 𝑌 ≤  𝜉𝑖) and the overall variance of the distribution in 𝜆𝐾2 = 𝜎2 . Let the (K)-element vector of sample estimates of the (rescaled) cumulative means be 

 𝐺̂ =  (𝑝1𝛾1, … , 𝑝𝐾𝛾𝐾)′ . 
So 𝐺̂ = 𝑃𝛾 for vector 𝛾 =  (𝛾1, … , 𝛾𝐾)′ and P = Diag (𝑝1, … , 𝑝𝐾). Then Beach and Davidson 

(1983, Theorem 1) establish that, under general conditions, 𝐺̂ is asymptotically joint normally 

distributed with mean 𝐺 =  (𝑝1𝛾1, … , 𝑝𝐾𝛾𝐾)′ and variance-covariance matrix 

 𝛺 = [𝜔𝑖𝑗] where 

 𝜔𝑖𝑗 = 𝑝𝑖[𝜆𝑖2 + (1 − 𝑝𝑖)(𝜉𝑖 − 𝛾𝑖)(𝜉𝑗 − 𝛾𝑗) + (𝜉𝑖 − 𝛾𝑖)(𝛾𝑗 − 𝛾𝑖)]     
for 𝑖 ≤ 𝑗 = 1,… , 𝐾.     (a1) 

When i = j, the corresponding variance of 𝑝𝑖𝛾𝑖 is 

 𝜔𝑖𝑖 = 𝑝𝑖[𝜆𝑖2 + (1 − 𝑝𝑖)(𝜉𝑖 − 𝛾𝑖)2] .       (a2) 

 

Step 2: Asymptotic Distribution of Quantile Means 

 Now consider the K-vector of estimated quantile mean incomes 

 µ̂ =  (µ̂1, … , µ̂𝐾)′ . 
where µ𝑖 is the mean of the i’th income group. It can be seen that the vector µ̂ is a linear function 

of 𝛾 and hence of 𝐺̂ . Beach et al. (1994) then show that vector µ̂ is also jointly asymptotically 

normally distributed with mean µ = (µ1, … , µ𝐾)′ and (asymptotic) variance-covariance matrix 

V = R Ω R′ 

where 𝑅 = (𝑃𝐴)−1 and A is such that 

 𝛾 = 𝐴µ̂  or conversely µ̂ = 𝐴−1𝛾 , 
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so that 

 𝑅 = 𝑃−1𝐴−1 

     =  [  
 1𝑝1 0⋱0 1𝑝𝐾]  

 
  •  [  

  1 0 0 ⋯ 0 0−1 2 0 ⋯ 0 00 −2 3 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 −(𝐾 − 1) 𝐾]  
  

.  

Since 𝐴−1 and hence R are lower-triangular, one can make use of a simple scaler algorithm for the 

(asymptotic) variances and standard errors of the sample quantile means. In the case of a decile 

breakdown of income groups (K = 10), 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1) = 100 𝜔11         (a3) 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) = 100 (𝜔𝑖𝑖 + 𝜔𝑗−𝑖,𝑖−1 − 2𝜔𝑖,𝑖−1),        𝑖 = 2,… , 10 .   (a4) 

 Alternatively, in terms of cumulative means, 

 µ̂1 = 𝛾1  
and  µ̂𝑖 = 𝑝𝑖𝛾̂𝑖−𝑝𝑖−1𝛾̂𝑖−1 𝑝𝑖 − 𝑝𝑖−1 = 𝑖𝛾𝑖 − (𝑖 − 1) 𝛾𝑖−1 , 𝑖 = 2,… , 10 , 
so that 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝛾1)        (a5) 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) =  𝑖2 • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝛾𝑖)+ (𝑖 − 1)2 • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝛾𝑖−1) 

                       −2𝑖(𝑖 − 1)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝛾𝑖 , 𝛾𝑖−1),          𝑖 = 2,… , 10    (a6) 

where 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝛾𝑖) =  𝜔𝑖𝑖 / 𝑝𝑖2         (a7) 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝛾𝑖, 𝛾𝑖−1) =  𝜔𝑖,𝑖−1 / 𝑝𝑖𝑝𝑖−1 .      (a8) 

 Note, incidentally, that all these results are distribution-free in that the (asymptotic) 

variances and covariances of both the cumulative and quantile sample means depend only on the 

first and second moments of the underlying sampling distribution, and these can be estimated 

consistently without having to know the underlying distribution itself.  
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A.2 Standard Errors for Income Shares 

 Now the (cumulative) income shares or Lorenz curve ordinates for income group i are 

given by 

 𝐿𝐶̂𝑖 =  𝑝𝑖𝛾𝑖 /  µ̂        i = 1, …, K . 

Then Beach and Davidson (1983, Theorem 2) also establish that the set of Lorenz curve 

ordinates are also asymptotically joint normally distributed with (asymptotic) variance-

covariance matrix 𝛳 = [𝛳𝑖𝑗] where  

 𝛳𝑖𝑗 = ( 1µ2) 𝜔𝑖𝑗 + (𝑝𝑖𝛾𝑖µ2 ) (𝑝𝑗𝛾𝑗µ2 ) 𝜎2 − (𝑝𝑖𝛾𝑖µ3 ) 𝜔𝑗,𝐾 − (𝑝𝑗𝛾𝑗µ3 )𝜔𝑖,𝐾  
    for  𝑖 ≤ 𝑗 = 1,… , 𝐾 − 1 .     (a9) 

In the case of (asymptotic) variances where i = j, 

 𝛳𝑖𝑖 = (𝑝𝑖µ2) [𝜆𝑖2 + (1 − 𝑝𝑖)(𝜉𝑖 − 𝛾𝑖)2] + (𝑝𝑖𝛾𝑖µ2 )2  𝜎2 

  − 2 (𝑝𝑖2𝛾𝑖µ3 ) [𝜆𝑖2 + (µ − 𝛾𝑖)(𝜉𝑖 − 𝛾𝑖)] .     (a10) 

 Now the quantile income share 𝐼𝑆𝑖 is simply the vertical difference between its Lorenz 

curve ordinate and its previous Lorenz curve ordinate 

 𝐼𝑆𝑖 = 𝐿𝐶𝑖 − 𝐿𝐶𝑖−1   i = 1, …, K 

where 𝐿𝐶0 = 0  and 𝐿𝐶𝐾 = 1.0 . Hence, 𝐼𝑆̂𝑖 = 𝐿𝐶̂𝑖 − 𝐿𝐶̂𝑖−1 

so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐿𝐶̂𝑖) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐿𝐶̂𝑖−1) −  2𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐿𝐶̂𝑖, 𝐿𝐶̂𝑖−1) (a11) = 𝛳𝑖𝑖 + 𝛳𝑖−1,𝑖−1 − 2𝛳𝑖,𝑖−1   for i = 2, …, K . 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂1) = 𝛳11 . 

 Thus the estimated (asymptotic) variance of 𝐼𝑆̂𝑖 is 
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 𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝛳̂𝑖𝑖 + 𝛳̂𝑖−1,𝑖−1 − 2𝛳̂𝑖,𝑖−1  for i = 2, …, K   (a12) 

and 𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝐼𝑆̂1) = 𝛳̂11  

where all the unknowns in eq. (a9) and (a10) are replaced by their sample estimates. The 

standard error, then, of 𝐼𝑆̂𝑖 is 

 𝑆. 𝐸. (𝐼𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝐼𝑆̂𝑖)𝑁 ]1/2
 .       (a13) 

 Obviously, since the population shares are known by construction and not estimated, they 

have no standard errors. 

 

 

A.3 Standard Errors for Relative Quantile Means 

 Once the formula for the standard error of income shares has been established, deriving 

that of relative-mean-income ratios (µ̂𝑖 / µ̂) is straightforward. Since 

 𝐼𝑆𝑖 = (𝑝𝑖 − 𝑝𝑖−1)µ𝑖 / µ  ,  

then 

 
µ𝑖µ  =  ( 1𝑝𝑖− 𝑝𝑖−1) 𝐼𝑆𝑖 = K • 𝐼𝑆𝑖        (a14) 

for K income shares. So 

 
µ̂𝑖µ̂ = 𝐾 •  𝐼𝑆̂𝑖 .  

Hence, 𝑆. 𝐸. (µ̂𝑖 / µ̂) = 𝐾 • 𝑆. 𝐸. ( 𝐼𝑆̂𝑖).       (a15) 
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A.4 Standard Errors of Quantile Mean Differences 

 By quantile mean differences is meant the income gap µ𝑖 − µ𝑗 between the i’th and j’th 

quantile mean incomes, for 𝑖 ≠ 𝑗. Again, the derivation of the standard error of µ̂𝑖 − µ̂𝑗 depends 

on the development above in section A.1. More specifically, since 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂) =  V =  R Ω R′        (a16) 

for the full vector µ̂ of sample quantile means, then the (asymptotic) variance-covariance matrix 

of µ̂𝑖 and µ̂𝑗 is 

  [𝑣𝑖𝑖 𝑣𝑖𝑗𝑣𝑗𝑖 𝑣𝑗𝑗]     for  𝑖 ≠ 𝑗 , 
so that 

            𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) =  𝑣𝑖𝑖 + 𝑣𝑗𝑗 − 2𝑣𝑖𝑗      since 𝑣𝑗𝑖 = 𝑣𝑖𝑗 .    (a17) 

Consequently, 

 𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) =  [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) / 𝑁]1/2 
 

                           =    [𝑣𝑖𝑖 + 𝑣𝑗𝑗  −  2𝑣𝑖𝑗]1/ 2 / √𝑁,      (a18) 

where once again the unknown variances and covariances are estimated by their sample values. 
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Technical Appendix B  

Median-Based Statistics Based on the Quantile Function Approach 

 

B.1 Quantile Function Approach to Calculating Standard Errors 

B.1.1 Deriving the Formulas 

 In this approach, the different income groups are separated by cut-off income levels that 

are expressed, not in percentile terms, but in terms of some fraction or multiple of the (sample) 

median income level. For illustrative purposes, consider three such income groups – lower 

incomes (L), middle incomes (M), and higher incomes (H). Middle class incomes, for example, 

are often expressed as those incomes between 50 percent and 150 percent of the median. If the 

sample median is 𝜉, then the cut-offs are at 0.5𝜉 and 1.5𝜉 with 

 lower incomes less than 0.5𝜉 

 middle incomes between 0.5𝜉 and 1.5𝜉 , 

and  higher incomes greater than 1.5𝜉 . 

The three income groups do not need to be exhaustive (i.e., cover the entire range of 

income levels in the distribution). For example, the top income group could run from 𝑐𝜉 and 

above, where  𝑐 > 𝑏 . Indeed, in the illustrative empirical work in Section 3 of this paper, this is 

the case where c = 2.0 or twice the median. 

 If f(•) is a specified (continuously differentiable) income distribution density function, 

then the share of recipients, or population share (PS), is given by 

 𝑃𝑆 =  ∫ 𝑓(𝑦)𝑑𝑦𝑅           (b1) 

and the share of incomes, or income share (IS), is given by 
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 𝐼𝑆 =  ∫ 1µ  𝑦𝑓(𝑦)𝑑𝑦𝑅   where µ ≡ 𝐸(𝑦)     (b2) 

is the mean income of the distribution and R is the range of income levels defining each income 

group. In contrast to the percentile-based approach where each of the population shares is given 

as, say, 0.10 and 0.20 and hence is not estimated, now the integral bounds are functions of 𝜉 , the 

sample median, and hence both the income share and the population share are estimated and thus 

random variables. 

 Consider first an illustrative case of the middle-income group population share. In this 

case, the integral bounds are 0.5𝜉 and 1.5𝜉. So 𝑃𝑆𝑀 is estimated as the proportion of sample 

observations between 0.5𝜉 and 1.5𝜉 in the ordered sample of incomes.  

Thus 𝑃𝑆̂𝑀 = ∫ 𝑓(𝑦)𝑑𝑦1.5𝜉̂0.5𝜉̂  .        (b3) 

 The approach taken to establish the (asymptotic) distribution of the random variable 𝑃𝑆̂𝑀 

is based on recognizing that this is a function of the sample median whose (asymptotic) 

distribution is well known. More specifically, under fairly broad conditions √𝑁 (𝜉 −  𝜉) has a 

limiting normal distribution with mean zero and variance 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉) = (. 5)(. 5) / [𝑓(𝜉)]2 ≡  𝜃(𝜉)2      (b4) 

where N is the sample size (Rao, 1965, p. 423). Hence, the (asymptotic) standard error of 𝜉 is              𝐴𝑠𝑦. 𝑆. 𝐸. (𝜉) = [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝜉) / 𝑁]1/2 
                          = (. 5)/ [𝑓(𝜉) •  √𝑁].       (b5) 

To link the share formulas to the median, recall from Rao (1965, p. 385) that, if 𝜉 has a 

limiting normal distribution with (asymptotic) variance given by (b4) and if 𝑔(𝜉) is a continuous 

differentiable function of 𝜉 with a first derivative 𝑔′(𝜉) ≡ 𝑑𝑔(𝜉) / 𝑑𝜉 , then the statistic 𝑔(𝜉) 

also has a limiting normal distribution with mean 𝑔(𝜉) and (asymptotic) variance: 
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𝐴𝑠𝑦. 𝑣𝑎𝑟 (𝑔(𝜉)) ≡  [𝑔′(𝜉)]2  • 𝜃(𝜉)2 .      (b6)  

The example of 𝑔(𝜉) we make use of here is 𝑃𝑆̂𝑀(𝜉) . 

 To obtain the gradients 𝑔′(𝜉) , one makes use of Leibnitz’s Rule (Bergin, 2015, p. 467; 

also available on the internet). In the case of the population share for the middle-income group, 

 𝑔′(𝜉) = 𝑓(1.5𝜉)(1.5) − 𝑓(0.5𝜉)(0.5) 

so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  [𝑓(1.5𝜉)(1.5) − 𝑓(0.5𝜉)(0.5)]2  • [0.25 /  𝑓(𝜉)2] .  (b7) 

Hence the estimated asymptotic variance of 𝑃𝑆̂𝑀 is gotten by putting sample estimates into 

equation (b7). 

 

 

B.1.2. Estimating with the Lognormal Distribution 

 Now to implement the formula in equation (b7) we need an expression for f(•). A 

distribution-free approach for estimating this expression is provided by Davidson (2018) based 

on an integrated Epanechnikov kernel data smoothing technique. Kernel estimation for 𝑓(•) was 

also proposed by Lin, Wu and Ahmad (1980). While elegant, this approach is rather burdensome. 

It also requires a large sample size so that smoothing an empirical density function at a given 

point can be done reliably. We follow a simpler more direct approach of assuming that f(•) 

follows a specific functional form, namely a lognormal distribution. And again in relatively 

small data samples, imposing a function form restriction should reduce estimated standard errors 

on the distributional statistics. This seems a quite reasonable assumption when applied to 

income, earnings or wage distributions, but would not be advised for distributions with 

extremely long right-hand tails such as wealth distributions or distributions with a large number 
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of negative observations. The estimates proposed here are thus not distribution-free, but for 

income and related distributions seem quite reasonable so as to allow a useful empirical tool box 

for distributional analysis. 

 So if f(•) follows a lognormal distribution of income y,  

 𝑓(𝑦) =  [1 /  𝛽 √2𝜋  • 𝑦]  • 𝑒𝑥𝑝[−(ln 𝑦 −  𝛼)2 / 2𝛽2]       𝑓𝑜𝑟 𝑦 𝜖 (0, + ∞)  (b8) 

 where 𝛼 is the mean of ln y and 𝛽2 is the variance of ln y. The standard reference on the 

lognormal distribution is Aitchison and Brown (1957), but see also Kendall and Stuart (1969) 

and a lot of useful information on the distribution gleaned readily from the internet. 

 To implement the use of the lognormal distribution to calculate estimated standard errors, 

first compute the sample median income level (𝜉) and the sample mean and standard deviations 

of log incomes (𝛼̂, 𝛽̂) and the sample mean and standard deviation of incomes (µ̂, 𝜎).2 Then 

compute the various cut-off bounds as functions of  𝜉. If one plugs 𝛼̂ and 𝛽̂ into equation (b8), 

these two parameter estimates fully specify f(y) as a function of the income variable y, referred to 

as 𝑓(𝑦). Then evaluate 𝑓(𝑦) at its sample median  𝜉 and at the required cut-off values 0.5 𝜉 and 

1.5 𝜉, referred to as 𝑓(𝜉), 𝑓(0.5𝜉), and 𝑓(1.5𝜉), respectively. Hence, 

 𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  [(1.5) • 𝑓(1.5𝜉) − (0.5)  • 𝑓(0.5𝜉)]2  • [0.25 /  𝑓(𝜉)2] . (b9) 

So the estimated standard error of 𝑃𝑆̂𝑀 is 

 𝑆. 𝐸. (𝑃𝑆̂𝑀) =  [𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(𝑃𝑆̂𝑀) / 𝑁]1/2 
 

                     = [(1.5) • 𝑓(1.5𝜉) − (0.5)  • 𝑓(0.5𝜉)] • [(0.5) / 𝑓̂(𝜉)] / √𝑁 . (b10) 

  

                                                           

2 Given sample estimates of 𝛼 and 𝛽2 , one could generate implied estimates of µ and 𝜎2 (Kendall and Stuart, 1969, 
p. 68). But the linkages between them is highly nonlinear and we want to make use of the statistical properties of 

direct sample estimates of µ and 𝜎2 in the development of Appendices B and C. So we make use of direct sample 
estimates of both 𝛼,  𝛽2 and µ, 𝜎2 . 
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In the case of weighted samples, estimates of 𝜉, 𝛼, 𝛽 and µ and 𝜎2 should all be calculated in 

weighted fashion. 

 The standard error formulas for 𝑃𝑆̂ over the lower and higher income ranges are obtained 

in similar fashion, and turn out to be simpler in form: 

 𝑆. 𝐸. (𝑃𝑆̂𝐿) = [(0.5) • 𝑓(0.5𝜉)]  • [(0.5) / 𝑓̂(𝜉)] / √𝑁      (b11) 

 𝑆. 𝐸. (𝑃𝑆̂𝐻) = [(1.5) • 𝑓(1.5𝜉)]  • [(0.5) / 𝑓(𝜉)] / √𝑁 .     (b12) 

 The general approach of calculating standard errors of distributional tool box measures 

based on specifying an underyling income density function of the sample data – lognormal in the 

present case – and linking this density to sample quantile estimates is referred to as a quantile 

function approach since the integral expressions for the tool box measures are treated as 

functions of estimated quantiles. This is being forwarded as an alternative to the cumulative 

moments approach in Beach and Davidson (1983) which was motivated by methodological 

concerns. The new approach lends itself more readily to exploiting the relationships between the 

various tool box measures and to more accessible intuitive interpretation and easy programming/ 

calculation. 

   

B.2 Standard Errors of Conditional Means and Population Shares 

 The quantile (or conditional) mean income levels can be written from first principles as µ𝑖 = 𝐸(𝑦 | 𝑦 ∊ 𝑖) 

       =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦  / ∫ 𝑓(𝑦)𝑑𝑦𝑅𝑖𝑅𝑖            (b13) 

where the integral takes over range 𝑅𝑖 for income group i = L, M, H. So, for example, in the case 

of the middle-income group, M,  
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 µ𝑀  =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦  / ∫ 𝑓(𝑦)𝑑𝑦1.5𝜉0.5𝜉1.5𝜉0.5𝜉  . 
The numerator and denominator components of   µ𝑖 can be written separately as 

 ∫  𝑦 𝑓(𝑦)𝑑𝑦 =  𝑁𝑖(𝜉)𝑅𝑖   

and ∫  𝑓(𝑦)𝑑𝑦 =  𝐷𝑖(𝜉)𝑅𝑖  

where each is a function of the median 𝜉 . 

 In order to facilitate looking at quantile mean income gaps later in this appendix, consider µ̂𝐿 ,  µ̂𝑀, and µ̂𝐻 together. To do this, consider the six-element vector 

 𝑔 = (𝑁𝐿 , 𝐷𝐿 ,  𝑁𝑀, 𝐷𝑀,  𝑁𝐻,  𝐷𝐻)′ 
which is estimated by 

 𝑔̂ = (𝑁̂𝐿 , 𝐷̂𝐿 ,  𝑁̂𝑀, 𝐷̂𝑀, 𝑁̂𝐻,  𝐷̂𝐻)′ 
where each element is calculated by summing up the income or observations (appropriately 

weighted if necessary) in each respective income group. To calculate appropriate standard errors, 

we proceed in several steps. 

 

Step 1: The Asymptotic Joint Distribution of 𝑁̂𝑖 and 𝐷̂𝑖 
 We first need to establish the asymptotic distribution (and the asymptotic variances and 

covariances) of the separate components of 𝑔̂ . Note that each of the components of 𝑔 is a 

continuous differentiable function of 𝜉, the median income level of the income distribution. Then 

by the multivariate Rao linkage theorem (Rao, 1965, p. 388) for continuous differentiable 

functions, the vector 𝑔̂ is asymptotically joint normally distributed with (asymptotic) variance-

covariance matrix 
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 W(6𝑥6) = [ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐿) ⋯ 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝐻)⋮ ⋮𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐻, 𝑁̂𝐿) ⋯ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐷̂𝐻) ] =  [𝑤𝑖𝑗]     
where 𝑊 = 𝐺 𝛳 𝐺′           (b14) 

 𝐺 =  [𝑔1′ ,  𝑔2′ ,  𝑔3′ , 𝑔4′ , 𝑔5′ , 𝑔6′ ]′ 
with  𝑔1′ = 𝜕𝑁𝐿𝜕𝜉  = (0.5)(0.5𝜉) • 𝑓(0.5𝜉) 

  𝑔2′ = 𝜕𝐷𝐿𝜕𝜉  = (0.5) 𝑓(0.5𝜉) 

 𝑔3′ = 𝜕𝑁𝑀𝜕𝜉  = (1.5)(1.5𝜉) • 𝑓(1.5𝜉) − (0.5)(0.5𝜉) • 𝑓(0.5𝜉)  
 𝑔4′ = 𝜕𝐷𝑀𝜕𝜉  = (1.5) 𝑓(1.5𝜉) − (0.5) 𝑓(0.5𝜉)  
 𝑔5′ = 𝜕𝑁𝐻𝜕𝜉  = −(1.5)(1.5𝜉) • 𝑓(1.5𝜉) 

 𝑔6′ = 𝜕𝐷𝐻𝜕𝜉  = −(1.5) 𝑓(1.5𝜉) . 

Therefore, 

 W =  𝛳 • [ (𝑔1′ )2 ⋯ (𝑔1′ , 𝑔6′ )⋮ ⋮(𝑔6′ , 𝑔1′ ) ⋯ (𝑔6′ )2 ] =  [𝑤𝑖𝑗]         (b15) 

where the scalar 𝛳 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉) = (0.5)(0.5) / [𝑓(𝜉)]2 . So, for example, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐿) =  (𝑔1′ )2  •  𝛳  

   = (0.5)2 (0.5𝜉)2  • 𝑓(0.5𝜉)2  •  [(0.5)(0.5)𝑓(𝜉)2 ] ,  
and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿, 𝐷̂𝐿)  =  (𝑔1′𝑔2′ )  •  𝛳  

         = [(0.5)(0.5𝜉) • 𝑓(0.5𝜉)]  •  [(0.5) • 𝑓(0.5𝜉)] [(0.5)(0.5)𝑓(𝜉)2 ]  , 
which, as one would expect, is strictly positive. 
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Step 2: The Asymptotic Distribution of µ̂i 
 A similar argument can be used to establish the (asymptotic) distributions of  

 𝑞̂𝑖 ≡ 𝑁̂𝑖 /  𝐷̂𝑖 ≡ µ̂𝑖  ,   i = L, M, H 

since simple division is a continuous differentiable function of the elements of 𝑔̂ . So again by 

Rao’s linkage theorem, 𝑞̂ =  [𝑞̂𝐿 , 𝑞̂𝑀, 𝑞̂𝐻]′ is also asymptotically joint normally distributed with 

the (asymptotic) variance-covariance matrix 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂)(3𝑥3)  ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂)  ≡  𝑉(3𝑥3) = [𝑣𝑖𝑗]       

   = 𝑄 𝑊 𝑄′        (b16) 

where W is given in eq. (b15) and 

 𝑄 =  [𝑞11, 𝑞12, 𝑞13, 𝑞14, 𝑞15, 𝑞16𝑞21, 𝑞22, 𝑞23, 𝑞24, 𝑞25, 𝑞26𝑞31, 𝑞32, 𝑞33, 𝑞34, 𝑞35, 𝑞36] 
with 

 𝑞11 = 𝜕𝑞𝐿𝜕𝑁𝐿 = 1𝐷𝐿 

 𝑞12 = 𝜕𝑞𝐿𝜕𝐷𝐿 = − 𝑁𝐿𝐷𝐿2  

 𝑞13 = 𝜕𝑞𝐿𝜕𝑁𝑀 =  0 

 𝑞14 = 𝜕𝑞𝐿𝜕𝐷𝑀 =  0 

 𝑞15 = 𝜕𝑞𝐿𝜕𝑁𝐻 =  0 

 𝑞16 = 𝜕𝑞𝐿𝜕𝐷𝐻 =  0 

 𝑞21 = 𝜕𝑞𝑀𝜕𝑁𝐿 =  0 

 𝑞22 = 𝜕𝑞𝑀𝜕𝐷𝐿 =  0 
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 𝑞23 = 𝜕𝑞𝑀𝜕𝑁𝑀 = 1𝐷𝑀 

 𝑞24 = 𝜕𝑞𝑀𝜕𝐷𝑀 = − 𝑁𝑀𝐷𝑀2   

 𝑞25 = 𝜕𝑞𝑀𝜕𝑁𝐻 =  0 

 𝑞26 = 𝜕𝑞𝑀𝜕𝐷𝐻 =  0 

 𝑞31 = 𝜕𝑞𝐻𝜕𝑁𝐿 =  0 

 𝑞32 = 𝜕𝑞𝐻𝜕𝐷𝐿 =  0 

 𝑞33 = 𝜕𝑞𝐻𝜕𝑁𝑀 =  0 

 𝑞34 = 𝜕𝑞𝐻𝜕𝐷𝑀 =  0 

 𝑞35 = 𝜕𝑞𝐻𝜕𝑁𝐻 = 1𝐷𝐻 

and 𝑞36 = 𝜕𝑞𝐻𝜕𝐷𝐻 = − 𝑁𝐻𝐷𝐻2  . 
Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐿) ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂𝐿) =  𝑣11   
  = (𝑞11)2 𝑤11 + (𝑞12)2 𝑤22 + 2(𝑞11𝑞12) 𝑤12  

  = ( 1𝐷𝐿)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐿) + (− 𝑁𝐿𝐷𝐿2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐷̂𝐿)     (b17) 

   + 2 ( 1𝐷𝐿) (− 𝑁𝐿𝐷𝐿2)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝐿) . 
The first term in (b17) captures the effect of variability in 𝑁̂𝐿 , the second term represents the 

variance effect of 𝐷̂𝐿 , and the third term picks us the covariance effect of  𝑁̂𝐿 and 𝐷̂𝐿 together. 

Similarly, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑀) ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂𝑀) =  𝑣22   
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  = (𝑞23)2 𝑤33 + (𝑞24)2 𝑤44 + 2(𝑞23𝑞24) 𝑤34  

  = ( 1𝐷𝑀)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝑀) + (− 𝑁𝑀𝐷𝑀2 )2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐷̂𝑀)     (b18) 

   + 2 ( 1𝐷𝑀) (− 𝑁𝐿𝐷𝑀2 )  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝑀)  
and 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐻) ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂𝐻) =  𝑣33   
  = (𝑞35)2 𝑤55 + (𝑞36)2 𝑤66 + 2(𝑞35𝑞36) 𝑤56  

  = ( 1𝐷𝐻)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐻) + (− 𝑁𝐻𝐷𝐻2 )2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐷̂𝐻)     (b19) 

   + 2 ( 1𝐷𝐻) (− 𝑁𝐻𝐷𝐻2)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐻, 𝐷̂𝐻) . 
But this derivation also allows one to calculate the full set of (asymptotic) covariances 

among the µ̂𝑖’s (whose results will be used below in section B.5). 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝑀) =  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑞̂𝐿 , 𝑞̂𝑀) =  𝑣12   
  = (𝑞11 𝑞23) 𝑤13 + (𝑞11 𝑞24) 𝑤14 + (𝑞12𝑞23)𝑤23 + (𝑞12𝑞24)𝑤24   
  = ( 1𝐷𝐿) ( 1𝐷𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝑁̂𝑀) + ( 1𝐷𝐿) (− 𝑁𝑀𝐷𝑀2 ) •  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝑀)   (b20)   

  +(− 𝑁𝐿𝐷𝐿2) ( 1𝐷𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝑀) + (− 𝑁𝐿𝐷𝐿2) (− 𝑁𝑀𝐷𝑀2 ) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝑀) . 
Once again, the first term in (b20) captures the covariance effect between 𝑁̂𝐿 and  𝑁̂𝑀 , the 

second term picks up that between 𝑁̂𝐿 and 𝐷̂𝑀 , the third term represents the covariance effect 

between 𝐷̂𝐿 and 𝑁̂𝑀 , and the last term reflects that between 𝐷̂𝐿 and 𝐷̂𝑀 . Similarly, 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑀, µ̂𝐻) =  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑞̂𝐻, 𝑞̂𝐻) =  𝑣23   
  = (𝑞23 𝑞35) 𝑤35 + (𝑞23 𝑞36) 𝑤36 + (𝑞24𝑞35)𝑤45 + (𝑞24𝑞36)𝑤46   
  = ( 1𝐷𝑀) ( 1𝐷𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝑁̂𝐻) + ( 1𝐷𝑀) (− 𝑁𝐻𝐷𝐻2)  •  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝐻)   (b21)   
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  +(− 𝑁𝑀𝐷𝑀2 ) ( 1𝐷𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀 , 𝑁̂𝐻) + (− 𝑁𝑀𝐷𝑀2 ) (− 𝑁𝐻𝐷𝐻2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀, 𝐷̂𝐻)  
and 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝐻) =  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑞̂𝐿 , 𝑞̂𝐻) =  𝑣13   
  = (𝑞11 𝑞35) 𝑤15 + (𝑞11 𝑞36) 𝑤16 + (𝑞12𝑞35)𝑤25 + (𝑞12𝑞36)𝑤26   
  = ( 1𝐷𝐿) ( 1𝐷𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝑁̂𝐻) + ( 1𝐷𝐿) (− 𝑁𝐻𝐷𝐻2 )  •  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝐻)   (b22)   

  +(− 𝑁𝐿𝐷𝐿2) ( 1𝐷𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝐻) + (− 𝑁𝐿𝐷𝐿2) (− 𝑁𝐻𝐷𝐻2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝐻)  . 
Consequently, 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/2
   for i = L, M, H.    (b23) 

 One should note that the denominator terms 𝐷𝑖 in these derivations are, in fact, the 

population shares or 𝑃𝑆𝑖 , one of our tool box measures. This general derivation has thus allowed 

one to establish that the 𝑃𝑆̂𝑖’s are also asymptotically normally distributed with (asymptotic) 

variances given by 𝑤22 , 𝑤44 , and 𝑤66 , respectively, where 

  𝑤𝑖 = (𝑔𝑖′)2  • 𝛳          (b24) 

from eq. (b15), where here i = 2, 4, 6. Consequently, 

 𝑆. 𝐸. (𝑃𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑃𝑆̂𝑖)𝑁 ]1/2
 

         =  [(𝑔𝑖′)2 • 𝛳𝑁 ]1/2
  

        = | 𝑔𝑖′| • (𝛳 /  𝑁)1/2  for i = L, M, H.   (b25) 

So, for example, in the case of the middle-income group, M, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  (𝑔4′ )2  • 𝛳  

      =  [(1.5)𝑓(1.5𝜉) − (0.5)𝑓(0.5𝜉)]2  [(0.5)(0.5)𝑓(𝜉)2 ]   
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which is what we earlier found in the first section of this appendix. Therefore, 

 𝑆. 𝐸. (𝑃𝑆̂𝑀)  =  |(1.5)𝑓(1.5𝜉) − (0.5)𝑓(0.5𝜉)| [ 0.5𝑁1/2 •𝑓̂(𝜉̂)]    
where the hats indicate sample estimates of the unknowns. 

 One may note also that, since the 𝐷𝑖’s are population shares, µ𝑖 = 𝑁𝑖  /  𝑃𝑆𝑖 . 
Consequently, the (asymptotic) variance and covariance formulas in eq. (b17)-(b22) can be 

alternatively expressed in terms of the tool box measures µ𝑖 and 𝑃𝑆𝑖 that the user would be 

calculating anyway. So, in the case of the (asymptotic) variances for the sample quantile or 

conditional means: 

 
𝑁𝑖𝐷𝑖2 = µ𝑖𝑃𝑆𝑖  and 

1𝐷𝑖 = 1𝑃𝑆𝑖   
and 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐿) = ( 1𝑃𝑆𝐿)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐿) + (− µ𝐿𝑃𝑆𝐿)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿)   (b26) 

   + 2 ( 1𝑃𝑆𝐿) (− µ𝐿𝑃𝑆𝐿)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝐿)  
 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑀) = ( 1𝑃𝑆𝑀)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝑀) + (− µ𝑀𝑃𝑆𝑀)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀)   (b27) 

   + 2 ( 1𝑃𝑆𝑀) (− µ𝑀𝑃𝑆𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝑀)  
 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐻) = ( 1𝑃𝑆𝐻)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑁̂𝐻) + (− µ𝐻𝑃𝑆𝐻)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻)   (b28) 

   + 2 ( 1𝑃𝑆𝐻) (− µ𝐻𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐻, 𝐷̂𝐻) . 
 

B.3 Standard Errors of Income Shares 

 The income share of members of income group i = L, M, H in the distribution may be 

written from first principles as 
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 𝐼𝑆𝑖  =  ∫  (1µ) 𝑦 𝑓(𝑦)𝑑𝑦 𝑅𝑖  . 
In the case of the middle-income group M, then, 

 𝐼𝑆𝑀  = ∫ (1µ)1.5𝜉0.5𝜉 𝑦 𝑓(𝑦)𝑑𝑦 . 
The 𝐼𝑆𝑖 function can thus be seen to be a function of two parameters that are to be estimated 

from the sample data – 𝜉 and µ , the median and the overall mean of the distribution of income. 

That is 

 𝐼𝑆𝑖 = 𝑔𝑖(𝜉, µ)  
which can be estimated by dividing total income of the members of group i by the total income 

receipts of all members of the data sample. 

 To address the jointedness of sample estimates of these two parameters, it is convenient 

to make use of results in Lin, Wu, and Ahmad (1980) – henceforth LWA – who establish that, 

under broad regularity conditions, 𝜉 and µ̂ are asymptotically joint normally distributed with 

(asymptotic) variance-covariance matrix Ʃ =  [𝜎11 𝜎12𝜎21 𝜎22]  
where 𝜎11 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉) =  (0.5)(0.5)[𝑓(𝜉)]2   

  𝜎22 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂) =  𝜎2 

and 𝜎12 = 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉,̂ µ̂) =  [𝜉− µ(1−0.5)]𝑓(𝜉)  . 

 To apply these results, again recognize that 𝑔𝑖(𝜉, µ) is a continuously differentiable 

function of its arguments and thence apply Rao’s multivariate linkage theorem to 

 𝑔 = [𝐼𝑆𝐿 , 𝐼𝑆𝑀 , 𝐼𝑆𝐻]′ = [𝑔𝐿 , 𝑔𝑀 , 𝑔𝐻]′ 
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to establish that  𝑔̂ =  [𝐼𝑆̂𝐿 , 𝐼𝑆̂𝑀 , 𝐼𝑆̂𝐻]′ are again asymptotically joint normally distributed with 

(asymptotic) variance-covariance matrix 𝐴𝑠𝑦. 𝑣𝑎𝑟(3𝑥3) (𝐼𝑆̂) = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑔̂) 

   = 𝐺 Ʃ 𝐺′        (b29) 

where  Ʃ is given above and 

 𝐺 =  [𝑔𝐿1 , 𝑔𝐿2𝑔𝑀1 , 𝑔𝑀2𝑔𝐻1 , 𝑔𝐻2]  
where 

 𝑔𝐿1 = 𝜕𝑔𝐿𝜕𝜉 = (1µ) (0.5)(0.5𝜉) • 𝑓(0.5𝜉) 

 𝑔𝐿2 = 𝜕𝑔𝐿𝜕µ = −(1µ) 𝐼𝑆𝐿 

 𝑔𝑀1 = 𝜕𝑔𝑀𝜕𝜉 = (1µ) [(1.5)(1.5𝜉) • 𝑓(1.5𝜉) − (0.5)(0.5𝜉) • 𝑓(0.5𝜉)] 
 𝑔𝑀2 = 𝜕𝑔𝑀𝜕𝜉 = − (1µ) 𝐼𝑆𝑀 

 𝑔𝐻1 = 𝜕𝑔𝐻𝜕𝜉 = −(1µ) (1.5)(1.5𝜉) • 𝑓(1.5𝜉) 

and 𝑔𝐻2 = 𝜕𝑔𝐻𝜕µ = −(1µ) 𝐼𝑆𝐻 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐿) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑔̂𝐿)  
  = (𝑔𝐿1)2  • 𝜎11 + (𝑔𝐿2)2  • 𝜎22 + 2(𝑔𝐿1 𝑔𝐿2)  • 𝜎12  
  = (1µ)2 [(0.5)(0.5𝜉) • 𝑓(0.5𝜉)]2 •  [(0.5)(0.5)𝑓(𝜉)2 ]  +  ( 1µ2) 𝐼𝑆𝐿2  •  𝜎2    (b30) 

   +2 [(1µ) (0.5)(0.5𝜉) • 𝑓(0.5𝜉)] [(−1µ ) 𝐼𝑆𝐿] [𝜉−(0.5)µ𝑓(𝜉) ]   
   = (1µ)2 [(0.5)(0.5𝜉) • 𝑓(0.5𝜉)]2 •  [(0.5)(0.5)𝑓(𝜉)2 ]  +  (𝐼𝑆𝐿µ )2 •  𝜎2     
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   −2(1µ)2 [(0.5)(0.5𝜉) • 𝑓(0.5𝜉)] • 𝐼𝑆𝐿 • [𝜉−(0.5)µ𝑓(𝜉) ] ,  
 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐻) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑔̂𝐻)  

  = (𝑔𝐻1)2  • 𝜎11 + (𝑔𝐻2)2  • 𝜎22 + 2(𝑔𝐻1 𝑔𝐻2)  • 𝜎12  
  = (1µ)2 [(1.5)(1.5𝜉) • 𝑓(1.5𝜉)]2 •  [(0.5)(0.5)𝑓(𝜉)2 ]  + (1µ)2 𝐼𝑆𝐻2  •  𝜎2    (b31) 

   +2(1µ)2 [(1.5)(1.5𝜉) • 𝑓(1.5𝜉)] • 𝐼𝑆𝐻 • [𝜉−(0.5)µ𝑓(𝜉) ] ,  
and 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑀) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑔̂𝑀)  

  = (𝑔𝑀1)2  • 𝜎11 + (𝑔𝑀2)2  • 𝜎22 + 2(𝑔𝑀1 𝑔𝑀2)  • 𝜎12  
  = (1µ)2 [(1.5)(1.5𝜉) • 𝑓(1.5𝜉) − (0.5)(0.5𝜉) • 𝑓(0.5𝜉)]2 •  [(0.5)(0.5)𝑓(𝜉) ]  

+ (1µ)2 𝐼𝑆𝑀2  •  𝜎2         (b32) 

−2(1µ)2 |(1.5)(1.5𝜉) • 𝑓(1.5𝜉) − (0.5)(0.5𝜉) • 𝑓(0.5𝜉)| 
• 𝐼𝑆𝑀 • [𝜉 − (0.5)µ𝑓(𝜉) ] .  

In each case, the first term captures the effect of the variability in 𝜉, the second term that of µ̂ , 
and the third term picks up the joint covariance effect between 𝜉 and µ̂ . 

Therefore, 

 𝑆. 𝐸. (𝐼𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝐼𝑆̂𝑖)𝑁 ]1/2
        (b33) 

where, again, unknowns are replaced by their sample estimates. 
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B.4 Standard Errors of Relative Mean Incomes 

By relative mean income (RMI) is meant the ratio of conditional or quantile mean income 

to the overall mean income of an income distribution: 𝑅𝑀𝐼𝑖 = 𝐸(𝑦 | 𝑦 ∊ 𝑖)  / 𝐸(𝑦) =  µ𝑖  /  µ 

for income group i = L, M, H. From first principles, then, 

 𝑅𝑀𝐼𝑖 = [∫ 𝑦 𝑓(𝑦)𝑑𝑦  / ∫ 𝑓(𝑦)𝑑𝑦𝑅𝑖𝑅𝑖 ]  / ∫ 𝑦 𝑓(𝑦)𝑑𝑦∞0    
            =  𝑁𝑖(𝜉) /  𝐷𝑖(𝜉)µ  in the notation of section B.2 

             =  𝑁𝑖(𝜉) /  µ𝐷𝑖(𝜉)   

            =  𝐼𝑆𝑖(𝜉,µ)𝑃𝑆𝑖(𝜉)  .         (b34) 

So the relative mean income measure is identically equal to the ratio of the group’s 

income share to its population share. So 𝑅𝑀𝐼𝑖 can be estimated alternatively (and equivalently) 

as µ̂𝑖 /  µ̂ or as 𝐼𝑆̂𝑖 / 𝑃𝑆̂𝑖 . 𝑅𝑀𝐼𝑖 can thus be viewed as the slope of the line segment of a Lorenz 

curve calculated over the range of the income group i of the distribution. 

In order to calculate standard errors of 𝑅𝑀̂𝐼𝑖 , one thus uses elements of the arguments 

already set out in the previous two sections. And again, we proceed in two steps. 

 

Step 1: The Asymptotic Distribution of 𝐼𝑆̂𝑖 and 𝑃𝑆̂𝑖 
 Start by considering the six-element vector 

 𝑔 = (𝐼𝑆𝐿 , 𝑃𝑆𝐿 ,  𝐼𝑆𝑀, 𝑃𝑆𝑀,  𝐼𝑆𝐻,  𝑃𝑆𝐻)′ 
where recall that 𝑃𝑆𝑖  ≡  𝐷𝑖(𝜉) from section B.2. The estimated vector then is 

 𝑔̂ = (𝐼𝑆̂𝐿 , 𝑃𝑆̂𝐿 ,  𝐼𝑆̂𝑀, 𝑃𝑆̂𝑀, 𝐼𝑆̂𝐻,  𝑃𝑆̂𝐻)′ . 
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Again, note that each of the components of 𝑔 is a continuous differentiable function of 𝜉 (and 

possibly µ). Rao’s linkage theorem has already been used to establish the asymptotic distribution 

of estimates of the denominator components 𝑃𝑆𝑖 = 𝐷𝑖(𝜉) in section B.2, and Rao’s linkage 

theorem was combined with the LWA results to establish the asymptotic distribution of estimates 

of the numerator components 𝐼𝑆𝑖 = 𝐼𝑆𝑖(𝜉, µ) in section B.3 above. We now combine these two 

sets of results by applying Rao’s theorem to all the elements of vector g to establish that the 

components of 𝑔̂ are again asymptotically joint normally distributed with (asymptotic) variance-

covariance matrix 

 W(6𝑥6) = [ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐿) ⋯ 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝐿, 𝑃𝑆̂𝐻)⋮ ⋮𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑃𝑆̂𝐻, 𝐼𝑆̂𝐿) ⋯ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) ]     
where 𝑊 = 𝐺 Ʃ 𝐺′ .          (b35) 

The (asymptotic) variance-covariance matrix for 𝜉 and µ̂ , Ʃ , is as defined in section B.3, and the 

matrix of partial derivatives, G, is given by 

 𝐺(6𝑥2) = 
[  
   
  𝑔𝐿,11  𝑔𝐿,12𝑔𝐿,21 𝑔𝐿,22𝑔𝑀,11 𝑔𝑀,12𝑔𝑀,21 𝑔𝑀,22𝑔𝐻,11 𝑔𝐻,12𝑔𝐻,21 , 𝑔𝐻,22]  

   
  
  

with 𝑔𝑖,11 = 𝜕𝐼𝑆𝑖𝜕𝜉    𝑔𝑖,21 = 𝜕𝑃𝑆𝑖𝜕𝜉  

 𝑔𝑖,12 = 𝜕𝐼𝑆𝑖𝜕µ    𝑔𝑖,22 = 𝜕𝑃𝑆𝑖𝜕µ = 0 

for i = L, M, H. Since this is a more general result than actually needed for our purposes, we 

focus just on the pairs 𝐼𝑆̂𝐿 and 𝑃𝑆̂𝐿 , 𝐼𝑆̂𝑀 and 𝑃𝑆̂𝑀 , and 𝐼𝑆̂𝐻 and 𝑃𝑆̂𝐻 , each treated separately. 
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Note, incidentally, that this general result establishes the (asymptotic) joint normality of each of 

the pairs 𝐼𝑆̂𝑖 and 𝑃𝑆̂𝑖 . 
 

Case of 𝑅𝑀𝐼𝐿 : 

 𝑔𝐿,11 = 𝜕𝐼𝑆𝐿𝜕𝜉 = (1µ) (0.5)(0.5𝜉) • 𝑓(0.5𝜉) 

 𝑔𝐿,12 = 𝜕𝐼𝑆𝐿𝜕µ = −(1µ) 𝐼𝑆𝐿 

 𝑔𝐿,21 = 𝜕𝑃𝑆𝐿𝜕𝜉 = (0.5) • 𝑓(0.5𝜉) 

 𝑔𝐿,22 = 𝜕𝑃𝑆𝐿𝜕µ = 0 . 

Therefore, (asymptotic) variance-covariance matrix of 𝐼𝑆̂𝐿 and 𝑃𝑆̂𝐿 is given by 

  [𝑔𝐿,11 𝑔𝐿,12𝑔𝐿,21 0 ]  [𝜎11 𝜎12𝜎21 𝜎22] [𝑔𝐿,11 𝑔𝐿,21𝑔𝐿,12 0 ] , 
so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐿) =  (𝑔𝐿,11)2 𝜎11 +  2(𝑔𝐿,11 𝑔𝐿,12) 𝜎12 + (𝑔𝐿,12)2 𝜎2  
  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿) =  (𝑔𝐿,21)2 𝜎11 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝐿 , 𝑃𝑆̂𝐿 ) =  (𝑔𝐿,11 𝑔𝐿,21) 𝜎11 + (𝑔𝐿,12 𝑔𝐿,21) 𝜎12 . 

The first two expressions are what we have found already; the covariance expression is what is 

new here. 

 

Case of 𝑅𝑀𝐼𝐻 : 

 𝑔𝐻,11 = 𝜕𝐼𝑆𝐻𝜕𝜉 = − (1µ) (1.5)(1.5𝜉) • 𝑓(1.5𝜉) 

 𝑔𝐻,12 = 𝜕𝐼𝑆𝐻𝜕µ = − (1µ) 𝐼𝑆𝐻 
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 𝑔𝐻,21 = 𝜕𝑃𝑆𝐻𝜕𝜉 = −(1.5) • 𝑓(1.5𝜉) 

 𝑔𝐻,22 = 𝜕𝑃𝑆𝐻𝜕µ = 0 . 

Therefore, (asymptotic) variance-covariance matrix of 𝐼𝑆̂𝐻 and 𝑃𝑆̂𝐻 is given by 

  [𝑔𝐻,11 𝑔𝐻,12𝑔𝐻,21 0 ]  [𝜎11 𝜎12𝜎21 𝜎22] [𝑔𝐻,11 𝑔𝐻,21𝑔𝐻,12 0 ] , 
so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐻) =  (𝑔𝐻,11)2 𝜎11 +  2(𝑔𝐻,11 𝑔𝐻,12) 𝜎12 + (𝑔𝐻,12)2 𝜎2  
  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) =  (𝑔𝐻,21)2 𝜎11 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝐻 , 𝑃𝑆̂𝐻 ) =  (𝑔𝐻,11 𝑔𝐻,21) 𝜎11 + (𝑔𝐻,12 𝑔𝐻,21) 𝜎12 . 

 

Case of 𝑅𝑀𝐼𝑀 : 

 𝑔𝑀,11 = 𝜕𝐼𝑆𝑀𝜕𝜉 =  (1µ) [(1.5)(1.5𝜉) • 𝑓(1.5𝜉) − (0.5)(0.5𝜉) • 𝑓(0.5𝜉)] 
 𝑔𝑀,12 = 𝜕𝐼𝑆𝑀𝜕µ =  −(1µ) 𝐼𝑆𝑀 

 𝑔𝑀,21 = 𝜕𝑃𝑆𝑀𝜕𝜉 =  (1.5) • 𝑓(1.5𝜉) − (0.5) • 𝑓(0.5𝜉) 

 𝑔𝑀,22 = 𝜕𝑃𝑆𝑀𝜕µ = 0 . 

Therefore, the (asymptotic) variance-covariance matrix of 𝐼𝑆̂𝑀 and 𝑃𝑆̂𝑀 is again given by 

  [𝑔𝑀,11 𝑔𝑀,12𝑔𝑀,21 0 ]  [𝜎11 𝜎12𝜎21 𝜎22] [𝑔𝑀,11 𝑔𝑀,21𝑔𝑀,12 0 ] , 
so that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑀) =  (𝑔𝑀,11)2 𝜎11 +  2(𝑔𝑀,11 𝑔𝑀,12) 𝜎12 + (𝑔𝑀,12)2 𝜎2  
  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑀) =  (𝑔𝑀,21)2 𝜎11 
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and 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑀 , 𝑃𝑆̂𝑀 ) =  (𝑔𝑀,11 𝑔𝑀,21) 𝜎11 + (𝑔𝑀,12 𝑔𝑀,21) 𝜎12 . 

 

Step 2: The Asymptotic Distribution of 𝑅𝑀̂𝐼𝑖 
 The three cases can now all be considered together. What we are working towards is the 

(asymptotic) distribution of  𝑅𝑀̂𝐼𝑖 . So consider the ratio  

 𝑅𝑀𝐼𝑖  ≡  𝑞𝑖 = 𝐼𝑆𝑖𝑃𝑆𝑖    and its estimate 𝑞̂𝑖  ≡  𝑅𝑀̂𝐼𝑖  =  𝐼𝑆̂𝑖𝑃𝑆̂𝑖 , 
and the corresponding (asymptotic) variance-covariance matrix 

 𝛬𝑖(2𝑥2) = [ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝑃𝑆̂𝑖)𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑃𝑆̂𝑖, 𝐼𝑆̂𝑖) 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑖) ]  =  [𝜆𝑖𝑗] . 
Again, by using the Rao linkage theorem for continuous differentiable functions, one can 

establish that   𝑅𝑀̂𝐼𝑖 = 𝑞̂𝑖 is asymptotically normally distributed with (asymptotic) 

variance 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) =  𝑄𝑖′ 𝛬𝑖 𝑄𝑖        (b36) 

with  𝑄𝑖 = [𝑞1 , 𝑞2]′     where 

 𝑞1 = 𝜕𝑞𝜕𝐼𝑆𝑖 = 1𝑃𝑆𝑖   

and  𝑞2 = 𝜕𝑞𝜕𝑃𝑆𝑖 = − 𝐼𝑆𝑖𝑃𝑆𝑖2 . 

Therefore, 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) = ( 1𝑃𝑆𝑖)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) + (− 𝐼𝑆𝑖𝑃𝑆𝑖2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑖)    

   + 2 [( 1𝑃𝑆𝑖) (− 𝐼𝑆𝑖𝑃𝑆𝑖2)]  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝑃𝑆̂𝑖)  
  = ( 1𝑃𝑆𝑖)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) + (𝑅𝑀𝐼𝑖𝑃𝑆𝑖 )2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝑖)   
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   − 2 (𝑅𝑀𝐼𝑖𝑃𝑆𝑖2 ) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝑃𝑆̂𝑖)      (b37) 

for i = L, M, H. 

Consequently, 

 𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖) =  𝑆. 𝐸. (µ̂𝑖 /  µ̂) = [𝐴𝑠𝑦.𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖)𝑁 ]1/2
 .     (b38) 

 

   

B.5 Standard Errors of Quantile Mean Income Gaps 

 By conditional or quantile mean income gaps is meant the difference in mean income 

levels of two different income groups within the income distribution: 

 µ𝑖 − µ𝑗  ≡ 𝐸(𝑦 | 𝑦 𝜖 𝑖) −  𝐸(𝑦 | 𝑦 𝜖 𝑗)     where    𝑖 ≠ 𝑗 
and i, j = L, M, or H. 

 It turns out that the lengthy development of section B.2 now provides simple 

answers for the standard errors of the estimated quantile mean income gaps  µ̂𝑖 − µ̂𝑗 for  𝑖 ≠ 𝑗 . Since this gap is the difference between quantile mean statistics, it follows that  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) − 2𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗)   (b39) 

where the (asymptotic) variances are given by eq. (b26)-(b28) and the (asymptotic) covariances 

by eq. (b20)-(b22). The covariances may also be written in more convenient form as: 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝑀) =  ( 1𝑃𝑆𝐿) ( 1𝑃𝑆𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝑁̂𝑀)   

   − ( 1𝑃𝑆𝐿) ( µ𝑀𝑃𝑆𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝑀)      (b40) 

   − ( 1𝑃𝑆𝑀) ( µ𝐿𝑃𝑆𝐿)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝑀) 

   + ( µ𝐿𝑃𝑆𝐿) ( µ𝑀𝑃𝑆𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝑀) , 
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𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑀, µ̂𝐻) =  ( 1𝑃𝑆𝑀) ( 1𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝑁̂𝐻)   

   − ( 1𝑃𝑆𝑀) ( µ𝐻𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝑀, 𝐷̂𝐻)      (b41) 

   − ( 1𝑃𝑆𝐻) ( µ𝑀𝑃𝑆𝑀)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀 , 𝑁̂𝐻) 

   + ( µ𝑀𝑃𝑆𝑀) ( µ𝐻𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝑀 , 𝐷̂𝐻) , 

and 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝐻) =  ( 1𝑃𝑆𝐿) ( 1𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝑁̂𝐻)   

   − ( 1𝑃𝑆𝐿) ( µ𝐻𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑁̂𝐿 , 𝐷̂𝐻)      (b42) 

   − ( 1𝑃𝑆𝐻) ( µ𝐿𝑃𝑆𝐿)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝑁̂𝐻) 

   + ( µ𝐿𝑃𝑆𝐿) ( µ𝐻𝑃𝑆𝐻)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐷̂𝐿 , 𝐷̂𝐻) . 

 Consequently, it follows that 

 𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖− µ̂𝑗)𝑁 ]1/2
        (b43) 

where all unknowns are replaced by their sample estimates. 

 And, while one is at it, one could also calculate the standard error for the relative or 

proportional income gap or differential 

 𝑞̂ = (µ̂𝑖− µ̂𝑗) µ̂𝑗 =  µ̂𝑖 µ̂𝑗 − 1  for  𝑖 ˃ 𝑗 . 
Again by Rao’s linkage theorem, 𝑞̂ will also be asymptotically normally distributed with 

(asymptotic) variance 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) = ( 1µ𝑗)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) + (µ𝑖µ𝑗2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗)    

   − 2 ( 1µ𝑗) (µ𝑖µ𝑗2) • 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗)      (b44) 



87 

 

for  𝑖 ˃ 𝑗 . Thus the standard error of the relative income gap is 

 𝑆. 𝐸. (𝑞̂) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/2
        (b45) 

as well. 

 

 

B.6 Standard Error of an Income Polarization Measure and a Measure of 

Skewness 

One could also consider a measure of polarization in the distribution of income as simply 

the sum of the lower and higher population shares: 𝑃𝑂̂𝐿 =  𝑃𝑆̂𝐿 + 𝑃𝑆̂𝐻 . 

Consequently, it follows that 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑂̂𝐿) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) +  2 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑃𝑆̂𝐿 , 𝑃𝑆̂𝐻). (b46) 

The two (asymptotic) variances have already been derived in section B.2, eq. (b15), as 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿) =  [(0.5) • 𝑓(0.5𝜉)]2  •  [(0.5)(0.5)𝑓(𝜉)2 ]  
and  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐻) =  [−(1.5) • 𝑓(1.5𝜉)]2  •  [(0.5)(0.5)𝑓(𝜉)2 ] . 
It also can be seen that the (asymptotic) covariance is also available from eq. (b21) as the term 𝑤26 : 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑃𝑆̂𝐿 , 𝑃𝑆̂𝐻) =  [(0.5) • 𝑓(0.5𝜉)][−(1.5) • 𝑓(1.5𝜉)]  •  [(0.5)(0.5)𝑓(𝜉)2 ]   (b47)  

which, not surprisingly, turns out to be negative. Also, as a linear function of two 

(asymptotically) normal random variables, 𝑃𝑂̂𝐿 is (asymptotically) normally distributed as well. 

Consequently, from (b46) above, it follows that 
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 𝑆. 𝐸. (𝑃𝑂̂𝐿) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑃𝑂̂𝐿)𝑁 ]1/2
 .       (b48) 

 Finally, a measure of skewness may be a useful component of the tool box of 

distributional measures. Skewness of a distribution is the degree to which a distribution is 

asymmetric around its midpoint. A normal distribution is symmetric about its mean. In the case 

of a distribution of incomes, however, such distributions are distinctly non-symmetric because of 

a very long right-hand tail representing a very small proportion of recipients with very high 

incomes while the majority of recipients have incomes below the mean. Consequently, one 

measure of skewness of a distribution is the ratio of the median or “typical” or “middle-most” 

income level to the overall mean of the distribution. For a symmetric distribution, the ratio is 

one. The more extreme the right-hand tail, the larger the gap between the mean and median and 

the lower the value of the median-to-mean ratio, 𝜉 / µ̂ , below the value of one. 

 It would thus be useful to be able to estimate and do standard statistical inference on the 

median-to-mean ratio from sample data. It turns out that the arguments above (in section B.3) 

allow one to do so. Specifically, the work of Lin, Wu and Ahmad (1980) establishes that the 

skewness ratio  𝜉 / µ̂ is indeed asymptotically normally distributed with (asymptotic) variance 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉 / µ̂) =  [(𝜉µ)2 𝜎2 − 2(𝜉µ) 𝜎12 + 𝜎11 ] /  µ2     (b49) 

where  

 𝜎11 = 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉) =  (0.5)(0.5)[𝑓(𝜉)2]  

 𝜎12 = 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉, µ̂) =  [𝜉− µ(1−0.5)𝑓(𝜉)  

and  𝜎2 =  𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂) . 

Consequently, 
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 𝑆. 𝐸. (𝜉 / µ̂) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂ / µ̂)𝑁 ]1/2
       (b50) 

with sample estimates replacing all unknowns. 
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Technical Appendix C 

A Blended Approach to Standard Errors for Percentile Cut-Offs 

and Percentile-Based Statistics 

 

 The idea of using a quantile function approach to calculate standard errors of 

disaggregative distributional statistics can readily apply to measures other than median-based 

statistics. Appendix A provided one approach to calculating standard errors of various percentile-

based measures. But the quantile function approach of Appendix B can be applied here as well. 

The result is a blended approach to calculating standard errors for percentile-based statistics. As 

it turns out, in the case of some tool box measures, the resulting standard errors formulas are 

distribution-free. 

 

C.1 Standard Errors of Percentile Cut-Offs and Percentile Income Gaps 

 To illustrate, assume, as in Appendix A, that there are K (ordered) percentile income 

groups indexed by i = 1, …, K. For deciles, K = 10. Again, let pi represent the (cumulative) 

proportion of the ordered income groups. For deciles, p1 = 0.1, p2 = 0.2, …, p10 = 1.0. And let 

income cut-offs or quantiles that divide the different income groups be 𝜉1, 𝜉2, … , 𝜉𝐾−1.  Also let 𝜉 =  (𝜉1, 𝜉2, … , 𝜉𝐾−1)′ be a vector of K-1 sample quantile estimates. Then it is well established in 

the statistics literature (for example, Wilks, 1962, p. 274) that, if 𝜉 is a vector of K-1 sample 

quantiles from a random sample of size N drawn from a continuous population density 𝑓(•) such 

that the 𝜉𝑖′s are uniquely defined and if 𝑓𝑖  ≡ 𝑓(𝜉𝑖) ˃ 0 for all i = 1, …, K-1, then the vector 
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√𝑁 (𝜉 −  𝜉) converges in distribution to a K-1 variate normal distribution with mean zero and 

covariance matrix 

 𝛬 =  [   
 𝑝1(1− 𝑝1)𝑓12 ⋯ 𝑝1(1− 𝑝𝐾−1)𝑓1 • 𝑓𝐾−1⋮ ⋮𝑝1(1− 𝑝𝐾−1)𝑓1 • 𝑓𝐾−1 ⋯ 𝑝𝐾−1(1− 𝑝𝐾−1)𝑓𝐾−12 ]   

  =   [ 𝜆11 ⋯ 𝜆1,𝐾−1⋮ ⋱ ⋮𝜆1,𝐾−1 ⋯ 𝜆𝐾−1,𝐾−1 ]  (c1) 

The median, 𝜉5 , is only a special case of this more general result. 

 Now each of these (asymptotic) variances and covariances is clearly not distribution-free 

as the denominator in each such term involves 𝑓(𝜉𝑖). But the quantile function approach 

developed in Appendix B is forwarded to deal with just this problem. As set out in section B.1.2, 

one can calculate 𝑓(𝜉𝑖) for any i based on, say, the estimated lognormal distribution. Hence 

 𝑆. 𝐸. (𝜉𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂𝑖)𝑁 ]1/ 2
 

      = [𝑝𝑖(1 − 𝑝𝑖) /  𝑁 •  𝑓(𝜉𝑖)2 ]1/2
 .       (c2) 

 One can similarly use this approach to calculate estimated standard errors for the percentile 

income gaps 

 𝜉𝑗 − 𝜉𝑖   for j ≠ i : 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗 − 𝜉𝑖) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗) − 2𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉𝑖, 𝜉𝑗) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖)  (c3) 

where each of these terms can be taken from the variance-covariance matrix Λ in eq. (c1). As a 

result, 

 𝑆. 𝐸. (𝜉𝑗− 𝜉𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂𝑗− 𝜉̂𝑖)𝑁 ]1/ 2
         (c4) 

where again the denominator in each of the terms in (c3) is estimated by the lognormal estimated 

density. 

 Similarly, in the case of relative or proportional income gaps or differentials 
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 𝑞 = (𝜉𝑗 − 𝜉𝑖) / 𝜉𝑖 = (𝜉𝑗𝜉𝑖) − 1   for j ˃ i , 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) =  (𝜉𝑗𝜉𝑖2)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖) − 2 (1𝜉𝑖) (𝜉𝑗𝜉𝑖2)  • 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉𝑖 ,  𝜉𝑗)  
                           + (1𝜉𝑖)2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑗) .      (c5) 

Consequently, 

 𝑆. 𝐸. (𝑞̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/ 2
 .        (c6) 

And all unknowns in (c5) are estimated by the estimated lognormal density. 

 

C.2 Standard Errors of Quantile Means 

 One can make use of some of the key relationships from Appendix B here as well. Again, 

divide the income distribution in three income groups: the lower 20 percent (or L group), the 

middle 60 percent (or M group), and top 20 percent (or H group). The cut-off are then the two 

percentiles 𝑝2 = 0.2 and 𝑝8 = 0.8 . More generally, it is notationally convenient to refer to the 

two percentiles as 𝑝𝑎 and 𝑝𝑏 , where 0 <  𝑝𝑎  <  𝑝𝑏  < 1 and the corresponding quantile income 

cut-off values as  𝜉𝑎  < 𝜉𝑏 .  
 The quantile mean can be written 

 µ𝑖 = ∫ 𝑦 𝑓(𝑦)𝑑𝑦  / ∫ 𝑓(𝑦)𝑑𝑦𝑅𝑖𝑅𝑖    for i = L, M, H .   (c7) 

For the lower income group, 𝑅𝐿 runs from 0 to 𝜉𝑎 , 𝑅𝑀 for the middle group runs from 𝜉𝑎 to 𝜉𝑏 , 

and for the higher income group 𝑅𝐻 runs from  𝜉𝑏 up. Since the percentile shares are given by 𝑝𝑎 

and 𝑝𝑏 , the denominator in (c7) can be written as 

 𝐷𝐿 = 𝑝𝑎  for i = L 

 𝐷𝑀 = 𝑝𝑏 − 𝑝𝑎 for i = M 
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and 𝐷𝐻 =  1 − 𝑝𝑏  for i = H . 

The numerator in (c7) can be expressed as  

 𝑁𝐿(𝜉𝑎, 𝜉𝑏) =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑎0   for i = L 

 𝑁𝑀(𝜉𝑎, 𝜉𝑏) =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑏𝜉𝑎   for i = M 

and 𝑁𝐻(𝜉𝑎, 𝜉𝑏) =  ∫ 𝑦 𝑓(𝑦)𝑑𝑦 ∞𝜉𝑎   for i = H . 

Thus  µ𝑖 = 𝑁𝑖(𝜉𝑎, 𝜉𝑏) / 𝐷𝑖   for i = L, M, H .    (c8) 

 In order to facilitate looking at quantile mean income gaps later in this appendix, consider 

the sample mean estimates µ̂𝐿 , µ̂𝑀 , and µ̂𝐻 together. So consider the three-element vector 

 𝑚 = (µ𝐿 , µ𝑀 , µ𝐻)′  
      =  [𝑁𝐿(𝜉𝑎,𝜉𝑏)𝐷𝐿 , 𝑁𝑀(𝜉𝑎,𝜉𝑏)𝐷𝑀 , 𝑁𝐻(𝜉𝑎,𝜉𝑏)𝐷𝐻  ]′ 
which is estimated directly as 𝑚̂ = (µ̂𝐿 , µ̂𝑀 , µ̂𝐻)′ . So the terms in m are continuous 

differentiable functions of 𝜉𝑎 and 𝜉𝑏 whose estimates have the asymptotic normal distribution 

given in the previous section C.1. For a well behaved underlying income density function 𝑓(•), a 

multivariate version of the Rao linkage theorem (Rao, 1965, p. 388) shows that 𝑚̂ is also 

asymptotically joint normally distributed with the (asymptotic) 3x3 variance-covariance matrix 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑚̂) ≡ 𝑉 = 𝐺′ 𝛬 𝐺        (c9) 

where 𝛬 = [𝜆𝑖𝑗] is the 2x2 (asymptotic) variance-covariance matrix of  (𝜉𝑎 , 𝜉𝑏)′ given above in 

(c1), and where 

 𝐺 =  [𝑔𝑎𝐿 𝑔𝑎𝑀 𝑔𝑎𝐻𝑔𝑏𝐿 𝑔𝑏𝑀 𝑔𝑏𝐻] 
with 𝑔𝑎𝐿 = 𝜕µ𝐿𝜕𝜉𝑎 = 𝜉𝑎  • 𝑓(𝜉𝑎)  /  𝐷𝐿  

 𝑔𝑏𝐿 = 𝜕µ𝐿𝜕𝜉𝑏 = 0 
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 𝑔𝑎𝑀 = 𝜕µ𝑀𝜕𝜉𝑎 = −𝜉𝑎  • 𝑓(𝜉𝑎)  /  𝐷𝑀       (c10) 

 𝑔𝑏𝑀 = 𝜕µ𝑀𝜕𝜉𝑏 = 𝜉𝑏  • 𝑓(𝜉𝑏)  /  𝐷𝑀 

 𝑔𝑎𝐻 = 𝜕µ𝐻𝜕𝜉𝑎 = 0 

 𝑔𝑏𝐻 = 𝜕µ𝐻𝜕𝜉𝑏 = −𝜉𝑏  • 𝑓(𝜉𝑏)  /  𝐷𝐻 . 

 Working out the calculations, then, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐿) =  𝜉𝑎2 •𝑓(𝜉𝑎)2𝐷𝐿2  •  𝜆𝑎𝑎 

               =  𝜉𝑎2 •𝑓(𝜉𝑎)2𝑝𝑎2   [𝑝𝑎(1− 𝑝𝑎)𝑓(𝜉𝑎)2 ] 
               = (1− 𝑝𝑎𝑝𝑎 )  •  𝜉𝑎2 ,        (c11) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐻) =  𝜉𝑏2 •𝑓(𝜉𝑏)2𝐷𝐻2  •  𝜆𝑏𝑏 

               =  𝜉𝑏2 •𝑓(𝜉𝑏)2(1 − 𝑝𝑏)2   [𝑝𝑏(1− 𝑝𝑏)𝑓(𝜉𝑏)2 ] 
               = ( 𝑝𝑏1− 𝑝𝑏)  •  𝜉𝑏2 ,        (c12) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑀) =  ( 1𝐷𝑀2 ) [𝜉𝑎2  • 𝑓(𝜉𝑎)2 • 𝜆𝑎𝑎 + 𝜉𝑏2  • 𝑓(𝜉𝑏)2 • 𝜆𝑏𝑏 

    −2 𝜉𝑎 𝜉𝑏  • 𝑓(𝜉𝑎)𝑓(𝜉𝑏) •  𝜆𝑎𝑏] 
  = ( 1𝑝𝑏− 𝑝𝑎)2  • [𝑝𝑎(1 − 𝑝𝑎) • 𝜉𝑎2 + 𝑝𝑏(1 − 𝑝𝑏) • 𝜉𝑏2    (c13) 

    − 2 𝑝𝑎(1 − 𝑝𝑏) •  𝜉𝑎 𝜉𝑏] . 
 Covariance results can also be obtained to be used below in section C.5. 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝑀) =  [𝑔𝑎𝐿 , 𝑔𝑏𝐿] [𝜆𝑎𝑎 𝜆𝑎𝑏𝜆𝑏𝑎 𝜆𝑏𝑏] [𝑔𝑎𝑀𝑔𝑏𝑀] 
   = − 𝜉𝑎2 •𝑓(𝜉𝑎)2𝐷𝐿 • 𝐷𝑀  •  𝜆𝑎𝑎 + 𝜉𝑎 𝜉𝑏 •𝑓(𝜉𝑎)𝑓(𝜉𝑏)𝐷𝐿 • 𝐷𝑀   •  𝜆𝑎𝑏 
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  = 𝜉𝑎(𝑝𝑏− 𝑝𝑎)  [(1 − 𝑝𝑏)𝜉𝑏 − (1 − 𝑝𝑎)𝜉𝑎] ,     (c14) 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑀, µ̂𝐻) =  [𝑔𝑎𝑀 , 𝑔𝑏𝑀] [𝜆𝑎𝑎 𝜆𝑎𝑏𝜆𝑏𝑎 𝜆𝑏𝑏] [𝑔𝑎𝐻𝑔𝑏𝐻] 
   = − 𝜉𝑏2 •𝑓(𝜉𝑏)2𝐷𝑀 • 𝐷𝐻  •  𝜆𝑏𝑏 + 𝜉𝑎 𝜉𝑏 •𝑓(𝜉𝑎)𝑓(𝜉𝑏)𝐷𝑀 • 𝐷𝐻   •  𝜆𝑎𝑏 

  = 𝜉𝑏(𝑝𝑏− 𝑝𝑎)  [𝑝𝑎 𝜉𝑎 − 𝑝𝑏 𝜉𝑏] ,       (c15) 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝐿 , µ̂𝐻) =  [𝑔𝑎𝐿 , 𝑔𝑏𝐿] [𝜆𝑎𝑎 𝜆𝑎𝑏𝜆𝑏𝑎 𝜆𝑏𝑏] [𝑔𝑎𝐻𝑔𝑏𝐻] 
   = − 𝜉𝑎 𝜉𝑏 •𝑓(𝜉𝑎)𝑓(𝜉𝑏)𝐷𝐿 • 𝐷𝐻   •  𝜆𝑎𝑏 

  = − 𝜉𝑎  •  𝜉𝑏 .         (c16) 

 So, following from the above asymptotic variance results, it can be seen that 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/ 2
  for i = L, M, H .    (c17) 

 

C.3 Standard Errors of Relative-Mean Incomes 

 The relative-mean income is defined as 𝑅𝑀𝐼𝑖 = 𝐸(𝑦 | 𝑦 ∊ 𝑖)  / 𝐸(𝑦) =  µ𝑖  /  µ     for i = L, M, H . 

This then involves linking the (asymptotic) distribution of the µ̂𝑖’s with that of µ̂ , the overall 

sample mean. One can go about this in either of two alternative ways. 

 

C.3.1 The Adding-Up Approach 

 In the first or adding-up approach, one recognizes that 

 µ =  𝐷𝐿µ𝐿 + 𝐷𝑀µ𝑀 + 𝐷𝐻µ𝐻        (c18) 

and similarly, 
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 µ̂ =  𝐷𝐿µ̂𝐿 + 𝐷𝑀µ̂𝑀 + 𝐷𝐻µ̂𝐻 .       (c19) 

Since µ̂ is a linear function of (asymptotically) normal random variables, so also µ̂ is 

(asymptotically) jointly normally distributed (along with the  µ̂𝑖’s) as well. 

Now  𝐶𝑜𝑣(µ̂𝑖 , µ̂)  ≡ 𝐸[(µ̂𝑖 − µ𝑖)(µ̂ −  µ)] .  
Substituting in the expressions for µ and µ̂ from (c18) and (c19) leads to 

 𝐶𝑜𝑣(µ̂𝑖 , µ̂) =  𝐷𝑖  • 𝑉𝑎𝑟(µ̂𝑖) + ∑ 𝐷𝑗 • 𝐶𝑜𝑣(µ̂𝑖, µ̂𝑗)𝑗≠𝑖  . 

For example, when i = M , 

 𝐶𝑜𝑣(µ̂𝑀, µ̂) =  𝐷𝑀  • 𝑉𝑎𝑟(µ̂𝑀) + 𝐷𝐿 • 𝐶𝑜𝑣(µ̂𝑀, µ̂𝐿) + 𝐷𝐻 • 𝐶𝑜𝑣(µ̂𝑀, µ̂𝐻) . 

Since this is exact for all N, it also holds asymptotically as 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖, µ̂) =  𝐷𝑖  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) + ∑ 𝐷𝑗 • 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖, µ̂𝑗)𝑗≠𝑖  .  (c20) 

 Then, since µ̂𝑖 and µ̂ are asymptotically joint normally distributed with known variance-

covariance structure established in the previous section along with (c20), one can again make use 

of the Rao linkage theorem to further establish that, if 𝑅𝑀𝐼𝑖 = µ𝑖 /  µ     and       𝑅𝑀̂𝐼𝑖 = µ̂𝑖 /  µ̂    for i = L, M, H , 

then 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) = 𝑄′ 𝑊 𝑄 

where 𝑊 = [ 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂)𝐴𝑠𝑦. 𝑐𝑜𝑣( µ̂, µ̂𝑖) 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) ]  

and 𝑄 =  [𝑞1, 𝑞2]′   with 

 𝑞1 = 𝜕𝑅𝑀𝐼𝑖𝜕µ𝑖 = 1µ     and     𝑞2 = 𝜕𝑅𝑀𝐼𝑖𝜕µ = − µ𝑖µ2 . 

Consequently, for i = L, M, H,  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) =  ( 1µ2) •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) +  (µ𝑖µ2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂) 

   − 2 (1µ) (µ𝑖µ2) •  𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂)     (c21) 
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where   𝐴𝑠𝑦. 𝑣𝑎𝑟( µ̂) =  𝜎2 , and correspondingly 

  𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖) =  𝑆. 𝐸. (µ̂𝑖 /  µ̂) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑅𝑀̂𝐼𝑖)𝑁 ]1/ 2
     (c22) 

for all i = L, M, H, where all unknowns are replaced by their sample estimates. (This adding-up 

approach was not available in Appendix B because the 𝐷𝑖’s were not given and had to be 

estimated, so µ̂ could not be expressed as a simple linear function of random variables.) 

 

C.3.2 The Joint Distribution Approach 

 An alternative and perhaps more direct approach is to explicitly incorporate the joint 

randomness of the µ̂𝑖’s and the sample mean  µ̂ . To do this, one can again make use of the 

results of Lin, Wu and Ahmad (1980) – henceforth LWA. 

 The relative-mean income ratio can be written as 

 𝑅𝑀𝐼𝑖 ≡ µ𝑖µ = [∫ 1µ 𝑦 𝑓(𝑦)𝑑𝑦  / ∫ 𝑓(𝑦)𝑑𝑦𝑅𝑖𝑅𝑖 ]   

         =  1𝐷𝑖  [∫ (1µ)  𝑦 𝑓(𝑦)𝑑𝑦 𝑅𝑖 ]   

       = 𝑁𝑖(𝜉𝑎, 𝜉𝑏 , µ) / 𝐷𝑖  for i = L, M, H    (c23) 

where  𝐷𝑖 is given and not estimated. So the randomness in the sample estimate of (c23) comes 

from  𝜉𝑎 , 𝜉𝑏 , and , µ̂ . LWA establish the joint asymptotic distribution of these three random 

variables. As outlined in Appendix B above, LWA (Theorem 2.1) establish that, under general 

regularity conditions, 𝜉𝑎 , 𝜉𝑏 , and , µ̂ are asymptotically joint normally distributed with 

(asymptotic) variance-covariance matrix Ʃ =  [𝜎𝑖𝑗] where 

 𝜎11 = 𝑝𝑎(1−𝑝𝑎) [𝑓(𝜉𝑎)]2  , 𝜎22 = 𝑝𝑏(1−𝑝𝑏) [𝑓(𝜉𝑏)]2  , 𝜎33 = 𝜎2  
 𝜎12 = 𝑝𝑎(1−𝑝𝑏) 𝑓(𝜉𝑎)𝑓(𝜉𝑏)  = 𝜎21 , 
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and 𝜎13 = [𝜉𝑎− µ(1−𝑝𝑎)] 𝑓(𝜉𝑎)  = 𝜎31 

 𝜎23 = [𝜉𝑏− µ(1−𝑝𝑏)] 𝑓(𝜉𝑏)  = 𝜎32 . 

 Combining this set of results with Rao’s linkage theorem then implies that 𝑅𝑀̂𝐼𝑖 = µ̂𝑖  /  µ̂ is also asymptotically normally distributed with (asymptotic) variance 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖) = 𝑔′ Ʃ 𝑔        (c24) 

where, if 𝑔 =  [𝜕𝑅𝑀𝐼𝑖𝜕𝜉𝑎  , 𝜕𝑅𝑀𝐼𝑖𝜕𝜉𝑏  , 𝜕𝑅𝑀𝐼𝑖𝜕µ  ]′ = [𝑔1 , 𝑔2 , 𝑔3]′ , 
then 

𝜕𝑅𝑀𝐼𝑖𝜕𝜉𝑎 = ( 1𝐷𝑖) 𝜕𝑁𝑖𝜕𝜉𝑎  

 
𝜕𝑅𝑀𝐼𝑖𝜕𝜉𝑏 = ( 1𝐷𝑖) 𝜕𝑁𝑖𝜕𝜉𝑏 

and 
𝜕𝑅𝑀𝐼𝑖𝜕µ = ( 1𝐷𝑖) 𝜕𝑁𝑖𝜕µ  . 

 In the case of the lower-income group L, 

 𝑔1 =  𝜕𝑅𝑀𝐼𝐿𝜕𝜉𝑎 = ( 1𝐷𝐿) [(1µ) 𝜉𝑎  • 𝑓(𝜉𝑎)]  
 𝑔2 =  𝜕𝑅𝑀𝐼𝐿𝜕𝜉𝑏 = 0 

 𝑔3 =  𝜕𝑅𝑀𝐼𝐿𝜕µ = ( 1𝐷𝐿) [− ( 1µ2) ∫  𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑎0 ]   
           = ( 1𝐷𝐿) [− (1µ)  •  𝑁𝐿] 
           = ( 1𝐷𝐿) [− (𝐷𝐿µ )  •  𝑁𝐿𝐷𝐿] 
           =  − (1µ)  •  𝑅𝑀𝐼𝐿 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝐿) =  𝑔12 𝜎11 + 2𝑔1𝑔3𝜎13 + 𝑔32 𝜎33 

 (1− 𝑝𝑎𝑝𝑎 ) (𝜉𝑎µ )2 + 𝑅𝑀𝐼𝐿2µ2 •  𝜎2 + 2 [ (1− 𝑝𝑎𝑝𝑎 ) (𝜉𝑎µ )  • 𝑅𝑀𝐼𝐿 − (𝜉𝑎µ )2  •   𝑅𝑀𝐼𝐿𝑝𝑎 ] .   (c25) 
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 In the case of the higher-income group H, 

 𝑔1 =  𝜕𝑅𝑀𝐼𝐻𝜕𝜉𝑎 =  0  
 𝑔2 =  𝜕𝑅𝑀𝐼𝐻𝜕𝜉𝑏 = ( 1𝐷𝐻) [− (1µ) 𝜉𝑏  • 𝑓(𝜉𝑏)] 
 𝑔3 =  𝜕𝑅𝑀𝐼𝐻𝜕µ = ( 1𝐷𝐻) [− ( 1µ2) ∫  𝑦 𝑓(𝑦)𝑑𝑦 ∞𝑏 ]   
           = ( 1𝐷𝐻) [−(1µ)  •  𝑁𝐻] 
           = ( 1𝐷𝐻) [−(𝐷𝐻µ )  •  𝑁𝐻𝐷𝐻] 
           =  − (1µ)  •  𝑅𝑀𝐼𝐻 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝐻) =  𝑔22 𝜎22 + 2𝑔2𝑔3𝜎23 + 𝑔32 𝜎33 

 = ( 𝑝𝑏1−𝑝𝑏) (𝜉𝑏µ )2 + 𝑅𝑀𝐼𝐻2µ2 •  𝜎2 + 2 [(𝜉𝑏µ )2 •  𝑅𝑀𝐼𝐻(1− 𝑝𝑏) − (𝜉𝑏µ ) 𝑅𝑀𝐼𝐻] .    (c26) 

 And in the case of the middle-income group M, 

𝑔1 =  𝜕𝑅𝑀𝐼𝑀𝜕𝜉𝑎 =  ( 1𝐷𝑀) [− (1µ) 𝜉𝑎  • 𝑓(𝜉𝑎)]  
 𝑔2 =  𝜕𝑅𝑀𝐼𝑀𝜕𝜉𝑏 = ( 1𝐷𝑀) [(1µ) 𝜉𝑏  • 𝑓(𝜉𝑏)] 
 𝑔3 =  𝜕𝑅𝑀𝐼𝑀𝜕µ = ( 1𝐷𝑀) [− ( 1µ2) ∫  𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑏𝜉𝑎 ]   
            = ( 1𝐷𝑀) [− (𝐷𝑀µ )  •  𝑁𝑀𝐷𝑀] 
            =  − (1µ)  •  𝑅𝑀𝐼𝑀 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑀) =  [𝑔1, 𝑔2, 𝑔3] [𝜎11 𝜎12 𝜎13𝜎21 𝜎22 𝜎23𝜎31 𝜎32 𝜎33] [𝑔1𝑔2𝑔3] 
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  = 𝑔12 𝜎11 + 𝑔22 𝜎22 + 𝑔32 𝜎33 + 2𝑔1, 𝑔2 𝜎12 +  2𝑔1, 𝑔3 𝜎13 + 2𝑔2, 𝑔3 𝜎23 

= ( 1𝐷𝑀2 ) [(𝜉𝑎µ )2 𝑝𝑎(1 − 𝑝𝑎)] + ( 1𝐷𝑀2 ) [(𝜉𝑏µ )2 𝑝𝑏(1 − 𝑝𝑏)] + (𝑅𝑀𝐼𝑀µ )2  • 𝜎2 

   − 2 ( 1𝐷𝑀2 ) [(𝜉𝑎µ ) (𝜉𝑏µ ) 𝑝𝑎(1 − 𝑝𝑏)]      (c27) 

   + 2 ( 1𝐷𝑀) (𝜉𝑎µ ) (𝑅𝑀𝐼𝑀µ ) [𝜉𝑎 −  µ(1 − 𝑝𝑎)] 
   − 2 ( 1𝐷𝑀) (𝜉𝑏µ ) (𝑅𝑀𝐼𝑀µ ) [𝜉𝑏 −  µ(1 − 𝑝𝑏)] , 
where  𝐷𝑀 = 𝑝𝑏 − 𝑝𝑎 . 

 For all three cases, then, 

 𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖) ≡  𝑆. 𝐸. (µ̂𝑖 /  µ̂) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑅𝑀̂𝐼𝑖)𝑁 ]1/ 2
      (c28) 

for i = L, M, H . 

 The two approaches in this section result in two different representations (in eqs. (c22) 

and (c28)) for the standard errors of the relative-mean income ratios, but they are both valid, and 

the choice of use is up to the user. 

 

C.4 Standard Errors of Income Shares 

 After the lengthy derivation of standard errors in the previous section, the derivation of 

standard errors for the income share estimates, 𝐼𝑆̂𝑖 , is straightforward. Note that, by identity, 

 
µ𝑖µ = 𝐼𝑆𝑖𝑃𝑆𝑖  

where the population shares of the income groups in this appendix are given (non-random) and 

have been represented in the above derivations by the given 𝐷𝑖’s. Therefore, 

 𝐼𝑆𝑖 = 𝐷𝑖  •  (µ𝑖 /  µ) = 𝐷𝑖  •  𝑅𝑀𝐼𝑖    
for i = L, M, H. Similarly for their sample estimates: 
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 𝐼𝑆̂𝑖 = 𝐷𝑖  •  𝑅𝑀̂𝐼𝑖 . 
Thus it follows immediately that 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) = 𝐷𝑖2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑅𝑀̂𝐼𝑖)      (c29) 

and hence 

   𝑆. 𝐸. (𝐼𝑆̂𝑖) = 𝐷𝑖  •  𝑆. 𝐸. (𝑅𝑀̂𝐼𝑖)       (c30) 

for i = L, M, H. 

 As a check on this result, it is still useful to work out the asymptotic variances of the 

income shares directly from first principles. This will also allow for an intuitive interpretation of 

the results. 

 From first principles, 

 𝐼𝑆𝑖 = ∫ (1µ)  𝑦 𝑓(𝑦)𝑑𝑦 𝑅𝑖    for i = L, M, H,  

which is what we have been referring to as 𝑁𝑖 in the previous section. Alternatively, 

 𝐼𝑆𝑖 = 𝐷𝑖  •  𝑅𝑀𝐼𝑖 = 𝐷𝑖 [𝑁𝑖(𝜉𝑎,𝜉𝑏,µ)𝐷𝑖 ] 
       = 𝑁𝑖(𝜉𝑎, 𝜉𝑏 , µ) . 

So to work out asymptotic variances, one can apply the LWA results directly to 𝑁𝑖(𝜉𝑎, 𝜉𝑏 , µ) . By 

LWA’s Theorem 2.1, the 𝐼𝑆̂𝑖 are asymptotically normally distributed each with an asymptotic 

variance given by 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝑔′ Ʃ 𝑔 

with the same Ʃ matrix as before, but with the 𝑔 vector’s derivatives with respect to 𝐼𝑆𝑖 = 𝑁𝑖(𝜉𝑎, 𝜉𝑏 , µ) : 

 𝑔 = [𝜕𝑁𝑖𝜕𝜉𝑎  , 𝜕𝑁𝑖𝜕𝜉𝑏 , 𝜕𝑁𝑖𝜕µ ]′ . 
 In the case of the lower-income group, L, 
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 𝑔1  = 𝜕𝑁𝐿𝜕𝜉𝑎 = (1µ) 𝜉𝑎  •  𝑓(𝜉𝑎) 

 𝑔2  = 𝜕𝑁𝐿𝜕𝜉𝑏 =  0 

 𝑔3  = 𝜕𝑁𝐿𝜕µ = −( 1µ2) ∫  𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑎0  

       = − (1µ) •  𝐼𝑆𝐿 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐿) =  𝑔12 𝜎11 + 𝑔32 𝜎33 + 2𝑔1𝑔3𝜎13 

 = 𝑝𝑎(1 − 𝑝𝑎) (𝜉𝑎µ )2 + 𝐼𝑆𝐿2µ2  • 𝜎2      (c31) 

− 2 [(𝜉𝑎µ ) • 𝐼𝑆𝐿µ ] [𝜉𝑎 −  µ(1 − 𝑝𝑎)] . 
 In the case of the higher-income group, H, 

 𝑔1  = 𝜕𝑁𝐻𝜕𝜉𝑎 =  0 

 𝑔2  = 𝜕𝑁𝐻𝜕𝜉𝑏 = − (1µ) 𝜉𝑏  •  𝑓(𝜉𝑏) 

 𝑔3  = 𝜕𝑁𝐻𝜕µ = − ( 1µ2) ∫  𝑦 𝑓(𝑦)𝑑𝑦 ∞𝜉𝑏  

       = − (1µ) •  𝐼𝑆𝐻 . 

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐻) =  𝑔22 𝜎22 + 𝑔32 𝜎33 + 2𝑔2𝑔3𝜎23 

 = 𝑝𝑏(1 − 𝑝𝑏) (𝜉𝑏µ )2 + 𝐼𝑆𝐻2µ2  • 𝜎2      (c32) 

+ 2 [(𝜉𝑏µ ) • 𝐼𝑆𝐻µ ] [𝜉𝑏 −  µ(1 − 𝑝𝑏)] . 
 And in the case of the middle-income group M, 

 𝑔1  = 𝜕𝑁𝑀𝜕𝜉𝑎 = − (1µ) 𝜉𝑎  •  𝑓(𝜉𝑎) 
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 𝑔2  = 𝜕𝑁𝑀𝜕𝜉𝑏 = (1µ) 𝜉𝑏  •  𝑓(𝜉𝑏) 

 𝑔3  = 𝜕𝑁𝑀𝜕µ = −(1µ) •  𝐼𝑆𝑀 .  

Therefore, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑀) = [𝑔1, 𝑔2, 𝑔3] [𝜎11 𝜎12 𝜎13𝜎21 𝜎22 𝜎23𝜎31 𝜎32 𝜎33] [𝑔1𝑔2𝑔3] 
   = 𝑔12 𝜎11 + 𝑔22 𝜎22 + 𝑔32 𝜎33 + 2𝑔1𝑔2𝜎12 + 2𝑔1𝑔3𝜎13 + 2𝑔2𝑔3𝜎23 

 = 𝑝𝑎(1 − 𝑝𝑎) (𝜉𝑎µ )2 + 𝑝𝑏(1 − 𝑝𝑏) (𝜉𝑏µ )2 + (𝐼𝑆𝑀µ )2  • 𝜎2  
−2 [𝑝𝑎(1 − 𝑝𝑏) (𝜉𝑎µ ) (𝜉𝑏µ )]     (c33) 

+ 2 (𝜉𝑎µ ) ( 𝐼𝑆𝑀µ ) [𝜉𝑎 −  µ(1 − 𝑝𝑎)]  
− 2 (𝜉𝑏µ ) ( 𝐼𝑆𝑀µ ) [𝜉𝑏 −  µ(1 − 𝑝𝑏)] . 

The first three terms in (c33) capture the variability of  𝜉𝑎 , 𝜉𝑏 , and µ̂ , respectively. The fourth 

term captures the covariation of 𝜉𝑎 and 𝜉𝑏 . The fifth term picks up the covariation of 𝜉𝑎 and µ̂ , 

and the last term captures the covariation of 𝜉𝑏  and µ̂ . 

 Note also that the standard error formulas for the µ̂𝑖’s, the 𝑅𝑀̂𝐼𝑖’s, and the 𝐼𝑆̂𝑖’s for 

percentile cut-offs are all distribution-free in that they do not require specifying an underlying 

density form for the sample data. 

  

 

 

C.5 Standard Errors of Quantile Mean Income Gaps 
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 Consider next the estimated quantile mean income gaps, µ̂𝑖 − µ̂𝑗 for 𝑖 ≠ 𝑗 and i, j = L, 

M, H. Since this gap is the difference between quantile mean statistics, it follows that  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖 − µ̂𝑗) =  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) − 2 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) +  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗)  (c34) 

where the variance terms are provided above in eqs. (c11)-(c13) and the covariance terms in eqs. 

(c14)-(c16). It then follows that  

𝑆. 𝐸. (µ̂𝑖 − µ̂𝑗) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖− µ̂𝑗)𝑁 ]1/ 2
 .      (c35) 

 Similarly, if one calculates the gap in relative or proportional terms as 𝑞̂ =  µ̂𝑖− µ̂𝑗µ𝑗 = µ̂𝑖µ𝑗 − 1  for  > 𝑗 , 
then it can be seen that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑞̂) =  ( 1µ𝑗)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) +  (µ𝑖µ𝑗2)2  •  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑗) 

   − 2 ( 1µ𝑗) (µ𝑖µ𝑗2) •  𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖, µ̂𝑗) ,     (c36) 

so that again 

  𝑆. 𝐸. (𝑞̂) = [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑞̂)𝑁 ]1/ 2
.        (c37) 

 

C.6 Standard Errors of Relative-Mean Quantiles 

 A final statistic of potential interest in a disaggregative analysis is the ratio of a quantile 

income cut-off level to overall mean of a distribution (𝜉𝑖 /  µ̂) , or relative-mean quantiles. Here 

we again follow the work of Lin, Wu and Ahmad (1980). Consider two percentile cut-off levels 

corresponding to the proportions 𝑝𝑎  < 𝑝𝑏 ; call these 𝜉𝑎 and 𝜉𝑏 . Then, under a well-behaved 

continuous density (•) , the authors establish that the set of sample relative-mean quantiles 
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𝜉𝑎 /  µ̂ and 𝜉𝑏 /  µ̂ are asymptotically joint normally distributed with (asymptotic) variances and 

covariances: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑎 /  µ̂) = [(𝜉𝑎µ )2 𝜎2 − 2(𝜉𝑎µ )𝜎13 + 𝜎11] /  µ2    (c38) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑏 /  µ̂) = [(𝜉𝑏µ )2 𝜎2 − 2(𝜉𝑏µ ) 𝜎23 + 𝜎22] /  µ2    (c39) 

and 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝜉𝑎 /  µ̂,  𝜉𝑏 /  µ̂  ) = [(𝜉𝑎 • 𝜉𝑏µ2 )𝜎2 − (𝜉𝑎µ )𝜎23 − (𝜉𝑏µ )𝜎13  + 𝜎12] /  µ2 (c40) 

where 𝜎11 = 𝑝𝑎(1−𝑝𝑎) 𝑓(𝜉𝑎)2  , 𝜎22 = 𝑝𝑏(1−𝑝𝑏) 𝑓(𝜉𝑏)2  ,   
 𝜎12 = 𝑝𝑎(1−𝑝𝑏) 𝑓(𝜉𝑎)•𝑓(𝜉𝑏)   
and 𝜎13 = 𝜉𝑎− µ(1−𝑝𝑎)𝑓(𝜉𝑎)   𝜎23 = 𝜉𝑏− µ(1−𝑝𝑏)𝑓(𝜉𝑏)   . 

Therefore, it follows that 

 𝑆. 𝐸. (𝜉𝑖 /  µ̂) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝜉̂𝑖 /  µ̂)𝑁 ]1/ 2
       (c41) 

for i = a, b, where all unknowns are replaced by their sample estimates. 

 Note that these standard error formulas are definitely not distribution-free as they depend 

upon the density ordinates in the denominators of the 𝜎𝑖𝑗  terms. 
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Appendix D 
 

Appendix Table D1 
Summary Statistics on Annual Earnings for Census Estimation Samples  

and Median-Based Cut-Offs for Full-Time Workers 
Selective Years 1970-2005 

(real 2015 dollars) 
 

 1970 1980 1990 2000 2005 

Males      

  No. obs. 28,405 68,614 122,859 121,923 124,231 

  Mean earnings 55,552 65,238 64,612 65,366 74,474 

  Median earnings 49,552 59,490 58,468 57,258 58,310 

  MC earnings range 24,776-74,329 29,745-89,236 29,234-87,702 28,629-85,888 29,155-87,465 

  Mean MC earnings 47,971 58,713 57,166 55,446 56,151 

  Lower-earnings cut-off 24,776 29,745 29,234 28,629 29,155 

  Higher earnings cut-off 99,104 118,981 116,937 114,516 116,620 

      

Females      

  No. obs. 8,608 30,653 78,693 87,871 94,693 

  Mean earnings 32,932 42,065 44,076 47,279 52,076 

  Median earnings 30,735 39,068 40,603 42,710 44,030 

  MC earnings range 15,368-46,102 19,534-58,600 20,301-60,904 21,355-64,065 22,015-66,045 

  Mean MC earnings 29,846 38,278 39,833 41,451 42,528 

  Lower-earnings cut-off 15,368 19,534 20,301 21,355 22,015 

  Higher earnings cut-off 61,469 78,135 81,206 85,421 88,060 

 

Note:  Based on Census public use microdata files. 

           Inflation adjustment based on CPI. 
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Appendix Table D2 
Summary Statistics on Weekly Earnings for LFS Estimation Samples  

and Median-Based Cut-Offs for Full-Time Workers 
Selective Years 2000-2015 

(real 2015 dollars) 
 

 2000 2005 2010 2015 

Males     

   No. obs. 19,476 19,047 19,268 36,678 

   Mean earnings 1106.5 1110.5 1185.1 1215.5 

   Median earnings 1025.3 1021.5 1075.8 1105.4 

   MC earnings range 512.7-1538.0 510.7-1532.2 537.9-1613.6 552.7-1657.9 

   Mean MC earnings 990.4 987.2 1031.2 1051.2 

   Lower-earnings cut-off 512.7 510.7 537.9 552.7 

   Higher earnings cut-off 2050.7 2043.0 2151.5 2210.6 

     

Females     

   No. obs. 14,979 15,842 17,105 32,052 

   Mean earnings 846.5 880.6 959.9 998.0 

   Median earnings 769.0 798.1 863.2 881.8 

   MC earnings range 384.6-1153.6 399.0-1197.1 431.6-1294.9 441.0-1322.8 

   Mean MC earnings 739.1 761.4 814.5 827.8 

   Lower earnings cut-off 384.6 399.0 431.6 441.0 

   Higher earnings cut-off 1538.0 1596.1 1726.3 1763.7 

 

Note:  Based on May Labour Force Surveys. 

  



108 

 

Appendix Table D3 
Summary Statistics on Percentile Annual Earnings Samples from  

Census Data for Full-Time Workers 
Selective Years 1970-2005 

(real 2015 dollars) 
 

 1970 1980 1990 2000 2005 

Males      

   20th percentile 33,934 41,065 38,427 35,084 34,510 

   Mean MC earnings 49,931 60,634 59,445 58,706 60,170 

   80th percentile 68,996 83,922 84,453 86,756 92,820 

      

Females      

   20th percentile 21,326 27,477 25,986 26,694 26,180 

   Mean MC earnings 30,919 39,867 41,529 43,918 45,719 

   80th percentile 43,279 56,141 60,091 66,735 70,210 
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Appendix Table D4 
Summary Statistics on Percentile Weekly Earnings Samples  

from LFS Data for Full-Time Workers 
Selective Years 2000-2015 

(real 2015 dollars) 
 

 2000 2005 2010 2015 

Males     

   20th percentile 694.5 686.0 719.3 719.2 

   Mean MC earnings 1044.9 1037.6 1104.3 1129.6 

   80th percentile 1438.2 1466.8 1592.9 1632.7 

     

Females     

   20th percentile 514.2 533.3 572.2 599.3 

   Mean MC earnings 794.0 814.6 890.9 922.9 

   80th percentile 1145.3 1187.8 1299.6 1370.7 

 

 

 

 


