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Abstract

The maximum diversification portfolio as defined by Choueifaty (2011) depends

on the vector of asset volatilities and the inverse of the covariance matrix of the

asset return. In practice, these two quantities need to be replaced by their sample

statistics. The estimation error associated with the use of these sample statistics

may be amplified due to (near) singularity of the covariance matrix, in financial

markets with many assets. This in turn may lead to the selection of portfolios that

are far from the optimal regarding standard portfolio performance measures of

the financial market. To address this problem, we investigate three regularization

techniques, including the ridge, the spectral cut-off, and the Landweber-Fridman

approaches in order to stabilize the inverse of the covariance matrix. These regu-

larization schemes involve a tuning parameter that needs to be chosen. In light of

this fact, we propose a data-driven method for selecting the tuning parameter. We

show that the selected portfolio by regularization is asymptotically efficient with

respect to the diversification ratio. In empirical and Monte Carlo experiments,

the resulting regularized rules are compared to several strategies, such as the most

diversified portfolio, the target portfolio, the global minimum variance portfolio,

and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ra-

tio performance, and it is shown that our method yields significant Sharpe ratio

improvements.
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1 Introduction

Since the seminal work of Markowitz (1952) that offers essential basis to portfolio se-

lection, diversification issues have been in the center of many problems in the financial

market. According to Markowitz’s portfolio theory, a portfolio is diversified if its variance

could not be reduced any further at the same level of the expected return.The funda-

mental objective of this diversification is to construct a portfolio with various assets that

earns the highest return for the least volatility that may be a good alternative to the

market cap-weighted portfolios. In fact, there is evidence that market portfolios are not

as efficient as assumed by Sharpe (1964) in his Capital Asset Price Model (CAPM). The

CAPM model as introduced by Sharpe (1964) implies that the tangency portfolio is the

only efficient one and should produce the greatest returns relative to risk. Nonetheless,

several empirical studies have shown that investing in the minimum variance portfolio

yields better out-of-sample results than does an investment in the tangency portfolio (see

Haugen and Baker (1991), Choueifaty, Froidure, and Reynier (2013), Lohre, Opfer, and

Orszag (2014)).

Even if these surprising results seem to be due to the high estimation risk associated

with the expected returns (according to Kempf and Memmel (2006)), the efficiency of the

market capitalization-weighted index has been questioned motivating numerous invest-

ment alternatives (see Arnott, Hsu, and Moore (2005)), Clarke, De Silva, and Thorley

(2006), Maillard, Roncalli, and Tëıletche (2010)). Subsequently, Choueifaty (2011) intro-

duced the concept of maximum diversification, via a formal definition of portfolio diver-

sification: the diversification ratio (DR) and claimed that portfolios with maximal DRs

were maximally diversified and provided an efficient alternative to market cap-weighted

portfolios.

This optimal maximum diversification portfolio is shown to be a function of the in-

verse of the covariance matrix of asset returns (see Theron and Van Vuuren (2018)),

which is unknown and needs to be estimated. Solving for the maximum diversification

portfolio leads to estimate the covariance matrix of returns and take its inverse. This

results in estimation error, amplified due to (near) singularity of the covariance matrix,

in financial markets with many assets. This in turn may lead to the selection of portfo-

lios that are far from the optimal regarding standard portfolio performance measures of

the financial market. Therefore, Choueifaty, Froidure, and Reynier (2013) propose the

most diversified portfolio (MDP) by imposing a non-negative constraint on the maxi-

mum diversification problem1. However, this ad hoc constraint suggests that the MDP

is unlikely to represent the final word of diversification. Without the ability to short se-

curities it may be impossible to unlock the full range of uncorrelated risk sources present

in the market (see Maguire, Moser, O’Reilly, McMenamin, Kelly, and Maguire (2014)).

Therefore, this paper proposes a more general method to control for estimation error

1The objective is to reduce the effect of estimation error on the performance of selected maximum
diversification portfolio
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in the covariance matrix of asset returns without restricting the ability to short sell in

the financial market. This method is fundamentally based on different ways to stabilize

the inverse of the covariance matrix particularly useful when the number of assets in

the financial market increases considerably compared with the estimation window. More

precisely, as in Carrasco (2012) and Carrasco and Tchuente (2015) we investigate three

regularization techniques including the spectral cut-off, the Tikhonov and the Landwe-

ber Fridman approaches in order to stabilize the inverse of the covariance matrix. This

procedure has been used by Carrasco, Koné, and Noumon (2019) to stabilize the inverse

of the covariance matrix in the mean-variance portfolio.

These regularization schemes involve a tuning parameter that needs to be chosen.

Hence, we propose a data-driven method for selecting the tuning parameter that mini-

mizes the distance between the inverse of the estimated covariance matrix and the inverse

of the population covariance matrix.

We show, under appropriate regularity conditions, that the selected strategy by reg-

ularization is asymptotically efficient with respect to the diversification ratio for a wide

choice of the tuning parameter. Meaning that, even if the optimal diversified portfolio is

unknown, there exists a feasible portfolio obtained by regularization capable of reaching

similar level of performance in terms of the diversification ratio.

To evaluate the performance of our procedures we implement a simulation exercise

based on a three-factor model calibrated on real data from the US financial market. We

obtain by simulation that our procedure significantly improve the performance of the

proposed strategy with respect to the Sharpe ratio. Moreover, the regularized rules are

compared to several strategies such as the most diversified portfolio, the target portfolio,

the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample

and out-of-sample Sharpe ratio, and it is shown that our method yields significant Sharpe

ratio improvements. To confirm our simulations, we do an empirical analysis using Ken-

neth R. French’s 30-industry portfolios, 100 portfolios formed on size and book-to-market

and a subset of the S&P500 index constituents. The empirical results show that by sta-

bilizing the inverse of the covariance matrix in the maximum diversification portfolio, we

considerably improve the performance of the selected strategy in terms of maximizing

the Sharpe ratio.

The main finding of this paper is that by stabilizing the inverse of the covariance ma-

trix in the maximum diversification portfolio, we considerably improve the performance

of the selected portfolio with respect to several statistics in the financial market includ-

ing the diversification ratio, the Sharpe ratio, and the re-balancing costs (turnover) as

shown by extensive simulations and empirical study. Therefore, our methods are highly

recommended for investors in the sense that these procedures help them to select very

effective strategies with lower re-balancing cost.

The rest of the paper is organized as follows. Section 2 presents the economy. The

regularized portfolio is presented in section 3. Section 4 gives some asymptotic properties

of the selected strategy and proposes a data-driven method to select the tuning parameter.
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Section 5 presents some simulation results and an empirical study. Section 6 concludes

the paper.

2 The model

We consider a simple economy with N risky assets with random returns vector Rt+1 and

a risk-free asset. Let us denote Rf the gross return on this risk-free asset. Empirically

with monthly data, Rf is calibrated to be the mean of the one-month Treasury-Bill (T-B)

rate observed in the data. The number of risky assets in our economy N is assumed to

be large for diversification issue.

We assume that the excess returns rt+1 = Rt+1−Rf1N are independent and identically

distributed with the mean and the covariance matrix given by µ and Σ = {σi,j}i,j∈N
respectively. Let us denote ω = (ω1, ..., ωN)

′

the vector of portfolio weights that represents

the amount of the capital to be invested in the risky assets and the remain 1 − ω
′

1N is

allocated to the risk-free asset. Short-selling is allowed in the financial market, i.e. some

of the weights ωi could be negative. Let us denote σ = (σ1,1, ..., σN,N)
′

the vector of asset

volatilities.

According to Choueifaty (2011), the diversification ratio (DR) of any portfolio ω is

given by

DR (ω) =
ω

′

σ√
ω′Σω

(1)

which is the ratio of weighted average of volatilities divided by the portfolio volatility.

Using the relation in Equation (1), the maximum diversification portfolio is obtained

by solving the following optimization problem

max
ω

DR (ω) . (2)

Since, the DR is invariant by scalar multiplication (for instance see Choueifaty,

Froidure, and Reynier (2013)), solving the problem in Equation (2) is equivalent of solving

the following new problem according to Theron and Van Vuuren (2018)

min
ω
′
σ=1

1

2
ω

′

Σω. (3)

This new optimization problem is very close to the global minimum variance portfolio.

The only difference is that the constraint ω
′

1 = 1 in the global minimum variance problem

is replaced by ω
′

σ = 1. The solution of this new optimization problem is given by
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ω =
Σ−1σ

σ′Σ−1σ
=
(
σ

′

Σ−1σ
)−1 (

Σ−1σ
)
. (4)

The solution in (4) is unknown because it depends on the covariance matrix of asset

returns and the vector of volatilities that are unknown and need to be estimated from

available data set. We need in particular to estimate the covariance of matrix and take

its inverse. The sample covariance may not be appropriate because it may be nearly

singular, and sometimes not invertible. The issue of ill-conditioned covariance matrix

must be addressed because inverting such matrix increases dramatically the estimation

error and then makes the maximum diversification portfolio unreliable. Many techniques

have been proposed in the literature to stabilize the inverse of the covariance matrix in

the solution in (4). According to Carrasco, Florens, and Renault (2007) an interesting

way to stabilize the inverse of the covariance matrix consists of dampening the explosive

effect of the inversion of the singular values of Σ̂. It consists in replacing the sequence

{1/λj} of explosive inverse singular values by a sequence {q(α, λj)/λj} where the damping

function q(α, λ) is chosen such that

1. q(α, λ)/λ remains bounded when λ → 0

2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each regu-

larization.

In this paper, we propose a consistent way to estimate the solution in (4) using three

regularization schemes based on three different ways of inverting the covariance matrix

of asset returns. These regularization techniques are the spectral cut-off, the Tikhonov

and the Landweber Fridman. The spectral cut-off regularization scheme is based on

principal components whereas the Tikhonov’s one is based on Ridge regression (also

called Bayesian shrinkage) and the last one is an iterative method.

3 The regularized portfolio

The regularization methods used in this paper are drawn from the literature on inverse

problems (see Kress (1999)). They are designed to stabilize the inverse of Hilbert-Schmidt

operators (operators for which the eigenvalues are square summable). These regulariza-

tion techniques will be applied to the sample covariance matrix of asset returns to stabilize

its inverse in the selected portfolio.

Let λ̂2
1 ≥ λ̂2

2 ≥ ... ≥ λ̂2
N ≥ 0 be the eigenvalues of the sample covariance matrix Σ̂. By

spectral decomposition, we have that Σ̂ = PDP
′

with PP
′

= IN where P is the matrix

of eigenvectors and D the diagonal matrix with eigenvalues λ̂2
j on the diagonal. Let also
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Σ̂α be the regularized inverse of Σ̂.

Σ̂α = PDαP
′

where Dα is the diagonal matrix with elements q(α, λ̂2
j)/λ̂

2
j . The positive parameter α

is the regularization parameter, a kind of smoothing parameter which is unknown and

need to be selected. q(α, λ̂2
j) is the damping function that depends on the regularization

scheme used.

3.1 Tikhonov regularization (TH)

This regularization scheme is close to the well known ridge regression used in presence

of multicolinearity to improve properties of OLS estimators. In Tikhonov regularization

scheme, the real function q(α, λ̂2
j) is given by

q(α, λ̂2
j) =

λ̂2
j

λ̂2
j + α

3.2 The spectral cut-off (SC)

It consists in selecting the eigenvectors associated with the eigenvalues greater than some

threshold.

q(α, λ̂2
j) = I

{
λ̂2
j ≥ α

}

The explosive influence of the factor 1/λ̂2
j is filtered out by imposing q(α, λ̂2

j) = 0 for

small λ̂2
j , that is λ̂2

j < α. α is a positive regularization parameter such that no bias

is introduced when λ̂2
j exceeds the threshold α. Another version of this regularization

scheme is the Principal Components (PC) which consists in using a certain number of

eigenvectors to compute the inverse of the operator. The PC and the SC are perfectly

equivalent, only the definition of the regularization term α differs. In the PC, α is the

number of principal components. In practice, both methods will give the same estimator.

3.3 Landweber Fridman regularization (LF)

In this regularization scheme, Σ̂α is computed by an iterative procedure with the formula





Σ̂α
l =

(
IN − cΣ̂α

)
Σ̂l−1 + cΣ̂ for l = 1, 2, ...1/α− 1

Σ̂α
0 = cΣ̂
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The constant c must satisfy 0 < c < 1/λ̂2
1. Alternatively, we can compute this

regularized inverse with

q(α, λ̂2
j) = 1−

(
1− cλ̂2

j

) 1

α

The basic idea behind this procedure is similar to spectral cut-off but with a smooth bias

function.

See Carrasco, Florens, and Renault (2007) for more details about these regularization

techniques. The regularized diversified portfolio for a given regularization scheme is

ω̂α =
Σ̂ασ̂

σ̂′Σ̂ασ̂
=
(
σ̂

′

Σ̂ασ̂
)−1

Σ̂ασ̂. (5)

This regularized portfolio depends on an unknown tuning parameter that needs to be

selected through a data-driven method.

4 Asymptotic properties of the selected portfolio

In this section we will look at the efficiency of the regularized portfolio with respect to

the diversification ratio. We will also propose a data-driven method to select the tuning

parameter.

4.1 Efficiency of the regularized diversified portfolio

To obtain the efficiency of the selected portfolio, we need to impose some regularity

conditions, in particular we will need the following assumption.

Assumption A: Σ
N

is a trace class operator.

A a trace class operatorK is a compact operator with a finite trace i.e Tr (K) = O (1).

This assumption is more realistic than assuming that Σ is a Hilbert-Schmidt operator.

Moreover, Carrasco, Koné, and Noumon (2019) show that assumption A holds when the

returns are generated from a standard factor model.

Under assumption A, the following proposition presents information about the asymp-

totic property of the diversification ratio associated with the selected portfolio.

Proposition 1. Under assumption A we have that

DR (ω̂α) →p DR (ωt) , (6)

if N
α
√
T
→ 0 as T goes to infinity.
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Proof. In the appendix.

Comment on proposition 1. The regularity condition behind proposition 1 im-

plies several things. First, α
√
T → +∞ implies that the estimation window should go to

infinity faster than the optimal tuning parameter goes to zero. Second, N
α
√
T
→ 0 implies

that α
√
T should go to infinity faster than the number of assets in the financial market.

Hence, the number of assets should be limited asymptotically compared with the estima-

tion window. Since, the regularization parameter α is in (0, 1), N
α
√
T
→ 0 is implied by

the following condition N√
T
→ 0. However, the regularity condition N√

T
→ 0 seems to be

more restrictive than assuming that N
T

→ Constant. One way to avoid this regularity

condition will be to assume that the covariance matrix of assets returns is a trace class

operator or to assume that this covariance matrix is a Hilbert-Schmidt operator. These

assumptions seem to be more restrictive than assuming that N√
T
→ 0, which seems to be

close to the reality asymptotically. Moreover, N√
T
→ 0 is only an asymptotic assumption

and we do not need to have N√
T
close to zero in practice to obtain good performance with

the regularized portfolio. Particularly, in finite sample, N could be larger than T or too

close to T . Proposition 1 shows that the regularized diversified portfolio is asymptotically

efficient in terms of the diversification ratio for a wide choice of the tuning parameter.

Meaning that, even if the optimal diversified portfolio in Equation (4) is unknown, there

exists a feasible portfolio obtained by regularization capable of reaching similar level of

performance in terms of the diversification ratio.

4.2 Data-driven Method for Selecting the Tuning Parameter

We show in the previous sections that the selected portfolio depends on a certain smooth-

ing parameter α ∈ (0, 1). We have derived the efficiency of the selected portfolio assuming

that this tuning parameter is given. However, in practice, the regularization parameter is

unknown and needs to be selected. Hence, we propose a data-driven selection procedure

to obtain an approximation of this parameter.

Our objective here is to select the tuning parameter which minimizes the distance

between the inverse of the estimated covariance matrix and the inverse of the true co-

variance matrix. According to Ledoit and Wolf (2003), most of the existing shrinkage

estimators from finite-sample statistical decision theory as well as in Frost and Savarino

(1986) break down when N ≥ T because their loss functions involve the inverse of the

sample covariance matrix which is a singular matrix in this situation. Therefore, to avoid

this problem, they propose a loss function that does not depend on this inverse.This loss

function is a quadratic measure of distance between the true and the estimated covari-

ance matrices based on the Frobenius norm. Unlike in Ledoit and Wolf (2003), we will

use a loss function that depends on the inverse of the covariance matrix under the as-

sumption that the true covariance matrix is invertible. One important thing to notice

here is that the regularized covariance matrix is always invertible even if N ≥ T meaning
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that our loss function exists for N ≥ T . In fact, we know that the optimal diversified

portfolio as given by Equation (4) depends on the inverse of the covariance matrix of

assets returns. And because our objective is to stabilize the inverse of this covariance

matrix in the estimated portfolio by regularization, we propose here to use a loss function

that minimizes a quadratic distance between the regularized inverse and the theoretical

covariance matrix.

The loss function we consider here is given by

µ
′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ (7)

where µ is the expected excess return. The choice of this specific quadratic distance is

useful to obtain a criterion that can easily be approximated by generalized cross validation

approach.

Hence, the objective is to select the tuning parameter that minimizes

E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}
. (8)

It implies that

α̂ = arg min
α∈HT

E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}
(9)

To obtain a better approximation of the tuning parameter based on a generalized

cross-validation criterion, we need additional assumption. So, let start with some useful

notations.

We denote by Ω = E
(
rtr

′

t

)
= E

(
X

′

X
)
/T and β = Ω−1µ = E (X ′X)−1 E (X ′1T )

where rt, t = 1, · · · , T are the observations of the excess returns and X the T ×N matrix

with tth row given by r′t.

Assumption B

For some ν > 0, we have that

N∑

j=1

< β, φj >
2

η2νj
< ∞

where φj and η2j denote the eigenvectors and eigenvalues of Ω
N
.

The regularity condition in assumption B can be found in Carrasco, Florens, and

Renault (2007) and Carrasco (2012). Moreover, Carrasco, Koné, and Noumon (2019)

show that assumption B hold if the returns are generated by a factor model. Assumption

B is used combined with assumption A to derive the rate of convergence of the mean

squared error in the OLS estimator of β. These two assumptions imply in particular that
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‖β‖2 < +∞ such that we have the following relations

‖β − βα‖2 =
{

O (αν+1) for SC,LF

O
(
αmin(ν+1,2)

)
for T

βα is the regularized version of β.

The following result gives us a very nice equivalent of the objective function. We

can easily apply a cross-validation approximation procedure on this expression of the

objective function.

Proposition 2. Under assumptions A and B we have that

E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}
∼ E

{(
Σ̂αµ̂− Σ−1µ

)′

Σ
(
Σ̂αµ̂− Σ−1µ

)}

if 1
α2T

→ 0 and
√
Nαmin( ν

2
,1) → 0 as T goes to infinity.

Proof. In the appendix.

We obtain the following corollary from this proposition.

Corollary 1. Under assumptions A and B we have that

E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}
∼ 1

T
E
∥∥∥X

(
β̂α − β

)∥∥∥
2

+
(µ′ (βα − β))2

(1− µ′β)

if 1
α2T

→ 0 and
√
Nαmin( ν

2
,1) → 0 as T goes to infinity.

The result in corollary 1 is obtained by using proposition 2 combined with proposition

1 in Carrasco, Koné, and Noumon (2019).

From corollary 1, it follows that minimizing E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}

is equivalent to minimizing

1

T
E
∥∥∥X

(
β̂α − β

)∥∥∥
2

(10)

+
(µ′ (βα − β))2

(1− µ′β)
. (11)

Terms (10) and (11) depend on the unknown β and hence need to be approximated. The

approximation of these two quantities is borrowed from Carrasco, Koné, and Noumon

(2019). More precisely, the rescaled MSE

1

T
E

[∥∥∥X
(
β̂α − β

)∥∥∥
2
]
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can be approximated by generalized cross validation criterion:

GCV (α) =
1

T

‖(IT −MT (α)) 1T‖2

(1− tr (MT (α)) /T )2
.

Using the fact that

µ̂′ (βα − β) =
1′T
T

(MT (α)− IT )Xβ,

(11) can be estimated by plug-in:

(
1′T (MT (α)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

) (12)

where β̂α̃ is an estimator of β obtained for some consistent α̃ (α̃ can be obtained by

minimizing GCV (α)).

The optimal value of τ is defined as

α̂ = arg min
τ∈HT




GCV (α) +

(
1′T (MT (α)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

)





where HT = {1, 2, ..., T} for spectral cut-off and Landweber Fridman and HT = (0, 1) for

Ridge.

5 Simulations and empirical study

We start this section by a simulation exercise to set up the performance of our procedure

and compare our result to the existing methods. In particular, we compare our method

to the most diversified portfolio proposed by Choueifaty and Coignard (2008). More

precisely, we focus on how our procedure performs in terms of the Sharpe ratio and the

diversification ratio. To end this section, we analyze the out-of-sample performance of

the selected portfolio.

5.1 Data

In our simulations and empirical analysis, various forms of monthly data will be used

from July 1980 to June 2016. The one-month Treasury-Bill (T-Bill) rate is used as

a proxy for the risk-free rate and Rf is calibrated to be the mean of the one-month

Treasury-Bill rate observed in the data. We use monthly returns of Fama-French three

factors and of 30 industry portfolios from the Kenneth R. French data library in order

to calibrate unknown parameters of the simulation model. In the empirical study, we
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also use monthly data for the 100 portfolios formed on size and book-to-market from

the Kenneth R. French data Library and the CRSP monthly data for the S&P500 index

constituents.

5.2 Simulation

We implement a simple simulation exercise to assess the performance of our procedure

and compare it with the existing procedures. Let us consider for this purpose a simple

economy with N ∈ {10, 20, 40, 60, 80, 90, 100} risky assets. We use several values of N to

see how the size of the financial market (defined by the number of assets in the economy)

could affect the performance of the selected strategy. Let T be the sample size used to

estimate the unknown parameters in the investment process. Following Chen and Yuan

(2016) and Carrasco, Koné, and Noumon (2019), we simulate the excess returns at each

simulation step from the following three-factor model for i = 1, ..., N and t = 1, ..., T

rit = bi1f1t + bi2f2t + bi3f3t + ǫit (13)

ft = (f1t, f2t, f3t)
′

is the vector of common factors, bi = (bi1, bi2, bi3)
′

is the vector of

factor loadings associated with the ith asset and ǫit is the idiosyncratic component of rit
satisfying E (ǫit|ft) = 0. We assume that ft ∼ N (µf ,Σf ) where µf and Σf are calibrated

on the monthly data of the market portfolio, the Fama-French size and the book-to-

market portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (µb,Σb)

with µb and Σb calibrated using data of 30 industry portfolios from July 1980 to June

2016. Idiosyncratic terms ǫit are supposed to be normally distributed. The covariance

matrix of the residual vector is assumed to be diagonal and given by Σǫ=diag(σ2
1, ..., σ

2
N)

with the diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to

yield an average cross-sectional volatility of 20%.

In the compact form (13) can be written as follows:

R = BF + ǫ (14)

where B is a N × 3 matrix whose ith row is b
′

i. The covariance matrix of the vector of

excess return rt is given by

Σ = BΣfB
′

+ Σǫ.

The mean of the excess return is given by µ = Bµf . The return on the risk-free asset Rf

is calibrated to be the mean of the one-month T-B observed in the data from July 1980

to June 2016.

The calibrated parameters used in our simulation process are given in Table 1. The

gross return on the risk-free asset calibrated on the data is given by Rf = 1.0036. Once

generated, the factor loadings are kept fixed over replications, while the factors differ

from simulations and are drawn from a trivariate normal distribution.
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Table 1: Calibrated parameters

Parameters for factors loadings Parameters for factors returns

µb Σb µf Σf

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 -0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 -0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 -0.0004 -0.0003 0.0009

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt)

is given as follows

SR(ωt) =
[
µ

′

Σµ
]1/2

To evaluate the performance of our procedure in terms of the Sharpe ratio, we focus

on the actual Sharpe ratio associated with the selected portfolio. The actual Sharpe ratio

at time point t is given by

SR(ω̂t) =
ω̂

′

tµ[
ω̂

′

tΣω̂
′

t

]1/2

We consider the following portfolio selection procedures:

❼ The sample-based diversified portfolio (SbDP). This strategy is obtained using sam-

ple moments to estimate the unknown parameters in the maximum diversification

portfolio.

SbDP =
Σ̂−1σ̂

σ̂′Σ̂−1σ̂

❼ The most diversified portfolio (MDP) proposed by Choueifaty, Froidure, and Reynier

(2013). This strategy is obtained by solving the optimization problem in Equation

(2) under the following constraint

ωi ≥ 0 for i = 1, ..., N.

The closed form associated with this new optimization problem is given as follows

MDP = diag (Σ)C−11

where diag (Σ) is a diagonal matrix of assets volatilities, C the correlation matrix

and 1 a N×1 vector of ones. The MDP is then estimated by replacing the unknown

parameters by their empirical counterparts.

❼ The global minimum variance portfolio (GMVP) obtained by minimizing the vari-

ance of the return on the optimal selected portfolio. By solving this optimization

13



problem, the following closed form is obtained

GMV P =
Σ−11

1′Σ−11

This solution is then estimated by replacing the covariance matrix by the sample

covariance matrix.

❼ The regularized strategies such as: the ridge regularized diversified portfolio (RdgDP),

the spectral cut regularized diversified portfolio (SCDP), and the Landweber-Fridman

regularized diversified portfolio (LFDP).

❼ The equal-weighted portfolio which is also called the naive portfolio (XoNP) which

allocates a constant amount 1/N+1 in each asset.

❼ The target (or the maximum Sharpe ratio) portfolio (TgP). The closed form of the

target portfolio is

TgP =
Σ−1µ

µ′Σ−11

This portfolio is also estimated using sample moments such as the sample mean

and the sample covariance matrix to estimate the unknown parameters.

❼ The linear factor based shrinkage estimators proposed by Ledoit and Wolf (2003)

(LWP). It consists of replacing the sample covariance matrix in the selected port-

folio by an optimally weighted average of two existing estimators: the sample co-

variance matrix and single-index covariance matrix. This method involves also a

tuning parameter that is unknown and has been selected by the authors. The tun-

ing parameter selection procedure proposed in Ledoit and Wolf (2003) is based on

minimizing the distance between the population covariance matrix and the regular-

ized one. This implies that the way they select the turning parameter is different

from our data-driven method. Therefore, the LWP will be consider here as a very

good benchmark (and it will be the only benchmark that we consider) to evaluate

the ability of our data-driven method to deliver additional performance compare

to other data-driven methods.

We perform 1000 simulations and estimate our statistics over replications. We obtain

the following results about the actual Sharpe ratio.

Table 2 contains the results about the average monthly Sharpe ratio obtained by

simulations. The results show that the sample based diversified portfolio performs very

poorly in terms of maximizing the Sharpe ratio in the financial market with large number

of assets. This result is essentially due to the fact that the estimation error from estimat-

ing the vector of assets volatilities is amplified by using the sample covariance matrix of
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Table 2: The average monthly Actual Sharpe ratio from optimal strategies using a three-
factor model as a function of the number of assets in the economy with the sample size
n = 120, over 1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of risky assets

10 20 40 60 80 90 100

SbDP 0.1549 0.0906 0.0889 0.0779 0.0652 0.0719 0.0704
XoNP 0.2604 0.2604 0.2415 0.2525 0.2406 0.2461 0.2467
GMVP 0.2227 0.2338 0.2098 0.2298 0.1710 0.1640 0.1449
MDP 0.2514 0.2545 0.2410 0.2544 0.1778 0.1821 0.1935
TgP 0.2608 0.2818 0.2662 0.2687 0.2026 0.1925 0.1699
LWP 0.2589 0.2702 0.2688 0.2704 0.2628 0.2521 0.2507
RdgDP 0.2587 0.2785 0.2817 0.2907 0.2947 0.2830 0.2991
SCDP 0.2592 0.2872 0.2993 0.2898 0.2746 0.2887 0.2853
LFDP 0.2605 0.2765 0.2840 0.2870 0.2850 0.2912 0.2980
True SR 0.2626 0.2922 0.3393 0.3379 0.3592 0.3477 0.3657

assets returns closed to a singular matrix when N becomes too large compared with the

sample size. Hence, even if this strategy is supposed to be the maximum diversification’s

one with the highest Sharpe ratio, the SbDP is dominated by several other strategies

such as the GMVP, the XoNP, and the TgP. Therefore, this strategy cannot be consider

as the maximum diversification strategy in practice. To solve this problem, Choueifaty,

Froidure, and Reynier (2013) proposes the most diversified portfolio (MDP) obtained

by maximizing the diversification ratio under a non-negative constraint on the portfolio

weights. This additional constraint in the investment process may help to reduce the

effect of estimation error on the performance of the selected portfolio. The results of

this analysis are in Table 2. By imposing the non-negative constraint, investors consid-

erably improve the performance of the selected portfolio in terms of the Sharpe ratio.

This new strategy even outperforms the global minimum variance portfolio. However,

this procedure is still dominated by the target portfolio and the equal weighted portfo-

lio meaning that much remains to be done about finding the maximum diversification

strategy in practice. One explanation to this result is that imposing the non-negative

constraint on the portfolio weight may limit the ability of the selected portfolio to be

fully diversified. Hence, one needs to find a more general estimation procedure for the

maximum diversified portfolio that allows for short selling.

For this purpose, we propose a new way to estimate the optimal diversified portfolio by

stabilizing the inverse of the sample covariance matrix without imposing a non-negative

constraint on the portfolio weights in the investment process. The results of these meth-

ods are also in Table 2. The first thing to point out about these results is that the
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regularized diversified portfolio outperforms the most diversified portfolio in terms of

maximizing the Sharpe ratio. For instance, we obtain an average Sharpe ratio of 0.2514,

0.2587, 0.2592, and 0.2605 for the MDP, the RdgDP, the SCDP, and the LFDP respec-

tively when only 10 assets are considered in the economy. The difference in terms of the

actual Sharpe ratio performance between our procedure and the most diversified portfolio

significantly increases with the number of assets in the financial market. For example, for

100 assets, the average Sharpe ratio is about 0.1935, 0.2991, 0.2853, and 0.2980 for the

MDP, the RdgDP, the SCDP, and the LFDP respectively. This results may be due to the

fact that when the number of assets in the economy increases, the degree of diversification

of the selected strategy may deteriorate with non-negative constraints on the investment

process that may reduce the ability to find a strategy that performs the Sharpe ratio.

Moreover, the regularized diversified portfolio outperforms the target strategy and the

equal-weighted portfolio when the number of assets in the financial market exceeds 40.

Nonetheless, for 10 assets in the economy, the target portfolio outperforms the RdgDP

and the SCDP but is dominated by the LFDP. With 20 assets the target portfolio dom-

inates the RdgDP and the LFDP and is dominated by the SCDP. The equal-weighted

portfolio outperforms some regularized strategies such as the RdgDP and the SCDP only

for 10 assets in the financial market. The fact that the regularized strategies give very

interesting results in terms of maximizing the Sharpe ratio (compared with the existing

strategies) for large N is because these methods are essentially used to address estimation

issues in large dimensional problems. The performance of these procedures seems to be

independent of the size of the financial market. In fact, with a reasonable choice of the

tuning parameter, each of these methods can achieve satisfactory performance in terms

of the Sharpe ratio even if the number of assets in the economy is large.

Our regularized portfolio also outperforms the selected strategy obtained using the

linear shrinkage estimator of Ledoit and Wolf (2003) to estimate the covariance matrix of

asset returns. The difference in terms of performance between these two portfolios tends

to become large when the number of assets we consider in the economy increases. This

result can be due to the fact that the estimation error associated with estimating the

single-index covariance matrix may be important for very large assets. One other thing

that could explain this result comes from the fact that our tuning parameter is selected

to minimize the distance between the regularized inverse of the covariance matrix and

the inverse of the population’s one. And, because the optimal portfolio depends on the

inverse of the covariance matrix, therefore selecting a tuning parameter that minimizes

the estimation error in the inverse of the covariance matrix seems to be more appropriate

than choosing this parameter to minimize the estimation error in the covariance matrix.

One important thing to point out is that the Ridge regularized portfolio is a special case

of the selected portfolio with the linear shrinkage estimation of the covariance matrix.

In this case, the structural covariance matrix is replaced by the identity to avoid the

potential estimation error which may be associated with this covariance matrix.

Similar results are obtained when choosing the estimation window to be 1000 and by
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increasing the number of assets in the economy from 150 to 999

(N ∈ {150, 250, 400, 550, 700, 850, 950, 999}) as given in Table 4.

To analyze the statistical significance of the regularized portfolio over the other strate-

gies, we implement the following test procedure about the Sharpe ratio:

H0 : RSR ≤ SR0 vs H1 : RSR > SR0

where RSR is the regularized Sharpe ratio and SR0 the Sharpe ratio of the portfolio

under comparison. This test is conducted using the same procedure as in Ao, Yingying,

and Zheng (2019). For more information about this test procedure see Jobson and

Korkie (1981) and Memmel (2003). The fundamental objective of this test procedure is

to confirm the domination of our method over the existing strategies with a statistic test.

The p-values associated with this test procedure for each of the regularized portfolios

are given in Tables 5-7. According to these results, our regularized portfolio dominates

the other strategies in terms of maximizing the Sharpe ratio at the significant level 5%.

In particular, our method outperforms the LW portfolio in the large financial market

setting.

We also compute in Table 3 the average monthly diversification ratio associated with

the selected portfolio. We obtain similar results as what has been obtained in Table

2. The regularized portfolio performs well in terms of maximizing the diversification

ratio and dominated most of the existing methods in the large financial market. The

diversification ratio that we obtain with our method is very close to the true one. This

implies that in addition to the asymptotic results obtained in the Section 4, the regular-

ized portfolio has very good finite sample properties. This result shows that we do not

need N/
√
T to be close to zero to improve the finite sample performance of the selected

portfolio.

5.3 Empirical study

In this empirical part, our objective is to use the real data (unlike in the simulation

part) to estimate the unknown parameters of the optimal portfolio and then to evaluate

the performance of each estimation procedure based on the same statistics as in the

simulation section. Let us notice that our purpose in this paper is not forecasting but to

propose a consistent way that allows us to correctly estimate the portfolio in Equation

(4) in large dimensional setting.

We apply our method to several sets of portfolios from Kenneth R. French’s web-

site. In particular, we apply our procedure to the following portfolios: the 30-industry

portfolios and the 100 portfolios formed on size and book-to-market. We allow investors

to re-balance their portfolios every month. This implies that the optimal portfolio is

constructed at the end of each month for a given estimation window M by maximizing

the diversification ratio. The investor holds this portfolio for one month, realizes gains

and losses, updates information, and then recomputes optimal portfolio weights for the

next period using the same estimation window. This procedure is repeated each month,
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Table 3: The average monthly Actual monthly diversification ratio from optimal strate-
gies using a three-factor model as a function of the number of assets in the economy with
the sample size n = 120, over 1000 replications. True DR is the true diversification ratio.

Strategies
Number of risky assets

10 20 40 60 80 90 100

SbDP 2.315 2.307 2.304 2.08 1.308 1.128 1.098
XoNP 3.103 3.140 3.180 3.184 3.325 3.288 3.154
GMVP 3.242 3.241 3.150 3.185 3.147 3.155 3.093
MDP 3.252 3.320 3.240 3.290 3.320 3.265 3.254
TgP 3.240 3.170 3.105 3.050 3.132 3.149 3.080
LWP 3.345 3.360 3.320 3.380 3.398 3.403 3.420
RdgDP 3.325 3.428 3.480 3.590 3.598 3.602 3.640
SCDP 3.347 3.435 3.446 3.570 3.589 3.615 3.625
LFDP 3.289 3.405 3.470 3.548 3.604 3.509 3.638

True DR 3.45 3.56 3.57 3.68 3.8 3.7 3.9

generating a time series of out-of-sample returns. This time series can then be used to

analyze the out-of-sample performance of each strategy based on several statistics such

as the out-of-sample Sharpe ratio. For this purpose, we use data from July 1980 to June

2018.

Table 8 contains some results of the out-of-sample analysis in terms of the Sharpe

ratio for two different data sets: the FF30 and the FF100. The empirical results in

this table confirm what we have obtained in the simulation part. According to this

result, by stabilizing the inverse of the covariance matrix in the maximum diversification

portfolio, we considerably improve the performance of the selected strategy in terms of

maximizing the Sharpe ratio. Moreover, our regularized strategies outperform the most

diversified strategy, the target portfolio, The LW portfolio, and the global minimum

variance portfolio for each data set. The most-diversified strategy outperforms the global

minimum variance portfolio but is dominated by the Equal-Weight portfolio for each data

set. These results of the most-diversified portfolio can essentially be explained by the fact

that by imposing a non-negative constraint in the investment process, one cannot fully

diversify the optimal portfolio. The LWP outperforms the other strategies, in particular,

this method dominates the most-diversified strategy of Choueifaty, Froidure, and Reynier

(2013). The return of the regularized portfolio is less volatile than what we obtain with

the most-diversified portfolio, the target one, and the LW strategy.

We are also interested in how our procedure can perform in terms of minimizing the

re-balancing cost at a given period. The re-balancing cost at the time t can be naturally
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measured by

Costt =
N∑

j=1

|ωt,j − ωt−1,j| .

This measure of the trading cost is, in fact, the turnover. The transaction cost can be

measured using the turnover in the sense that these costs are positively related to the

turnover. Therefore, in the rest of the paper the turnover will be called transaction costs.

The average trading cost over the investment horizon is given by

TradingCost =
1

Q

Q∑

t=1

Costt

where Q is the number of re-balancing periods. This quantity can be interpreted as the

average percentage of wealth traded at each period. The average monthly re-balancing

costs are given in Table 9. These results show that by stabilizing the inverse of the co-

variance matrix by regularization, we help investors to select strategies that significantly

reduce the re-balancing cost. The regularized portfolio outperforms the other strategies

in terms of minimizing the trading costs faced by investors in their investment process.

The evolution of the share of the selected assets in the optimal portfolio in Figure

1 shows that by regularizing the covariance matrix, we considerably reduce extreme

positions in the selected strategy. Therefore, we significantly reduce the transaction costs

faced by investors when they decide to take positions in the financial market. Moreover,

the return on the selected portfolio becomes less volatile in such a situation.

Tables 10 and 11 contain the Fama-French monthly regression coefficients for the 100

portfolios formed on size and book-to-market and the 30-industry portfolios respectively.

Monthly data are used from July 1990 to June 2018. According to the result in Table

10, only the return on the Equal-Weight portfolio can be explained by the Fama-French

three-factor model for the 100 portfolios formed on size and book-to-market. The re-

turn obtained with the regularized portfolios and the most diversified portfolio can be

explained only with the return on the market portfolio (a one-factor model) through

a positive relation. However, the return of the most diversified portfolio and the global

minimum variance portfolio can be explained with a two factors model when using the 30-

industry portfolios. The return of the other strategies such as the regularized portfolios,

the Equal-Weight portfolio, and the target portfolio can be explained by the Fama-French

three-factor model.

Since the portfolio optimization is done in general based on individual stocks instead

of aggregate portfolios as the Fama-French portfolio, we apply also our method to a subset

of the S&P500 index constituents to see how our method performs in such universe. We

use for this purpose monthly data from March 1986 to December 2019. At the beginning

of this empirical analysis, we randomly form pools of 100 or 150 stocks from the S&P500
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index constituents for which there are complete return data for the prior 120 or 240

months. The optimal portfolio will then be constructed using the same procedure as

before. We then compute the out-of-sample performance in terms of the Sharpe ratio

and the turnover. The results of this empirical analysis are given in Tables 12 & 13.

We obtain similar results as in the case of the Fama-French portfolios proving that our

method also performs well when the optimal portfolio is formed with individual stocks

from S&P500.

6 Conclusion

This paper addresses the estimation issue that exists in the maximum diversification

portfolio framework in the large financial market. We propose to stabilize the inverse

of the covariance matrix in the diversified portfolio using regularization techniques from

inverse problem literature. These regularization techniques namely the ridge, the spec-

tral cut-off, and Landweber-Fridman involve a regularization parameter or penalty term

whose optimal value is selected to minimize the expected distance between the inverse of

the estimated covariance matrix and the inverse of the true covariance matrix. We show,

under appropriate regularity conditions, that the selected strategy by regularization is

asymptotically efficient with respect to the diversification ratio for a wide choice of the

tuning parameter. Meaning that, even if the diversified portfolio is unknown, there ex-

ists a feasible portfolio obtained by regularization capable of reaching a similar level of

performance in terms of the diversification ratio.

To evaluate the performance of our procedures we implement a simulation exercise

based on a three-factor model calibrated on real data from the US financial market. We

obtain by simulation that our procedure significantly improves the performance of the

selected strategy with respect to the Sharpe ratio. Moreover, the regularized rules are

compared to several strategies such as the most diversified portfolio, the target port-

folio, the global minimum variance portfolio, and the naive 1/N strategy in terms of

in-sample and out-of-sample Sharpe ratio, and it is shown that our method yields sig-

nificant Sharpe ratio improvements. To confirm our simulations, we do an empirical

analysis using Kenneth R. French’s 30-industry portfolios and 100 portfolios formed on

size and book-to-market. According to this empirical result, by stabilizing the inverse of

the covariance matrix in the maximum diversification portfolio, we considerably improve

the performance of the selected strategy in terms of maximizing the Sharpe ratio.

20



References

Ao, M., L. Yingying, and X. Zheng (2019): “Approaching mean-variance efficiency

for large portfolios,” The Review of Financial Studies, 32(7), 2890–2919.

Arnott, R. D., J. Hsu, and P. Moore (2005): “Fundamental indexation,” Financial

Analysts Journal, 61(2), 83–99.

Carrasco, M. (2012): “A regularization approach to the many instruments problem,”

Journal of Econometrics, 170(2), 383–398.

Carrasco, M., and J.-P. Florens (2000): “Generalization of GMM to a continuum

of moment conditions,” Econometric Theory, 16(6), 797–834.

Carrasco, M., J.-P. Florens, and E. Renault (2007): “Linear inverse problems

in structural econometrics estimation based on spectral decomposition and regulariza-

tion,” Handbook of Econometrics, 6, 5633–5751.
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7 Proofs

7.1 Proof of Proposition 1

By definition we have that

DR(ω̂α) =
ω̂

′

ασ√
ω̂′

αΣω̂α

.

Let us first look at ω̂
′

αΣω̂α

ω̂
′

αΣω̂α = [(ω̂α − ω) + ω]
′

Σ [(ω̂α − ω) + ω]

= ω
′

Σω + (ω̂α − ω)
′

Σ (ω̂α − ω)︸ ︷︷ ︸
(a)

+2 (ω̂α − ω)
′

Σω︸ ︷︷ ︸
(b)

.

Now we are going to look at the properties of (a) and (b). We know that

ω̂α =


σ̂

′

Σ̂ασ̂︸ ︷︷ ︸
(c)




−1

Σ̂ασ̂︸︷︷︸
(d)

.

(c) = σ
′

Σ̂ασ + (σ̂ − σ)
′

Σ̂α (σ̂ − σ) + 2 (σ̂ − σ)
′

Σ̂ασ

Σ̂α =
(
Σ̂α − Σα + Σα

)
.

∥∥∥(σ̂ − σ)
′

Σ̂α (σ̂ − σ)
∥∥∥ =

∥∥∥∥∥
(σ̂ − σ)

′

√
N

(
Σ̂

N

)α
(σ̂ − σ)√

N

∥∥∥∥∥

= Op

(
‖σ̂ − σ‖2

Nα

)

= Op




∥∥∥ σ̂−σ√
N

∥∥∥
2

α


 .
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By assumption A
∥∥∥ σ√

N

∥∥∥ = O (1). Hence, we obtain that

∥∥∥(σ̂ − σ)
′

Σ̂ασ
∥∥∥ =

∥∥∥∥∥
(σ̂ − σ)

′

√
N

(
Σ̂

N

)α
σ√
N

∥∥∥∥∥

= Op

(‖σ̂ − σ‖√
Nα

)

= Op




∥∥∥ σ̂−σ√
N

∥∥∥
α


 .

Using those information combine with the fact that Σ̂α = Σ̂α − Σα + Σα, we have that

(c) = σ
′

Σασ + σ
′

(
Σ̂α − Σα

)
σ +Op




∥∥∥ σ̂−σ√
N

∥∥∥+
∥∥∥ σ̂−σ√

N

∥∥∥
2

α


 .

∥∥∥σ′

(
Σ̂α − Σα

)
σ
∥∥∥ =

∥∥∥∥∥
σ

′

√
N

[(
Σ̂

N

)α

−
(
Σ

N

)α
]

σ√
N

∥∥∥∥∥

≤
∥∥∥∥

σ√
N

∥∥∥∥
2
∥∥∥∥∥

(
Σ̂

N

)α

−
(
Σ

N

)α
∥∥∥∥∥

= Op

(∥∥∥∥∥

(
Σ̂

N

)α

−
(
Σ

N

)α
∥∥∥∥∥

)
.

∥∥∥∥∥

(
Σ̂

N

)α

−
(
Σ

N

)α
∥∥∥∥∥ ≤

∥∥∥∥
(
Σ

N

)α∥∥∥∥

∥∥∥∥∥

(
Σ̂

N

)α∥∥∥∥∥

∥∥∥∥∥
Σ̂

N
− Σ

N

∥∥∥∥∥ .

Hence,

∥∥∥∥∥

(
Σ̂

N

)α

−
(
Σ

N

)α
∥∥∥∥∥ = Op




∥∥∥ Σ̂
N
− Σ

N

∥∥∥
α




which implies that

(c) = σ
′

Σασ +Op




∥∥∥ Σ̂
N
− Σ

N

∥∥∥+
∥∥∥ σ̂−σ√

N

∥∥∥+
∥∥∥ σ̂−σ√

N

∥∥∥
2

α


 .
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As T → ∞ we have that α → 0 ⇒

(c) = σ
′

Σ−1σ +Op




∥∥∥ Σ̂
N
− Σ

N

∥∥∥+
∥∥∥ σ̂−σ√

N

∥∥∥+
∥∥∥ σ̂−σ√

N

∥∥∥
2

α


 .

Using the Assumption A combined with Theorem 4 of Carrasco and Florens (2000), we

have that
∥∥∥∥∥
Σ̂

N
− Σ

N

∥∥∥∥∥ = Op

(
1√
T

)
.

Moreover, since
∥∥∥ σ̂−σ√

N

∥∥∥
2

= Op

(
1
T

)
by assumption A, we have that

(c) = σ
′

Σ−1σ +Op

(
1

α
√
T

)
.

(d) = Σ̂ασ̂

= Σ̂ασ + Σ̂α (σ̂ − σ)

= Σασ +
(
Σ̂α − Σα

)
σ + Σ̂α (σ̂ − σ) .

Since α → 0 as T → ∞, we have that

(d) = Σ−1σ +
(
Σ̂α − Σ

)
σ + Σ̂α (σ̂ − σ) .

We know that

∥∥∥Σ̂α (σ̂ − σ)
∥∥∥ =

∥∥∥∥∥

(
Σ̂

N

)α
(σ̂ − σ)

N

∥∥∥∥∥

≤
∥∥∥∥∥

(
Σ̂

N

)α∥∥∥∥∥

∥∥∥∥
(σ̂ − σ)

N

∥∥∥∥

= Op

(
1

α
√
TN

)
.
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Using the fact that,

∥∥∥
(
Σ̂α − Σ

)
σ
∥∥∥ =

∥∥∥∥∥

{(
Σ̂

N

)α

−
(
Σ

N

)α
}

σ

N

∥∥∥∥∥

≤
∥∥∥∥∥

(
Σ̂

N

)α

−
(
Σ

N

)α
∥∥∥∥∥
∥∥∥ σ
N

∥∥∥

= Op




∥∥∥ Σ̂
N
− Σ

N

∥∥∥
α
√
N




= Op

(
1

α
√
TN

)

we obtain that

(d) = Σ−1σ +Op

(
1

α
√
TN

)
.

Under the assumption that 1
α
√
T
→ 0, we have that

ω̂α = ω + op(1). (15)

By assumption A we have that ‖Σ‖ = O(N). Therefore, using (15), we obtain that

ω̂
′

αΣω̂α = ω
′

Σω + op(1) (16)

if N
α
√
T
→ 0. Therefore,

DR (ω̂α) →p DR (ωt) .

7.2 Proof of Proposition 2

(A) = µ
′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ
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We also know that µ = µ̂+ (µ− µ̂), so

(A) = µ
′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

=
[
Σ̂α (µ− µ̂) +

(
Σ̂αµ̂− Σ−1µ

)]′
Σ
[
Σ̂α (µ− µ̂) +

(
Σ̂αµ̂− Σ−1µ

)]

=
(
Σ̂αµ̂− Σ−1µ

)′

Σ
(
Σ̂αµ̂− Σ−1µ

)
+
[
Σ̂α (µ− µ̂)

]′
Σ
[
Σ̂α (µ− µ̂)

]

+ 2
[
Σ̂α (µ− µ̂)

]′
Σ
(
Σ̂αµ̂− Σ−1µ

)

Let denote by x = Σ−1µ and x̂ = Σ̂αµ̂, hence,

(A) = (x̂− x)
′

Σ (x̂− x) +
[
Σ̂α (µ− µ̂)

]′
Σ
[
Σ̂α (µ− µ̂)

]
+ 2

[
Σ̂α (µ− µ̂)

]′
Σ (x̂− x)

Since, ‖µ− µ̂‖2 = Op

(
N
T

)
,
∥∥∥
(

Σ̂
N

)α∥∥∥
2

= Op

(
1
α2

)
, we have that

∥∥∥∥
[
Σ̂α (µ− µ̂)

]′∥∥∥∥ =

∥∥∥∥∥∥

[(
Σ̂

N

)α
(µ− µ̂)

N

]′
∥∥∥∥∥∥

≤
∥∥∥∥∥

(
Σ̂

N

)α∥∥∥∥∥

∥∥∥∥
(µ− µ̂)

N

∥∥∥∥

= Op

(
1

α
√
TN

)

[
Σ̂α (µ− µ̂)

]′
Σ
[
Σ̂α (µ− µ̂)

]
= Op

(∥∥∥∥
[
Σ̂α (µ− µ̂)

]′∥∥∥∥
2

‖Σ‖
)

= Op

( ‖Σ‖
α2TN

)

Using the fact that ‖Σ‖ = O(N) by assumption A, we obtain that

[
Σ̂α (µ− µ̂)

]′
Σ
[
Σ̂α (µ− µ̂)

]
= Op

(
N

α2TN

)
= Op

(
1

α2T

)

x̂− x = Σ̂αµ̂− Σ−1µ

µ̂ = (µ̂− µ) + µ ⇒
x̂− x = Σ̂α (µ̂− µ) +

(
Σ̂α − Σ−1

)
µ ⇒
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[
Σ̂α (µ− µ̂)

]′
Σ (x̂− x) =

[
Σ̂α (µ− µ̂)

]′
Σ
[
Σ̂α (µ− µ̂)

]
+
[
Σ̂α (µ− µ̂)

]′
Σ
(
Σ̂α − Σ−1

)
µ

(
Σ̂α − Σ−1

)
µ =

(
Σ̂

N

)α [
Σ

N
− Σ̂

N

](
Σ

N

)−1
µ

N

= Op

(
1

α
√
TN

)

which implies that

(A) = (x̂− x)
′

Σ (x̂− x) +Op

(
2

α2T

)

= (x̂− x)
′

Σ (x̂− x) +Op

(
1

α2T

)

Therefore, we obtain that

E

{
µ

′

[(
Σ̂α − Σ−1

)′

Σ
(
Σ̂α − Σ−1

)]
µ

}

∼ E
{
(x̂− x)

′

Σ (x̂− x)
}

if 1
α2T

→ 0.

28



8 Tables and Figures

Table 4: The average monthly Actual Sharpe ratio from optimal strategies using a three-
factor model as a function of the number of assets in the economy with the sample size
n = 1000, over 1000 replications. True SR is the true actual Sharpe ratio.

Strategies
Number of risky assets

150 250 400 550 700 850 950 999

SbDP 0.1230 0.1104 0.103 0.0998 0.060 0.03 0.012 0.008
XoNP 0.2630 0.2640 2507 0.240 0.238 0.2207 0.2180 0.220
GMVP 0.3080 02908 0.2890 0.2780 0.250 0.1980 0.1017 0.095
MDP 0.3280 0.3305 0.3198 0.309 0.2679 0.2892 0.1985 0.120
TgP 0.3290 0.3105 0.307 0.3100 0.2608 0.210 0.180 0.098
LWP 0.3302 0.3408 0.3318 0.3070 0.415 0.4504 0.4601 0.4807
RdgDP 0.3702 0.3850 0.3980 0.458 0.524 0.540 0.558 0.601
SCDP 0.3689 0.3860 0.3980 0.460 0.5230 0.535 0.590 0.608
LFDP 0.3704 0.3840 0.3984 0.4560 0.5250 0.538 0.585 0.595
True SR 0.3758 0.3904 0.407 0.489 0.5480 0.588 0.608 0.618

Table 5: The p-value associated with Performance hypothesis testing with the Sharpe
ratio from Ridge regularized strategy using a three-factor model as a function of the
number of assets in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of risky assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.002 0.007 0.005 0.000 0.000 0.000 0.000
GMVP 0.008 0.004 0.006 0.007 0.000 0.000 0.000 0.000
MDP 0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.000
TgP 0.009 0.003 0.008 0.004 0.001 0.000 0.008 0.000
LWP 0.089 0.013 0.001 0.012 0.035 0.003 0.043 0.008
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Table 6: The p-value associated with Performance hypothesis testing with the Sharpe
ratio from Landweber Fridman regularized strategy using a three-factor model as a func-
tion of the number of assets in the economy with the sample size n = 1000, over 1000
replications.

Strategies
Number of risky assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.003 0.001 0.008 0.007 0.001 0.000 0.000 0.000
GMVP 0.010 0.003 0.007 0.002 0.001 0.000 0.000 0.000
MDP 0.005 0.001 0.004 0.000 0.000 0.000 0.000 0.000
TgP 0.008 0.004 0.005 0.004 0.002 0.000 0.008 0.000
LWP 0.090 0.014 0.003 0.009 0.040 0.007 0.001 0.007

Table 7: The p-value associated with Performance hypothesis testing with the Sharpe
ratio from spectral cut-off regularized strategy using a three-factor model as a function of
the number of assets in the economy with the sample size n = 1000, over 1000 replications.

Strategies
Number of risky assets

150 250 400 550 700 850 950 999

SbDP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
XoNP 0.004 0.003 0.006 0.005 0.000 0.000 0.000 0.000
GMVP 0.020 0.003 0.005 0.001 0.000 0.000 0.000 0.000
MDP 0.003 0.002 0.003 0.002 0.001 0.000 0.000 0.000
TgP 0.003 0.002 0.004 0.002 0.001 0.000 0.001 0.000
LWP 0.104 0.043 0.002 0.008 0.032 0.004 0.002 0.006

Table 8: Out-of-sample performance in terms of the Sharpe ratio applied on the 30
industry portfolios (FF30) and the 100 portfolios formed on size and book-to-market
(FF100) with a rolling window of 120.

Strategies XoNP GMVP MDP TGP RdgP LFP SCP LWP

FF30
ER 0.0110 0.01134 0.0121 0.017 0.0149 0.014 0.014 0.014
V 0.0540 0.0630 0.058 0.076 0.063 0.057 0.061 0.067
SR 0.204 0.180 0.209 0.224 0.237 0.246 0.2295 0.209

FF100
ER 0.0103 0.0127 0.015 0.0173 0.0200 0.0201 0.0203 0.019
V 0.0485 0.075 0.088 0.091 0.0772 0.0770 0.078 0.082
SR 0.212 0.1693 0.1705 0.1901 0.2590 0.2610 0.2602 0.2317
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Table 9: Out-of-sample performance in terms of re-balancing cost (turnover) applied on
the 30 industry portfolios (FF30) and the 100 portfolios formed on size and book-to-
market (FF100) for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

FF30
60 6.890 4.329 2.809 4.209 1.0328 0.9952 0.989 0.9872
120 5.605 3.901 2.087 3.290 0.9892 0.7140 0.7203 0.6450

FF100
120 9.789 6.2390 5.978 6.309 1.7808 1.3267 1.3890 1.2078
240 7.089 4.297 3.879 4.2870 1.3065 1.0349 1.0398 1.096

Table 10: Fama-French Monthly Regression Coefficients for the 100 portfolios formed on
size and book-to-market from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio
0.9168
(0.000)

0.079
(0.531)

-0.139
(0.302)

0.0075
(0.057)

LF- regularized Portfolio
0.823
(0.000)

0.174
(0.153)

-0.1651
(0.204)

0.0125
(0.001)

SC-regularized Portfolio
1.02

(0.000)
-0.127
(0.177)

-0.133
(0.189)

0.0077
(0.010)

Most-Diversified Portfolio
0.72

(0.000)
0.13

(0.344)
0.098
(0.506)

0.007
(0.002)

Equal-Weight-Portfolio
1.002
(0.000)

0.5104
(0.000)

0.33
(0.000)

0.0001
(0.815)

Global-Minimum-Variance
Portfolio

0.416
(0.000)

-0.125
(0.319)

0.155
(0.247)

0.0094
(0.000)

Target-Portfolio
0.43

(0.000)
0.144
(0.367)

0,207
(0.226)

0.010
(0.000)

LW-Portfolio
0.802
(0.000)

0.074
(0.247)

0,207
(0.226)

0.0082
(0.067)
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Table 11: Fama-French Monthly Regression Coefficients for the 30-industry portfolios
from July 1990 to June 2018.

Strategies Market HML SMB Intercept

Rdg-regularized Portfolio
1.03

(0.000)
0.24

(0.003)
0.36

(0.000)
0.0007
(0.767)

LF- regularized Portfolio
0.93

(0.000)
0.22

(0.003)
0.25

(0.001)
0.0046
(0.042)

SC-regularized Portfolio
0.86

(0.000)
0.27

(0.000)
0.21

(0.031)
0.0054
(0.053)

Most-Diversified Portfolio
0.46

(0.000)
-0.285
(0.000)

0.070
(0.391)

0.002
(0.001)

Equal-Weight-Portfolio
0.983
(0.000)

0.061
(0.006)

0.265
(0.000)

0.0013
(0.050)

Global-Minimum-Variance
Portfolio

0.46
(0.000)

-0.146
(0.008)

0.077
(0.188)

0.0021
(0.017)

Target-Portfolio
0.54

(0.000)
-0.44
(0.000)

-0.21
(0.019)

0.013
(0.000)

LW-Portfolio
0.982
(0.000)

0.272
(0.0098)

0.4112
(0.0301)

0.0006
(0.429)

Table 12: Out-of-sample performance in terms of Sharpe ratio applied on two subsets of
S&P500 constituents for two different rolling windows.

P EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 A
120 0.0850 0.1506 0.2458 0.1983 0.3702 0.4382 0.4380 0.4397
240 0.0982 0.1604 0.260 0.2028 0.3809 0.4565 0.4567 0.4578

150 A
180 0.0750 0.1204 0.309 0.1407 0.4108 0.5353 0.5320 0.5462
240 0.0895 0.1750 0.320 0.1890 0.4208 0.5603 0.5609 0.5579
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Table 13: Out-of-sample performance in terms of re-balancing cost (turnover) applied on
two sub sets of S&P500 constituents for two different rolling windows.

Assets EW
Strategies

SbDP GMVP MDP TgP LWP RdgDP SCDP LFDP

100 Assets
120 9.450 6.786 4.675 6.679 3.348 2.1067 2.0801 2.0682
240 6.978 5.308 3.892 5.234 3.078 1.491 1.608 1.569

150 Assets
180 10.489 7.345 6.782 7.328 3.897 2.678 2.780 2.8960
240 8.0789 5.542 4.032 5.438 3.057 2.104 2.0978 2.0956

Figure 1: The evolution of the selected assets in the optimal portfolio. We obtain this
figure using the 30 industry portfolios with an estimation window of n = 120.
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