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Abstract

Although globalization has shaped the world economy in recent decades, emerging economies
have experienced impressive growth compared to developed economies, suggesting a decoupling
between developed and emerging business cycles. Using observed developed and emerging econ-
omy activity variables, we investigate whether the latter assertion can be supported by observed
data. Based on a two-level factor model, we assume these activity variables can be decomposed
into a global component, emerging or developed common component and idiosyncratic national
shocks. We propose a statistical test for the null hypothesis of a one-level specification, where it
is irrelevant to distinguish between emerging and developed latent factors against the two-level
alternative. This paper provides a theoretical justification and simulations that document the
testing procedure. An application of the test to a panel of developed and emerging countries
leads to strong statistical evidence of decoupling.

Keywords: test statistic, latent factors, decoupling, emerging economies, developed economies.
JEL classification: C12, C55, F44, O47.

1 Introduction

The empirical and theoretical econometric analysis of high-dimensional factor models has been a

heavily researched area since the seminal paper of Stock and Watson (2002). These models allow

the reduction of a large set of macroeconomic and financial variables into a very small number of

indexes, which are useful to span various information related to economic agents. Factor models

generally assume a one-level structure, where the comovements into a large panel of variables can be

summarized into a few latent factors affecting all variables. In particular, each variable in the large

panel can decomposed in an idiosyncratic error component and a common component. See, e.g.,

Stock and Watson (2002), Bai and Ng (2002) and Bai (2003) for details. In many prediction and

∗I am grateful to Sílvia Gonçalves, James G. MacKinnon, Morten Ø. Nielsen, Benoit Perron and participants

to Queen’s Economic Department Quantitative Workshop and the New York Camp Econometrics XIII for useful

discussions and comments. I thank Queen’s Economic Department for financial support.
†Address: Department of Economics, 94 University Avenue, Queen’s University, Kingston, Ontario K7L 3N6,

Canada. Email: antoined@econ.queensu.ca.
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policy exercises, empirical researchers have found it useful to extract factors from a large set of series.

Among others, Ludvigson and Ng (2007) have investigated the risk-return relation in the United

States equity market based on extracted factors from a large panel of macroeconomic indicators.

More recently, Aastveit, Bjørnland, and Thorsrud (2015) studied the role of the increased demand

from emerging economies compared to those of developed economies as drivers of the real price of

oil using a structural factor-augmented vector auto-regression, with factors from a large panel of

emerging and developed activity variables.

Because the factors are latent, they are generally estimated in practice using the principal

component method (PCM) assuming the one-level factor model. However, in many economic

applications such as international business cycle studies, multi-level structures naturally arise in

the specification of the common component. In such a case, specific factors of some groups of

countries are allowed in addition to global factors. The illustration in this paper is similar to

the one in Kose, Otrok, and Prasad (2012) and contributes to the debate on the existence of

specific emerging economy activity factors. Kose, Otrok, and Prasad (2012) have investigated the

decoupling between developed and emerging economy activity factors using these models. The

motivation is twofold. First, the worldwide economy has become as interconnected as ever through

an important increase in trade and free movement of capital. Second, a large share of the global

growth has been accounted for by emerging economies. This high economic growth has seemed, at

times, to have been unaffected by weak economic activity in developed countries. While the first

point of view suggests a strong influence of global economy activity factors, the second suggests a

specific emerging economy activity factor different from that in a developed economy.

As is well known, the PCM estimates of factors only converge to a rotation of the true factor

space; see Bai (2003). In particular, if one is interested in understanding the role of these specific

factors, it is important to know the functional form relating them to the estimated factors, which

is impossible in practice. As Breitung and Eickmeier (2014) and Han (2016) also argued, the

standard principal component is not able to separately identify specific factor spaces when multi-

level common factor structures arise. Han (2016) alternatively suggests a shrinkage estimator and

uses it to disentangle global macroeconomic factors that are Europe specific and U.S. specific. He

finds that these specific estimated factors have high explanatory power for the leading economic

indicators in Europe and the United States. Furthermore, Wang (2010) studies the estimation of

multi-level factor models. In his empirical application, he decomposes the comovements within real

and financial sectors in the United States economy.

The statistical evidence of the existence of factors that are specific to groups of variables has

not been studied. Suppose for example that one is interested in the structural implications of

specific real economy activity factors within develop and emerging economies. It is crucial to check

whether the data support a coupling of these two economy activity factors or their decoupling into
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two specific factors. In this paper, we first illustrate the failure of the principal component estimates

to separately identify the latent factor when a two-level specification holds. Second, we propose a

test, which we justify to be theoretically valid, and document its finite sample performance through

simulation experiments.

Although our theoretical results can be applied in other contexts, this work exclusively focuses

on the international business cycle developments. It provides a statistical framework that can

be used to analyze whether or not developed and emerging economy business cycles decouple. We

propose a statistic that formally tests the coupling (corresponding to a one-level factor specification)

against the decoupling (corresponding to a two-level factor specification) of developed and emerging

activity factors. In the empirical application, we find strong statistical evidence against the null

hypothesis that developed and emerging business cycles do not decouple.

Finally, we use a modification of the standard PCM called "sequential" which allows the identi-

fication of global and specific latent factors. This procedure considers initial estimated global and

specific factors and iterates them until the sum of squared idiosyncratic residuals is minimized. Our

analysis of the identified global, emerging and developed economy forces emphasizes their ability

to capture major economic events during the sampling period.

The rest of the paper is organized as follows. In Section 2, we present motivational simulation

experiments, propose a test of the one-level representation (coupling) against the two-level repre-

sentation (decoupling) of the comovements within developed and emerging economies and justify

its validity theoretically. In Section 3, we investigate the finite sample properties of the proposed

test. In Section 4, we apply it to our data and estimate the different economy activity factors from

a two-level factor panel model. Section 5 concludes the paper. Assumptions, proofs and the figures

are relegated to the Appendix. Throughout the paper, ⌊·⌋ and ‖·‖ respectively denote the integer

part of a number and the Euclidean norm.

2 Global, Emerging and Developed Economy Activity Factors

Emerging economies have become major players in the global world economy. On one hand, they

have had high economic growth in recent decades compared to many developed economies developed

economies. On the other hand, it is generally admitted that globalization has increased world

economic interdependence, subsequently increasing the predominance of global economy activity

factors. This paper contributes to the debate on the decoupling or not of the developed and

emerging economy business cycles. We formally answer that question by investigating whether the

distinction between specific factors of developed and emerging economy activities is relevant using

a statistical test.

For our study, we consider a large set of N economic activity variables
(

X = {Xit}t=1,··· ,T ; i=1,··· ,N

)

on developed and emerging countries. We suppose that the N1 = ⌊αN⌋ first rows of X contain
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information on developed countries. Furthermore, we assume that the comovements within X are

reflected by latent global, developed and emerging economy activity factors, which are denoted by

f0t, fDt and fEt, respectively. To separate these common international factors from idiosyncratic

national shocks, we model the comovements within X using a two-level factor model specification.

This model is motivated by the fact that it allows us to identify some common factors that capture

comovements across the entire dataset or across subsets of the series. In our case, the global factor

f0t reflects fluctuations that are common across all variables and countries. The developed economy

activity factor fDt and the emerging economy activity factor fEt, respectively, capture fluctuations

that are common to developed and emerging economies. The factor panel model can be written as

Xit = λ0if0t + λ1ifDt + eit if 1 ≤ i ≤ N1 (1)

and

Xit = λ0if0t + λ1ifEt + eit if N1 + 1 ≤ i ≤ N, (2)

where eit are the idiosyncratic errors. The factor loading λ0i measures the exposure of variable i

to the global economic activity factor whereas λ1i reflects the variable Xit exposure respectively to

developed and emerging country economy activity factors. The latent factors fDt and fEt contain

only information specific to each group of countries and not in the global economy activity factor

f0t. Therefore, the global factor is allowed to affect all the variables while the specific factors only

affect the variables within their corresponding groups. When the distinction between the developed

and emerging economy activity factors are irrelevant, there is a factor model representation where

fDt = fEt at any time period.

To identify our factors of interest, we use the log differences of real gross domestic product and

industrial production on 22 developed and 29 emerging countries as economy activity variables.

The classification of the 51 developed and emerging countries is given in Section 4. The next

subsection discusses the PCM estimation of the latent factors.

2.1 Principal Component Method and Identification of Specific Latent Factors

In practice, the activity factors are latent and need to be estimated. A popular approach consists

of relying on principal component estimation. This procedure assumes a one-level factor model

Xit = λ′
ift + eit, i = 1, . . . , N and t = 1, . . . , T,

where ft : r × 1 contains r latent factors and λi is the corresponding r × 1 vector of factor

loadings. Since the seminal paper of Stock and Watson (2002), where the extracted factors were

used in the forecasting context, this approach has received considerable of attention in empirical

and theoretical works. Given X, the latent factor matrix F = [f1 · · · fT ]′ is estimated by the matrix
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F̃ =
[

f̃1 · · · f̃T

]′
: T ×r that is

√
T times the eigenvectors corresponding to the r largest eigenvalues

of X ′X/ (TN) in decreasing order and using the normalization F̃ ′F̃ /T = Ir. Moreover, the matrix

of factor loadings Λ = [λ1 · · · λN ] is estimated by Λ̃ =
[

λ̃1 · · · λ̃N

]

= XF̃
(

F̃ ′F̃
)−1

= XF̃ /T

regressing each column of X ′ on F̃ . As is well known, the PCM only consistently estimates the

space spanned by the true factors, i.e., f̃t = H ′ft + oP (1), t = 1, . . . , T , with H an r × r rotation

matrix. Following Bai and Ng (2002) and Bai (2003), H = Λ′Λ

N
F ′F̃

T Ṽ −1, where Ṽ is diagonal and

contains the r largest eigenvalues of X ′X/NT in decreasing order. Consequently, the vector of the

estimated factor loadings λ̃i converges to a rotation of λi, H−1λi, such that

Xit = λ
′

ift + eit =
(

H−1λi

)′ (
H ′ft

)
+ eit.

In a case where developed and emerging business cycles do not decouple, it becomes irrelevant

to consider two different specific factors. Estimating in such a case r = 2 latent global factors

based on the two most informative eigenvectors of X ′X/ (TN) is sufficient to capture the comove-

ments within X. However, when the developed and emerging economy activity factors decouple,

it becomes difficult to identify these two latent factors since H is unobserved and in general not

a diagonal matrix asymptotically. Bai and Ng (2013) provide conditions that help identify the

factors. For instance, they show that H is diagonal with ±1 diagonal elements and it is possible

to identify the true factors up to the sign when F ′F /T = Ir and Λ′Λ is diagonal. However, these

conditions rely on latent factors and cannot be verified in practice. As a consequence, the principal

component estimates only jointly identify the true factor space.

To illustrate the identification of developed and emerging economy activity factors by PCM es-

timates, we perform a Monte Carlo experiment using the previous two-level factor model. More pre-

cisely, we analyze how informative are the estimated factors in identifying FD = [fD1 · · · fDT ]′ and FE =

[fE1 · · · fET ]′ by regressing each of these latent factors on estimated factors individually or on groups

of them, reporting the R2 in each situation. A very high R2 in this case means the estimated factor

or the set of estimated factors have strong predictive ability for the latent factors and strongly con-

tribute to identifying the considered true specific factors. We distinguish the situation where each

true specific latent factor is regressed on the first and the second estimated factor individually or

jointly, and also the case with three estimated factors as predictors. For the illustration, we assume

N1 = N/2 (i.e., α = 1/2). For t = 1, . . . , T , the global factor f0t is supposed to be normally and in-

dependently distributed (NID) with mean 0 and variance 1. The developed activity factor fDt and

the emerging economy specific factor fEt are assumed to follow a NID(0, 1) distribution. We let the

exposure to each factor be λji ∼ NID (1, 1), j = 0, 1 and the idiosyncratic errors eit ∼ NID (0, 4).

The choice of variance for eit helps to insure that the factor model R2 is 0.5. We set the mean of

the latent factor loadings to 1 in order to allow a nonzero expected exposure to the true factors.

Tables 1 and 2 show that the two most informative estimated factors cannot consistently iden-
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Table 1: Ability of PCM estimates to predict fDt

Predictors R2 T=50 T=100 T=150 T=200 T=250

f̃1t N=100 0.1480 0.1273 0.1237 0.1192 0.1189
N=200 0.1471 0.1269 0.1200 0.1179 0.1147

f̃2t N=100 0.4477 0.4630 0.4587 0.4627 0.4634
N=200 0.4667 0.4743 0.4771 0.4785 0.4770

f̃1t, f̃2t N=100 0.5957 0.5903 0.5824 0.5819 0.5823
N=200 0.6145 0.6012 0.5972 0.5964 0.5917

f̃1t, f̃2t, f̃3t N=100 0.9496 0.9519 0.9528 0.9531 0.9535
N=200 0.9748 0.9759 0.9762 0.9764 0.9764

a This table presents the R2 of the regression of true latent factors on estimated

factors. It provides information about how informative the latter are with regard

to the latent specific factors considered in this experiment. Because each estimated

factor is not identifying one true latent factor, the estimated factors are indexed

differently.

Table 2: Ability of PCM estimates to predict fEt

Predictors R2 T=50 T=100 T=150 T=200 T=250

f̃1t N=100 0.1450 0.1285 0.1180 0.1181 0.1156
N=200 0.1446 0.1245 0.1195 0.1158 0.1136

f̃2t N=100 0.4597 0.4575 0.4637 0.4658 0.4668
N=200 0.4669 0.4732 0.4760 0.4774 0.4812

f̃1t, f̃2t N=100 0.6047 0.5860 0.5853 0.5838 0.5823
N=200 0.6115 0.5977 0.5955 0.5932 0.5947

f̃1t, f̃2t, f̃3t N=100 0.9497 0.9519 0.9528 0.9532 0.9533
N=200 0.9746 0.9758 0.9762 0.9763 0.9765

b See Table 1a.

tify latent emerging and developed activity factors. For any sample sizes, these two estimated

factors cannot individually or jointly identify the latent emerging or developed activity factors. In

particular, the low R2 when regressing fDt and fEt on f̃1t and f̃2t reflects their inability to help

completely identify the emerging latent factor. Second, the latent factors can only be identified

using at least three estimated factors. Therefore, unless we know the linear relationship between

them, specific comovement to emerging or developed economies cannot be identified. In the pres-

ence of decoupled developed and emerging economy activity factors, the PCM estimates a factor

space corresponding to the one-level representation of (1) and (2) given by

Xit = φ0if0t + φDifDt + φEifEt + eit, i = 1, . . . , N, (3)

where

φ0i = λ0i, φDi = λ1i, φEi = 0, i = 1, . . . , N1,

φ0i = λ0i, φD = 0, φEi = λ1i, i = N1 + 1, . . . , N .
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In practice, if one is only interested in simply forecasting a given variable using the PCM

estimated factors, then it is sufficient to consider additional common factors as needed. However, if

the interest is to understand how potential specific activity factors contribute to the fluctuation of

a given variable (e.g., oil prices), it is crucial to be able to identify them individually. Because this

is impossible in empirical works using PCM, where the true latent factors and factor loadings are

not observed, it could be important to test whether the developed and emerging activity factors

decoupled or do not. The next subsection addresses this issue.

2.2 Testing the Decoupling of Specific Factors

To study if we can separately identify the space spanned by the global and specific factor spaces

given our data set, we consider the null hypothesis that H0 : FD = FE , where FD = [fD1 · · · FDT ]′

and FE = [fE1 · · · fET ]′ against H1 : FD 6= FE . Therefore, under the null, (1) and (2) are equivalent

to the one-level representation

X = ΛF ′ + e, (4)

where the global latent factor matrix is F = [F0 F1], with F0 = (f01 · · · f0T )′, F1 = (f11 · · · f1T )′.

The matrix of latent factor loadings is given by Λ = [λ1 · · · λN ]′ : N ×2, which reflects the exposure

of developed and emerging economy activity variables to the global factors in F . Define also the

factor loadings second moment matrix under the null hypothesis as

ΣΛ = E
(
λiλ

′
i

)
=

[

Σ
(11)
Λ

Σ
(12)
Λ

Σ
(12)
Λ

Σ
(22)
Λ

]

: 2 × 2.

This testing problem is non-standard since FD and FE are very large T × 1-vectors, and we are

not able to directly apply the usual testing approaches. However, it can be viewed as a symmetric

problem for testing the structural changes in factor loadings studied by Han and Inoue (2015)

(H0 : Λ1 = Λ2 in their set-up), with the factor playing a similar role as the factor loadings. Us-

ing arguments that are close to theirs, we compare developed countries and emerging countries’

subsample second moments of estimated factor loadings. The intuition behind the proposed test

statistic can be understood by analyzing the difference in the infeasible subsample of factor loading

second moments.

Consider the matrix notation of the two-level alternative in (3), where the loadings associated

with the developed countries are

ΦD =






λ01 λ11 0
...

...
...

λ0N1
λ1N1

0




 .
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Those associated with emerging economies are

ΦE =






λ0(N1+1) 0 λ1(N1+1)
...

...
...

λ0N 0 λ1N




 .

Under the alternative, (1) and (2) together are equivalent to

X =

[

ΦD

ΦE

]
[

F0 FD FE

]′
+ e.

It turns out that the limit of the difference of the factor loading second moments in the equivalent

one-level representation

1

N1
Φ′

DΦD− 1

N − N1
Φ′

EΦE =






1
N1

∑N1

i=1 λ2
0i − 1

N−N1

∑N
i=N1+1 λ2

0i
1

N1

∑N1

i=1 λ0iλ1i − 1
N−N1

∑N
i=N1+1 λ0iλ1i

1
N1

∑N1

i=1 λ1iλ0i
1

N1

∑N1

i=1 λ2
1i 0

− 1
N−N1

∑N
i=N1+1 λ1iλ0i 0 − 1

N−N1

∑N
i=N1+1 λ2

1i






is nonzero. In particular, from Assumption 3 (a) and (b) in the Appendix, we have

1

N1
Φ′

DΦD − 1

N − N1
Φ′

EΦE =







0 Σ
(12)
Λ

−Σ
(12)
Λ

Σ
(12)
Λ

Σ
(22)
Λ

0

−Σ
(12)
Λ

0 −Σ
(22)
Λ







+ oP (1).

Indeed, Σ
(22)
Λ

is necessarily different from zero. Otherwise, the exposure of activity variables to

specific factors would be zero. This also implies that when FD and FE decouple, the second

moments of factor loadings over the subsamples change. Hence,
√

N
(

1
N1

Φ′
DΦD − 1

N−N1
Φ′

EΦE

)

diverges under the alternative.

In contrary, the difference of the second moments of factor loadings over the subsamples is

asymptotically a matrix with all elements being zero under the null. Indeed, letting

ΨD =






λ01 λ11
...

...
λ0N1

λ1N1




 : N1 × 2 and ΨE =






λ0(N1+1) λ1(N1+1)
...

...
λ0N λ1N




 : (N − N1) × 2,

we obtain under H0 that

1

N1
Ψ′

DΨD − 1

N − N1
Ψ′

EΨE =

[

0 0
0 0

]

+ oP (1) = oP (1).

Furthermore, we can derive the asymptotic distribution of
√

N
(

1
N1

Ψ′
DΨD − 1

N−N1
Ψ′

EΨE

)

. How-

ever, because F and Λ are latent, they are estimated. Their principal component estimates F̃ and Λ̃

converge respectively to their rotated versions F H and ΛH−1′ such that X =
(
ΛH−1′) (F H)′ +e

with H a 2×2 random matrix converging in probability to a nonsingular matrix H0. We therefore

construct the test statistic based on the rotated latent factor loadings ΛH−1′
0 .

Define the vectorized rotated latent difference A
(

α, ΛH ′−1
0

)

, a 2(2+1)
2 = 3-dimensional vector,
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given by

√
NVech




1

N1

N1∑

i=1

H−1
0 λiλ

′
iH

′−1
0 − 1

N − N1

N∑

i=N1+1

H−1
0 λiλ

′
iH

′−1
0



 .

Under the independence and the existence of slightly more than fourth moment conditions on λi,

we show in Lemma A.2 that A
(

α, ΛH ′−1
0

)

is asymptotically normal. Consequently, the infeasible

statistic

LMN

(

α, ΛH ′−1
0

)

= A
(

α, ΛH ′−1
0

)′ (
S
(

α, ΛH ′−1
0

))−1
A
(

α, ΛH ′−1
0

)
d−→ χ2 (3) ,

where

S
(

α, ΛH ′−1
0

)

=

(
1

α
+

1

1 − α

)
1

N

N∑

i=1

Vech
(

H−1
0 λiλ

′
iH

′−1
0 − V0

)

Vech
(

H−1
0 λiλ

′
iH

′−1
0 − V0

)′

converges in probability to the variance of A
(

α, ΛH ′−1
0

)

and V0 = H−1
0 ΣΛH ′−1

0 is the rotated

second moments of factor loadings. See the Appendix for the details of the proof.

Let Λ̃ =
[

λ̃1, . . . , λ̃N

]′
is the PCM estimator of the whole matrix of factor loadings Λ. Noting

that both factors and factor loadings are estimated under the null, we define the statistic by

LMN

(

α, Λ̃
)

= A
(

α, Λ̃
)′ (

S̃
(

α, Λ̃
))−1

A
(

α, Λ̃
)

, (5)

where

A
(

α, Λ̃
)

= Vech




√

N




1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i







 (6)

and S̃
(

α, Λ̃
)

is the restricted long run variance estimator of A
(

α, Λ̃
)

, with

S̃
(

α, Λ̃
)

=

(
1

α
+

1

1 − α

)
1

N

N∑

i=1

Vech
(

λ̃iλ̃
′
i − VNT

)

Vech
(

λ̃iλ̃
′
i − VNT

)′
, (7)

with VNT = 1
N

∑N
i=1 λ̃iλ̃

′
i.

To obtain the limit distribution of the test statistic, these observations are combined with

Lemma 2.1. This lemma establishes that A
(

α, Λ̃
)

and S̃
(

α, Λ̃
)

are close enough to their respective

infeasible analogue A
(

α, ΛH−1′
0

)

and S
(

α, ΛH−1′
0

)

uniformly in α ∈ [α1, α2] ⊂ (0, 1). In order

to derive our results, we make Assumptions 1–3 presented in the Appendix. Assumptions 1 and 2

allow for weak dependence and heteroskedasticity in the idiosyncratic errors and are similar to the

assumptions A−D of Bai and Ng (2002), 1−3 of Djogbenou, Gonçalves, and Perron (2015) and

1−2 of Djogbenou (2017). However, Assumption 2 (a), (c) and (d) which restricts the dependence

between ft, λi and eit among specific group of variables is slightly stronger. Assumption 3 is useful

for deriving the asymptotic distribution of A
(

α, ΛH ′−1
0

)

using the Central Limit Theorem.

Lemma 2.1. Suppose that Assumptions 1–3 are satisfied. As N, T → ∞, if
√

N/T → 0, then it

holds that under the null,
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∥
∥
∥A

(

α, Λ̃
)

− A
(

α, ΛH−1′
0

)∥
∥
∥ = oP (1) , (8)

and
∥
∥
∥S̃
(

α, Λ̃
)

− S
(

α, ΛH−1′
0

)∥
∥
∥ = oP (1) , (9)

uniformly in α ∈ [α1, α2].

The following theorem, formally proved in the appendix, states the asymptotic null distribution

of the test statistic.

Theorem 1. Suppose that Assumptions 1–3 are satisfied. As N, T → ∞, if
√

N/T → 0, then it

holds that under the null,

LMN

(

α, Λ̃
)

d−→ χ2 (3) ,

uniformly in α ∈ [α1, α2].

Theorem 1 suggests that we could test the null hypothesis of the one-level factor specification

against the two-level one using the LMN

(

α, Λ̃
)

statistic based on critical values from a Chi-squared

distribution with 3 degrees of freedom. Alternatively to the restricted long run variance estimator,

one could have considered a test statistic using an unrestricted estimator of the long run variance

based on variance estimates over each subsample. However, the resulting test is asymptotically

equivalent to the version suggested here, and we find that both statistics have similar size properties

in simulation studies. We therefore focus on the simpler version presented here.

The next theorem shows that the test statistic has power against the alternative. In order

to derive our result under the alternative, we use Assumption 4 (a)−(g) (in the Appendix) to

complement Assumptions 1–3 as an additional factor arises in the one-level representation of the

two-level alternative due to the decoupling. Assumption 4 (h) imposes positive definiteness and is

a standard assumption.

Theorem 2. Suppose that Assumptions 1–4 are satisfied. As N, T → ∞, if
√

N/T → 0, then there

exists, under the two-level alternative, a non-random matrix R0 6= 0 such that

1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i

P−→ R0

and

LMN

(

α, Λ̃
)

= NVech (R0)′
S0Vech (R0) + oP (N),

uniformly in α ∈ [α1, α2], with S0 a constant matrix and Vech (R0)′
S0Vech (R0) > 0.

Theorem 2 implies that under the alternative LMN

(

α, Λ̃
)

diverges as sample sizes increase.

In fact, A
(

α, Λ̃
)

will tend to infinity given its
√

N scaling. The proposed test statistic is easy

10



to implement. Given the large N × T panel X with the first N1 rows containing the developed

countries and the remaining being the emerging countries, the steps for the test can be summarized

into the following algorithm.

Algorithm for Implementing the Test Procedure.

1. Compute the estimated factors (F̃ ) :
√

T times the eigenvectors corresponding to the 2 largest

eigenvalues of X ′X/ (TN) in decreasing order and using the normalization F̃ ′F̃ /T = I2.

2. Compute the estimated factor loading Λ̃ =
[

λ̃1 · · · λ̃N

]′
is given by XF̃ /T .

3. Find the scaled difference between the estimated second moments

A
(

α, Λ̃
)

=
√

NVech




1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i



 .

4. Let VNT denote the average over i of λ̃iλ̃
′
i. Compute S̃

(

α, Λ̃
)

, the long run variance estimator

of A
(

α, Λ̃
)

given by

(
1

α
+

1

1 − α

)
1

N

N∑

i=1

Vech
(

λ̃iλ̃
′
i − VNT

)

Vech
(

λ̃iλ̃
′
i − VNT

)′
.

5. Obtain the test statistic

LMN

(

α, Λ̃
)

= A
(

α, Λ̃
)′ (

S̃
(

α, Λ̃
))−1

A
(

α, Λ̃
)

.

6. Reject or do not using critical values or P -values from a χ2 (3).

Although we focus on the statistical test of the decoupling between developed and emerging

business cycles, our results can be applied to other contexts and easily extended to case with

more than one global factor or more than one specific factor in each group. Further, one could

also investigate the test of factor models with more than two specific group or with a multi-level

structure using arguments that are similar. These aspects are beyond the scope of this paper. We

leave them for future research.

The asymptotic results presented above suggest that the proposed test should have good control

of size and power as the cross-sectional and time dimensions increase. The next section reports

simulation studies used to assess its finite sample properties.

3 Simulation Experiments

The Monte Carlo simulations are based on six different data generating processes (DGP), DGP 1-a,

DGP 2-a, DGP 3-a, DGP 1-b, DGP 2-b and DGP 3-b. DGP 1-a, DGP 2-a and DGP 3-a are used

to investigate the test size control while DGP 1-b, DGP 2-b and DGP 3-b evaluate the power of
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Table 3: Rejection frequencies (%) for DGPs 1-a, 2-a and
3-a

DGP 1-a T=50 T=100 T=150 T=200 T=250

N=100 4.44 4.49 4.48 4.44 4.64
N=200 4.84 4.66 4.71 4.72 4.81

DGP 2-a T=50 T=100 T=150 T=200 T=250

N=100 6.91 6.09 5.79 5.58 5.62
N=200 6.42 5.87 5.53 5.58 5.41

DGP 3-a T=50 T=100 T=150 T=200 T=250

N=100 4.43 4.49 4.57 4.58 4.45
N=200 4.83 4.57 4.78 4.69 4.81

c This table presents the rejection frequencies over 50000 simulated

data when there are no specific factors and the level of the test is

5%.

the test. The six DGPs are all based on modifications of the simulation designs in Han and Inoue

(2015) in order to incorporate two-level alternatives.

The first specification called DGP 1-a considers

Xit = λ0if0t + λ1if1t + κeit, i = 1, . . . , N and t = 1, . . . , T, (10)

with

eit ∼ NID (0, 1) , fjt ∼ NID (0, 1) , λji ∼ NID (c, 1) , j = 0, 1.

We choose κ =
√

2 (1 + c2) such that R2 = 1− trace(E(ee′))
trace(E(XX′)) = 0.50. DGP 2-a allows cross-sectional

dependence in idiosyncratic errors

eit = σi



uit +
∑

1≤|j|≤P

θu(i−j)t



 , uit ∼ NID (0, 1) , (11)

σi ∼ U (0.5, 1.5) and κ =

√

24 (1 + c2)

13 (1 + 2Pθ2)
, (12)

where θ = 0.1 and P = 4. DGP 3-a allows time dependence in e and F . It differs from DGP 1-a

by fjt = ρf fj(t−1) + vt, eit = uitσi and uit = ρeui(t−1) + wit, with

vt ∼ NID
(

0, 1 − ρ2
f

)

, wit ∼ NID
(

0, 1 − ρ2
e

)

and σi ∼ U (0.5, 1.5) , (13)

where ρe = 0.5, ρf = 0.7, κ =
√

24(1+c2)
13 and U, the uniform distribution. In all settings, we simulate

the data M = 50000 times, set c = 1 and use sample sizes (N, T ) that belong to {100, 200} ×
{50, 100, 150, 200, 250}. From Table 3, it follows that for different numbers of series and time

periods, the sizes of the tests are around the 5% level.

DGP 1-a, DGP 2-a and DGP 3-a are now modified to allow for two-level specification and
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Table 4: Rejection frequencies (%) for DGPs 1-b, 2-b and
3-b

DGP 1-b T=50 T=100 T=150 T=200 T=250

N=100 87.02 86.38 86.16 86.07 86.04
N=200 91.83 90.82 90.18 89.70 89.59

DGP 2-b T=50 T=100 T=150 T=200 T=250

N=100 89.02 89.20 89.51 89.44 89.31
N=200 92.51 91.85 91.43 91.38 91.30

DGP 3-b T=50 T=100 T=150 T=200 T=250

N=100 87.29 87.01 87.12 86.56 86.44
N=200 93.06 92.50 91.74 91.17 91.13

d This table presents the rejection frequencies over 50000 simulated

data when specific factors arise and the level of the test is 5%.

renamed DGP 1-b, DGP 2-b and DGP 3-b. These DGPs differ from DGP 1-a, DGP 2-a and DGP

3-a by the fact that f1t is replaced by fDt when i ≤ N
2 , and by fEt when i ≥ N

2 + 1, which suggests

specific factors when i ≤ N
2 and i ≥ N

2 + 1. In DGP 1-b and DGP 2-b,

fjt ∼ NID (0, 1) ,

and in DGP 3-b,

fjt = ρf fj(t−1) + vjt with vjt ∼ NID
(

0, 1 − ρ2
f

)

,

j = D, E. However, we introduce a parameter ρ representing the correlation between fDt and fEt

under the alternative hypothesis of decoupling, since they are not required to be independent in

our theory. For DGP 1-b and DGP 2-b, this is done by simply drawing fDt and fEt jointly from a

normal distribution with mean

(

0
0

)

and variance

[

1 ρ
ρ 1

]

. For DGP 3-b, we set the innovations

in the AR(1) representation of fDt and fEt have a correlation ρ
(

1 − ρ2
f

)

, implying a correlation ρ

between fDt and fEt. In particular, we assume fDt = ρf fD(t−1) + vEt and fEt = ρf fE(t−1) + vEt,

with
(

vDt

vEt

)

∼ NID

(

0,
(

1 − ρ2
f

)
[

1 ρ
ρ 1

])

.

We set ρ = 0.3.

In these three cases, the test rejection frequencies of the null hypothesis over the 50000 repli-

cations are above 86% (See Table 4), which is a quiet high power. We observe also that significant

increase in the rejection frequencies are associated with an increase in the cross-sectional dimen-

sion. In fact, the convergence in distribution of the statistic relies on the
√

N convergence of

A
(

α, ΛH ′−1
0

)

.

We now modify DGP 3-b to investigate how a strong cyclical dependence in the latent factor
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Table 5: Rejection frequencies (%) for DGP 3-b when
ρf = 0.9

ρe = 0.5 T=50 T=100 T=150 T=200 T=250

N=100 88.14 89.33 89.14 88.61 88.51
N=200 94.15 94.55 94.24 93.42 93.40

ρe = 0.7 T=50 T=100 T=150 T=200 T=250

N=100 84.27 88.18 88.35 88.01 87.92
N=200 92.52 94.01 93.75 93.20 93.19

ρe = 0.9 T=50 T=100 T=150 T=200 T=250

N=100 66.40 80.47 84.86 85.79 86.22
N=200 81.74 90.78 91.97 92.03 92.14

e See Table 4 d

affects the power of the test. In this case, the auto-regressive parameter ρf is set to 0.9, which

allows for a strong persistence of shocks to the latent factors. Table 5 reports rejection frequencies

for different values of the time dependence parameter ρe associated with the idiosyncratic errors.

Although the rejection frequencies decrease when time dependence in eit is near the unit root, we

recover the power when sample sizes increase.

Overall, the simulation exercises for different DGPs exhibit good control of size and power as

the cross-sectional and the time dimensions change.

4 Application of the Test and Sequential PCM Estimation of the

Latent Factors

The dataset covers the period from the third quarter of 1996 to the last quarter of 2014. We employ

89 series of the real gross domestic product and the industrial production of 22 developed and 29

emerging countries combining the classification in Aastveit, Bjørnland, and Thorsrud (2015) and

Caldara, Cavallo, and Iacoviello (2016).

The developed countries are: Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Por-

tugal, Spain, Sweden, Switzerland, United Kingdom and United States. In addition, we have as

emerging countries: Argentina, Brazil, Chile, China, Colombia, Czech Republic, Estonia, Hong

Kong, Hungary, India, Indonesia, Israel, Jordan, Korea Republic, Latvia, Lithuania, Malaysia,

Mexico, Peru, Philippines, Poland, Russia, Singapore, Slovak Republic, Slovenia, South Africa,

Taiwan, Thailand and Turkey.

This sample contains the major developed countries which are United States, United King-

dom, Canada, France and Japan. Moreover, the emerging countries include the BRICS countries

composed of Brazil, Russia, India, China and South Africa. We downloaded the data from the Inter-
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national Financial Statistics (IFS) database, the Global Economic Monitor (GEM) DataBank and

the Organisation for Economic Co-operation and Development (OECD) database. We collected 22

series of real gross domestic product and 22 series of industrial production for developed countries.

However, we used 26 series of gross domestic product and 19 series of industrial production for

emerging countries. Due to a large number of periods with missing observations, we do not include

gross domestic product series for Columbia, Poland and Malaysia. The industrial production series

are not included for Argentina, Chile, China, Estonia, Indonesia, Jordan, Lithuania, Peru, Taiwan

and Thailand.

Using this dataset on developed and emerging economy activities, we obtain LMN

(

α, Λ̃
)

is

equal to 27.4499 while the 95% and 99% quantile of the χ2 (3) are 7.8147 and 11.3449, respectively.

Thus, we conclude that there is strong statistical evidence against the null that developed and

emerging business cycles do not decouple. This supports the assertion that the comovement in

the real activity of emerging economies has decoupled from the one of developed economies in

the recent decades. Given this evidence, the purpose in the remaining part of this section is the

estimation of the latent factors in the two-level factor model using a procedure that can identify

specific comovements in developed and emerging economy activity variables.

As we previously pointed out, the usual PCM is not able to separately identify specific factors

under the two-level alternative. To solve that problem, Han (2016) considers a shrinkage estimator

to consistently identify the true model specification. He estimates the multi-level factors based on

two adaptive group least absolute shrinkage and selection operator (LASSO) estimators using a

penalty term. An alternative well known procedure consists of employing a sequential principal

component estimation as described by Breitung and Eickmeier (2014) and Wang (2010, Section

4.2). This approach updates an initial factor and factor loading estimates until convergence and is

implemented as follows.

Algorithm for Sequential PCM Estimation.

1. Choose an initial global estimated factor F̌0 and corresponding factor loading Λ̌0 using all

countries.

2. Obtain F̌j and Λ̌j by PCM estimation according to

X
(j)
it − λ̌0if̌0t = λjifjt + u

(j)
it ,

when j = D for the developed country economic activity variables (i = 1, . . . , N1) and j = E

for the emerging country ones (i = N1 + 1, . . . , N).

3. Obtain new F̌0 and Λ̌0 by PCM estimation according to

yit = λ0if0t + vit,
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Table 6: Ability of sequential PCM estimates to predict f0t, fDt and fEt

Predictor R2 T=50 T=100 T=150 T=200 T=250

f0t f̂0t N=100 0.9696 0.9714 0.9721 0.9724 0.9726
N=200 0.9847 0.9857 0.9861 0.9862 0.9863

Predictor R2 T=50 T=100 T=150 T=200 T=250

fDt f̂Dt N=100 0.9298 0.9420 0.9462 0.9481 0.9496
N=200 0.9554 0.9660 0.9696 0.9714 0.9725

Predictor R2 T=50 T=100 T=150 T=200 T=250

fEt f̂Et N=100 0.9302 0.9420 0.9460 0.9484 0.9494
N=200 0.9553 0.9659 0.9696 0.9712 0.9726

g See Table 1a

where y
(j)
it = X

(j)
it − λ̌jif̌jt, yit = y

(D)
it for any developed economy activity variable and

yit = y
(E)
it for emerging one.

4. Iterate steps 2 and 3 until the change in

∑

i,t

(

yit − λ̌0if̌0t

)2

is lower than the tolerance level. When the convergence condition is reached, we get from the

last iteration f̂0t = f̌0t and f̂jt = f̌jt, j = D, E.

We use this method because it is easy to implement, consistently estimates the two-level factor

space and minimizes the sum of squared residuals conditionally on the two-level restriction. It

yields identical results up to a rotation to the sequential least squares approach, where initial global

and specific estimates are also iteratively updated using least squares estimation. See Breitung and

Eickmeier (2014) for details and other methods. Although, the sequential PCM algorithm identifies

the specific factors, F̂ ′
0F̂j/T , j = D, E may be slightly different from zero in practice. As suggested

by Wang (2010), one could impose the orthogonality restriction between steps 3 and 4 in the

algorithm to obtain the specific factors. This consists of projecting the specific factors on the space

orthogonal to the space associated with the global factor. More formally, between step 3 and 4,

the specific estimated factors F̂j = M
F̂0

F̌j with M
F̂0

= IT − F̂0

(

F̂ ′
0F̂0

)−1
F̂ ′

0 are used. Table 6

shows that in the two-level illustrative experiment in Section 2.1, the estimated global and specific

factors strongly identify their corresponding true latent factors.

In order to understand the economic information behind the estimated global and specific factors

from the large panel of economy activity variables, they are plotted over the sample time periods.

Figures 1–3 in the Appendix plot the estimated sequential PCM global, developed and emerging

economy activity factors. These estimated factors differently match the main developments in

the recent global, developed and emerging economy business cycles reported by Kose, Otrok, and
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Whiteman (2003), Kose, Otrok, and Prasad (2008), Kose, Otrok, and Prasad (2012) and recently

by Charnavoki and Dolado (2014).

The global factor in Figure 1 captures the most important downturn in the recent decades

in worldwide growth after the 2008 financial crisis following the collapse of Lehman Brothers.

Likewise, Figure 2 captures the 2008 slow-down as well as the 1997 Asian financial crisis, which

affected countries such as Thailand, Japan, Indonesia, South Korea, Hong Kong and Malaysia.

Beginning in July 1997 after the Thailand foreign debt crisis, the financial woes spread to other

Southeast Asian countries, inducing fears of worldwide contagion. The developed activity factor

matches the slow economic growth after the August 2011 stock market fall due to fears of contagion

of the European sovereign debt crisis (see, Figure 3). Hence, the estimated factor appeared to be

able to capture big common shocks to the global economy as well as the one to developed and

emerging specific economies. Although the observed large variation in the activity factors can

be associated with important economic crisis, the visual analysis also suggests that many of the

changes in the variability of economic activity are headed by the developed activity factors during

our sampling period. Nevertheless, some variation through the global economy activity factors and

some heterogeneous variation that are specific to emerging economies are captured as well.

The investigation of the role of the monetary policies, the changes in aggregate demand due

to a change in government spending or the balance of payment surplus, or the fluctuations of

commodity prices could certainly help understand these business cycle fluctuations. For instance,

Caldara, Cavallo, and Iacoviello (2016) obtain in a dataset containing groups of countries that are

close to ours, that emerging economies are net oil producer (+5 %) while the developed countries

are net importer (-20 %). They find empirical evidence based on vector-autoregressive model that

a drop in oil prices driven by oil supply shocks and global demand induces a boom in the activity

of developed economies, while it leads to economic slow-down in emerging economies. Overall, it

turns out that the identified factors in this paper could help deepen, in this context and more

generally, the study of the interrelation between economic variables and economy activity factors

using large scale datasets.

5 Conclusion

This paper contributes to the debate on the existence of a specific business cycle within emerging

economies, different from developed ones. It investigates using a test statistic the ability to identify

developed and emerging economy activity factors from a large panel of economic activity variables.

Furthermore, we show the validity of the proposed testing procedure, provide evidence for its finite

sample performance through Monte Carlo experiments and use it to test for decoupling between

developed and emerging economy activity factors. In the empirical application, we find strong

statistical evidence against the null hypothesis that developed and the emerging economy activity
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factors do not decouple. Finally, we identify these factors using a sequential PCM and find that

they are able to track important economic events since 1996.

The suggested test statistic could be used in other contexts. For instance, one could use it

to test whether the risk in the international agricultural market is fully characterized by global

risk or whether some low-income and high-income country risks matter as well. Our work could

also be extended to cases with more than two specific groups and more than two levels. These

aspects are beyond the scope of this paper and are left for future research. In a different paper, we

are investigating how this heterogeneity in international business cycles contributes to explain the

fluctuation in the price of oil.

Appendix A: Assumptions and Proofs

Throughout this appendix, we let δNT = min
[√

N,
√

T
]

. When M is a matrix, M > 0 means that

M is positive definite. Denote C a generic finite constant. Note again that under the null, Λ =

[λ1 · · · λN ]′ : N ×2 and F = [f1 · · · fT ]′ : T ×2. As is well known, the principal component estimator

f̃t only consistently estimates a rotation of ft given by H ′ft (see, e.g., Bai and Ng (2002), Gonçalves

and Perron (2014) and Djogbenou (2017)). As Bai and Ng (2002) show, H = Λ′Λ

N
F ′F̃

T Ṽ −1, where

Ṽ contains the r = 2 largest eigenvalues of X ′X/(NT ) in decreasing order on the diagonal and is

an r × r diagonal matrix. We also let ιDi ≡ I (i ≤ ⌊αN⌋) and ιEi ≡ I (i ≥ ⌊αN⌋ + 1), where I (·)
is an indicator function. Under the alternative, we define G = [F0 FD FE ] = [g1 · · · gT ]′ : T × 3

and Φ = [φ1 · · · φN ]′ : N × 3. Suppose that G̃ is the PCM estimator of G. Assume that the

associated 3 × 3 rotation matrix is Ξ, and Ξ0 is its limit. Let Φ̃ denote the N × 3 matrix of factor

loadings associated with the three estimated factors in G̃. Because we built the statistic using the

estimated factor loadings associated with the first two estimated factors (F̃ ), Λ̃ corresponds to the

first two columns of Φ̃ when the underlying DGP has a two-level structure. Suppose also that J is

the 3 × 2−matrix composed of the first two columns of Ξ′−1, and J0 is the 3 × 2−matrix composed

of the first two columns of Ξ′−1
0 . To study the limiting null distributions of the suggested test

statistics we invoke the following assumptions of the approximate factor model.

Assumption 1. (Factor model and idiosyncratic errors)

(a) E ‖ft‖4 ≤ C and 1
T F ′F = 1

T

∑T
t=1 ftf

′
t

P−→ ΣF > 0, where ΣF is non-random.

(b) E ‖λi‖4 ≤ C and 1
N Λ′Λ = 1

N

∑N
i=1 λiλ

′
i

P−→ ΣΛ > 0, where ΣΛ is non-random.

(c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

(d) E (eit) = 0, E |eit|8 ≤ C.
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(e) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τst for all (i, j), with 1
N

∑N
i,j=1 σij ≤ C,

1
T

∑T
t,s=1 τst ≤ C and 1

NT

∑

i,j,t,s=1 |σij,ts| ≤ C.

(f) E
∣
∣
∣

1√
N

∑N
i=1 (eiteis − E (eiteis))

∣
∣
∣

4
≤ C for all (t, s) .

Assumption 2. (Moment conditions and weak dependence among {ft}, {λi} and {eit})

(a) E

(

1
N

∑N
i=1

∥
∥
∥

1√
T

∑T
t=1 fteitιmi

∥
∥
∥

2
)

≤ C, m = D, E, where E (fteit) = 0 for every (i, t).

(b) For each t, E
∥
∥
∥

1√
T N

∑T
s=1

∑N
i=1 fs (eiteis − E (eiteis))

∥
∥
∥

2
≤ C.

(c) E
∥
∥
∥

1√
T N

∑T
t=1

∑N
i=1 ftλ

′
ieitιmi

∥
∥
∥

2
≤ C, m = D, E, where E (ftλ

′
ieit) = 0 for all (i, t).

(d) E

(

1
T

∑T
t=1

∥
∥
∥

1√
N

∑N
i=1 λieitιmi

∥
∥
∥

2
)

≤ C, m = D, E, where E (λieit) = 0 for all (i, t).

Assumption 3. (Conditions for the asymptotic normality of A
(

α, ΛH ′−1
0

)

)

(a) The factor loadings {λi}i=1,...,N are independent across i and E
(

‖λi‖4+ξ
)

≤ C for some ξ > 0.

(b) E (λ′
iλi) = ΣΛ and E

(

(Vech (λ′
iλi))

′ Vech (λ′
iλi)

)

= ΣΛΛ.

(c) The limit of Var
(

A
(

α, ΛH ′−1
0

))

is bounded and positive definite.

Assumption 4. (Additional conditions for the two-level factor model)

(a) 1
T G′G = 1

T

∑T
t=1 gtg

′
t

P−→ ΣG > 0, where ΣG is non-random.

(b) 1
N Φ′Φ = 1

N

∑N
i=1 φiφ

′
i

P−→ ΣΦ > 0, where ΣΦ is non-random.

(c) The eigenvalues of the matrix ΣG × ΣΦ are distinct.

(d) E

(

1
N

∑N
i=1

∥
∥
∥

1√
T

∑T
t=1 gteitιmi

∥
∥
∥

2
)

≤ C, m = D, E, where E (gteit) = 0 and E (gtφ
′
ieit) = 0 for

every (i, t).

(e) For each t, E
∥
∥
∥

1√
T N

∑T
s=1

∑N
i=1 gs (eiteis − E (eiteis))

∥
∥
∥

2
≤ C.

(f) E
∥
∥
∥

1√
T N

∑T
t=1

∑N
i=1 gtφ

′
ieitιmi

∥
∥
∥

2
≤ C, m = D, E.

(g) E
∥
∥
∥

1√
T N

∑T
t=1

∑N
i=1 gtφ

′
ieitιmi

∥
∥
∥

2
≤ C, m = D, E, where E (gtφ

′
ieit) = 0 for all (i, t).

(h) The limit of the long run variance of A (α, ΦJ) is positive definite.

We state the following results, which help to prove Lemma 2.1, Theorem 1 and Theorem 2.
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Lemma A.1. Suppose that Assumptions 1–3 are satisfied. If as N, T → ∞,
√

N/T → 0, then for

any α ∈ [α1, α2], it holds that

1

⌊αN⌋

⌊αN⌋
∑

i=1

(

λ̃i − H−1λi

)

λ′
i = OP

(

1

δ2
NT

)

, (A.1)

1

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

(

λ̃i − H−1λi

)

λ′
i = Op

(

1

δ2
NT

)

, (A.2)

1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥λ̃i − H−1λi

∥
∥
∥

2
= Op

(

1

δ2
NT

)

, (A.3)

1

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

∥
∥
∥λ̃i − H−1λi

∥
∥
∥

2
= Op

(

1

δ2
NT

)

(A.4)

uniformly in α. It also holds that

1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i − H−1λiλ

′
iH

′−1
∥
∥
∥

2
= OP

(
N

T 2

)

(A.5)

and

1

N

N∑

i=1

∥
∥
∥H−1λiλ

′
iH

−1′ − H−1
0 λiλ

′
iH

′−1
0

∥
∥
∥

2
= oP (1) . (A.6)

Lemma A.2. Suppose that Assumption 3 is satisfied. As N → ∞, for any α such that α ∈ [α1, α2],

it holds uniformly in α that

plim
N→∞

S
(

α, ΛH ′−1
0

)

= lim
N→∞

Var
(

A
(

α, ΛH ′−1
0

))

, (A.7)

A
(

α, ΛH ′−1
0

)
d−→ N

(

0, lim
N→∞

Var
(

A
(

α, ΛH ′−1
0

)))

, (A.8)

√
N

⌊αN⌋

⌊αN⌋
∑

i=1

(
λiλ

′
i − ΣΛ

)
= OP (1) and

√
N

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

(
λiλ

′
i − ΣΛ

)
= OP (1) . (A.9)

The proof of (A.1) and (A.3) uses similar steps with Bai and Ng (2004, Lemma A3). Since (A.2)

and (A.4) can be proved following nearly identical steps to (A.1) and (A.3) , they are omitted. The

results (A.5) and (A.6) show how close are to the rotated cross-product of factor loading to their

estimates. (A.7), (A.8) and (A.9) are useful to derive the limit distribution of the proposed test

statistic. To obtain results under the alternative hypothesis, we rely on the following lemma.

Lemma A.3. Suppose that Assumptions 1–3 and Assumption 4(a)−(g) are satisfied. If as N, T →
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∞,
√

N/T → 0, then for any α ∈ [α1, α2], it holds uniformly in α that

1

⌊αN⌋

⌊αN⌋
∑

i=1

(

λ̃i − J ′φi

)

φ′
i = OP

(

δ−2
NT

)

, (A.10)

1

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

(

λ̃i − J ′φi

)

φ′
i = OP

(

δ−2
NT

)

, (A.11)

1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥λ̃i − J ′φi

∥
∥
∥

2
= OP

(

δ−2
NT

)

, (A.12)

1

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

∥
∥
∥λ̃i − J ′φi

∥
∥
∥

2
= OP

(

δ−2
NT

)

, (A.13)

1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i − J ′φiφ

′
iJ
∥
∥
∥

2
= OP

(
N

T 2

)

(A.14)

and

1

N

N∑

i=1

∥
∥J ′φiφ

′
iJ − J ′

0φiφ
′
iJ0

∥
∥2

= oP (1) . (A.15)

.

It also holds that
∥
∥
∥S̃
(

α, Λ̃
)

− S (α, ΦJ0)
∥
∥
∥ = oP (1) (A.16)

uniformly in α

We next present the proof of Lemma A.1, Lemma A.2, Lemma 2.1, Theorem 1, Lemma A.3

Theorem 2.

A.1 Proof of Lemma A.1

The proof is subdivided into four parts corresponding to the proofs of (A.1), (A.3), (A.5) and (A.6).

Proof of (A.1) To demonstrate that uniformly in α, 1
⌊αN⌋

∑⌊αN⌋
i=1

(

λ̃i − H−1λi

)

λ′
i = OP

(

1
δ2

NT

)

,

we use the following identity from the proof of Bai and Ng (2004, Lemma A2).

λ̃i − H−1λi =
1

T
H ′F ′ei +

1

T
F̃ ′
(

F − F̃ H−1
)

λi +
1

T

(

F̃ − F H
)′

ei (A.17)

where ei = (ei1, ei2, . . . , eiT )′ . It follows uniformly in α that

1

⌊αN⌋

⌊αN⌋
∑

i=1

(

λ̃i − H−1λi

)

λ′
i

=
1

⌊αN⌋

⌊αN⌋
∑

i=1

1

T
H ′F ′eiλ

′
i

︸ ︷︷ ︸

A1

+
1

⌊αN⌋

⌊αN⌋
∑

i=1

1

T
F̃ ′
(

F − F̃ H−1
)

λiλ
′
i

︸ ︷︷ ︸

A2

+
1

⌊αN⌋

⌊αN⌋
∑

i=1

1

T

(

F̃ − F H
)′

eiλ
′
i

︸ ︷︷ ︸

A3

.
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Since E
∥
∥
∥

1
NT

∑⌊αN⌋
i=1

∑T
t=1 fteitλ

′
i

∥
∥
∥ = O

(
1√
NT

)

by Assumption 2 (c) and H = OP (1), we have

A1 = H
1

⌊αN⌋ T

⌊αN⌋
∑

i=1

T∑

t=1

fteitλ
′
i = OP

(
1√
NT

)

,

uniformly in α. Moreover, we also have

A2 =
1

T
F̃ ′
(

F − F̃ H−1
) 1

⌊αN⌋

⌊αN⌋
∑

i=1

λiλ
′
i = OP

(

1

δ2
NT

)

uniformly in α as 1
T F̃ ′

(

F − F̃ H−1
)

= OP

(

1
δ2

NT

)

(see Bai (2003, Lemma B3)) and E
∥
∥
∥

1
⌊αN⌋

∑⌊αN⌋
i=1 λiλ

′
i

∥
∥
∥

is bounded by sup1≤i≤N E ‖λi‖2 ≤ C given Assumption 1 (b). To study A3, we use the following

identity

f̃t − H ′ft = Ṽ −1

(

1

T

T∑

s=1

f̃sγst +
1

T

T∑

s=1

f̃sζst +
1

T

T∑

s=1

f̃sηst +
1

T

T∑

s=1

f̃sξst

)

,

where

γst = E

(

1

N

N∑

i=1

eiseit

)

, ζst =
1

N

N∑

i=1

(

eiseit − E

(

1

N

N∑

i=1

eiseit

))

, ηst =
1

N

N∑

i=1

λ′
ifseit, ξst =

1

N

N∑

i=1

λ′
ifteis

and Ṽ −1 known to be OP (1) as Ṽ
P−→ V > 0 (e.g., Bai and Ng (2002)). Thus A3 = Ṽ −1 (B1 + B2 + B3 + B4),

where

B1 ≡ 1

T 2

T∑

t=1

T∑

s=1

f̃sγst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



 ,

B2 ≡ 1

T 2

T∑

t=1

T∑

s=1

f̃sζst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



 ,

B3 ≡ 1

T 2

T∑

t=1

T∑

s=1

f̃sηst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i





and

B4 ≡ 1

T 2

T∑

t=1

T∑

s=1

f̃sξst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



 .

For B1, we write

B1 =
1

T 2

T∑

t=1

T∑

s=1

(

f̃s − H ′fs

)

γst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



+ H ′ 1

T 2

T∑

t=1

T∑

s=1

fsγst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i





≡ B11 + B12.
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By an application of Cauchy-Schwarz inequality, B11 is bounded for any α ∈ [α1, α2] by

1

T

T∑

s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

(

1

T

T∑

t=1

γ2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

≤
(

1

T

T∑

s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

2
)1/2(

1

T 2

T∑

s=1

T∑

t=1

γ2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1

δNT

√
NT

)

,

where from Bai and Ng (2002, Theorem 1), 1
T

∑T
s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

2
= OP

(
1/δ2

NT

)
, 1

T

∑T
s=1

∑T
t=1 γ2

st =

O (1) (see Bai and Ng (2002, Lemma 1(i))) and E
(∥
∥
∥

1√
N

∑⌊αN⌋
i=1 eitλ

′
i

∥
∥
∥

)2
≤ C by Assumption 2 (d).

Similarly, the second term B12 is bounded by

‖H‖
(

1

T

T∑

s=1

‖fs‖2

)1/2(
1

T 2

T∑

s=1

T∑

t=1

γ2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1√
TN

)

,

given that ‖H‖ = OP (1) and E ‖fs‖2 ≤ C. Because B11 = OP

(
1

δNT

√
NT

)

and B12 = OP

(
1√
NT

)

,

we deduce that B1 = OP

(
1√
NT

)

. For B2, we start with the decomposition

B2 =
1

T 2

T∑

t=1

T∑

s=1

(

f̃s − H ′fs

)

ζst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



+ H ′ 1

T 2

T∑

t=1

T∑

s=1

fsζst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i





≡ B21 + B22.

The first term B21 is bounded by

(

1

T

T∑

s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

2
)1/2(

1

T 2

T∑

s=1

T∑

t=1

ζ2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1

δNT

√
TN

)

,

where by Jensen inequality and Assumption 1 (f),

E
(

ζ2
st

)

≤
(

E
(

ζ4
st

))1/2
=

1

N



E

∣
∣
∣
∣
∣

1√
N

N∑

i=1

(

eiseit − E

(

1

N

N∑

i=1

eiseit

))∣
∣
∣
∣
∣

4




1/2

≤ 1

N
C,

which implies 1
T 2

∑T
s=1

∑T
t=1 ζ2

st = OP

(
1√
N

)

. Using similar arguments and uniformly in α,

B22 ≤
(

1

T

T∑

s=1

‖fs‖2

)1/2(
1

T 2

T∑

s=1

T∑

t=1

ζ2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1√
TN

)

.
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Consequently, B2 = OP

(
1√
T N

)

. We again write B3 = B31 + B32, with

B31 =
1

T 2

T∑

t=1

T∑

s=1

(

f̃s − H ′fs

)

ηst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



 and B32 = H ′ 1

T 2

T∑

t=1

T∑

s=1

fsηst




1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i



 .

We start with B31. By Cauchy-Schwarz inequality, we have

1

T 2

T∑

s=1

T∑

t=1

η2
st =

1

T 2

T∑

s=1

T∑

t=1

(

f ′
s

1

N

N∑

i=1

λifseit

)2

≤ 1

T 2

T∑

s=1

T∑

t=1

‖fs‖2

∥
∥
∥
∥
∥

1

N

N∑

i=1

λ′
ieit

∥
∥
∥
∥
∥

2

=

(

1

T

T∑

s=1

‖fs‖2

)

1

N




1

T

T∑

t=1

∥
∥
∥
∥
∥

1√
N

N∑

i=1

λ′
ieit

∥
∥
∥
∥
∥

2


 = OP

(
1

N

)

,

as E

(

1
T

∑T
t=1

∥
∥
∥

1√
N

∑N
i=1 λ′

ieit

∥
∥
∥

2
)

≤ C follows from Assumption 2 (d) and the cr inequality. Thus

using also 1
T

∑T
s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

2
= OP

(

1
δ2

NT

)

and Assumption 2 (d),

‖B31‖ ≤
(

1

T

T∑

s=1

∥
∥
∥f̃s − H ′fs

∥
∥
∥

2
)1/2(

1

T 2

T∑

s=1

T∑

t=1

η2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1

δNT N

)

.

By the same steps, we also obtain

‖B32‖ ≤ ‖H‖
(

1

T

T∑

s=1

‖fs‖2

)1/2(
1

T 2

T∑

s=1

T∑

t=1

η2
st

)1/2





1

T

T∑

t=1





∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

eitλ
′
i

∥
∥
∥
∥
∥
∥





2





1/2

= OP

(
1

N

)

.

Hence, B3 = OP

(
1
N

)

. The proof for B4 is similar to the proof of B3 and is therefore omitted.

From the order of B1, B2, B3 and B4, we deduce that A3 = OP

(

δ−2
NT

)

uniformly in α. Finally,

we conclude that 1
⌊αN⌋

∑⌊αN⌋
i=1

(

λ̃i − H−1λi

)

λ′
i = OP

(

1
δ2

NT

)

uniformly in α.

Proof of (A.3) For this proof, we use the decomposition (A.17), and obtain that uniformly in α,

1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥λ̃i − H−1λi

∥
∥
∥

2

≤ 1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥
∥

1

T
H ′F ′ei

∥
∥
∥
∥

2

︸ ︷︷ ︸

C1

+
1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥
∥

1

T
F̃ ′
(

F − F̃ H−1
)

λi

∥
∥
∥
∥

2

︸ ︷︷ ︸

C2

+
1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥
∥

1

T

(

F̃ − F H
)′

ei

∥
∥
∥
∥

2

︸ ︷︷ ︸

C3

.

Since 1
⌊αN⌋

∑⌊αN⌋
i=1 E

∥
∥
∥

1√
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uniformly in α. Furthermore, we also have uniformly in α that
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∥
∥
∥
∥
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≤ C. We now similarly observe that by Cauchy-Schwarz inequality,
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From the bound for C1, C2 and C3, 1
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Proof of (A.5) Using the identity
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′
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λ̃i − H−1λi

)′
+ H−1λi

(

λ̃i − H−1λi

)′
+
(
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we can write by the cr inequality and an application of the Cauchy-Schwarz inequality that
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∥
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As H
P−→ H0 where H0 is nonsingular, H−1 = OP (1). Moreover, since E

(

‖λi‖4
)
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Moreover, because 1
T F̃ ′

(

F − F̃ H−1
)
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(

1
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)

and 1
N

∑N
i=1 ‖λi‖4 = OP (1) given E
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≤
C, we obtain
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We also have by Cauchy-Schwarz inequality that
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,

where the first equality employs Jensen inequality. From the bound for I1, I2 and I3, we deduce
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∥
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′
i − H−1λiλ

′
iH

−1′
∥
∥
∥

2
= OP

(
N
T 2

)

.

Proof of (A.6) The result follows from the decomposition H−1λiλ
′
iH

−1′ − H−1
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′
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′
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0 , and the cr inequality. Indeed, it holds that
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∥
∥
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∥
∥
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∥
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N
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using in particular the fact that H−1 − H−1
0 = oP (1) as H

P−→ H0, which is nonsingular.

A.2 Proof of Lemma A.2

For simplicity, we will let N1 = αN in this proofs.
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A1

(

α, ΛH ′−1
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(A.18)
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=
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Since S
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the proof proceeds by showing that
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and
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N→∞
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Let start with (A.20). We have from Assumption 3 (a)−(b) that
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In consequence, to show (A.20), we only need to prove that a′
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i=1 E (si) = 0, Djogbenou, MacKinnon, and Nielsen (2017, Lemma A1) imply that
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In consequence by an application of Cauchy Schwarz inequality and the cr inequality,
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∥
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Hence 1
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Using a similar argument, plim
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Proof of (A.8) Recall that A1
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Since the limit of Var
(

A1

(

α, ΛH ′−1
0

))

is positive definite under Assumption 3 (c), we simply need
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vector of real such that a′a = 1. Define
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(A.23)

Since by an application of the cr-inequality, the fact that E (λiλ
′
i) = ΣΛ and the Jensen in-

equality, we have E
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∥
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Because A1

(

α, ΛH ′−1
0

)

and A2
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)

are independent, with mean zero and
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completes the proof of (A.8).

Proof of (A.9) Let a be a 3-dimensional vector of real such that a′a = 1. We have from

Assumption 3 (a) that
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A.3 Proof of Lemma 2.1

We first note that the results in this section holds uniformly in α and we start with (8).
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triangular inequality, we have J1 ≤ J11 + J12 and J2 ≤ J21 + J22, with
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Therefore, to complete the proof of (8), we only need to show that J11 = oP (1) , J12 = oP (1) .

J21 = oP (1) and J22 = oP (1) . Note that J12 = oP (1) and J22 = oP (1) follow by identical steps to

J11 = oP (1) and J12 = oP (1), and are omitted. From a triangular inequality, J11 is bounded by
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(

H−1
)′

+ H−1λi

(

λ̃i − H−1λi

)′)
∥
∥
∥
∥
∥
∥

≤
√

N

∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

(

λ̃i − H−1λi

) (

λ̃i − H−1λi

)′
∥
∥
∥
∥
∥
∥

+ 2
√

N

∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

H−1λi

(

λ̃i − H−1λi

)′
∥
∥
∥
∥
∥
∥

≤
√

N
1

⌊αN⌋

⌊αN⌋
∑

i=1

∥
∥
∥λ̃i − H−1λi

∥
∥
∥

2
+ 2

∥
∥
∥H−1

∥
∥
∥

√
N

∥
∥
∥
∥
∥
∥

1

⌊αN⌋

⌊αN⌋
∑

i=1

H−1λi

(

λ̃i − H−1λi

)′
∥
∥
∥
∥
∥
∥

.

Thus J11 = OP

(√
Nδ−2

NT

)

= oP (1) by an application of (A.1), (A.3), H−1
0 = OP (1) and

√
N/T →

0. We also have for any α ∈ [α1, α2],

J21 ≤
∥
∥
∥H−1 − H−1

0

∥
∥
∥

∥
∥
∥
∥
∥
∥

√
N

⌊αN⌋

⌊αN⌋
∑

i=1

λiλ
′
i −

√
N

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

λiλ
′
i

∥
∥
∥
∥
∥
∥

∥
∥
∥H−1

∥
∥
∥

≤
∥
∥
∥H−1 − H−1

0

∥
∥
∥





∥
∥
∥
∥
∥
∥

√
N

⌊αN⌋

⌊αN⌋
∑

i=1

λiλ
′
i − ΣΛ

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

√
N

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

λiλ
′
i − ΣΛ

∥
∥
∥
∥
∥
∥





∥
∥
∥H−1

∥
∥
∥ ,

which is oP (1) using again H−1 − H−1
0 = oP (1) , H−1

0 = OP (1) and Equation (A.9).

Proof of (9) To show the consistency of the long run variance estimate S̃
(

α, Λ̃
)

of A
(

α, Λ̃
)

,

we need to prove that S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
0

)

= oP (1). Noting that

S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
0

)

=
(

S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
))

+
(

S
(

α, ΛH ′−1
)

− S
(

α, ΛH ′−1
0

))

,

(A.25)
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the next steps will consist in showing that

(

S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
))

= oP (1) and
(

S
(

α, ΛH ′−1
)

− S
(

α, ΛH ′−1
0

))

= oP (1) .

Expanding S̃
(

α, Λ̃
)

and S
(
α, ΛH ′−1

)
, respectively, using

λ̃iλ̃
′
i − VNT =

(

λ̃iλ̃
′
i − H−1λiλH−1′

)

+
(

H−1λiλ
′
iH

−1′ − V0

)

+ (V0 − VNT ) ,

H−1λiλ
′
iH

−1′ − V0 =
(

H−1λiλ
′
iH

−1′ − λ̃iλ̃
′
i

)

+
(

λ̃iλ̃
′
i − V0

)

and making use of

1

N

N∑

i=1

Vech
(

λ̃iλ̃
′
i − VNT

)

Vech (V − VNT )′ = Vech

(

1

N

N∑

i=1

λ̃iλ̃
′
i − VNT

)

Vech (V − VNT )′ = 0,

we obtain S̃
(

α, Λ̃
)

− S
(
α, ΛH ′−1

)
=
(

1
α + 1

1−α

)

(C1 − C2 + C3), where

C1 =
1

N

N∑

i=1

Vech
(

λ̃iλ̃
′
i − VNT

)

Vech
(

λ̃iλ̃
′
i − H−1λiλ

′
iH

′−1
)′

,

C2 =
1

N

N∑

i=1

Vech
(

H−1λiλ
′
iH

′−1 − λ̃iλ̃
′
i

)

Vech
(

H−1λiλ
′
iH

′−1 − V0

)′
,

C3 =
1

N

N∑

i=1

Vech (V0 − VNT ) Vech
(

H−1λiλ
′
iH

′−1 − V0

)′
.

Consequently from an application of the Cauchy-Schwarz inequality and the cr inequality,

∥
∥
∥S̃
(

α, Λ̃
)

− S
(

α, H−1Λ
)∥
∥
∥ ≤

(
1

α
+

1

1 − α

)

(‖C1‖ + ‖C2‖ + ‖C3‖) ,

where we have the bounds

‖C1‖ ≤ 21/2

(

1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i

∥
∥
∥

2
+ ‖VNT ‖2

)1/2(
1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i − H−1λiλ

′
iH

′−1
∥
∥
∥

2
)1/2

= OP

(√
N/T

)

,

‖C2‖ ≤ 21/2

(

1

N

N∑

i=1

∥
∥
∥H−1λiλ

′
iH

′−1
∥
∥
∥

2
+ ‖V0‖2

)1/2(
1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i − H−1λiλ

′
iH

′−1
∥
∥
∥

2
)1/2

= OP

(√
N/T

)

,

and

‖C3‖ ≤
(

1

N

N∑

i=1

∥
∥
∥H−1λi

∥
∥
∥

2
+ ‖V0‖

)

‖VNT − V0‖ = OP

(√
N/T

)

from VNT
P−→ V0 = OP (1) , (A.5) which gives 1

N

∑N
i=1

∥
∥
∥λ̃iλ̃

′
i − H−1λiλ

′
iH

′−1
∥
∥
∥

2
= OP

(√
N/T

)

,

the fact that 1
N

∑N
i=1

∥
∥H−1λiλ

′
iH

′−1
∥
∥2 ≤

∥
∥H−1

∥
∥4 1

N

∑N
i=1 ‖λi‖4 = OP (1) and 1

N

∑N
i=1

∥
∥H−1λi

∥
∥2

=
∥
∥H−1

∥
∥2 1

N

∑N
i=1 ‖λi‖2 = OP (1). Note that by the cr inequality, we also have

1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i

∥
∥
∥

2
≤ 2

1

N

N∑

i=1

∥
∥
∥λ̃iλ̃

′
i − H−1λiλ

′
iH

′−1
∥
∥
∥

2
+ 2

1

N

N∑

i=1

∥
∥
∥H−1λiλ

′
iH

′−1
∥
∥
∥

2
= OP (1) .
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In consequence, S̃
(

α, Λ̃
)

− S
(
α, ΛH ′−1

)
= OP

(√
N/T

)

= oP (1) as
√

N/T → 0. To show that

S
(
α, ΛH ′−1

)
− S

(

α, ΛH ′−1
0

)

= oP (1) , we combine the Cauchy-Schwarz inequality and the cr

inequality to have that
∥
∥
∥S
(
α, H−1Λ

)
− S

(

α, H−1
0 Λ

)∥
∥
∥ is lower than

21/2
(

1

α
+

1

1 − α

)(

1

N

N∑

i=1

∥
∥
∥H−1λiλ

′
iH

′−1 − H−1
0 λiλ

′
iH

′−1
0

∥
∥
∥

2
)1/2(

1

N

N∑

i=1

∥
∥
∥H−1λi

∥
∥
∥

4
+ ‖V0‖4

)1/2

+21/2
(

1

α
+

1

1 − α

)(

1

N

N∑

i=1

∥
∥
∥H−1λiλ

′
iH

′−1 − H−1
0 λiλ

′
iH

′−1
0

∥
∥
∥

2
)1/2(

1

N

N∑

i=1

∥
∥
∥H−1

0 λi

∥
∥
∥

4
+ ‖V0‖4

)1/2

.

Since we know in particular from (A.6) that 1
N

∑N
i=1

∥
∥
∥H−1λiλ

′
iH

′−1 − H−1
0 λiλ

′
iH

′−1
0

∥
∥
∥

2
= oP (1),

and also that 1
N

∑N
i=1

∥
∥H−1λi

∥
∥4 ≤

∥
∥H−1

∥
∥4 1

N

∑N
i=1 ‖λi‖4 = OP (1), we finally obtain the second

needed result, which is
∥
∥
∥S
(
α, ΛH ′−1

)
− S

(

α, ΛH ′−1
0

)∥
∥
∥ = oP (1).

A.4 Proof of Theorem 1

We begin by proving that LMN

(

α, Λ̃
)

−LMN

(

α, ΛH ′−1
0

)

= oP (1) . Using the triangular inequal-

ity, we have
∣
∣
∣LMN

(

α, Λ̃
)

− LMN

(

α, ΛH ′−1
0

)∣
∣
∣ ≤ M1 + M2 + M3, where uniformly in α,

M1 =

∥
∥
∥
∥A

(

α, Λ̃
)′
∥
∥
∥
∥

∥
∥
∥
∥S̃
(

α, Λ̃
)−1

− S
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥

∥
∥
∥A

(

α, Λ̃
)∥
∥
∥

M2 =
∥
∥
∥A

(

α, Λ̃
)

− A
(

α, ΛH ′−1
0

)∥
∥
∥

∥
∥
∥
∥S
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥

∥
∥
∥A

(

α, Λ̃
)∥
∥
∥

and

M3 =
∥
∥
∥A

(

α, ΛH ′−1
0

)∥
∥
∥

∥
∥
∥
∥S
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥

∥
∥
∥A

(

α, Λ̃
)

− A
(

α, ΛH ′−1
0

)∥
∥
∥ .

The proof uses the auxiliary results that (a) A
(

α, Λ̃
)

−A
(

α, ΛH ′−1
0

)

= oP (1) , (b) A
(

α, Λ (H ′
0)−1

)

=

OP (1) and A
(

α, Λ̃
)

= OP (1) and (c)

∥
∥
∥
∥S̃
(

α, Λ̃
)−1

− S
(

α, Λ (H ′
0)−1

)−1
∥
∥
∥
∥ = oP (1) uniformly in

α. We note that (a) follows from (8). Second, note that
∥
∥
∥A

(

α, Λ (H ′
0)−1

)∥
∥
∥ is equal to

∥
∥
∥
∥
∥
∥

√
NH−1

0




1

⌊αN⌋

⌊αN⌋
∑

i=1

λiλ
′
i − 1

N − ⌊αN⌋
N∑

i=⌊αN⌋+1

λiλ
′
i



H ′−1
0

∥
∥
∥
∥
∥
∥

= OP (1)

uniformly in α given Lemma A.2 (A.8). We also have uniformly in α, that

∥
∥
∥A

(

α, Λ̃
)∥
∥
∥ ≤

∥
∥
∥A

(

α, Λ̃
)

− A
(

α, ΛH ′−1
0

)∥
∥
∥+

∥
∥
∥A

(

α, ΛH ′−1
0

)∥
∥
∥ = oP (1) + OP (1) = OP (1) .

Thus (b) holds. Third,

∥
∥
∥
∥S̃
(

α, Λ̃
)−1

− S
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥ is dominated by

∥
∥
∥
∥S
(

α, ΛH ′−1
0

)−1 (

S
(

α, ΛH ′−1
0

)

− S̃
(

α, Λ̃
))

S̃
(

α, Λ̃
)−1

∥
∥
∥
∥

≤
∥
∥
∥
∥S̃
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥

∥
∥
∥S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
0

)∥
∥
∥

∥
∥
∥
∥S
(

α, Λ̃
)−1

∥
∥
∥
∥ ,
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where S̃
(

α, Λ̃
)

−S
(

α, ΛH ′−1
0

)
P−→ 0 by Lemma 2.1 (9) and the limit in probability of S

(

α, ΛH ′−1
0

)

is positive definite from Assumption 3 (d). Hence,
∥
∥
∥S̃
(

α, Λ̃
)

− S
(

α, ΛH ′−1
0

)∥
∥
∥ = oP (1),

∥
∥
∥
∥S̃
(

α, Λ̃
)−1

∥
∥
∥
∥ =

OP (1),

∥
∥
∥
∥S̃
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥ = OP (1). Thus, we can see that

∥
∥
∥
∥S̃
(

α, Λ̃
)−1

− S
(

α, ΛH ′−1
0

)−1
∥
∥
∥
∥ =

oP (1) which is result (c). From (a), (b) and (c),
∣
∣
∣LMN

(

α, Λ̃
)

− LMN

(

α, ΛH ′−1
0

)∣
∣
∣ = oP (1) .

Because LMN

(

α, ΛH ′−1
0

)
d−→ χ2 (3) from Lemma A.2 (A.8), the result follows.

A.5 Proof of Lemma A.3

The proof of this lemma relies on showing that the required conditions in Lemma A.1 and Lemma 2.1

(9) are satisfied in the context of the one-level representation of the two-level alternative. If in addi-

tion to Assumption 4 (a)−(g), the conditions (i) E ‖φi‖4 ≤ C, (ii) E

(

1
T

∑T
t=1

∥
∥
∥

1√
N

∑N
i=1 φieitιmi

∥
∥
∥

2
)

≤
C, m = D, E where E (φieit) = 0 for all (i, t) hold, then the needed assumptions are satisfied. First,

given the definition of Φ, E ‖Φi‖4 = E ‖λi‖4 ≤ C under Assumption 1 (b). Second, for m = D,

E




1

T

T∑

t=1

∥
∥
∥
∥
∥

1√
N

N∑

i=1

φieitιmi

∥
∥
∥
∥
∥

2


 = E






1

T

T∑

t=1

∥
∥
∥
∥
∥
∥

1√
N

N1∑

i=1

λieit

∥
∥
∥
∥
∥
∥

2



 ≤ C

and for m = E,

E




1

T

T∑

t=1

∥
∥
∥
∥
∥

1√
N

N∑

i=1

φieitιmi

∥
∥
∥
∥
∥

2


 = E






1

T

T∑

t=1

∥
∥
∥
∥
∥
∥

1√
N

N∑

i=N1+1

λieit

∥
∥
∥
∥
∥
∥

2



 ≤ C,

using the definition of Φ and Assumption 2 (d). Similarly,

E (φieit) = E
(

[λ0i λ1i 0]′ eit

)

= 0 for i = 1, . . . , N1

and

E (φieit) = E
(

[λ0i 0 λ1i]
′ eit

)

= 0 for i = N1 + 1, . . . , N.

Hence, the analogue of Lemma A.1 follows with Ξ−1 and Ξ−1
0 in the place H−1 and H−1

0 , re-

spectively, using the same the step as in the proof of Lemma A.1. Furthermore, the analogue of

Lemma 2.1 (9) also follows using similar steps and given the definition of J and J0 as submatrices

of Ξ′−1 and Ξ′−1
0 , respectively.

A.6 Proof of Theorem 2

Recall the matrix of factor loadings Φ = [φ1 · · · φN ]′ : N × 3 of the one-level representation under

the two-level alternative. From Bai (2003), the first three PCM estimates Φ̃ converge to a rotation

ΦΞ′−1 with Ξ the 3 × 3 rotation matrix. In particular, we can find a 3 × 2 submatrix J of Ξ′−1
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such that Λ̃ = ΦJ + OP

(

δ−2
NT

)

, with Λ̃, the first two PCM estimates. Thus, we can write

1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i = R1 + R2 − R3, (A.26)

where

R1 =
1

N1

N1∑

i=1

J ′φiφ
′
iJ − 1

N − N1

N∑

i=N1+1

J ′φiφ
′
iJ

R2 =
1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N1

N1∑

i=1

J ′φiφ
′
iJ

R3 =
1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

J ′φiφ
′
iJ .

Given that

R2 =
1

N1

N1∑

i=1

(

λ̃i − J ′φi

) (

λ̃i − J , φi

)′
+

1

N1

N1∑

i=1

J ′φi

(

λ̃i − J ′φi

)′
+

1

N1

N1∑

i=1

(

λ̃i − J ′φi

)

φ′
iJ ,

we deduce from Lemma A.3 that R2 = OP

(

δ−2
NT

)

. Similarly, R3 = OP

(

δ−2
NT

)

. Hence

1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i = R1 + OP

(

δ−2
NT

)

.

Noting that Ξ−1 = Ξ−1
0 + oP (1), and letting J0 the submatrix of Ξ−1

0 corresponding to the limit

of J . Using Assumption 3 (a) and the steps as in Lemma A.2 (A.9), 1
N1

∑N1

i=1 φiφ
′
i = OP (1) and

1
N−N1

∑N
i=N1+1 φiφ

′
i = OP (1). Consequently, R1 = R0 + oP (1), where

R0 = J ′
0 plim

N→∞




1

N1

N1∑

i=1

φiφ
′
i − 1

N − N1

N∑

i=N1+1

φiφ
′
i



J0.

Moreover, R0 = J ′
0






0 Σ12
Λ −Σ12

Λ

Σ21
Λ Σ22

Λ 0
−Σ21

Λ 0 −Σ22
Λ




J0 is different from 0 since the second term is nonzero

as Σ22
Λ 6= 0 and the rows of J ′

0 are linearly independent. Hence

1

N1

N1∑

i=1

λ̃iλ̃
′
i − 1

N − N1

N∑

i=N1+1

λ̃iλ̃
′
i = R0 + oP (1) , (A.27)

with R0 6= 0. The second part of Theorem 2 follows from the fact that

∥
∥
∥S̃
(

α, Λ̃
)

− S (α, ΦJ0)
∥
∥
∥ = oP (1) . (A.28)

given Lemma A.3, the positive definiteness of the limit in probability S0 of S (α, ΦJ0) given As-

sumption 4 (h) and an application of Equation (A.28).
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A.7 Figures: Economy Activity Factors

Figure 1: Global economy activity factor
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g This figure plots the estimated global economy activity factor over quarters.

Figure 2: Emerging economy activity factor
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h This figure plots the estimated emerging economy activity factor over quarters.
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Figure 3: Developed economy activity factor
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i This figure plots the estimated developed economy activity factor over quarters.
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