
QED
Queen’s Economics Department Working Paper No. 1421

When and How to Deal with Clustered Errors
in Regression Models

James G. MacKinnon
Queen’s University

Matthew D. Webb
Carleton University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

Revised version, 5-2020



When and How to Deal With Clustered Errors
in Regression Models∗

James G. MacKinnon†
Queen’s University

jgm@econ.queensu.ca

Matthew D. Webb
Carleton University

matt.webb@carleton.ca

May 14, 2020

Abstract

We discuss when and how to deal with possibly clustered errors in linear regression
models. Specifically, we discuss situations in which a regression model may plausibly
be treated as having error terms that are arbitrarily correlated within known clusters
but uncorrelated across them. The methods we discuss include various covariance
matrix estimators, possibly combined with various methods of obtaining critical values,
several bootstrap procedures, and randomization inference. Special attention is given
to models with few treated clusters and clusters that vary a lot in size, where inference
may be problematic. Two empirical examples illustrate the methods we discuss and
the concerns we raise, and a simulation experiment illustrates the consequences of
over-clustering and under-clustering.
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1 Introduction
When estimating regression models for cross-section data, it used to be common for inves-
tigators to assume that the error terms (or disturbances) for any pair of observations are
uncorrelated. Although this assumption may seem natural, it is actually very strong, and
it has two important implications. First, it means that inference can safely be based on
“robust” (that is, heteroskedasticity-robust) covariance matrix estimators. For large sam-
ples, these estimators are usually quite reliable, although there can be exceptions when a
few observations have high leverage (MacKinnon 2013).

A more profound implication of the assumption that error terms are uncorrelated is that
information about the parameters accumulates at a rate proportional to the square root of
the sample size. If we estimate the same model on two datasets, one with M observations
and one with N = φM observations, where φ >> 1, the (true) standard errors for the second
set of estimates should be approximately φ−1/2 times those for the first set. Of course, this
statement assumes that the investigator does not take advantage of the larger sample size by
estimating a more complicated model for the sample of size N than for the one of size M. In
practice, models tend to become more complicated as sample sizes increase, so that standard
errors are not actually proportional to one over the square root of the sample size.

As we discuss in Section 3, it is much less common than it once was to assume that the
error terms of regression models are uncorrelated. Instead, investigators commonly assume
that they are “clustered.” The sample is divided into clusters (which might be associated,
for example, with schools, firms, villages, counties, or states), and the disturbances for
observations within each cluster are allowed to be correlated. This requires the use of a
covariance matrix estimator that is robust to arbitrary patterns of both heteroskedasticity
and intra-cluster correlation; see Section 2.

The use of cluster-robust variance estimators in empirical microeconomics began after
such an estimator became available in Stata (Rogers 1993). It became much more widespread
after a very influential paper (Bertrand et al. 2004) showed that inferences for difference-
in-differences (DiD) estimators based on standard errors that ignore autocorrelation within
geographical clusters can be extremely unreliable; see Section 6. Cameron and Miller (2015)
is an influential survey. More recent surveys include Conley et al. (2018), Esarey and Menger
(2019), and MacKinnon (2019).

Failing to allow for intra-cluster correlation has particularly serious consequences when
the sample size is large but the number of clusters is not. Thus one important reason for
the increased use of cluster-robust standard errors in recent years is that sample sizes have
become larger. When cluster sizes are growing with the sample size N, but the number
of clusters is fixed, information about the parameters accumulates at a rate slower than√
N . However, whether or not there is intra-cluster correlation, heteroskedasticity-robust

standard errors are always roughly proportional to 1/
√
N . Therefore, as we explain in

Section 3, using heteroskedasticity-robust standard errors when there is actually intra-cluster
correlation causes errors of inference that become more severe as the sample size increases.

In Section 2, we discuss methods of cluster-robust inference based on t-statistics and
Wald statistics. In Section 3, we discuss why it often makes sense to divide the sample into
clusters and allow for intra-cluster correlation. In Section 4, we discuss how to cluster. The
investigator has to choose the appropriate dimension(s) and level(s) of clustering, and this is
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often not easy. In Section 5, we discuss several commonly-encountered cases in which using
cluster-robust standard errors in the usual way can lead to very serious errors of inference. We
also discuss methods that can be used to obtain more reliable inferences, including the wild
cluster bootstrap (Cameron et al. 2008), the wild bootstrap (MacKinnon and Webb 2018),
and randomization inference. In Section 6, we discuss two empirical examples that illustrate
some of the important issues. Section 7 presents some simple Monte Carlo simulations which
demonstrate the consequences of getting the level of clustering correct or incorrect. Finally,
Section 8 concludes.

2 Regression models with clustered disturbances
Consider the linear regression model

y = Xβ + u, E(u|X) = 0, E(uu′) = Ω, (1)

where y and u are N × 1 vectors of observations and disturbances, X is an N ×K matrix
of exogenous covariates, and β is a K × 1 parameter vector. When the N × N covariance
matrix Ω is equal to σ2I, the ordinary least squares (OLS) estimator β̂ = (X ′X)−1X ′y is
the best linear unbiased estimator of β, and we can make inferences based on the estimated
covariance matrix s2(X ′X)−1, where s2 is 1/(N − K) times the sum of squared residuals.
When Ω is diagonal with diagonal elements that differ, OLS is no longer efficient, but it is
still consistent, and we can make inferences by using “robust” standard errors based on a
heteroskedasticity-consistent covariance matrix estimator, or HCCME (White 1980).

In many cases, however, as we discuss in Sections 3 and 4, there are very good reasons to
believe that Ω is not a diagonal matrix. Suppose instead that the data can be divided into
G clusters, indexed by g, where the gth cluster has Ng observations. Then Ω is assumed to
be block-diagonal, with G diagonal blocks that correspond to the G clusters:

Ω =


Ω1 0 . . . 0
0 Ω2 . . . 0
... ... ...
0 0 . . . ΩG

. (2)

Here each of the Ωg is an Ng × Ng positive semidefinite matrix, and every element of the
off-diagonal blocks in Ω is assumed to be zero.

The true covariance matrix of the OLS estimator β̂ = (X ′X)−1X ′y in the model given
by (1) and (2) is

Var(β̂) = (X ′X)−1X ′ΩX(X ′X)−1 = (X ′X)−1

 G∑
g=1
X ′gΩgXg

(X ′X)−1, (3)

where the Ng ×K matrix Xg contains the rows of X that belong to the gth cluster. Thus
the middle factor is actually the sum of G matrices, each of them K ×K.

The matrix (3) can be estimated by using the outer product of the residual vector ûg
with itself to estimate Ωg for all g. This yields a cluster-robust variance estimator, or CRVE.
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By far the most widely-used version is

CV1 : G(N − 1)
(G− 1)(N −K)(X ′X)−1

 G∑
g=1
X ′gûgû

′
gXg

(X ′X)−1. (4)

The first factor here is analogous to the factor N/(N −K) used in the conventional hetero-
skedasticity-robust HC1 covariance matrix (MacKinnon and White 1985), which replaces the
middle matrix in (4) by ∑N

i=1 û
2
iX

′
iXi. This factor makes CV1 larger when either G or N

becomes smaller, in order to offset the tendency for OLS residuals to be too small. CV1
evidently reduces to HC1 when G = N, so that each cluster contains just one observation.

The CRVE (4), like all robust covariance matrix estimators, is a “sandwich” estimator.
The filling in the sandwich is supposed to estimate the corresponding filling in (3). However,
unlike the individual matrices in the summation in (3), the ones in (4) have rank one, even
though they are K × K. Therefore, the individual components of the filling in (4) cannot
possibly provide consistent estimators of the corresponding components of the filling in (3).
Moreover, unless G ≥ K, the matrix (4) cannot have full rank. It will have rank at most G
in some cases and rank at most G− 1 in others.

Cluster-robust variance estimators were proposed by Liang and Zeger (1986) and Arellano
(1987). They became available in Stata about half a decade later (Rogers 1993). However,
econometricians did not study their properties under general assumptions until much later.
Bester et al. (2011) showed that, under quite restrictive conditions with N increasing and G
fixed, cluster-robust t-statistics for βj = 0, where βj is any element of β, are asymptotically
distributed as t(G−1). This result justifies the use of the t(G−1) distribution for calculating
critical values and P values, something that has been the default in Stata since 1993.

More recently, Djogbenou et al. (2019) proved that cluster-robust t-statistics are asymp-
totically normally distributed under rather weak conditions. These require G to increase
with N and allow the Ng to increase as well, but not too fast. There are also limits on how
much the cluster sizes can vary. Using a similar framework, Hansen and Lee (2019) proved
the asymptotic validity of cluster-robust inference based on the standard normal distribu-
tion combined with covariance matrix estimators similar to (4) for a wide variety of linear
and nonlinear econometric models, including ones estimated by two-stage least squares, the
generalized method of moments (GMM), and maximum likelihood.

Although it is by far the most widely used CRVE, the matrix CV1 defined in (4) is not the
only one. An estimator with somewhat better finite-sample properties, which was proposed
by Bell and McCaffrey (2002) and advocated by Imbens and Kolesár (2016), is

CV2 : (X ′X)−1

 G∑
g=1
X ′gM

−1/2
gg ûgû

′
gM

−1/2
gg Xg

(X ′X)−1, (5)

whereM−1/2
gg is the inverse symmetric square root of the matrixMgg ≡ INg−Xg(X ′X)−1X ′g ,

which is the gth diagonal block of the N × N matrix MX ≡ I −X(X ′X)−1X ′. Instead of
multiplying by a scalar factor, CV2 replaces the residual subvectors ûg by rescaled subvectors
M−1/2

gg ûg. It reduces to the HC2 HCCME discussed in MacKinnon and White (1985) when
G = N . The matrix CV2 can be calculated efficiently in R using the package clubSandwich
(Pustejovsky 2017). Although CV2 seems to yield larger and more accurate standard errors
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than CV1, it is considerably more expensive to compute when the clusters are large, because
it requires finding the inverse symmetric square root ofMgg for each cluster. For sufficiently
large clusters, this can be numerically infeasible (MacKinnon and Webb 2018). Recently,
Jackson (2020) proposed an alternative estimator which estimates the “filling” of the CRVE
by estimating a common variance and common correlation of residuals within each cluster.

As noted above, the conventional way to make inferences about an individual element of
the vector β, say βj, is to use the cluster-robust t-statistic

tj = β̂j − βj0
sj

, (6)

where βj0 is the value under the null hypothesis and sj is the square root of the jth diagonal
element of either CV1 or CV2. The statistic tj is then compared with the t(G−1) distribution.
A (1− α)% confidence interval for βj would be[

β̂j − sjCt(G−1)(1− α/2), β̂j + sjCt(G−1)(1− α/2)
]
, (7)

where Ct(G−1)(1 − α/2) is the 1 − α/2 quantile of the t(G − 1) distribution. When G is
small, the latter can be considerably larger than the corresponding quantile of the standard
normal distribution. In combination with the fact that cluster-robust standard errors are
often much larger than heteroskedasticity-robust ones, this can make the interval (7) much
wider than a corresponding “robust” interval.

When there are two or more restrictions to be tested, we can use a Wald test. In order
to test the hypothesis that Rβ = r, where R is an r ×K matrix and r is an r × 1 vector,
we compute the Wald statistic

W (β̂) = (Rβ̂ − r)′(RV̂ R′)−1(Rβ̂ − r), (8)

where V̂ could be either CV1 or CV2. W (β̂) cannot be computed when r > G, and often
not when r = G. The statistic W (β̂) is then compared with critical values from either the
χ2(r) distribution or, preferably, r times the F (r,G− 1) distribution. Either version of the
Wald test is likely to over-reject severely when r is not much smaller than G. In such cases,
it is strongly advised to use the wild cluster bootstrap; see Subsection 5.1.

2.1 Multi-way clustering
The CRVEs given in (4) and (5) are designed to handle arbitrary within-cluster correlation
in a single dimension. Cameron et al. (2011) and Thompson (2011) independently proposed
extensions to handle clustering in two or more dimensions, although the idea actually dates
back to Miglioretti and Heagerty (2006). For example, there might be one set of clusters
based on geography and another set based on time. Every observation is assumed to belong
to one cluster in each of the two dimensions.

The two 2011 papers proposed covariance matrix estimators but did not derive their
asymptotic properties. Recent work has developed the theory of multi-way cluster-robust
estimators. Davezies et al. (2020) proposed an alternative multi-way CRVE and proved its
asymptotic validity, which is technically challenging. Menzel (2018) proposed a multi-way
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bootstrap procedure for inference on sample means. MacKinnon et al. (2020a) compared
the properties of two forms of two-way CRVE and showed that several variants of the wild
cluster bootstrap (Subsection 5.1) can be combined with a two-way CRVE to obtain more
reliable inferences about regression coefficients.

3 When to cluster
The simplest way to model intra-cluster correlation is to assume that there are cluster-specific
random effects, say vg. The ith observation in the g th cluster is then equal to

ygi = Xgiβ + ugi = Xgiβ + vg + εgi, (9)

where the vg are independently distributed with variance σ2
v and the εgi are independently

distributed with variance σ2
ε . This implies that the variance of ugi is σ2

v +σ2
ε , the correlation

between disturbances in different clusters is zero, and the correlation between disturbances
within the same cluster is ρu = σ2

v/(σ2
v + σ2

ε ).
Although the random-effects model (9) is simple and appealing, it seems to us unrealistic

in many cases. By assuming that all of the correlation within each cluster comes from a single
cluster-specific effect vg, which affects all observations equally, it rules out any variation in
intra-cluster correlations. More realistically, we might expect there to be several cluster-
specific effects for each cluster, and for them to affect different observations differently. It
might well also be the case that the vg, the εgi, or both of them are heteroskedastic, with
variances that depend on the regressors.

The random-effects model also assumes that the vg are uncorrelated with all the regres-
sors. This is often a very strong assumption, and it will lead to inconsistent estimates if
it is false. The classic way to solve this problem is to treat the vg as fixed effects, that is,
as constants to be estimated instead of as random effects. Then the original regression (1)
becomes

y = Xβ +Dv + ε, (10)
where D is an N × G matrix, with Dgi = 1 for observations that belong to cluster g and
Dgi = 0 otherwise. Of course, one column of D must be omitted if X contains a constant
term or the equivalent.

The fixed-effects model (10) is very popular. However, it cannot be used whenever any of
the regressors varies only at the cluster level, because that regressor would simply be a linear
combination of the columns of D. Such a model was estimated by Riddell (1979), which
led Kloek (1981) to study models in which a dependent variable measured at the individual
level is regressed on data measured at the cluster level. The paper showed that conventional
standard errors for OLS estimates are biased downwards, often very seriously so, when the
disturbances follow the random-effects model (9) with ρu > 0. Under the assumptions of
Kloek (1981), the appropriate way to make inferences is to use feasible generalized least
squares (FGLS) for the random effects model. In some cases, this is numerically equal to
OLS, but with a different covariance matrix.

Even when a model includes fixed effects, there is no reason to believe that they account
for all of the intra-cluster correlation. Using data from the Current Population Survey
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(CPS), Bertrand et al. (2004) performed a number of placebo-law experiments, which are an
ingenious way to evaluate the performance of inferential procedures using real data. Every
replication uses the same data for the regressand and all but one of the regressors. The
only thing that differs across replications is the regressor of interest, a treatment dummy
that affects certain clusters in certain years. Since the treatment dummies are generated
randomly, valid statistical procedures should reject the null hypothesis about as often as the
level of the test.

Even though the log-earnings equations of Bertrand et al. (2004) contained both state
and year fixed effects, failing to cluster at the state level led to very severe over-rejection
in their experiments. This implies that CPS earnings data do not follow a random-effects
model. See also MacKinnon (2016), MacKinnon and Webb (2017a), and Brewer et al. (2018).
The over-rejection found in all these papers illustrates the fact, discussed below, that even
very small amounts of intra-cluster correlation can have a large effect on the accuracy of
inferences when N is large (over 500,000 in this case).

In two influential papers, Moulton (1986, 1990) demonstrated via empirical examples
that intra-cluster correlation is widespread and that failing to account for it can lead to
standard errors that are much too small. Moreover, Moulton (1986) showed that, in the
context of the random-effects model, the square of the ratio of the true standard error to the
conventional OLS standard error is

1 + ρxρu

(
Var(Ng)
N̄g

+ N̄g − 1
)
, (11)

where ρx is the intra-cluster correlation of the regressor of interest (after it is projected off
all other regressors), and N̄g is the mean of the Ng. The quantity (11) is sometimes called
the “Moulton factor.” It is evidently 1 when either ρu or ρx is 0, increases with both ρu and
ρx, and increases without limit as either N̄g or the ratio of Var(Ng) to N̄g increases.

Although the Moulton factor (11) strictly applies only to the random-effects model (9),
it provides useful guidance in many cases. In particular, it makes it clear that the extent of
intra-cluster correlation for the regressors is just as important as the extent of intra-cluster
correlation for the disturbances, and it shows that the errors of inference we make by not
allowing for intra-cluster correlation become more severe as the clusters become larger and/or
more variable in size.

Another way to see why cluster sizes matter is to consider the matrices X ′gΩgXg that
appear in (3). We can write the k th diagonal element of one of these matrices as

Ng∑
i=1

Ωg,iiX
2
gki + 2

Ng∑
i=1

Ng∑
j=i+1

Ωg,ijXgkiXgkj, (12)

where Ωg,ij is the ij th element of Ωg, and Xgki is the k th element of the row of X corre-
sponding to the ith observation within the g th cluster. If all the off-diagonal elements of Ωg

were zero, the second term here would be zero, and expression (12) would be O(Ng). Here
we have used the “same-order” or “big O” notation, which is a convenient way to indicate
how a quantity changes with the sample size N (or, in this case, the cluster size Ng). In-
formally, x = O(N) means that x behaves like N as N becomes large. The second term
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in (12) would have expectation zero if E(XgkiXgkj) = 0. But when there is intra-cluster
correlation of both the disturbances and the regressors, the second term is O(N2

g ) and does
not vanish. Even if the Ωg,ij were very small, the second term would ultimately dominate,
because O(N2

g ) > O(Ng), so that expression (12) itself would be O(N2
g ).

The implications of this result are profound. When there is no intra-cluster correlation,
the covariance matrix (3) is O(N−1)O(N)O(N−1) = O(N−1), as usual. But when the
number of clusters G is fixed, and there is intra-cluster correlation that does not die out as
N increases, the covariance matrix is instead O(N−1)O(N2)O(N−1) = O(1), because all of
the Ng must be proportional to N. This implies that β̂ is not a consistent estimator when
the sample size goes to infinity with a fixed number of clusters; see Andrews (2005). For
this reason, any proof of consistency that allows for arbitrary intra-cluster correlation, such
as the one in Djogbenou et al. (2019), requires that G tend to infinity along with N.

The number of clusters G does not have to be proportional to N for β̂ to be consistent.
But when G is increasing more slowly than N, both (3) and the CRVEs (4) and (5) that
estimate it consistently will tend to zero at a rate slower than O(N−1) as N → ∞. This
can make reliable inference more difficult for large samples than for small ones. Because a
covariance matrix that is robust only to heteroskedasticity is always O(N−1), the errors of
inference that we make if we fail to allow for intra-cluster correlation may be very severe
when N is large and G is not. The same thing is true if we cluster at too fine a level, for
instance, clustering by city rather than by state.

As an example, suppose that there are actually G equal-sized clusters, but in computing
the CRVE we mistakenly assume that there are instead 4G clusters, each of them 1/4 as
large. Then the true covariance matrix (3) will involve G expressions like (12), but the CRVE
will involve 4G such expressions. For the off-diagonal terms, each of these will have 1/16
as many elements in the double summation. The net effect is that the CRVE will sum over
only 1/4 of the off-diagonal elements that it should be summing over. Unless the off-diagonal
elements that it misses happen to be very small, it is likely that the CRVE will seriously
underestimate the true covariance matrix (3). The Monte Carlo simulations in Section 7
provide an example of this and how it causes Type I errors to increase.

3.1 Fixed effects and clustered standard errors
Unless there are explanatory variables that do not vary within clusters, which is the special
case considered by Kloek (1981), investigators have the option of including cluster fixed
effects. Because these soak up all the variation of the cluster means, only the variation
around those means can be used to identify the parameters of interest. If the cluster means
of the disturbances are correlated with some of the regressors, then it is important to remove
them by including fixed effects. However, we generally lose efficiency by doing so. Whether
or not we should include cluster fixed effects, or other types of fixed effect for that matter,
is a modeling decision that depends on the phenomena we are studying.

In contrast, whether or not to use a CRVE, and what sort to use, are inference decisions.
In the past, it was often considered sufficient to use heteroskedasticity-robust standard errors
whenever a model included cluster fixed effects. This would make sense if the data followed
the simple random-effects model (9), which implies that the disturbances are equicorrelated.
In that case, the fixed effects will explain the cluster-specific vg terms, and all that remains
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of the disturbances will be the εgi, which by assumption are independent.
However, the assumption of equicorrelated disturbances is a very strong one. If there is

either serial or spatial correlation within clusters, then the pattern of intra-cluster correlation
must be more complicated than (9) allows. The placebo-law results discussed above suggest
that this is true of the CPS earnings data. In such cases, it is necessary to employ cluster-
robust standard errors even when a model includes cluster fixed effects. Therefore, especially
when cluster sizes are large, we believe that not allowing for intra-cluster correlation is usually
a bad idea (but see Subsection 3.3 and Section 5).

3.2 Spatial (auto)correlation
Another cause for concern is that the disturbances may display spatial (auto)correlation, so
that they are correlated across as well as within geographic clusters. Barrios et al. (2012)
suggested that many regressors are correlated beyond state boundaries and that researchers
should investigate this possibility. More recently, Kelly (2019) argued that many empirical
models of “long differences” or “persistence” are likely to have disturbances that are spatially
correlated. The paper suggested that the procedure proposed in Conley (1999) will offer
improved but imperfect inference, provided a large bandwidth is specified. Similarly, Ferman
(2019) argued that commonly used datasets such as the CPS and the American Community
Survey (ACS) exhibit spatial correlation. The paper suggested that multi-way clustering,
with one dimension being the cross section, can correct many issues of spatial correlation.
However, this approach is not robust to situations in which there is correlation of errors
within both different time periods and different groups. The best approach to dealing with
unknown spatial correlation in addition to “conventional” clustering is something that clearly
warrants further study.

3.3 Design-based and sample-based uncertainty
Up to this point, we have implicitly assumed that any sample we may have is infinitesimally
small relative to the population. This evidently makes sense when the population is actually
very large. But suppose our sample constitutes a substantial fraction of the population in
which we are interested. Should our standard errors take account of this fact? If so, it would
seem that they must tend to zero as the sample size tends to the size of the population. But
cluster-robust standard errors like those based on (4) do not have this property.

Abadie et al. (2020) explores this setting in the absence of clustering. It argues that
many samples constitute substantial fractions of the populations of interest and that stan-
dard errors should take this into account. However, the paper points out that, even when
the sample consists of the entire population, there may still be uncertainty that needs to
be accounted for. In particular, if treatment were randomly assigned to some observations
but not to others, outcomes would be stochastic because of the random assignment. This
is called design-based uncertainty, because it depends on the experimental design. Under
the assumption that observations are independent, the paper provides methods for mak-
ing valid inferences. These generally yield narrower confidence intervals than conventional
(heteroskedasticity-robust) procedures, especially when the sample is large relative to the
population.
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Abadie et al. (2017) extends the design-based approach of Abadie et al. (2020) to the case
in which disturbances may be correlated within clusters, as often happens with “natural”
experiments that are analyzed using difference-in-differences models. As we discussed above,
it is important to take clustering into account when there is a high degree of correlation in
an explanatory variable within clusters, as measured by ρx in expression (11). In the DiD
setting, some states or groups are treated, at least for some observations, while others are
not. Thus ρx can be quite high, and using a CRVE can greatly improve inference (but see
Section 5, especially Subsection 5.3). These situations also occur frequently in the settings
of lab and field experiments. Abadie et al. (2017) argue that cluster-robust inference is
necessitated by the design-based uncertainty in these settings. Specifically, they argue that,
when the assignment to treatment is correlated within clusters, then cluster-robust standard
errors that take account of design-based uncertainty are required. Note that these are more
complicated than ones based on (4).

Cluster-robust inference is also needed whenever there is a clustered sampling design. In
many cases, the population contains a large number of groups of observations, and only some
of those groups are included in the sample. For example, many education samples contain
observations from all students within some schools but no students from other schools.
Clustered sampling also often occurs within larger surveys, such as the CPS, where sampling
is typically done by census tract. For each state, all of the households in a given sample
may be drawn from a relatively modest proportion of the census tracts within the state.
For this sort of survey, the survey design is often quite complex, and it can create both
heteroskedasticity and within-state correlation; see Kolenikov (2010), among others.

Abadie et al. (2017) suggested that clustering may be too conservative in settings where
there is neither cluster-specific treatment assignment nor a clustered sampling design. In
other words, it may be too conservative when there is neither design-based nor sample-based
uncertainty. In the latter case, we might have a nationally representative dataset that, unlike
the CPS, does not involve sampling by census tract or other geographical subclusters.

The arguments in Abadie et al. (2020, 2017) are interesting and provocative. However,
they depend critically on the assumption that the sample is large relative to a finite popula-
tion in which the investigator is interested. We believe that, in many cases, economists are
implicitly interested not in an actual population but in a meta-population from which they
imagine the former to have been drawn. For example, if we have data for 50 U.S. states,
with no sampling and no experimental design involved, then we can either view those data as
non-random quantities, or we can view them as 50 draws from a meta-population of states.
If we take the former view, then all we can do is to report some numbers that characterize
the population. But if we take the latter view, then we can perform statistical inference in
the usual way.

Although the idea of a meta-population may seem odd, economists implicitly make use
of it whenever they analyze time-series data (and many other types of data). For instance, if
history gives us aggregate inflation data for some country from 1968 to 2019, then we cannot
obtain another dataset for the same time period by drawing a new sample. However, we can
imagine that the data were generated by some sort of data-generating process (DGP) that
characterizes the meta-population of inflation rates and other macro variables, and we can
attempt to estimate key features of that DGP.

If we are studying economic history, then we inevitably have to focus on what happened at
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a particular time in a particular place. However, if we are using data about what happened at
one or more times in one or more places to make general statements about how, for example,
certain policies affect certain outcomes, then we have to use what Abadie et al. (2017)
calls the “model-based” approach. This approach implicitly involves the idea of a meta-
population. The DGP is simply a model like (1) accompanied by a way of obtaining the
matrix X and the vector u from random submatrices Xg and subvectors ug associated with
clusters chosen at random from a meta-population of clusters. In general, standard cluster-
robust inference is valid within a meta-population framework, and the finite-population
arguments of Abadie et al. (2017) do not apply.

4 How to cluster
In order to obtain reliable cluster-robust inferences, the most important decision to be made
in many cases is how to divide the sample into clusters. In this section, we attempt to provide
some guidance. We take the model-based approach and assume that some level of clustering
is appropriate (but see Subsections 3.2 and 3.3). We consider several guiding principles for
determining the level of clustering.

The key assumption for cluster-robust inference to be valid is that the disturbances are
arbitrarily correlated within clusters but uncorrelated across clusters. It is important to
specify the level of clustering in such a way that this assumption is likely to be true, or at
least to provide a good approximation.

4.1 Cluster at the coarsest or most aggregate level
When there is more than one level at which to cluster, and the levels are nested, then one
should generally cluster at the coarsest feasible level (Cameron and Miller 2015). Suppose,
for example, that we can cluster either by city or by state. Clustering by state captures all
the within-city correlation, and it also allows for the disturbances to be correlated within
states but across cities. In contrast, clustering by city assumes that all of the correlations
across cities but within states are zero. If that assumption is false, then standard errors are
very likely to be too small.

Of course, there is a downside to clustering at too coarse a level (over-clustering). The
smaller is the number of clusters, for a given sample size, the larger is the number of elements
of Ω that implicitly have to be estimated. If we cluster too coarsely, many of these elements
are actually zero, and trying to estimate a large number of zeros inevitably makes the
CRVE noisier. Even in the ideal case in which the t(G − 1) distribution provides a good
approximation, making G smaller will cause test power to fall and confidence intervals to
become wider, simply because the critical values for the t distribution increase as G − 1
becomes smaller. However, unless clustering at the highest feasible level means using a value
of G that is very small, the loss of power is likely to be modest in comparison with the
severe size distortions that can occur from clustering at too low a level (under-clustering);
see Section 7. This becomes more true as the sample size becomes larger.

Another problem with over-clustering is that, when G is small, the t(G− 1) distribution
often does not provide a good approximation. But, except in the most extreme cases, this
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problem can generally be overcome by using bootstrap methods; see Subsection 5.1 for a
discussion of these methods and Section 7 for simulation evidence.

4.2 Cluster at least at the level of a policy change
When the null hypothesis of interest involves a treatment variable resulting from a policy
change, one should always cluster at a level no finer than the one at which the policy was
applied. As mentioned in Subsection 3.3, Abadie et al. (2017) suggest that clustering is
necessary whenever treatment is assigned at the cluster level. From this perspective, one
would want to match the level of clustering done in the analysis to the level at which
treatment was assigned. For instance, in a randomized control trial, if treatments were
assigned at the village level, then one would want to cluster at the village level. However,
based on the arguments of Subsection 4.1, one might choose to cluster at a still coarser
level, especially if the number of villages were large and they naturally fell into a reasonable
number of larger groups. Ideally, both approaches would yield similar results.

Whether or not there is a policy change, it always makes sense to cluster at a level no finer
than the one at which observations were included in the sample. For example, if classrooms
were chosen at random for inclusion in the sample, then one would want to cluster at either
the classroom level or the school level. But if schools were chosen at random, then one would
want to cluster at the school level. In both cases, of course, one might choose to cluster at
an even coarser level, such as school districts.

4.3 Cluster at the cross-section level for panel data
When working with panel data and repeated cross-section data, it is important never to
cluster below the cross-section level. As shown first in Bertrand et al. (2004), clustering at
the level of the cross section allows for arbitrary autocorrelation of the error terms within
cross-sectional units. In many contexts, this means that clustering at the state level will
result in much more reliable inference than, say, clustering at the state× year level.

An even more general approach for this sort of data would be to use two-way clustering
by cross-sectional unit and time. MacKinnon (2019) provided evidence that this seems to be
appropriate in the context of an earnings equation using CPS data that includes both state
and year fixed effects.

4.4 There is no golden number of clusters
Early simulation results such as those in Bertrand et al. (2004) and Cameron et al. (2008)
concerned models with balanced clusters. This gave a false sense of how well cluster-robust
variance estimators perform in finite samples. A rule of thumb emerged that G ≥ 50 would
allow for reliable inference, which was changed (in jest) to G ≥ 42 in Angrist and Pischke
(2008). However, any such rule of thumb can be extremely misleading, because all CRVEs
tend to become less reliable as the clusters become more unbalanced; see Imbens and Kolesár
(2016), Carter et al. (2017), MacKinnon and Webb (2017a), and Djogbenou et al. (2019).
The problems associated with unbalanced clusters are discussed in Subsection 5.2.
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It is far more important to get the level of clustering right, as we have discussed in
Subsections 4.1, 4.2, and 4.3, than it is to ensure that G is large enough for t-statistics to
have their namesake distribution. When we cluster at too fine a level, standard errors will
typically be too small by a factor that increases with the sample size. In contrast, when
we cluster at the right level, inference based on the t(G − 1) distribution may be seriously
unreliable, but other methods of inference (notably the bootstrap methods discussed in
Subsection 5.1) often provide quite reliable inferences.

4.5 In many settings, over-clustering is mostly harmless
In a model-based context, over-clustering (within reason) tends to be relatively harmless,
except in one important special case (Subsection 5.3). Over-clustering can mean either
clustering at a coarser level than is actually appropriate or clustering in two dimensions
when just one is needed. Simulation results suggest that, in most cases, a moderate amount
of over-clustering should have little impact on size (provided the wild cluster bootstrap,
discussed in Subsection 5.1, is used) but some impact on power; see Section 7.

Of course, there are limits to the amount of over-clustering that can be handled safely,
even when using the wild cluster bootstrap. Although bootstrap P values are often very
reliable even whenG is quite small (for example, they work remarkably well in the simulations
of Section 7 when G = 10 and cluster sizes are quite unbalanced), there are extreme cases,
discussed in Section 5, where they cannot be relied upon.

4.6 Tests for the level of clustering
It is often difficult to choose the appropriate level of clustering on theoretical grounds, and
this choice can be aided by the use of formal statistical tests. Two such tests exist. Ibragimov
and Müller (2016) proposed a procedure for testing a null hypothesis of fine clustering against
an alternative of coarse clustering. For example, it can test a null of heteroskedasticity against
an alternative of city-level clustering, or a null of city-level clustering against an alternative
of state-level clustering. However, because the IM test requires the model to be estimated
on a cluster-by-cluster basis, it implicitly assumes that there are cluster-level fixed effects.
This also means that it cannot be used when the regressor of interest is invariant within each
cluster, which will often be the case for models of treatment effects.

MacKinnon et al. (2020b) proposed two closely related procedures which directly test
whether the standard error for a single coefficient, or the covariance matrix for two or more
coefficients, are based on the correct level of clustering. These “score-variance” tests are
based on the difference between the variance of the scores for two nested levels of clustering.
Unlike the IM test, they can be used whether or not there are regressors that are invariant
within clusters and whether or not there are fixed effects at the level of either fine or coarse
clusters. The test statistics are either asymptotically standard normal or, when they are
based on two or more coefficients, asymptotically chi-squared. The paper also proposed
bootstrap versions of the tests, which sometimes have much better finite-sample properties
than the asymptotic versions. This seems to be especially true for models with fixed effects
at the coarse-cluster level and regressors that vary at the fine-cluster level.
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5 What can go wrong
Although both CV1 and CV2, given in expressions (4) and (5), estimate the true covariance
matrix (3) consistently under moderately weak conditions (Djogbenou et al. 2019), they do
not always provide reliable estimates, even when the sample size is very large. This reflects
the fact that all CRVEs differ fundamentally from most other covariance matrix estimators
in one important respect. The latter usually converge to the true value as the number of
observations, N, tends to infinity. But a CRVE converges to the true value as the number of
clusters, G, tends to infinity. Therefore, no matter how large N may be, inference based on
cluster-robust standard errors (for the correct set of clusters) can sometimes be problematic,
perhaps even seriously misleading, when G is not large.

In this section, we assume that the clusters have been chosen correctly, with no correlation
of disturbances across clusters. Nevertheless, there are three situations in which cluster-
robust inference may be unreliable. The first is when the number of clusters is small. The
second is when cluster sizes, or other features of the clusters, are seriously unbalanced. The
third, which can be thought of as a special case of the second, is when the model focuses on
the effects of a treatment dummy, and few clusters are “treated.” In the first two cases, we
recommend using a particular bootstrap method, which we describe in Subsection 5.1. This
method can also work well in the third case, but it can sometimes fail disastrously. When it
does, randomization inference (Subsection 5.4) or an alternative bootstrap procedure may
be able to provide reliable inferences.

5.1 Few clusters
When the number of clusters is reasonably large (say, a few hundred), and each cluster
provides roughly the same amount of information, then inference based on cluster-robust
standard errors and the t(G − 1) distribution is likely to be very reliable. There are also
cases in which this type of inference works well even when G is quite small (Bester et al.
2011), but it would usually be unwise to rely on it.

Because the middle factor in any CRVE is a sum over G matrices, each with rank one, it
should be obvious that a CRVE may not provide reliable inferences when G is small. Ideally,
there would be more clusters than parameters, so that the CRVE could potentially have full
rank. This is more important for Wald tests of several restrictions than for t-tests of just one
restriction. But it makes sense that G should need to be larger for reliable inference when
K (the number of regression coefficients) is large than when it is small. To our knowledge,
there have been no simulation studies that focus on the relationship between G and K for
possibly large K. However, simulations in Appendix C.2 of Djogbenou et al. (2019) suggest
that adding either 4 or 8 additional regressors when G = 25 makes tests based on the t(24)
distribution noticeably more prone to over-reject.

Carter et al. (2017) proposed the concept of an “effective number of clusters,” which they
called G∗, and provided a way to compute an approximation to it; a Stata package called
clusteff is discussed in Lee and Steigerwald (2018). Although the value ofG∗, both absolute
and relative to G, can provide helpful guidance, there is not currently enough evidence to
let us say that, for example, cluster-robust standard errors are reliable whenever G∗ ≥ 50.
However, that would surely be a much safer rule of thumb than G ≥ 50. In our experience,
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when G∗ is not much less than G and not too small (say, 50 or more), inference based on
a cluster-robust t-statistic and the t(G − 1) distribution generally seems to work well. In
contrast, when G∗ is much smaller than G, that type of inference can be very unreliable.

Another approach, which almost always provides more reliable inferences than the t(G−1)
distribution, is to rely on bootstrap tests and bootstrap confidence intervals. The basic
idea of bootstrap testing is to compare a test statistic with the empirical distribution of a
large number of bootstrap test statistics computed from simulated samples. Conceptually,
a bootstrap confidence interval is then a set of parameter values for which a bootstrap test
does not reject. Accessible introductions to bootstrap methods include MacKinnon (2002),
Davidson and MacKinnon (2006a), and Horowitz (2019).

Suppose that we wish to test the restriction a′β = 0, where a is a known vector. For
example, if we are testing the hypothesis that βk = 0, the k th element of a would be 1 and all
the rest would be 0. We first calculate a cluster-robust t-statistic, say ta, for the hypothesis
that a′β = 0. We then generate a large number (B) of bootstrap samples indexed by b and
use each of them to compute a bootstrap t-statistic t∗ba . Sensible values of B are numbers like
999 and 9, 999 (Racine and MacKinnon 2007). Then a symmetric two-tailed test is based
on the bootstrap P value

p∗(ta) = 1
B

B∑
b=1

I
(
|t∗ba | > |ta|

)
, (13)

where I(·) is the indicator function. The more extreme is |ta|, the fewer of the |t∗ba | should
exceed it by chance. If, for example, 17 out of 999 do so, then p∗(ta) = 0.017, and we can
confidently reject the null hypothesis at the .05 level.

In the context of the model (1), we want to calculate t∗ba from the bth bootstrap sample in
precisely the same way as we calculated ta from the actual sample. How well bootstrap tests
perform then depends on how the bootstrap samples used to calculate the t∗ba are generated.
In principle, there are many ways to do so. However, both theory and simulation evidence
currently favor a particular method, namely, the restricted wild cluster bootstrap that uses
the Rademacher distribution.

The wild cluster bootstrap was proposed by Cameron et al. (2008) and studied extensively
in MacKinnon and Webb (2017a). Its asymptotic validity was proved by Djogbenou et al.
(2019). The equation used to generate the bth bootstrap sample for the restricted wild cluster
(WCR) bootstrap is

y∗bg = Xgβ̃ + u∗bg = Xgβ̃ + ũgv∗bg , g = 1, . . . , G, (14)

where quantities with g subscripts are scalars, subvectors, or submatrices associated with the
g th cluster. In (14), β̃ is the vector of least squares estimates of β subject to the restriction or
restrictions to be tested, and ũg is the restricted residual vector for cluster g. The scalar v∗bg is
an auxiliary random variable that multiplies the entire vector ũg. It follows the Rademacher
distribution, which takes values 1 and −1, each with probability 1/2.

The key idea of the WCR bootstrap, or WCRB, is that the bootstrap disturbances u∗bg
for cluster g are generated by multiplying the residual subvector ũg by the scalar random
variable v∗bg . This ensures that, asymptotically, the disturbances for cluster g in the bootstrap
DGP (14) on average (over actual samples) have covariance matrix Ωg. In consequence,
estimates based on the bootstrap sample y∗b have the same asymptotic distribution as ones
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based on the actual sample y, assuming the restrictions are true. This implies that, if we
reject the null hypothesis whenever the bootstrap P value in (13) is less than α, and α(B+1)
is an integer, the asymptotic level of the test is α.

Nothing in the above arguments implies that a WCRB test will always perform better in
finite samples than a test based on the t(G− 1) distribution. However, higher-order theory
in Djogbenou et al. (2019) does strongly suggest that this is likely to be the case. It also
suggests that the Rademacher distribution (Davidson and Flachaire 2008) is usually the best
choice for the auxiliary distribution and that failing to impose the null hypothesis on the
bootstrap DGP is a bad idea. In all cases, simulation evidence supports these implications
of the theory.

Equation (14) suggests that we need to generate B bootstrap samples of size N and com-
pute a bootstrap t-statistic t∗ba for each of them. This can be computationally challenging
when N is large, especially if K is also large. Luckily, there is a way to reduce the com-
putational burden dramatically, especially when G is small. Since the bootstrap DGP (14)
satisfies the restrictions, the numerator of the bootstrap t-statistic for a′β = 0 is

a′β̂∗b = a′(X ′X)−1X ′u∗b =
G∑
g=1
a′(X ′X)−1X ′gũgv

∗b
g . (15)

The quantities a′(X ′X)−1X ′gũg are scalars that can be calculated after the restricted model
has been estimated but before bootstrapping begins. The rightmost expression in (15) is
then just the sum over the G clusters of those scalars times the realized Rademacher random
variables v∗bg . This expression can be used to calculate a′β̂∗b extremely rapidly, with computer
time that is O(G).

A similar, but much trickier, procedure can be used to calculate the denominator of the
bootstrap t-statistic efficiently. The computations for each bootstrap sample are now O(G2)
instead of O(G). However, for large values of N and even moderately large values of G,
this can still be very much less expensive than generating a bootstrap sample according to
(14) and computing a′β̂∗b and its cluster-robust standard error in the usual way. The Stata
package boottest (Roodman et al. 2019) implements this efficient algorithm. Unless N is
extremely large (so that the preliminary calculations are time-consuming) or G is greater
than several hundred (in which case bootstrapping is probably unnecessary), it is usually very
inexpensive to compute the bootstrap P value (13) for B = 9, 999 or even B = 99, 999. The
R package clusterSEs (Esarey 2018) also implements the WCRB but, at time of writing,
does not employ the computational tricks used by boottest.

Because it is usually inexpensive, we recommend employing the WCRB almost all the
time, unless G is quite large. For sufficiently large values of N, this will actually be cheaper
than many alternative procedures, such as computing CV2. When the bootstrap test yields
essentially the same conclusion as a test based on the t(G − 1) distribution, then we can
usually be confident that both results are reasonably reliable. On the other hand, when
the bootstrap test provides weaker evidence against the null hypothesis than the asymptotic
test (alas, it very rarely provides stronger evidence), then we should usually disregard the
latter (but see Subsection 5.3). It is difficult to say whether we should rely on the results of
a bootstrap test when they differ sharply from those of the corresponding asymptotic test.
This will depend on how well the WCRB is known to perform in similar circumstances.
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The WCRB can also be used to form confidence intervals by “inverting” the bootstrap
test, and boottest does this by default for tests of a single restriction. For details, see
Roodman et al. (2019, Section 3.5). These bootstrap confidence intervals can be much more
accurate than conventional ones based on cluster-robust standard errors and the t(G − 1)
distribution (MacKinnon 2015).

One problem with the WCRB is that the number of distinct bootstrap samples with the
Rademacher distribution (or any other two-point distribution) is just 2G. When G < 10, this
may be too small for p∗ to be a reliable estimate. Webb (2014) therefore proposed a six-point
distribution which largely solves this problem, because 6G >> 2G. When 2G is reasonably
large but smaller than the chosen value of B, it is better to enumerate all possible bootstrap
samples than to draw them at random, and boottest does this by default.

Nevertheless, the WCRB often works surprisingly well even for quite small values of G.
In fact, Canay et al. (2020) studied situations in which the WCRB using the Rademacher
distribution yields exact inferences for large samples even when the number of clusters is fixed
and quite small. However, these results require fairly strong homogeneity conditions on the
distribution of the covariates across clusters, conditions which emphatically fail to hold in the
situations discussed in Subsections 5.2 and 5.3. The analysis of Canay et al. (2020) makes use
of a remarkable relationship between the wild cluster bootstrap and randomization inference,
a topic to be discussed in Subsection 5.4.

Situations in which inference is particularly difficult are discussed in the next two sub-
sections. Even the WCRB can be unreliable, especially when there are few treated clusters
(Subsection 5.3). When there is doubt about its reliability, it would be wise to employ other
methods as well. In particular, Imbens and Kolesár (2016) and Bell and McCaffrey (2002)
suggested procedures based on CV2, both of which compute (somewhat different) numbers
smaller than G−1 to be used as the degrees of freedom for the t distribution. Unfortunately,
these procedures are computationally burdensome when N is large (MacKinnon and Webb
2018). A related procedure that is based on CV1 and is computationally feasible even for
very large samples was suggested by Young (2016). Limited simulation evidence suggests
that the Imbens-Kolesár and Young procedures do not, in general, perform as well as the
WCRB, but they often perform quite well, and they can yield different results in some cases.
It is probably safe to accept the inferences from the WCRB when they agree with those from
these alternative procedures.

The procedures we have discussed are all based on OLS estimation of (1) using the
entire sample. The procedure proposed in Ibragimov and Müller (2010) is instead based on
estimating the model on a cluster-by-cluster basis, but this is only feasible if all the regressors
of interest vary within each cluster. The procedure of Ibragimov and Müller (2016) overcomes
this problem by combining the original clusters into fewer and larger ones, if necessary.

5.2 Unbalanced clusters
The asymptotic validity of inference based on both t-statistics and the wild cluster bootstrap
depends on the properties of the score vectors sg = X ′gug (Djogbenou et al. 2019). Ideally, all
of them would follow the same multivariate distribution, with covariance matrices X ′gΩgXg

the same for all g. Of course, this is rarely the case in practice, and the theory allows for
considerable heterogeneity. But when the score vectors are too heterogeneous across clusters,
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the conditions for parameter estimates and t-statistics to have their usual asymptotic normal
distributions, and for the bootstrap distributions to converge to the asymptotic ones, are no
longer satisfied. This suggests that inference will become less reliable as the data become
more heterogeneous across clusters.

In particular, standard theoretical results do not apply when cluster sizes vary too much.
Some of the simulations in Djogbenou et al. (2019) have one cluster that contains half the
observations. This case may seem extreme, but it is precisely what empirical studies of
state laws and corporate governance in the United States encounter when they cluster at
the state level, because roughly half of all incorporations are in Delaware (Spamann 2019).
In this extreme case, tests based on the t(G− 1) distribution over-reject more severely, not
less, as G increases. WCRB tests also over-reject more severely as G increases, but to a
much lesser extent. In less extreme cases, where the single large cluster becomes a smaller
proportion of the sample as G increases, the performance of WCRB tests always improves
with G. Once the large cluster becomes small enough (on the order of 20% of the sample in
these experiments), the bootstrap tests work very well. But this can require quite a large
number of clusters, perhaps on the order of several hundred.

Variation in cluster sizes is not the only sort of heterogeneity that is likely to cause
cluster-robust tests to be misleading. Even if all clusters are roughly the same size, the
covariance matricesX ′gΩgXg can vary across them for other reasons. Perhaps a few clusters
contain a lot more information than the remaining ones, or perhaps the disturbances are
heteroskedastic across clusters. In both cases, we would expect all methods to make more
serious inferential errors than they would if the model had the same number of homogeneous
clusters. However, simulation evidence always suggests that the WCRB is less affected by
heterogeneity than t(G− 1) tests. This reinforces our earlier recommendation to employ the
WCRB almost all the time.

Although we cannot directly observe the X ′gΩgXg matrices, we can observe the Ng and
the X ′gXg matrices, which provide measures of how much information each cluster contains.
The effective number of clusters G∗ (Carter et al. 2017) is quite sensitive to heterogeneity
across the X ′gXg. Thus finding that G∗ << G provides a useful warning. However, G∗ is
not sensitive to heteroskedasticity across clusters. To see whether that is a problem, we can
calculate the variance of the residuals for each cluster separately.

Because the finite-sample properties of all inferential methods, including the WCRB,
depend in complicated ways on the model and dataset, it is difficult to provide a rule of
thumb for when it is safe to rely on WCRB P values. These are most likely to be unreliable
(often too small, but sometimes too large, as we will see in Subsection 5.3) when G is small,
when cluster sizes vary a lot, when the X ′gXg vary a lot (which is likely to cause G∗ << G),
and/or when the variance of the residuals differs sharply across clusters. In such cases, as
we recommended above, it is important to employ other methods as well. Of course, we are
not suggesting the use of multiple inferential methods as a fishing expedition, but rather as
a way of verifying (or casting doubt on) the validity of the WCRB.

5.3 Few Treated Clusters
Many applications of cluster-robust inference involve treatment effects estimated at the clus-
ter level. In what we call the pure treatment case, some schools or villages or experimental
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subjects are treated, and others are not. Thus every observation in every treated cluster is
treated. In contrast, for difference-in-differences (DiD) models, some jurisdictions are never
treated, and others are treated during some, but not all, time periods. In either of these
cases, when the number of treated clusters is small, cluster-robust standard errors can be
very much too small, even if the total number of clusters is large. Because this situation is
commonly encountered, it is worth discussing the issues associated with few treated (or few
control) clusters in some detail.

Following MacKinnon and Webb (2017a), consider the pure treatment model

ygi = β1 + β2dgi + ugi, g = 1, . . . , G, i = 1 . . . , Ng, (16)

where dgi equals 1 for the first G1 clusters and 0 for the remaining G0 = G − G1 clusters.
Every observation in the gth cluster is either treated (dgi = 1) or not treated (dgi = 0). The
analysis would be more complicated if we included additional regressors, but it would not
change in any fundamental way.

The key problem is that, because the dummy variable dgi must be orthogonal to the
residuals, the latter must sum to zero over all the treated observations. This has some
unfortunate implications. Suppose that d1 denotes the subvector for cluster 1 of the vector
d with typical element dgi. Then, in the extreme case in which only cluster 1 is treated,
d′1û1 = 0. In other words, the residuals for cluster 1 must sum to zero. This implies that
d′1û1û

′
1d1 = 0. But that quantity is supposed to estimate the element d′1Ω1d1 of the matrix

X ′1Ω1X1. Because most of the information about β2 in (16) is coming from cluster 1, which
is the only treated cluster, d′1Ω1d1 needs to be estimated accurately if we are to obtain a
reliable standard error for β̂2. But since d′1û1û

′
1d1 = 0, the cluster-robust (CV1) standard

error for β̂2 is actually very much too small. This causes the cluster-robust t-statistic to be
very much too large. When G1 = 1, it would not be unusual for the t-statistic to be five
times as large as it should be. In this extreme case, the CV2 covariance matrix cannot even
be computed (MacKinnon and Webb 2018).

When there are two treated clusters, d′1û1 + d′2û2 = 0. This implies that d′1û1û
′
1d1

and d′2û2û
′
2d2, although both non-zero, underestimate d′1Ω1d1 and d′2Ω2d2 severely. The

problem diminishes as the number of treated clusters increases; see MacKinnon and Webb
(2017a, Appendix A.3). Although this argument is for the pure treatment model, essentially
the same argument applies to DiD models. Whenever only cluster 1 is treated, d′1û1 = 0,
because the residuals for the treated observations sum to zero, and the residuals for the
control observations are multiplied by elements of d1 that equal 0.

Unfortunately, bootstrapping does not solve the problem. As MacKinnon and Webb
(2017a, Section 6) explains, the WCRB always under-rejects very severely when G1 = 1.
In simulation experiments with 400,000 replications (MacKinnon and Webb 2017b), there
are often no rejections at all for tests at the .05 level. There is also typically very severe
under-rejection for G1 = 2. The bootstrap fails in this case because the absolute values
of the actual and bootstrap test statistics are strongly positively correlated. When |ta| is
large, the |t∗ba | tend to be large as well, so that the bootstrap P value in (13) is not likely
to be small. The extent of the under-rejection depends on G, G1, the cluster sizes, and the
numbers of treated observations within the treated clusters. For given values of G and G1,
the problem tends to be most severe when the number of treated observations is small.
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In order to avoid this problem, MacKinnon and Webb (2018) suggested using the ordinary
wild bootstrap, which uses one auxiliary random variable per observation instead of one per
cluster. Surprisingly, even though the distribution of the β̂∗b does not coincide asymptotically
with the distribution of β̂, tests based on the ordinary wild bootstrap are asymptotically
valid (Djogbenou et al. 2019). Moreover, in some circumstances, these tests can perform very
well, even when G1 ≤ 2. In the pure treatment case, the key requirement is that all clusters
be the same size. However, there are also many cases in which ordinary wild bootstrap tests
(based on cluster-robust t-statistics) either over-reject or under-reject systematically. In our
view, these tests are worth trying when G1 is very small and the WCRB does not reject.
However, one should not rely on their results unless simulation evidence suggests that they
perform well for the case at hand. Empiricists may want to conduct their own simulations
to assess the validity of inference procedures given the structure of their data.

A very different approach, which can be used when there is just one treated cluster but
quite a few control clusters, is the method of “synthetic controls” proposed in Abadie and
Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010). The idea is to compare
the outcomes for the treated cluster with a weighted average of outcomes for the control
clusters, the weights being chosen so that the synthetic control resembles the treated cluster
in the pre-treatment period. In particular, if we are interested in a treatment that started
at a certain date, the weights may be chosen to make the pre-treatment outcomes for the
synthetic control as close as possible to the pre-treatment outcomes for the treated cluster.

Several other procedures have been suggested to deal with the problems of inference
for unbalanced and few treated clusters. Some of the most interesting ones are based on
randomization inference, and these will be discussed in the next subsection. We have already
mentioned the procedures of Bell and McCaffrey (2002), Imbens and Kolesár (2016), and
Young (2016), which employ either an alternative CRVE, a method of estimating degrees of
freedom, or both. These all work better than simply using CV1 and the t(G−1) distribution;
simulation results for these procedures can be found in the appendix of MacKinnon and
Webb (2018). Donald and Lang (2007) proposed a two-step estimator in which the data
are collapsed into pre-treatment and post-treatment means for the treatment and control
clusters. The procedure of Ibragimov and Müller (2016), mentioned in Subsection 5.1, allows
for inference so long as there are at least two treated and two untreated clusters, although
power will be much higher with at least four of each. Finally, Ferman and Pinto (2019)
suggested a DiD procedure that works for few treated and many control groups when there
is heteroskedasticity of known form across clusters.

5.4 Randomization Inference
Randomization inference, or RI, refers to a family of procedures that do not involve com-
paring a test statistic with either an asymptotic or a bootstrap distribution. Instead, an
actual parameter estimate (or an actual test statistic) is compared with a set of hypotheti-
cal estimates (or hypothetical test statistics) obtained by re-randomizing. There is a large
literature on RI, dating back to Fisher (1935). For modern treatments, see Lehmann and
Romano (2005, Chapters 5 and 15) and Imbens and Rubin (2015, Chapter 5). Random-
ization tests can work extraordinarily well in some cases, even when G1 is very small. An
interesting application of randomization inference is Young (2019).
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There is more than one way to perform randomization tests in the context of DiD models
and treatment models like (16). The simplest approach is to consider all possible assignments
of treatment to clusters. Then each re-randomization involves pretending that a particular
set of clusters was actually treated. The values of the dependent variable do not change across
re-randomizations, but the values of the treatment dummy do change. For example, suppose
there are G = 15 clusters, of which G1 = 2 are treated. Then there are (15 · 14)/2 = 105
ways in which treatment could have been assigned. One of them corresponds to the actual
sample, and the other 104 correspond to re-randomizations. If the estimate β̂2 is sufficiently
extreme compared with the 104 estimates associated with the re-randomizations, then it
seems reasonable to reject the null hypothesis of no treatment effect.

An RI procedure based on parameter estimates that is similar, but not identical, to the
one just outlined was suggested for DiD models by Conley and Taber (2011). MacKinnon
and Webb (2020) pointed out that randomization tests could also be based on cluster-robust
t-statistics and studied the properties of both procedures. When G is sufficiently large, all
clusters are identical (in terms of size, error variance, within-cluster correlation, etc.), and
treatment is assigned at random, both forms of RI test work extremely well under the null
hypothesis, but the one based on coefficient estimates has more power. However, when
clusters are not identical, and the treatment status of each cluster is not hidden from the
investigator, both tests can either over-reject or under-reject under the null. The one based
on t-statistics generally performs better for G1 > 1, especially when the treated clusters are
larger or smaller than the controls. The Stata package ritest, described in Hess (2017),
can be used to perform these and other randomization tests.

Spamann (2019) proposed an RI test similar to the one based on t-statistics discussed
in MacKinnon and Webb (2020), but modified slightly to take account of Delaware’s unique
status. In simulation experiments with 51 clusters where half the sample belonged to one
cluster, this test generally performed better than using either the t(G − 1) distribution or
the wild cluster bootstrap. However, not surprisingly, its performance in this extreme case
was far from perfect.

Any procedure based on randomization inference runs into difficulties when the number
of possible re-randomizations is small. For the procedures discussed so far, this number is
G!/(G1!G0!)−1. The problem arises because it is hard to make precise probability statements
when comparing an estimate or test statistic with a discrete distribution that has few mass
points. MacKinnon and Webb (2019) studied various methods that can be used in this
case, including one called wild bootstrap randomization inference, or WBRI. The idea is
to generate many bootstrap samples for the actual sample and for each re-randomization.
There are two variants. WBRI-β computes a P value based on the position of β̂ in the sorted
list of coefficient estimates, and WBRI-t computes a P value based on the position of the
t-statistic for β = 0 in the sorted list of t-statistics. For an application, see Subsection 6.2.

Several other RI procedures have also been suggested. Canay et al. (2017) proposed a
randomization test based on the cluster-level estimators of Ibragimov and Müller (2010). It
applies to cases where the number of clusters is fairly small but the number of observations is
large. The randomization involves permuting the signs of cluster-level test statistics, which
requires a symmetry assumption. Since the statistics can only be computed for clusters that
include both treated and untreated observations, the investigator may often need to merge
clusters. This test can be substantially more powerful than the t-test proposed in Ibragimov
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and Müller (2010), but G cannot be too small. It seems to be advisable to have G ≥ 8, after
clusters have been merged if necessary.

Hagemann (2019a) developed RI tests that can be used even when G is quite small, and
Hagemann (2019b) extended them to be valid even when there is substantial heterogeneity
across clusters. Unlike the test of Canay et al. (2017), Hagemann’s tests do not require
cluster-level estimation. However, G1 and G0, the numbers of treated and control clusters,
should both be no less than 4. Thus, like the tests that involve cluster-level estimation, these
tests cannot handle the example given earlier in this section, where G1 = 2 and G0 = 13.
Toulis (2019) proposed a broad family of tests based on residual re-randomization. Some
of the tests within this family apply to models with both one-way and two-way clustering.
Since the one-way test is closely related to the wild cluster bootstrap, it seems likely to have
similar properties.

6 Empirical Examples
We now present two empirical examples to highlight some of the issues discussed above, such
as having few clusters, having few treated or control clusters, testing the appropriate level
of clustering, and/or misspecifying that level. We do not present these examples either to
confirm or overturn the results reported originally, but rather to illustrate what can happen
in various situations. The analysis makes use of Stata and a few Stata packages, notably
the boottest package discussed in Roodman et al. (2019).

6.1 Experimental Evidence on Female Voting Behavior
Our first example illustrates the consequences of unbalanced clusters. Giné and Mansuri
(2018) examines the effect on women’s voting behavior of informing women about the voting
process and the importance of voting. The paper estimates a number of regression models.
The one that we focus on (for which the paper presents only partial results) is

Yi = β1T1,T + β2T2,T + β3T1,U + β4T2,U +Xiγ + εi. (17)

Here Tj,T for j = 1, 2 is an indicator variable for individuals in the treated region who
are in target group j, and Tj,U is similarly defined for individuals in the untreated region.
The parameters of interest are β1 through β4. β1 and β2 capture the direct effects of each
treatment, while β3 and β4 capture their spillover effects. The vector Xi contains a constant
and 18 control variables, including fixed effects at the village level.

Every observation is associated with one of 67 neighborhoods and one of 9 villages. In
the paper, standard errors are clustered by neighborhood, but we also cluster by village.
Even though there are 67 neighborhoods, the number of effective clusters G∗ (Carter et al.
2017) calculated using clusteff is between 14.2 and 15.7, depending on the coefficient for
which G∗ is calculated. Thus, at the neighborhood level, the clusters are apparently very
unbalanced. In contrast, when clustering by village, there are 9 actual clusters and between
8.6 and 8.8 effective clusters, so that the clusters are well balanced. Only 10 of the 67
neighborhoods are controls, which must be partly responsible for the small value of G∗ when
clustering by neighborhood.
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Table 1: Female Voting Example

Conventional and Bootstrap P values
Variable Coefficient Neighborhood Village

t(66) WCRB t(8) WCRB
T1,T β̂1 = −0.0788 0.0427 0.0916 0.0703 0.0759
T2,T β̂2 = −0.1161 0.0039 0.0188 0.0210 0.0113
T1,U β̂3 = −0.1315 0.0040 0.0094 0.0217 0.0291
T2,U β̂4 = −0.0955 0.0692 0.0949 0.1321 0.1363

Score-Variance Tests
Levels of Clustering Test Stat. χ2(10) P Boot P
None vs. Neighborhood 261.917 0.0000 0.0924
None vs. Village 340.280 0.0000 0.0001
Neighborhood vs. Village 61.139 0.0000 0.2719

These results are for the analysis in Panel A of Table 9 of Giné and Mansuri (2018).
In the top panel, columns 3 and 5 report P values based on the t(G− 1) distribution,
and columns 4 and 6 report WCRB P values calculated using 99, 999 replications.
Although the original paper reported P values equivalent to the ones in column 3,
it did not report coefficient estimates. There are 2637 observations, 67 neighborhood
clusters, and 9 village clusters. The bootstrap DGPs use Rademacher weights when
clustering by neighborhood and Webb (6-point) weights when clustering by village.
The bottom panel presents score-variance test statistics for all four coefficients jointly,
along with asymptotic and bootstrap P values, the latter based on 9, 999 replications.

The top panel of Table 1 shows OLS estimates for both levels of clustering. These differ
slightly from the ones reported in Giné and Mansuri (2018), because we estimate (17) using
OLS without weighting, while the original paper uses weights proportional to the inverse
probability of assignment to treatment. We avoid the use of weights for computational
convenience. Although boottest can handle any type of weighting supported by Stata,
clusteff cannot currently do so.

Not surprisingly, the t(G− 1) P values in the top panel of Table 1 always increase when
we move from neighborhood-level to village-level clustering. Because there are only 9 village
clusters, and because the effective number of clusters at the neighborhood level is so much
smaller than the actual number, these P values are probably not reliable. This is a case
where bootstrapping is essential. With neighborhood-level clustering, the WCRB P values
are always larger, often much larger, than the ones based on the t(66) distribution. With
village-level clustering, however, the WCRB P values may be either larger or smaller than
the t(8) ones. They may also be either larger or smaller than the bootstrap P values based
on neighborhood-level clustering. Whatever the level of clustering, β̂2 and β̂3 appear to be
significant at the .05 level, but the other two coefficients do not.

In the bottom panel of Table 1, we test for the level of clustering, jointly for all four
coefficients of interest, using the score-variance test proposed in MacKinnon et al. (2020b).
We perform three different tests, of no clustering versus neighborhood, no clustering versus
village, and neighborhood versus village. All of the test statistics are very large, and the
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asymptotic P values based on the χ2(10) distribution all equal zero to at least eight digits.
However, the bootstrap P values are never exactly zero. In two out of three cases, they do
not allow us to reject the null hypothesis at the 5% level. Even for the test of no clustering
against village-level clustering, there is apparently one bootstrap sample out of 9, 999 where
the bootstrap test statistic is larger than the actual test statistic of 340.28.

Large discrepancies between bootstrap and asymptotic P values for score-variance tests
are also observed for the empirical example in MacKinnon et al. (2020b). Like regression (17),
that model involves fixed effects at the coarse-cluster level and key regressors which vary only
at the fine-cluster level. This suggests that it may be unwise to rely on asymptotic P values
for score-variance tests in such models. Since simulation results suggest that bootstrap tests
work well for the empirical example in MacKinnon et al. (2020b), we conjecture that the
bootstrap P values in Table 1 are also reliable.

The bootstrap score-variance tests in Table 1 make it clear that it would be a serious
mistake to assume that there is no clustering. However, they do not provide a clear choice
between clustering at the neighborhood level and clustering at the village level. Nevertheless,
although we cannot reject neighborhood clustering against village clustering, the fact that no
clustering is rejected much more strongly against the latter than against the former suggests
that it is probably appropriate to cluster at the village level.

6.2 Public Procurement Auctions in Italy
Our second example is from Branzoli and Decarolis (2015), which exploits a shift in the type
of auction used for public-works projects in one Italian city to study how various aspects
of the contracts changed for these projects. Specifically, Turin shifted from average-bid to
first-price auctions in 2003 while other municipalities did not do so. In their main estimates,
the authors estimate a difference-in-differences regression for each of four outcome variables
using two different samples, one at the city level and one at the county level. These estimates
are found in their Table 2, Panel A.

We focus on just two of these outcome variables for the city-level sample. The outcome
variables that we study are the percentage of the value of the contract that was subcontracted
(%-subc) and whether or not there was a consortium (Consortium). We rescaled the latter
to equal either 0 or 100 so that the coefficients on the auction-design dummy variable would
be of comparable magnitude for each of the two regressions. In their main estimates, the
authors cluster by municipality-year. They also perform a robustness check in which they
cluster by municipality. In the first case, there are 101 clusters, of which only 4 are treated.
In the second case, there are only 15 clusters, of which just 1 is treated. Thus, in this
example, the number of treated clusters is either worryingly small or extremely small.

For each of the two outcomes and two levels of clustering, we calculate P values and 95%
confidence intervals using the t(G − 1) distribution and four different bootstrap methods.
In addition to two variants of the wild cluster bootstrap, WCRB and WCUB, we use two
variants of the ordinary wild bootstrap, based on restricted (WRB) and unrestricted (WUB)
estimates, respectively; see the discussion in Subsection 5.3. The top panel of Table 2 presents
the results for %-subc, and the bottom panel presents the ones for Consortium.

For %-subc, there seems to be moderately strong evidence that moving from average-bid
to first-price auctions reduces the percentage of contract values that are subcontracted, on
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Table 2: Public Procurement Example

Results for %-subc, estimate is −9.5661, N = 1468
Method P value (M-Y) 95% interval (M-Y) P value (M) 95% interval (M)
t(G− 1) 0.0000 [−13.37,−5.77] 0.0000 [−11.74,−7.39]
WCRB 0.0080 [−15.50,−3.74] 0.0145 [−19.33,−2.88]
WCUB 0.0023 [−20.77, 1.64] 0.0000 [−11.51,−7.63]
WRB 0.0012 [−14.86,−4.35] 0.0003 [−13.88,−5.33]
WUB 0.0012 [−20.03, 0.90] 0.0002 [−18.08,−1.05]

Results for Consortium, estimate is 10.0000, N = 1461
Method P value (M-Y) 95% interval (M-Y) P value (M) 95% interval (M)
t(G− 1) 0.0096 [ 2.43, 17.57] 0.0001 [ 6.22, 13.78]
WCRB 0.1482 [ −3.70, 20.52] 0.2220 [ −9.54, 24.19]
WCUB 0.1323 [−18.07, 38.07] 0.0000 [ 6.13, 13.87]
WRB 0.0960 [ −2.36, 22.34] 0.1734 [ −5.27, 25.17]
WUB 0.0947 [−14.74, 34.74] 0.1707 [−20.55, 40.55]

These results are for Table 2, Panel A of Branzoli and Decarolis (2015). There are 101 municipality-year
(M-Y) clusters and 9 municipality (M) clusters. With clustering by municipality-year, all bootstrap methods
use the Rademacher distribution with 99, 999 bootstrap samples. With clustering by municipality, WRB
and WUB use B = 99, 999, but WCRB and WCUB enumerate all 32, 768 possible bootstrap samples. Note
that the estimate reported as 10.0000 is not a mistake; the actual value is 9.9999646.

average. All P values are less than 0.05. However, the length of the confidence intervals
varies quite a bit, and the ones for the WCU and WU bootstraps include zero when clustering
by municipality-year.

For Consortium, the evidence of any effect is much weaker. Although both conventional
P values are less than 0.05, all but one of the bootstrap P values is not. The P value of
0.0000 for WCUB with clustering at the municipality level should not be believed, because
MacKinnon and Webb (2017a) showed (analytically) that this method usually over-rejects
to an extreme extent when there is just one treated cluster.

Because of the small number of treated clusters, it may seem attractive to employ ran-
domization inference, or RI (Subsection 5.4) instead of bootstrap methods. In fact, in a
robustness check, Branzoli and Decarolis (2015) uses the procedure of Conley and Taber
(2011) to construct RI-based confidence intervals.

If the 101 municipality-year clusters were independent, and treatment were assigned at
random to four of them, then randomization inference would probably work well. There
would be 101!/(97! 4!)− 1, or 4, 082, 924 possible re-randomizations. We could obtain an RI
P value either by comparing the observed coefficient estimate to the empirical distribution of
a large number (say, 9, 999) of estimates obtained by re-randomization, or by comparing the
observed t-statistic to the empirical distribution of a large number of t-statistics obtained in
the same way; see MacKinnon and Webb (2020).

In our view, however, it is extremely difficult to justify either clustering by municipality-
year or randomization inference that treats municipality-years as independent. Even though
all the regressions include year and municipality fixed effects, we would expect there to

25



be correlation across years for every municipality. But when we attempt to use RI at the
municipality level, we run into a serious problem: There are only 14 possible ways in which
to re-randomize. Even if the coefficient (or t-statistic) for Turin turned out to more extreme
than all the others, that would happen by chance with probability 1/15 = 0.0667. This
would not allow us to reject at the .05 level the null hypothesis that changing the auction
rules had no effect.

In fact, the evidence from RI at the municipality level is much weaker than this. In
each case, we can rank all 15 estimates, that is, the actual one for Turin and the 14 others
based on re-randomization. For %-subc, the estimate of −9.5661 is only the third-largest
(in absolute value). However, the t-statistic of −9.5143 is the largest one. Thus, for %-subc,
we can reject the null hypothesis at the .10 level if we rely on t-statistics, but not if we rely
on coefficient estimates. For Consortium, the estimate of 10.0000 is the second-largest, but
it is quite a bit smaller than the largest re-randomized estimate, which is −18.1503. In this
case, the t-statistic of 2.6411 is only the fourth-largest. Thus, for Consortium, we cannot
reject the null hypothesis at any conventional level using either RI method.

For situations in which the number of possible re-randomizations is small, MacKinnon and
Webb (2019) proposed a method called wild bootstrap randomization inference, or WBRI;
see Subsection 5.4. In this case, when we generate a total of 15× 700 = 10, 500 samples, we
obtain P values that differ somewhat from the ones in Table 2. For Consortium, they are
0.130 (for WBRI-β) and 0.104 (for WBRI-t), so that we cannot reject at the .10 level. For
%-subc, they are 0.075 (for WBRI-β) and 0.022 (for WBRI-t), so that we may or may not
be able to reject at the .05 level.

7 Monte Carlo Simulations
As we stressed in Section 4, choosing the correct level at which to cluster is extremely
important. However, we are not aware of any simulation experiments that focus on the
consequences of over-clustering and under-clustering. We therefore perform a limited set of
Monte Carlo simulations designed to do so. In our experiments, clustering may occur at one
of three levels. There are 60 zones, each with 100 observations, which are grouped into 20
cities and 10 states. Seven cities each contain one zone, six cities each contain three zones,
and seven cities each contain five zones. Each state contains two cities. Thus states have
between 200 and 1000 observations.

The model is
ysczi = β1 + β2xsczi + usczi, (18)

where the regressor xsczi is equal to x1s ∼ N(0, 1) plus x2i ∼ N(0, 1). As the notation implies,
x1s takes the same value for every observation in state s, and the x2i are independent across
observations. Thus the correlation of the regressor between any pair of observations in the
same state (or zone, or city) is 1/2.

The disturbances may or may not be correlated within zones, cities, and states. For all
s, c, z, and i,

usczi = φsv1s + φcv2c + φzv3z + εi,

where v1s, v2c, v3z, and εi are distributed as N(0, 1), one of φs, φc, and φz is equal to φ, and
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Table 3: CRVE Rejection Percentages for Three Levels of Clustering

Zone t(59) City t(19) State t(9)
φ/DGP zone cityu stateu zoneo city stateu zoneo cityo state
0.00 5.24 5.28 5.23 6.26 6.28 6.24 7.17 7.21 7.15
0.05 5.29 8.66 12.98 6.42 6.98 11.22 7.43 8.39 9.08
0.10 5.48 15.65 26.81 6.74 7.71 17.94 8.08 9.80 10.44
0.15 5.50 21.62 36.79 6.98 8.10 22.16 8.52 10.49 10.90
0.20 5.55 25.80 43.02 7.15 8.30 24.60 8.79 10.93 11.18
0.30 5.70 30.34 49.61 7.48 8.47 27.08 9.37 11.26 11.51
0.40 5.65 32.53 52.55 7.51 8.59 28.13 9.48 11.44 11.59
0.50 5.75 33.78 54.19 7.65 8.57 28.67 9.69 11.45 11.67
The table shows rejection percentages for tests at the 5% level based on Monte Carlo exper-

iments with 400,000 replications for standard errors clustered at three levels. Column headings
indicate the actual level of clustering in the DGP. An “o” superscript indicates that standard
errors are over-clustered, and a “u” superscript indicates that they are under-clustered.

the others are equal to 0. Thus if, for example, there is clustering at the city level, usczi is
equal to φ times a city-level random component v2c plus an individual component εi.

In the experiments, we vary φ between 0 and 0.5, and we also vary the level at which
the disturbances are clustered. We then test the null hypothesis that β2 = 0. Tables 3
and 4 report 5% rejection rates, as percentages, for experiments with 400,000 replications.
In Table 3, the rejection rates are based on cluster-robust t-statistics and the t(G − 1)
distribution. In Table 4, they are based on the WCR bootstrap using the Rademacher
distribution and 399 bootstrap replications.

When all correlation is within zones and standard errors are clustered at the zone level,
inference based on the t(G−1) distribution is very good, and inference based on the WCRB
appears to be perfect; see the first column of results in Tables 3 and 4, respectively. This is
not surprising, of course, because 60 is a fairly large number of clusters, and all zones are
the same size. The results become much more interesting when there is correlation at the
city or state levels.

Both tables show that there is severe over-rejection whenever we under-cluster. This
happens in columns 2, 3, and 6, where the DGP is marked with a “u”. The over-rejection
increases with φ, initially very rapidly. The most severe over-rejection occurs in column 3,
where the DGP has state-level clustering but standard errors are calculated at the zone level.
Thus the standard errors are calculated two levels below the correct one. The over-rejection
is less severe, but still very substantial, when the standard errors are calculated at the city
level, only one level below the correct one.

The effects of under-clustering necessarily become worse as the sample size increases.
We repeated the above experiments with 1000 observations per zone instead of 100. For
large values of φ, the results did not change very much. For example, the rejection rate for
φ = 0.50 in the third column of Table 4 increased from 52.46 to 55.43. For smaller values,
however, the rejection frequencies increased much more. For example, the rate for φ = 0.10
in the third column of Table 4 increased from 25.69 to 48.73. Thus the effects of ignoring
small amounts of correlation by clustering at too fine a level become more serious as the
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Table 4: WCR Bootstrap Rejection Percentages for Three Levels of Clustering

Zone WCRB City WCRB State WCRB
φ/DGP zone cityu stateu zoneo city stateu zoneo cityo state
0.00 4.99 5.02 4.95 5.10 5.11 5.07 5.28 5.38 5.30
0.05 4.98 8.19 12.39 5.12 5.21 8.25 5.35 5.50 5.62
0.10 5.03 14.79 25.69 5.21 5.27 12.51 5.46 5.71 5.85
0.15 5.00 20.44 35.50 5.15 5.31 15.21 5.57 5.83 5.88
0.20 4.98 24.35 41.48 5.16 5.31 16.83 5.60 5.93 5.97
0.30 5.03 28.66 48.00 5.26 5.37 18.52 5.76 6.05 6.02
0.40 4.98 30.77 50.84 5.21 5.40 19.32 5.74 6.06 6.13
0.50 5.02 31.95 52.46 5.27 5.35 19.80 5.84 6.01 6.17
See notes to Table 3. The WCRB uses the Rademacher distribution with 399 bootstrap

replications.

sample size increases, just as the analysis of Section 3 suggested.
The consequences of over-clustering are much less severe than those of under-clustering,

especially when the WCR bootstrap is used. Inference based on the t(G− 1) distribution is
somewhat unreliable when clustering by city and quite unreliable when clustering by state.
In contrast, over-clustering causes very little size distortion when inference is based on the
WCRB. This may be seen in columns 4, 7, and 8 of Table 4, where the DGP is marked
with an “o”. Even though there are only 10 clusters, and they vary considerably in size, the
combination of state-level clustering and the WCRB always works quite well, with rejection
rates never much greater than 6%.

The results in Table 4 suggest that, provided we use the WCR bootstrap, the cost of over-
clustering is quite modest when the null hypothesis is true. But what if that null hypothesis
is false? Figure 1 shows six power functions for tests of β2 = 0 in the model (18). For
the three blue curves, clustering is actually at the zone level. The solid curve shows power
when the CRVE correctly clusters at the zone level, the dashed curve shows power when it
over-clusters at the city level, and the dotted curve shows power when it over-clusters at the
state level. There is evidently some power loss due to over-clustering. This is modest when
we cluster by city, but it is about twice as large when we cluster by state.

For the two red curves, clustering is actually at the city level. Power is very much less
than it was with clustering at the zone level, because there are far more non-zero off-diagonal
elements in the Ω matrix. Oddly, except for very large values of β2, power seems to be slightly
higher when the CRVE over-clusters at the state level than when it correctly clusters at the
city level. This apparent gain in power is spurious, of course. It arises because the test
over-rejects a bit more in the former case than in the latter. The figure does not attempt to
show size-adjusted power because there is no way to size-adjust these tests in practice; see
Davidson and MacKinnon (2006b).

For the purple curve, clustering is actually at the state level. The only valid way for the
CRVE to cluster is also at the state level, so only one curve is shown. The power loss, relative
to clustering at the city level, is quite severe. Once again, this is not at all surprising. With
only 10 states, there are a great many non-zero off-diagonal elements in the Ω matrix. Thus
the sample contains much less information than it did with clustering at a finer level.

28



Figure 1: Power of WCR Bootstrap Tests
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Notes: In these experiments, N = 6000 and φ = 0.2. The WCRB uses the Rademacher distribution with
399 bootstrap replications. The label “X, by y” means that the disturbances are actually clustered at level
X, and the CRVE is clustered at level y.

8 Conclusion
Disturbances (error terms) that are correlated within clusters can cause severe problems for
inference, especially when the sample size is large and the number of clusters is not. The
standard approach is to use t-statistics based on cluster-robust standard errors from a CRVE,
usually CV1 given in (4), together with the t(G − 1) distribution. This approach generally
works well when there is a large number of clusters that are roughly balanced in terms of
cluster sizes and the features of the key regressors and the disturbances. However, when the
number of clusters is small, or the clusters are seriously unbalanced, the standard approach
can yield very unreliable inferences.

The restricted wild cluster bootstrap (WCRB) works well in a far wider set of circum-
stances than the standard approach. Accordingly, we advocate using it as the default method
of statistical inference. Computational tricks pioneered in the boottest package for Stata
make computing the WCRB very fast and easy in most cases. There are still situations in
which the WCRB will not be particularly reliable, most notably when there are very few
clusters (say, six or less), when clusters are very heterogeneous, or when there are very few
treated (or control) clusters. In such cases, it is important to check whether the WCRB
seems to be reliable. One approach is to compare WCRB P values or confidence intervals
with those from alternative procedures such as randomization inference (Subsection 5.4) or
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the procedures discussed near the end of Subsection 5.1. If the results of the WCRB broadly
agree with those from other procedures, then it seems reasonable to accept the former. A
second approach is to conduct a Monte Carlo experiment that mimics the model and dataset
on hand. This approach can be particularly useful in unusual settings where the clusters are
severely unbalanced in size or in some other way.

The validity of the asymptotic approximations that underlie cluster-robust inference is
driven by the number of clusters rather than the sample size. Unfortunately, and contrary to
popular belief, there is no “golden number” of clusters beyond which CRVE-based inference
becomes reliable. The requisite number of clusters depends on many factors. These include
how much the cluster sizes vary, how unbalanced the clusters are in other respects, and,
in many cases, how many clusters are treated, how many clusters are not treated, and the
numbers of treated observations in each of the treated clusters. Because it conditions on all
these aspects of the sample, which no “golden number” could ever do, our recommendation
is to use the restricted wild cluster bootstrap essentially all the time.

In Section 4, we suggested a few guidelines for how to cluster. In general, one should
cluster at the coarsest level possible. The simulation experiments in Section 7 suggest that
there can be large size distortions from under-clustering compared with much smaller power
losses from over-clustering. This is especially true in large samples. When studying the
effects of policy changes, one should always cluster at least at the level of the policy change,
and perhaps at a more aggregate level. When working with panel data, it is desirable to
cluster by the cross-section dimension (perhaps in addition to other dimensions) in order to
capture any serial correlation.

Much more is known about cluster-robust inference than was the case even ten years ago.
Nevertheless, there are still many unanswered questions. We do not know how to control for
both spatial correlation and conventional within-cluster correlation at the same time. We
do not know how to obtain reliable inferences when there are few treated clusters and the
treated clusters are atypical. Although testing procedures exist, we do not really know how
to determine the right level at which to cluster, especially when over-clustering means having
few clusters or few treated clusters. Finally, except in certain special cases, we do not know
how to conduct inference when there is a very small number of clusters, say, six or less.
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