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Abstract

This paper proposes two consistent in-sample model selection procedures for factor-augmented
regressions in finite samples. We first demonstrate that the usual cross-validation is inconsistent,
but that a generalization, leave-d-out cross-validation, selects the smallest basis for the space
spanned by the true latent factors. The second proposed criterion is a generalization of the boot-
strap approximation of the squared error of prediction from Shao (1996) to factor-augmented
regressions. We show that these procedures are consistent model selection approaches. Sim-
ulation evidence documents improvements in the probability of selecting the smallest set of
estimated factors than the usually available methods. An illustrative empirical application that
analyzes the relationship between stock market excess returns and factors extracted from a large
panel of U.S. macroeconomic and financial data is conducted. Our new procedures select fac-
tors that correlate heavily with interest rate spreads and with the Fama−French factors. These
factors have in-sample predictive power for excess returns.

Keywords: Factor models, consistent model selection, cross-validation, bootstrap, excess
returns, macroeconomic and financial factors.

JEL classification: C52, C53, C55.

1 Introduction

Factor-augmented regression (FAR) models are now widely used since the seminal paper by Stock

and Watson (2002). Unlike the traditional regressions, these models allow for the inclusion of a

large set of macroeconomic and financial variables as predictors, which are useful for spanning

various information sets related to economic agents. Thus, economic variables are considered to

be driven by some unobservable factors that are inferred from a large panel of observed data.
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Many empirical studies have been conducted using FAR. Among them, Ludvigson and Ng (2007)

look at the risk−return relation in the equity market. With eight selected and estimated factors

resuming the information in their macroeconomic and financial datasets using the ICp2 criterion

of Bai and Ng (2002), they identified, based on the Bayesian information criterion (BIC), three

new factors termed "volatility," "risk premium" and "real" factors that predict future excess returns.

This paper mainly focuses on this two-step procedure that is widely used in practice. It considers

factors estimated by the principal components method in the first step, and studies how to select

the smallest basis of these estimated factors that drive a given regressand in the second step.

Considerable research has been devoted to detecting the number of factors that capture the

information in a large panel of potential predictors, but very few studies have addressed the second

step selection of relevant estimated factors for a targeted dependent variable. Bai and Ng (2009)

addressed this issue and revisited forecasting with estimated factors. Based on the prediction mean

squared error (MSE) approximation, they pointed out that the standard BIC does not incorporate

the factor estimation error. Consequently, they suggested a final prediction error (FPE) type of

criterion with a penalty term depending on both the time and cross-sectional dimensions of the

panel. Nevertheless, estimating consistently the MSE does not by itself ensure a consistent model

selection. In fact, Groen and Kapetanios (2013) showed that this is true for the FPE criterion which

inconsistently estimates the true factor space. As a result, they provided consistent model selection

procedures that minimize the log of the sum of squared residuals and a penalty depending on time

and cross-sectional dimensions. Their consistent model selection methods choose the smallest set

of estimated factors that span the true factors, with a probability converging to one as the sample

sizes grow. Although, these criteria are computationally less costly, in finite sample exercises, they

tend to underestimate the true number of estimated factors spanning the true factors. In particular,

they found in simulation experiments that their suggested modified BIC behaves similarly to the

standard time series set-up with non-generated regressors, using the BIC criterion by under-fitting

the set of estimated factors that estimates the true model.

For finite sample improvements, cross-validation procedures have been used for a long time by

statisticians to select models with observed regressors and are considered here for factor-augmented

regression model selection. As is well known, the leave-one-out cross-validation (CV1) measures

the predictive ability of a model by testing it on a set of regressors and regressand not used in

estimation. This model selection procedure is consistent if only one set of generated regressors

spans the true factors. Indeed, the CV1 criterion breaks down into five main terms: the variability

of the in-sample prediction error term (independent of candidates models), the complexity error

term (increases with the model dimension), the model identifiability term (zero for models with

estimated factors spanning the true factor space), its parameter estimation and factor estimation

errors. When only one set of generated factors spans the true model, this criterion converges to
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the in-sample regression error variance for this particular set because the identifiability component

is zero and the remaining ones converge to zero. But for the other candidate sets, it is inflated

by the positive limit of the identifiability part since they do not span the true latent factor space.

These sets of estimated factors that are called incorrect are, therefore, excluded, with probability

converging to one when we minimize the standard cross-validation criterion.

However, when many sets of estimated factors generate the true model, the CV1 model selection

procedure has a positive probability of not choosing the smallest one. The source of this problem

is due to not only the well-known parameter estimation error when factors are observed but also

the factor estimation error in this criterion. The harmful effect of generated regressors is more

pronounced when the cross-sectional dimension is much smaller than the time dimension because

the factor estimation component dominates both the complexity component and the parameter

estimation error component in finite sample. Our simulations show that this factor estimation

error while asymptotically negligible, contributes to considerably reducing the probability in finite

samples of selecting the smallest set of estimated factors that generate the true factor space.

In this paper, we suggest two alternative model selection procedures with better finite sample

properties that are consistent because they select the smallest set of estimated factors spanning

the true model with probability converging to one. The first is the Monte Carlo leave-d-out cross-

validation method suggested by Shao (1993) in the context of observed and fixed regressors. The

other method uses the bootstrap model selection procedure studied by Shao (1996), which is im-

plemented with the two-step residual-based bootstrap method suggested by Gonçalves and Perron

(2014), when the regressors are generated.1

Overall, in comparison with the existing literature, this paper focuses on two-step FAR models

widely used by practitioners. It does not assume that all extracted factors from a large panel are

relevant for predictive purposes. Furthermore, because our interest is the role played by estimated

factors in predicting a given dependent variable, we mainly study consistent selection of the esti-

mated factors and do not cover efficient model selection. In addition, the proposed selection rules

are designed in order to provide better finite sample performance. In particular, the simulations

show that leave-one-out cross-validation often selects a larger set of estimated factors than the

smallest relevant one, while the modified BIC from Groen and Kapetanios (2013) tends to under-

parameterize for smaller sample sizes. Nevertheless, the Monte Carlo leave-d-out cross-validation

and the bootstrap model selection choose, with higher probability, the estimated factors spanning

the true factors.

To illustrate the methods, an empirical application that revisits the relationship between macroe-

1Our study of consistent model selection purpose is to identify the estimated factors driving a targeted regres-
sand during our in-sample periods. In situations where the purpose is out-of-sample forecasts, different approaches
have been developed. Among others, these methods are the three-pass regression filter procedure by Kelly and
Pruitt (2015), the frequentist model averaging approach by Cheng and Hansen (2015) and the regularization devices
suggested by Carrasco and Rossi (2016).
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conomic and financial factors, and excess stock returns in the U.S. market was conducted. The

factors are extracted from 147 financial series and 130 macroeconomic series. The financial series

correspond to the 147 variables in Jurado, Ludvigson, and Ng (2015). The quarterly macroeco-

nomic dataset is constructed following McCracken and Ng (2015) and spans the first quarter of

1960 to the third quarter of 2014. After controlling for the consumption−wealth variable (Lettau

and Ludvigson, 2005), the lagged realized volatility of the future excess returns and other factors,

from a large panel of U.S. macro and financial data, the estimated factors heavily correlated with

interest rate spreads and, along with the Fama−French factors, have strong additional in-sample

predictive power for excess returns.

The remainder of the paper is organized as follows. In Section 2, we present the settings and

assumptions. Section 3 addresses model selection. Section 4 reports the simulation study, and the

fifth section presents the empirical application. The last section concludes. Mathematical proofs

and tables appear in the Appendix.

2 Settings and Assumptions

The econometrician observes (yt, W ′
t , X1t, . . . , Xit, . . . , XNt) , t = 1, · · · , T, and the goal is to model

yt using the following FAR model,

yt = δ′Z0
t + εt, t = 1, ..., T, (1)

with Z0
t =

(
F 0′

t , W ′
t

)′
such that Wt is a q−vector of observed regressors, and F 0

t , an r0−vector of

unobserved factors. The latent factors F 0
t are among the common factors Ft : r × 1 in the large

approximate factor model,

Xit = λ′
iFt + eit, i = 1, ..., N, t = 1, ..., T,

where λi : r × 1 are the factor loadings, and eit is an idiosyncratic error term. Because the factors

F 0
t are unobserved, they are replaced by a subset F̃t (m) from the r estimated factors F̃t from

X = (Xit)i=1,...,N,t=1,...,T using principal components estimation. Hence, the estimated regression

takes the form

yt = α (m)′ F̃t (m) + β′Wt + ut (m) = δ (m)′ Ẑt (m) + ut (m) , (2)

where m is any of the 2r subsets of indices in {1, . . . , r} denoted M including the empty set, where

no latent factor drives yt. The size of F̃t (m) is r (m) ≤ r, and we assume the number of estimated

factors selected in the first step is known and equal to r. The goal of this work is to select the

smallest basis of the estimated factors by using the principal components method, which can recover

the information in F 0
t . This is in line with applications in Ludvigson and Ng (2007), Ludvigson

and Ng (2009) and Groen and Kapetanios (2013), where a smaller set of generated regressors was
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found to be driving their targeted dependent variable. In the case where none of the strict subset

of the extracted factors is sufficient to recover the information in the underlying relevant factors

for yt, all of them is selected.

While Kleibergen and Zhan (2015) guide against the harmful effect of under-parameterizing on

the true R2 and test statistics, Kelly and Pruitt (2015) correct for forecasts using irrelevant factors

by suggesting a three-pass regression filter procedure. Cheng and Hansen (2015) study forecasting

using a frequentist model averaging approach. Carrasco and Rossi (2016) also develop regularization

methods for in-sample inference and forecasting in misspecified factor models. However, none of

these papers study the consistent estimation of the true latent factors space in order to predict

y based on the commonly used ordinary least-squares in FAR with principal component method

estimated factors.

Although there is a large body of literature on selecting the number of factors that resume the

information in the factor panel dataset, including the work of Bai and Ng (2002), very few papers

have been devoted to the second step selection. This paper is precisely interested in this second step

selection. Fosten (2017) recently proposes consistent information criteria in cases where a subset

of the large panel strongly predicts the dependent variable and, therefore, accounts for the impact

of idiosyncratic errors in the model selection process. In this paper, we focus on the two-step FAR,

where the factors potentially affecting a large subset of the series in X are identified and used for

prediction. We denote Zt = (F ′
t , W ′

t)
′ , t = 1, . . . , T , as the vector containing all latent factors

and observed regressors, ‖M‖ = (Trace (M ′M))1/2, as the Euclidean norm, Q > 0, as the positive

definiteness for any square matrix Q, and C, as a generic finite constant. The following standard

assumptions are made.

Assumption 1. (factor model and idiosyncratic errors)

(a) E ‖Ft‖4 ≤ C and 1
T F ′F

P−→ ΣF > 0, where F = (F1, · · · , FT )′ .

(b) ‖λi‖ ≤ C if λi are deterministic, or E ‖λi‖ ≤ C if not, and 1
N Λ′Λ

P−→ ΣΛ > 0, where

Λ = (λ1, · · · , λN )′ .

(c) The eigenvalues of the r × r matrix (ΣF × ΣΛ) are distinct.

(d) E (eit) = 0, E |eit|8 ≤ C.

(e) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τst for all (i, j), with 1
N

∑N
i,j=1 σij ≤ C,

1
T

∑T
t,s=1 τst ≤ C and 1

NT

∑

i,j,t,s=1 |σij,ts| ≤ C.

(f) E
∣
∣
∣

1√
N

∑N
i=1 (eiteis − E (eiteis))

∣
∣
∣

4
≤ C for all (t, s).

Assumption 2. (moments and weak dependence among {zt}, {λi}, {eit} and {εt})
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(a) E

(

1
N

∑N
i=1

∥
∥
∥

1√
T

∑T
t=1 Fteit

∥
∥
∥

2
)

≤ C, where E (Fteit) = 0 for every (i, t) .

(b) For each t, E
∥
∥
∥

1√
T N

∑T
s=1

∑N
i=1 Zs (eiteis − E (eiteis))

∥
∥
∥

2
≤ C, where Zs = (F ′

s, W ′
s)′ .

(c) E
∥
∥
∥

1√
T N

∑T
t=1 Zte

′
tΛ
∥
∥
∥

2
≤ C where E (Ztλ

′
ieit) = 0 for all (i, t) .

(d) E

(

1
T

∑T
t=1

∥
∥
∥

1√
N

∑N
i=1 λiet

∥
∥
∥

2
)

≤ C, where E (λieit) = 0 for all (i, t) .

(e) As N, T −→ ∞, 1
T N

∑T
t=1

∑N
i=1

∑N
j=1 λiλ

′
jeitejt − Γ

P−→ 0, where Γ ≡ lim
N, T −→∞

1
T

∑T
t=1 Γt > 0

and Γt ≡ Var
(

1√
N

∑N
i=1 λieit

)

.

(f) For each t, E
∣
∣
∣

1√
T N

∑T
s=1

∑N
i=1 εs (eiteis − E (eiteis))

∣
∣
∣ ≤ C.

(g) E
∥
∥
∥

1√
T N

∑T
t=1 λieitεt

∥
∥
∥

2
≤ C, where E (λieitεt) = 0 for all (i, t) .

Assumption 3. (moments and the Central Limit Theorem for the score vector)

(a) E (ε|X, Z) = 0, E (εε′|X, F, W ) = σ2IT , Z = [Z1 · · · ZT ]′, E ‖Zt‖8 < C and E
(
ε8

t

)
< C.

(b) ΣZ = plim
T −→∞

1
T

∑T
t=1 ZtZ

′
t > 0.

(c) 1√
T

∑T
t=1 Ztεt

d−→ N (0, Ω), with Ω positive definite.

Assumptions 1 and 2 are the same as in Bai and Ng (2002), Gonçalves and Perron (2014)

and Cheng and Hansen (2015) in terms of FAR specifications that allow for weak dependence and

heteroscedasticity in the idiosyncratic errors. Assumption 3 is useful for deriving the asymptotic

distribution of the estimator δ̂ of δ. It assumes that the regression errors are conditionally ho-

moscedastic and independent, which is rather strong. These assumptions allow us to extend the

consistent model selection results of Shao (1993) and Shao (1996) to the context of stochastic and

estimated regressors. It could be relaxed if our interest was efficient model selection (Shao, 1997),

but we leave this for future research.

The principal component method estimated F̃ corresponds to the eigenvectors of 1
T XX ′ as-

sociated with the r largest eigenvalues times
√

T , using the normalization F̃ ′F̃ /T = Ir. As is

well known, F̃t only consistently estimates a rotation of Ft given by HFt, with H identifiable

asymptotically under the identification conditions of Bai and Ng (2013). Note that

H = Ṽ −1 F̃ ′F
T

Λ′Λ
N

, (3)

where Ṽ contains the r largest eigenvalues of XX ′/NT , in decreasing order along the diagonal and

is a diagonal matrix with dimension r × r. As previously argued, all of the estimated factors are

not necessarily relevant for prediction.
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3 Model Selection

The aim of this work is to provide an appropriate procedure to select the set of estimated factors

that should be used to estimate (2). In practice, we extract estimated factors F̃t that summarize

the information in the large T × N matrix X. Afterwards, a subvector F̃t (m) is chosen for the

prediction of yt. Ludvigson and Ng (2007) select F̃t (m) from F̃t using the BIC to predict excess stock

returns. Because this criterion does not correct for factor estimation, Bai and Ng (2009) suggest a

modified FPE with an extra penalty to proxy the effect of factor estimation by approximating the

MSE. However, as pointed out by Stone (1974), we may have a consistent estimate of the MSE or

a loss that does not select the true observed regressors with probability converging to one. This

is also true when the variables are latent factors and the goal is to estimate consistently the true

factor space. Conditionally, on the latent factors and the observed regressors at time t, the true

conditional mean is

E (yt|Ft, Wt) = α′F 0
t + β′Wt, t = 1, . . . , T.

In the consistent model selection literature, it is common to distinguish correct and incorrect sets of

predictors. In the usual case with observed factors, Shao (1997) defines a set m of regressors Ft(m)

as correct if the associated conditional mean equals that of the true unknown model, meaning

α (m)′ Ft (m) + β′Wt = E (yt|Ft, Wt) , t = 1, . . . , T.

When the smallest set of regressors that generates the true model is selected with probability going

to one, the selection procedure is said to be consistent. For FAR models with generated regressors,

Groen and Kapetanios (2013) suggest a consistent procedure based on IC type criteria, which select

F̃t (m) spanning asymptotically the true unknown factors F 0
t . Formally, F̃t (m) spans F 0

t or m is

correct if F̃t (m)−Ft (m)
P−→ 0 and there is an r0×r (m) matrix A (m) such that F 0

t = A (m) Ft (m) .

By definition, Ft (m) = H0 (m) Ft, where H0 (m) is a r (m) × r sub-matrix of H0 = plim
N, T →∞

H. If

H0 is diagonal, each estimated factor will identify one and only one unobserved factor. Note that

for any m, Ft(m) is a subvector of H0Ft, where we avoid the subscript H0 to simplify the notation.

In the remainder of the paper, the only subvector of Ft that will be considered in this paper is the

true set of latent factors F 0
t . Bai and Ng (2013) extensively studied conditions that help identify

the factors from the first step estimation. We define by M1, the category of estimated models with

sets of estimated factors that are incorrect, and by M2, those which are correct. There is at least

one correct set of estimated factors in M, which is the one with all r estimated factors. For the

remainder of the paper, we will associate a set m of estimated factors Ft(m) to the corresponding

estimated model. That said, if we denote m0 the smallest correct set of generated regressors, a

selection procedure will be called consistent if it selects a set of generated regressors m̂ such that

P (m̂ = m0) −→ 1 as T, N → ∞.
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In finite sample experiments, Groen and Kapetanios (2013) information criteria tend to underesti-

mate the true number of factors. In particular, their suggested modified BIC behaves as the BIC

for time series with non-generated regressors known to under-fit the true model. In order to obtain

a finite sample improvement, this paper proposes alternative consistent selection procedures using

cross-validation and bootstrap methods.

The next subsection begins by showing why the usual "naive" leave-one-out cross-validation fails

to select the smallest correct set of estimated factors with a probability approaching one, as the

sample sizes increase. In addition, a theoretical justification of the Monte Carlo cross-validation

and the bootstrap selection procedures in this generated regressors framework is provided.

3.1 Inconsistency of the Leave-one-out or Delete-one Cross-validation

This part of the paper studies the factor-augmented model selection based on cross-validation

starting with the usual leave-one-out or delete-one cross-validation. As is well known, it estimates

the predictive ability of a model by testing it on a set of regressors and regressand not used in

estimation. Thereby, the leave-one-out cross-validation minimizes the average squared distance,

CV1 (m) =
1

T

T∑

t=1

(

yt − δ̂′
t (m) Ẑt (m)

)2
,

between yt and its point fitted value using an estimate from the remaining time periods

δ̂t (m) =




∑

|j−t|≥1

Ẑj (m) Ẑj (m)′





−1


∑

|j−t|≥1

Ẑj (m) yj



 .

However, by minimizing the CV1, there is a positive probability that we do not select the smallest

possible correct set of generated regressors. In Lemma 3.1, we show that this positive probability

to select a larger correct set of estimated factor is not only due to the parameter estimation error

but also to the factor estimation one in the CV1 criterion. We denote P (m), the projection matrix

associated with the space spanned by the columns of Z (m) = (F (m) , W ), with F (m) : T × r(m)

the generic limit of F̃ (m) : T ×r(m) µ = Z0δ : T ×1, W : T ×q, the matrix of observed regressors, the

true conditional mean vector, and Z0 a T × (r0 + q) matrix with a typical element Z0
t = (F 0′

t , W ′
t)

′.

Lemma 3.1. Suppose that Assumptions 1–3 hold. If for any m,

plim
T →∞

sup 1≤t≤T

∣
∣
∣
∣Zt (m)′

[

Z (m)′ Z (m)
]−1

Zt (m)

∣
∣
∣
∣ = 0,

as T, N → ∞, then when m is a correct set of estimated factors,

CV1 (m) =
1

T
ε′ε + 2

(r (m) + q)

T
σ2 − 1

T
ε′P (m) ε + VT (m) ,

where VT (m) = OP

(
1

min{N,T }

)

, with VT (m) defined in the proof in the Appendix. When m is an
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incorrect set of estimated factors,

CV1 (m) = σ2 +
1

T
µ′(I − P (m))µ + oP (1) .

From Lemma 3.1, for a correct set of estimated factors,

CV1 (m) = σ2 + oP (1) ,

otherwise

CV1 (m) = σ2 +
1

T
µ′(I − P (m))µ + oP (1) .

Lemma 3.1 extends Equations (3.5) and (3.6) of Shao (1993) to the case where the factors are

not observed but estimated. Contrary to the case where the regressors are observed, we have

an additional term VT (m) corresponding to the factor estimation error in CV1, and P (m) is the

projection matrix associated with the space spanned by the subset m of FH ′
0, a rotation of the true

factor space. Consider two candidate sets m1 and m2 such that m1 is incorrect and m2 is correct.

Assume plim inf
T →∞

1
T µ′(I − P (m))µ > 0 for incorrect sets of estimated factors. The CV1 will prefer

m2 to m1 because

plim
N,T →∞

CV1 (m2) = σ2 < σ2 + plim
T →∞

1

T
µ′(I − P (m1))µ = plim

N,T →∞
CV1 (m1) ,

as 1
T ε′P (m) ε = oP (1) . Thus, incorrect sets of estimated factors will be excluded with probability

approaching one. Therefore, the CV1 is a consistent model selection procedure when M2 contains

only one correct set of estimated factors. When M2 contains more than one correct sets of esti-

mated factors, suppose m1 and m2 are two correct sets of estimated factors with sizes r (m1) and

r (m2) (r (m2) < r (m1)). The leave-one-out cross-validation selects with positive probability the

unnecessarily large estimated model m1 when the factors are generated. Indeed, for m ∈ M2,

CV1 (m) =
1

T
ε′ε +

(r (m) + q)

T
σ2 +

(
(r (m) + q)

T
σ2 − 1

T
ε′P (m) ε

)

+ VT (m) ,

with VT (m) = OP

(
1

min{N,T }

)

. The first term is independent of candidate models. The second

term captures the complexity of the estimated model. It is the expected value of 1
T ε′P (m) ε,

and it increases with the model dimension. The term in parentheses is a parameter estimation

error with mean zero while comparing two competing correct sets of estimated factors. The term

VT (m) contains the factor estimation error in the CV1 (m) that is not reflected by the term in

parentheses. Because the complexity component is inflated in finite samples by not only this

parameter estimation error but also the factor estimation one, we fail to accurately select the

smallest correct set of estimated factors. In the usual case with observed factors, Shao (1993)

already showed that the leave-one-out cross-validation has a positive probability to select a larger

model than the consistent one because of the presence of the parameter estimation error. Hence, the

consistent model selection crucially depends on the ability to capture the complexity term useful
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to penalize the over-fitting.

When the factor estimation error in the CV1 is such that N = o(T ), then VT (m) = OP

(
1

min{N,T }

)

=

OP

(
1
N

)

and dominates both the complexity term and the parameter estimation error of order

OP

(
1
T

)

. More precisely, comparing two competing estimated models with estimated factors in M2

amounts to the comparison of their factor estimation errors in CV1 instead of the model complexities

because VT (m) = OP

(
1
N

)

and

CV1 (m) =
1

T
ε′ε + VT (m) .

We analyze through a simulation study how the factor estimation error VT , which is random,

contributes to worsening the probability of selecting a consistent model.

We consider the same data generating process (DGP) as the first DGP in the simulation section,

where yt = 1 + F1t + 0.5F2t + εt, with εt ∼ N(0, 1) and F 0 = (F1, F2) ⊂ F = (F1, F2, F3, F4).

Given the specification for the latent factors and the factor loadings, the PC1 conditions for iden-

tifying restrictions provided by Bai and Ng (2013) is asymptotically satisfied and make possible

the identification of estimated factors. Hence, we extract four estimated factors, and we expect to

pick consistently the first two among the 24 = 16 possibilities. The line "with parameter and factor

estimation errors" on Figure 1 reports the frequency of selecting a larger set of estimated factors

while minimizing the CV1 criterion that includes the estimation errors.

Given the different sample sizes, it turns out that the leave-one-out cross-validation selects very

often a larger set of regressors. To understand how each component in the CV1 contributes to

this over-fitting, we will minimize the sum of the complexity and the identifiability terms plus the

regression error in the leave-one-out cross-validation criterion which is

CV11 (m) =
1

T
ε′ε +

(r (m) + q)

T
σ2 +

1

T
µ′(I − P (m))µ,

where we omit the parameter and the factor estimation errors. The second and third terms are

those important for a consistent model selection. The line "without errors" on Figure 1 shows

that we never over-fit through the 10, 000 simulations. Afterwards, we incorporate the parameter

estimation error by minimizing

CV12 (m) =
1

T
ε′ε +

(r (m) + q)

T
σ2 +

1

T
µ′(I − P (m))µ +

(
(r (m) + q)

T
σ2 − 1

T
ε′P (m) ε

)

.

Once the parameter estimation error is included, the frequency of selecting a larger set increases.

Moreover, when we include both the parameter and the factor estimation errors corresponding to

the CV1, that frequency increases more (see, Figure 1). The results show that this factor estimation

error, while asymptotically negligible, also increases this probability given the different sample sizes.

In addition, an increase in the cross-sectional dimension implies a decrease in the factor estimation

error (see Figure 2) which is followed by a drop of the probabilities of over-parameterization.
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Figure 1: Frequencies of selecting a larger set of estimated factors minimizing the CV1 criterion
without errors, with the parameter estimation error and both the parameter and the factor esti-
mation errors over 10,000 simulations
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Note: This figure reports the frequencies of selecting a larger set of estimated factors than the one
that contains the first two estimated factors. The line "without errors" represents the frequencies
while minimizing the complexity component and the identifiability one plus 1

T ε′ε. The line "with
parameter estimation error" corresponds to the frequency when the parameter estimation error is
added. The line "with parameter and factor estimation errors" relates to the naive leave-one-out
cross-validation, which includes both the parameter and the factor estimation errors.

The sum of the complexity and the identifiability term in the CV1, helpful to achieve a consistent

selection of the estimated factors, corresponds to the conditional mean E (LT (m) |Z, X) of the

infeasible in-sample squared error,

LT (m) =
1

T
(µ̂ (m) − µ)′ (µ̂ (m) − µ) =

1

T
ε′P (m) ε +

1

T
µ′ (I − P (m)) µ,

with µ̂ (m) = P (m) y. To achieve a consistent model selection, we consider alternative approaches.

3.2 Leave-d-out or Delete-d Cross-validation

To avoid the selection of larger models, Shao (1993) suggests a modification of the CV1 in an

observed regressors set-up, using a smaller construction sample to estimate δ by deleting d ≫ 1

periods for validation. This consists of splitting the T time period observations into κ = T − d

randomly drawn observations without replacement that are used for parameter estimation and d

11



Figure 2: Average parameter estimation error and factor estimation error in the CV1 criterion for
selected model over 10,000 simulations
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Note: This figure shows the average minimum parameter and factor estimation errors in the leave-
one-out cross-validation criterion as N and T vary over the simulations. See also the note for Figure
1.

remaining ones that are used for evaluation, while repeating this process b times with b going to

infinity. We extend it to FAR and provide conditions for its validity.

Given b random draws of d indexes s in {1, . . . , T} called validation samples, for each draw

s = {s (1) , · · · , s (d)}, we define

ys =









ys(1)

ys(2)
...

ys(d)









: d × 1, Ẑs (m) =










F̃ ′
s(1) (m) W ′

s(1)

F̃ ′
s(2) (m) W ′

s(2)
...

...

F̃ ′
s(d) (m) W ′

s(d)










: d × (r(m) + q).

The corresponding construction sample is indexed by sc = {1, . . . , T} \ s, with ysc : κ × 1 the

complement of ys in y, where κ = T − d, and Ẑsc : κ × 1 the complement of Ẑs in Ẑ. We denote

ỹs (m) = Ẑs (m) δ̂sc (m) , δ̂sc(m) =
(

Ẑsc (m)′ Ẑsc (m)
)−1

Ẑsc (m)′ ysc : (r(m) + q) × 1. The Monte

Carlo leave-d-out cross-validation estimated model is obtained by minimizing

CVd (m) =
1

d · b

∑

s∈R
‖ys − ỹs (m)‖2 ,

12



where R represents a collection of b subsets of size d randomly drawn from {1, . . . , T} . This pro-

cedure generalizes the leave-one-out cross-validation because when d = 1, κ = T − d = T − 1,

s = {t} , sc = {1, . . . , t − 1, t + 1, . . . , T} and R = {{1} , . . . , {T}}, with CVd (m) = CV1 (m) .

Using a smaller construction sample, the next theorem shows that for correct sets of estimated

factors,

CVd (m) =
1

d · b

∑

s∈R

∑

t∈s

ε2
t +

r (m) + q

κ
σ2 + oP

(
1

κ

)

and for incorrect sets of estimated factors,

CVd (m) = σ2 +
1

T
µ′(I − P (m))µ + oP (1) .

Hence, for correct sets of estimated factors m1 and m2 such that r (m2) < r (m1),

P (CVd (m2) − CVd (m1) < 0) = P (r (m1) − r (m2) > 0 + oP (1)) = 1 + o (1) .

Thus, m2 will be preferred over m1. To prove the validity of this procedure, we made some

additional assumptions.

Assumption 4.

(a) plim inf
T →∞

1
T µ′(I − P (m))µ > 0 for any m ∈ M1.

(b) plim
T →∞

sup1≤t≤T

∣
∣
∣
∣Zt (m)′

[

Z (m)′ Z (m)
]−1

Zt (m)

∣
∣
∣
∣ = 0 for all m.

(c) plim
T →∞

sups∈R
∥
∥
∥

1
dZ ′

sZs − 1
κZ ′

scZsc

∥
∥
∥ = 0, where κ = T − d.

(d) E (eiteju) = σij,tu with 1√
T ·κ

∑

t ∈ sc

∑T
u=1

1
N

∑

i,j |σij,tu| ≤ C for all s.

(e) 1
κE

(
∑

t ∈ sc

∥
∥
∥

1√
N

∑N
i=1 λiet

∥
∥
∥

4
)

≤ C for all (i, t) and all s.

(f) 1
dZ ′

s (m) Zs (m)
P−→ ΣZ (m) > 0 for all m and all s.

Assumption 4 (a) is an identifiability assumption in order to distinguish a correct set of esti-

mated factors from an incorrect one. This assumption was also made by Groen and Kapetanios

(2013). By Assumption 4 (b), for any estimated model, the diagonal elements of the projection

matrix vanish asymptotically. This regularity condition can be seen as a form of a stationar-

ity assumption for regressors in the different sub-models, which is typical in the cross-validation

literature. Assumption 4 (c) argues that the average difference between the Fisher information

matrix of the validation and the construction samples are close as N, T → ∞. Assumption 4 (d)

complements Assumption 1 (e) because when sc = {1, . . . , T} , 1√
T ·κ

∑

t ∈ sc

∑T
u=1

1
N

∑

i,j |σij,tu| =

1
T N

∑T
t,u,i,j |σij,tu| ≤ C. Assumption 4 (e) and Assumption 4 (d) strengthen Assumption 2 (d) and
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Assumption 3 (b), respectively. They are used for proving Lemma 7.2. The next theorem proves

the consistency of the Monte Carlo leave-d-out cross-validation for FAR.

Theorem 1. Suppose that Assumptions 1–4 hold. Suppose further that κ
min{N,T } → 0, T 2

κ2b
→ 0, κ,

d → ∞, when b, T, N → ∞. Then,

P (m̂ = m0) → 1,

where m̂ = arg minm CVd (m) , if M2 contains at least one correct set of estimated factors.

The proof of Theorem 1 is given in the Appendix. This result is an extension of Shao (1993)

in the case with generated regressors. Given the rate conditions, κ, d → ∞ such that κ
T → 0

and d
T → 1. It follows from Theorem 1 that the consistency of the Monte Carlo leave-d-out cross-

validation relies on κ being much smaller than d. Developing a general rule for the choice of κ is

theoretically appealing, but beyond the scope of this paper. One could consider κ = min {T, N}3/4

and d = T − κ because they are consistent with the conditions in Theorem 1. In particular,

Shao (1993) suggests for the observed regressors framework κ = T 3/4. This difference is due to

the presence of the factor estimation error, which should converge faster to zero relative to the

complexity term. An extreme case where this condition is not satisfied is the leave-one-out cross-

validation where κ = T − 1 and d = 1. The next paragraph studies an alternative selection

procedure using a bootstrap method.

3.3 Bootstrap Rule for Model Selection

It follows from the previous subsection that the improvement in the Monte Carlo leave-d-out cross-

validation relies on its ability to capture the complexity and the identifiability components in the

conditional mean of the infeasible in-sample squared error LT (m). This is obtained by making the

complexity component vanish at a slower rate than the parameter and factor estimation errors. An

alternative way to achieve the same purpose is using a bootstrap approach.

The suggested bootstrap model selection procedure generalizes the results from Shao (1996) to

the FAR context, where we have generated regressors. We define Γ̂κ (m), a bootstrap estimator of

the prediction error mean, conditionally to Z and W , which is σ2 + E (LT (m) |Z, X) , based on the

two-step residual bootstrap procedure proposed by Gonçalves and Perron (2014) for FAR. In the

case with observed regressors, Shao (1996) considers

Γ̂κ (m) = E∗
(

1

T

∥
∥
∥y − Z (m) δ̂∗

κ (m)
∥
∥
∥

2
)

,

where δ̂∗
κ (m) = (Z (m) Z (m))−1 Z (m) y∗ is the bootstrap estimator of δ using a residual bootstrap

scheme. E∗ represents the expectation in the bootstrap world that is conditional on the data.

In the observed regressors context, they set the bootstrap version of the matrix of regressors to

Z∗ (m) = Z (m), while the bootstrap version of y is given by y∗ = Z (m) δ̂ + ε∗, with ε∗ the i.i.d.
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resampled version of ε̂ multiplied by
√

T
κ

1√
1− r+q

T

, where κ → ∞ such that κ
T → 0. When κ = T, we

obtain to the usual residual bootstrap. In fact, the factor
√

T
κ ensures δ̂∗

κ (m) to converge to δ at a

slower rate
√

κ, that is more useful for consistent model selection than the usual
√

T . As for the

leave-d-out cross-validation, κ = o (T ) such that κ
T → 0 and d

T → 1. If κ=O(T ), we have, similar

to the leave-one-out cross-validation, a naive estimator of E (LT (m) |Z, X) up to the constant σ2,

which does not choose the smallest model in M2 with probability going to one. In our set-up,

to mimic the estimation of F by F̃ : T × r from X, F̃ ∗ : T × r is extracted from the bootstrap

sample X∗ and Ẑ∗ =
(

F̃ ∗, W
)

. Subsets of F̃ ∗ are denoted by F̃ ∗ (m) : T × r(m). We also define

Ẑ∗ (m) =
(

F̃ ∗ (m) , W
)

and

Γ̂κ (m) = E∗
(

1

T

∥
∥
∥y − Ẑ∗ (m) δ̂∗

κ (m)
∥
∥
∥

2
)

,

where

δ̂∗
κ (m) =

(

Ẑ∗′ (m) Ẑ∗ (m)
)−1

Ẑ∗′ (m) y∗ (m) (4)

with Ẑ∗ (m) and y∗ (m) the bootstrap analogs of Ẑ (m) and y (m), respectively, obtained through

the following algorithm.

Algorithm

A) Estimate F̃ and Λ̃ from X.

B) For each m:

1. Compute δ̂ (m) by regressing y on Ẑ (m) =
(

F̃ (m) , W
)

.

2. Generate B bootstrap samples such that X∗
it = F̃ ′

t λ̃i + e∗
it, y∗ (m) = Ẑ (m) δ̂ (m) + ε∗

where {e∗
it} and {ε∗

t } are bootstrap-residual based, respectively on {êit}, and {ε̂t} , with

ε̂t = ε̂t (M), and M is the residual when all the estimated factors are used.

(a) {e∗
it} are obtained by multiplying {êit} i.i.d.(0, 1) external draws ηit for i = 1, . . . , N

and t = 1, . . . , T.

(b) {ε∗
t }t=1,...,T are i.i.d. draws of

{√
T
κ

1√
1− r+q

T

(

ε̂t (M) − ε̂ (M)
)}

t=1,...,T

.

3. For each bootstrap sample, extract F̃ ∗ from X∗ and estimate δ̂∗
κ (m) based on Ẑ∗ (m) =

(

F̃ ∗ (m) , W
)

and y∗ (m).

C) Obtain m̂ as the model that minimizes the average of Γ̂j
κ (m) = 1

T

∥
∥
∥y − Ẑ∗j (m) δ̂∗j

κ (m)
∥
∥
∥

2
over

the B samples indexed by j, where

Γ̂κ (m) =
1

B

B∑

j=1

Γ̂j
κ (m) .
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By multiplying the second step i.i.d. bootstrap residuals by
√

T√
κ

, we obtain Γ̂κ (m) = ε′ε
T +

(r(m)+q)
κ σ2 +oP

(
1
κ

)

for m in M2 and Γ̂κ (m) = σ2 + 1
T µ′ (I − P (m)) µ+oP (1) for m in M1, which

achieves a consistent selection. The next theorem proves the validity of the described bootstrap

scheme.

Theorem 2. Suppose that Assumptions 1–3 hold. Suppose further that Assumptions 6−8 of

Gonçalves and Perron (2014) and E∗ |ηit|4 ≤ C < ∞ hold. If N, T −→ ∞ and κ −→ ∞ such that

κ
min{N,T } −→ 0, then

√
κ
(

δ̂∗
κ (m) − Φ∗

0 (m) δ̂ (m)
)

→d∗

N
(

0, Σδ∗(m)

)

for any m, with Σδ∗(m) = σ2 [Φ∗
0 (m) ΣZ (m) Φ∗′

0 (m)]−1 and ΣZ (m) = plimT →∞
1
T Z (m)′ Z (m) .

From Theorem 2, it follows that δ̂∗
κ (m) converges to the limit of Φ∗

0 (m) δ̂ (m) at a lower rate
√

κ = o
(√

T
)

. The proof in the Appendix shows that our bootstrap scheme satisfies the high-

level conditions provided by Gonçalves and Perron (2014). This result allows us to show that the

bootstrap model selection procedure is consistent.

Theorem 3. Suppose that Assumptions 1–3 and Assumption 4 (a) complemented by Assumptions

6−8 of Gonçalves and Perron (2014) hold. Suppose further that κ → ∞ such that κ
min{N,T } → 0 as

T, N → ∞ and E∗ |ηit|4 ≤ C < ∞. Then,

lim
N, T →∞

P (m̂ = m0) = 1,

where m̂ = arg minm Γ̂κ (m) , if M2 contains at least one correct set of estimated factors.

This bootstrap result is the analog of Theorem 1. The following section compares the different

procedures through a simulation study.

4 Simulation Experiment

To investigate the finite sample properties of the proposed model selection methods, Monte Carlo

simulations are conducted. We consider the following model

yt = α′F 0
t + α0 + εt,

where α0 = 1, F 0
t ⊂ Ft ∼ i.i.d.N (0, I4) and εt ∼ i.i.d.N (0, 1). Three DGPs are used first.

• For DGP 1, r0 = 2, F 0
t = (Ft,1, Ft,2)′ and α = (1, 1/2)′.

• For DGP 2, r0 = 3, F 0
t = (Ft,1, Ft,2, Ft,3)′ and α = (1, 1/2, − 1)′.

• For DGP 3, r0 = 4, F 0
t = (Ft,1, Ft,2, Ft,3, Ft,4)′ and α = (1, 1/2, − 1, 2)′.
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There are four factors, but only DGP 3 uses them all. DGPs 1 and 2 only use a subset of them

to generate the dependent variable yt. The panel factor model is a matrix of dimension N × T ,

with elements

Xit = λ′
iFt + eit,

where λ1i ∼ 12N (0, 1) , λ2i ∼ 8N (0, 1) , λ3i ∼ 4N (0, 1) and λ4i ∼ N (0, 1). The factor loadings

are labelled in decreasing order of importance to explain the dynamics of the panel Xit. The

specification for the unobserved factors and the factor loadings asymptotically satisfies the PC1

identifying restrictions, provided by Bai and Ng (2013). Indeed, plim
T →∞

1
T F ′F = I4 and plim

N→∞
1
N Λ′Λ is

diagonal, with distinct entries, and make it possible to identify estimated factors, when N, T → ∞
go to infinity. As in Djogbenou, Gonçalves, and Perron (2015), eit ∼ N

(
0, σ2

i

)
with σi ∼ U [.5, 1.5].

We consider 1,000 simulations, 399 replications for the bootstrap model selection and the leave-

d-out cross-validation approach, and for sample sizes, T ∈ {100, 200}, N ∈ {100, 200}. For

the leave-d-out cross-validation and for the bootstrap model selection procedures, d = T − κ and

κ = (min {T, N})3/4. The first step bootstrap residuals are obtained by the wild bootstrap using

i.i.d. normal with mean 0 and variance 1 external draws.

We compare the ability of the proposed procedures to consistently select the true model to the

leave-one-out cross-validation

CV1 (m) =
1

T

T∑

t=1

(

yt − δ̂′
t (m) F̃t (m) − α̂0

)2

and the BIC modified (BICM) suggested by Groen and Kapetanios (2013)

BICM (m) =
T

2
ln
(

σ̂2 (m)
)

+ r (m) ln (T )

(

1 +
T

N

)

,

where σ̂2 (m) = 1
T −r(m)−1

∑T
t=1

(

yt − F̃t (m) δ̂ (m) − α̂0

)2
, is made by considering subsets of the

first four principal component estimated factors.

Table 1 presents the average number of selected estimated factors, whereas Tables 2–4 show

the frequencies of selecting the consistent set of estimated factors over the 24 = 16 possibilities,

including the case of no factor. Except for the largest estimated model, where the average number

of estimated factors tends to be close to four, the CV1 tends to overestimate the true number of

factors. The BICM very often selects a smaller set of estimated factors than the true one. The

leave-d-out cross-validation and the bootstrap procedure select in average a number of factors close

to the true number.

The suggested procedures show a higher frequency of selecting factor estimates that span the

true models for DGP 1 and 2. In particular, when N = 100 and T = 200, for DGP 1, the frequency

of selecting the first two estimated factors is 68.70 using the modified BIC and 63.80 using the

leave-one-out cross-validation. The bootstrap selection method increases the frequency of the CV1
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by 23.2 percentage points and the CVd increases it by 24.6 percentage points. These frequencies

increase with the sample sizes. In general, the leave-one-out cross-validation very often selects a

larger model than the true one, and the modified BIC tends to pick smaller subsets of the consistent

model. As DGP 3 corresponds to the largest model, CV1 unsurprisingly performs well.

It is also possible that all the estimated factors estimating the true latent factors summarizing

the information in the large panel Xit are needed. This corresponds to cases where the identification

conditions are not satisfied. To illustrate that we consider a DGP 4, where we modify DGP 1 by

changing

Xit = λ′
iF

0
t + eit,

with λ1i ∼ N (0, 1) , λ2i ∼ N (0, 1) , and F 0
t ∼ N (0, I2). In this case, we search among all subsets of

the first four principal components factor estimates. The simulation results presented in Table 5

show that the proposed model selection procedures have higher probabilities of selecting the first

two estimated factors, which consistently estimate F 0
t .

5 Empirical Application

This section revisits the factor analysis of excess risk premia of Ludvigson and Ng (2007). The data

set contains 147 quarterly financial series and 130 quarterly macroeconomic series from the first

quarter of 1960 to the third quarter of 2014. The variables in the financial dataset are constructed

using the Jurado, Ludvigson, and Ng (2015) financial dataset and variables from the Kenneth

R. French website, as described in the Supplemental Appendix.2 The quarterly macro data are

downloaded from the St. Louis Federal Reserve website and correspond to the monthly series con-

structed by McCracken and Ng (2015). Some of the quarterly data are also constructed based on

the McCracken and Ng (2015) data, as explained in the Supplemental Appendix. We examine how

economic information summarized through a few numbers of estimated factors from real economic

activity data and those related to financial markets can explain next quarter excess returns using

various selection procedures. Recently, Gonçalves, McCracken, and Perron (2017) study the pre-

dictive ability of estimated factors from the macroeconomic data provided by McCracken and Ng

(2015) to forecast excess returns to the S&P 500 Composite Index. They detect the interest rate

factor as the strongest predictor of the equity premium. Indeed, as argued by Ludvigson and Ng

(2007), restricting attention to a few sets of observed factors may not span all information related

to financial market participants. Unlike Gonçalves, McCracken, and Perron (2017), they considered

both financial and macroeconomic data. Using the BIC, they found three new estimated factors

termed "volatility", "risk premium" and "real" factors that have predictive power for market excess

returns after controlling for the usual observed factors.

2We gratefully thank Sydney C. Ludvigson who provided us their dataset.
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Following Ludvigson and Ng (2007), we define Rt+1 as the continuously compounded one-

quarter-ahead excess returns in period t obtained by computing the log return on the Center for

Research in Security Prices (CRSP) value-weighted price index for the NYSE, AMEX and NASDAQ

minus the three-month treasury bill rate. The FAR model used by Ludvigson and Ng (2007) takes

the form,

Rt+1 = α′
1Ft + α′

2Gt + β′Wt + εt+1.

The variables Ft and Gt are latent and represent, respectively, the macroeconomic and financial

factors. The vector Wt contains commonly used observable predictors that may help predict excess

returns and the constant. The observed predictors are essentially those studied by Ludvigson and

Ng (2007). We have the dividend price ratio (d−p) introduced by Campbell and Shiller (1989),

the relative T-bill (RREL) from Campbell (1991) and the consumption-wealth variable suggested

by Lettau and Ludvigson (2001). In addition, the lagged realized volatility is computed over

each quarter and included. The factors are estimated by F̃t and G̃t using principal components,

respectively, on the macro factor panel model

X1it = λ′
iFt + e1it

and the financial factor panel model

X2it = γ′
iGt + e2it.

Like Ludvigson and Ng (2007), we use the ICp2 information criterion of Bai and Ng (2002) and

select six estimated factors from each set that summarize 54.87% of the information in our macroe-

conomic series and 83.64% of the financial information (see Table 6). Despite the imperfection of

naming an estimated factor, it helps us understand the economic message revealed by the data.

Figures in the Supplemental Appendix represent the marginal R2 obtained by regressing each of

the variables on the estimated factors.

In the panel, similar to McCracken and Ng (2015), F̃1 is revealed as a real factor because

variables related to production and the labor market are highly correlated to it. The third factor

F̃3, represents an interest rate spread factor. The estimated financial factors G̃2 and G̃3 are market

risk factors. The market excess returns and the high minus low Fama−French factors are highly

explained by G̃2, whereas the small minus big Fama−French factor and Cochrane−Piazzesi factor

are highly explained by G̃3. The estimated factor G̃4 is correlated with oil industry portfolio

returns, and G̃6 is mostly related to utility industry portfolio returns.

The estimated regression takes the form

Rt+1 = α′
1 (m) F̃t (m) + α′

2 (m) G̃t (m) + β′Wt + ut+1 (m)

for m = 1, . . . , 2r including, the possibility that no factor is selected, with r the number of selected
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factors in the first step. The selected model and the estimated regression results are reported in

Table 7.

The Monte Carlo cross-validation and the bootstrap selection procedures select smaller sets of

generated regressors than the leave-one-out cross-validation. On the other hand, BICM selects the

model with no financial or macro factor. Our cross-validation method selects two factors: the third

macro factor
(

F̃3t

)

and the third financial factor
(

G̃3t

)

. Investors care about the spread between

interest rates and effective federal funds rates, motivating interventions by the Federal Reserve to

support economic expansion. Estimated risk factors also play an important role in predicting the

equity premium associated with the U.S. stock market, as in Ludvigson and Ng (2007). We can

deduce that the important estimated factors that investors in the U.S. financial market should

care about are the interest rate spread factor
(

F̃3t

)

and market risk factors
(

G̃3t

)

. These factors

are simultaneously selected by the leave-d-out cross-validation and the bootstrap model selection

approaches. The fact that F̃3t is always significant, confirms the importance of the spread between

interest rates and effective federal funds in policies designed by central banks. We also study the

joint significativity of the estimated factors using the F-test. The constrained model is the one

estimated with only observed regressors and the volatility factor, whereas the unconstrained model

is m̂j , j = 1, · · · , 4. The estimated models m̂1, m̂2, m̂3 and m̂4 correspond, respectively, to those

selected by the CV1, the BICM, the CVd and the Γ̂κ. The F -test statistic is always greater than

the 5% critical value, implying additional significant information in the unconstrained estimated

model for the different procedures except the BICM, where no factor is selected.

6 Conclusion

This paper suggests and provides conditions for the validity of two consistent model selection

procedures for FAR models. It is the Monte Carlo leave-d-out cross-validation and the bootstrap

selection approaches. In finite samples, the simulations document improvement in the probability

of selecting the smallest set of estimated factors that span the true model in comparison to other

existing consistent model selection methods. The procedures in this paper have been used to select

estimated factors for in-sample predictions of one-quarter-ahead excess stock returns in the U. S.

market. The in-sample analysis reveals that the estimated factor highly correlated with interest

rate spreads, while the generated regressor highly correlated with the Fama−French factors, are

driving the underlying unobserved factors and are predicting the excess returns in the U.S. market.
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7 Appendix: Proofs of results in Section 3, Simulation Results

and Empirical Application Details

7.1 Proofs of results in Section 3

Denote P̃ (m) = Ẑ (m)
(

Ẑ (m)′ Ẑ (m)
)−1

Ẑ (m)′ and CNT = min
{√

N,
√

T
}

. We state the follow-

ing two auxiliary results.

Lemma 7.1. Under Assumptions 1–3,

1

T
µ′P̃ (m) µ = µ′P (m) µ + OP

(

1

C2
NT

)

and

1

T
ε′P̃ (m) ε = ε′P (m) ε + OP

(

1

C2
NT

)

for any m ∈ M.

Lemma 7.2. Under Assumptions 1–4, as b, T, N → ∞,

1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥F̃t − HFt

∥
∥
∥

4
= OP

(
κ

T

)

+ OP

(
κ

N2

)

.

We now present the proofs of the auxiliary results followed by those of the main results.

Proof of Lemma 7.1. We have the following decomposition

1

T
µ′P̃ (m) µ = δ′

(
1

T
Z0′Ẑ (m)

)(
1

T
Z (m)′ Z (m)

)−1 ( 1

T
Ẑ (m)′ Z0

)

δ

+δ′
(

1

T
Z0′Ẑ (m)

)[(
1

T
Ẑ (m)′ Ẑ (m)

)−1

−
(

1

T
Z (m)′ Z (m)

)−1
]

×
(

1

T
Ẑ (m)′ Z0

)

δ

≡ 1

T
µ′P (m) µ + L1T (m) + L2T (m) + L3T (m) ,

where we use Ẑ (m) = Z (m) +
(

Ẑ (m) − Z (m)
)

obtain

L1T (m) = δ′
(

1

T
Z0′

[

Ẑ (m) − Z (m)
])( 1

T
Z (m)′ Z (m)

)−1 ( 1

T

[

Ẑ (m) − Z (m)
]′

Z0
)

δ,

L2T (m) = 2δ′
(

1

T
Z0′Z (m)

)(
1

T
Z (m)′ Z (m)

)−1 ( 1

T

[

Ẑ (m) − Z (m)
]′

Z0
)

δ

and

L3T (m) = δ′
(

1

T
Z0′Ẑ (m)

)[(
1

T
Ẑ (m)′ Ẑ (m)

)−1

−
(

1

T
Z (m)′ Z (m)

)−1
](

1

T
Ẑ (m)′ Z0

)

δ.

To find the order of L1T (m) , it will be sufficient to study 1
T Z ′

[

F̃ (m) − F (m)
]

as
(

1
T Z (m)′ Z (m)

)−1
=

OP (1) using Assumption 3 (b). From Gonçalves and Perron (2014, Lemma A.2), 1
T F ′

[

F̃ − FH ′
]

=
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OP

(

1
C2

NT

)

and 1
T W ′

[

F̃ − FH ′
]

= OP

(

1
C2

NT

)

, and it follows that 1
T Z ′

[

F̃ (m) − F (m)
]

= OP

(

1
C2

NT

)

.

Indeed, from their proof of Lemma A.2 (b),

1

T
F ′
[

F̃ − FH ′
]

= (bf1 + bf2 + bf3 + bf4) Ṽ −1, (5)

where bf1 = OP

(
1

CNT T 1/2

)

, bf2 = OP

(
1

N1/2T 1/2

)

, bf3 = OP

(
1

N1/2T 1/2

)

, bf4 = OP

(
1
N

)

+OP

(
1

N1/2T 1/2

)

and Ṽ −1 = OP (1). Hence, 1
T F ′

[

F̃ − FH ′
]

= OP

(

1
C2

NT

)

, similarly 1
T W ′

[

F̃ − FH ′
]

= OP

(

1
C2

NT

)

,

thus L1T (m) = OP

(

1
C4

NT

)

for any m. Since 1
T Z0′Z (m) = OP (1) , using similar arguments as in

the proof of L1T , we have L2T (m) = OP

(

1
C2

NT

)

, for any m. To finish, L3T (m) = OP

(

1
C2

NT

)

as

(
1

T
Ẑ (m)′ Ẑ (m)

)−1

−
(

1

T
Z (m)′ Z (m)

)−1

= OP

(

1

C2
NT

)

.

Indeed,
(

1
T Ẑ (m)′ Ẑ (m)

)−1
−
(

1
T Z (m)′ Z (m)

)−1
, for any m, can be decomposed as

(
1

T
Ẑ (m)′ Ẑ (m)

)−1

(A01(m) + A02(m))

(
1

T
Z (m)′ Z (m)

)−1

,

which is OP

(

1
C2

NT

)

, since A01(m) = 1
T

(

Z (m) − Ẑ (m)
)′

Ẑ (m) = OP

(

1
C2

NT

)

and A02(m) =

1
T Z (m)′

(

Z (m) − Ẑ (m)
)

= OP

(

1
C2

NT

)

, using Gonçalves and Perron (2014, Lemma A.2). Us-

ing the order in probability of L1T (m), L2T (m) and L3T (m), we conclude that 1
T µ′P̃ (m) µ =

1
T µ′P (m) µ + OP

(

1
C2

NT

)

. The proof of the second part of Lemma 7.1 follows identical steps.

Proof of Lemma 7.2. The proof uses the following identity

F̃t − HFt = Ṽ −1 (A1t + A2t + A3t + A4t)

A1t =
1

T

T∑

u=1

F̃uγut, A2t =
1

T

T∑

u=1

F̃uζut, A3t =
1

T

T∑

u=1

F̃uηut, A4t =
1

T

T∑

u=1

F̃uξut

where γut = E
(

1
N

∑N
i=1 eiueit

)

, ζut = 1
N

∑N
i=1

(

eiueit − E
(

1
N

∑N
i=1 eiueit

))

, ηut = 1
N

∑N
i=1 λ′

iFueit,

and ξut = 1
N

∑N
i=1 λ′

iFteiu. By the c-r inequality,

1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥F̃t − HFt

∥
∥
∥

4
≤ 43

∥
∥
∥Ṽ −1

∥
∥
∥

4 1

b

∑

s ∈ R

(
∑

t ∈ sc

‖A1t‖4 +
∑

t ∈ sc

‖A2t‖4 +
∑

t ∈ sc

‖A3t‖4 +
∑

t ∈ sc

‖A4t‖4

)

.

Using the Cauchy-Schwartz inequality, we have

1

b

∑

s ∈ R

∑

t∈ sc

‖A1t‖4 =
1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥
∥
∥

1

T

T∑

u=1

F̃uγut

∥
∥
∥
∥
∥

4

≤ κ

T

(

1

T

T∑

s=1

∥
∥
∥F̃u

∥
∥
∥

2
)2

1

b

∑

s∈ R

[

1√
κ · T

∑

t ∈ sc

T∑

u=1

γ2
ut

]2

In addition, 1
T

∑T
s=1

∥
∥
∥F̃s

∥
∥
∥

2
= OP (1) and 1√

T ·κ
∑

t ∈ sc

∑T
u=1 γ2

ut ≤ C for any s ∈ R (because
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1√
T ·κ

∑

t ∈ sc

∑T
u=1 γ2

ut ≤ C using the proof of Bai and Ng (2002, Lemma 1 (i))). In consequence,

1

b

∑

s ∈ R

∑

t ∈ sc

‖A1t‖4 = OP

(
κ

T

)

. (6)

By repeated application of Cauchy-Schwarz inequality,

1

b

∑

s ∈ R

∑

t ∈ sc

‖A2t‖4 =
1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥
∥
∥

1

T

T∑

u=1

F̃uζut

∥
∥
∥
∥
∥

4

≤



1

T 2

T∑

u=1

T∑

u1=1

(

F̃ ′
uF̃u1

)2








1

T 2

T∑

u=1

T∑

u1=1

(
∑

t ∈ sc

ζ2
utζ

2
u1t

)

 .

Hence,

1

b

∑

s ∈ R

T∑

t=1

‖A2t‖4 ≤



1

T

T∑

u1=1

∥
∥
∥F̃u1

∥
∥
∥

2





2 


1

b

∑

s ∈ R

1

T 2

T∑

u1=1

T∑

u=1

(
∑

t ∈ sc

ζ2
u1tζ

2
ut

)

 ,

where 1
T

∑T
s=1

∥
∥
∥F̃s

∥
∥
∥

2
= OP (1) and E

[
1
b

∑

s ∈ R
1

T2

∑T
u1=1

∑T
u=1

(∑

t ∈ sc ζ2
u1tζ

2
ut

)]

= O

((√
κ

N

)2
)

.

Indeed,

E




1

b

∑

s ∈ R

1

T 2

T∑

u1=1

T∑

u=1

(
∑

t ∈ sc

ζ2
u1tζ

2
ut

)

 ≤ 1

b

∑

s ∈ R

1

T 2

T∑

u1=1

T∑

u=1

∑

t ∈ sc

[

E
(

ζ4
u1t

)] 1

2
[

E
(

ζ4
ut

)] 1

2

≤ κ

[

max
u,t

E
(

ζ4
ut

)]

= O

(
κ

N2

)

,

since maxu,t E
(
ζ4

ut

)
= O

(
1

N2

)

by Assumption 1 (e). Thus,

1

b

∑

s ∈ R

∑

t ∈ sc

‖A2t‖4 = OP

(
κ

N2

)

. (7)

Thirdly, as 1
b·κ
∑

s ∈ R
∑

t ∈ sc

∥
∥
∥

1
N1/2 Λet

∥
∥
∥

4
= OP (1) by Assumption 4 (e), we can write

1

b

∑

s ∈ R

∑

t ∈ sc

‖A3t‖4 =
1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥
∥
∥

1

T

1

N

T∑

u=1

F̃uF ′
uΛet

∥
∥
∥
∥
∥

4

≤ 1

b

∑

s ∈ R

∑

t ∈ sc

∥
∥
∥
∥

1

N
Λet

∥
∥
∥
∥

4
∥
∥
∥
∥
∥

1

T

T∑

u=1

F̃uF ′
u

∥
∥
∥
∥
∥

4

,

which implies that 1
b

∑

s ∈ R
∑

t ∈ sc ‖A3t‖4 is bounded by

κ

N2




1

b

∑

s ∈ R

1

κ

∑

t ∈ sc

∥
∥
∥
∥
∥

1√
N

N∑

i=1

λiet

∥
∥
∥
∥
∥

4




(

1

T

T∑

u=1

∥
∥
∥F̃u

∥
∥
∥

2
)2(

1

T

T∑

u=1

‖Fu‖2

)2

= OP

(
κ

N2

)

,

since 1
T

∑T
s=1

∥
∥
∥F̃s

∥
∥
∥

2
= OP (1) , 1

T

∑T
s=1 ‖Fs‖2 = OP (1). Hence,

1

b

∑

s ∈ R

∑

t ∈ sc

‖A3t‖4 = OP

(
κ

N2

)

(8)

The proof that

1

b

∑

s ∈ R

∑

t ∈ sc

‖A4t‖4 = OP

(
κ

N2

)

(9)

uses 1
T

∑T
u=1

∥
∥
∥F̃u

∥
∥
∥

2
= OP (1) , 1

b·κ
∑

s ∈ R
∑

t ∈ sc ‖Ft‖4 = OP (1) , 1
T

∑T
u=1

∥
∥
∥

1√
N

Λ′eu

∥
∥
∥

2
= OP (1) and
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the bound of 1
b

∑

s ∈ R
∑

t ∈ sc ‖A4t‖4 by

1

b

∑

s ∈ R

∑

t ∈ sc

‖Ft‖4

[

1

T

T∑

u=1

∥
∥
∥F̃u

∥
∥
∥

∥
∥
∥
∥

1

N
Λ′eu

∥
∥
∥
∥

]4

≤ κ

N2

1

b · κ

∑

s ∈ R

∑

t ∈ sc

‖Ft‖4

(

1

T

T∑

u=1

∥
∥
∥F̃u

∥
∥
∥

2
)2(

1

T

T∑

u=1

∥
∥
∥
∥

1√
N

Λ′eu

∥
∥
∥
∥

2
)2

.

Finally, from Equations (7.1),(6), (7), (8) and (9), 1
b

∑

s ∈ R
∑

t ∈ sc

∥
∥
∥F̃t − HFt

∥
∥
∥

4
= OP

(
κ
T

)
+

OP

(
κ

N2

)

.

Proof of Lemma 3.1. To prove Lemma 3.1, we will first need to show that

max
1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥− max

1≤t≤T

∥
∥
∥Zt (m)′ (Z ′ (m) Z (m)

)−1
Zt (m)

∥
∥
∥ = oP (1) .

We have the following decomposition

Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

=
1

T
Ẑ ′

t (m)

[(
1

T
Ẑ ′ (m) Ẑ (m)

)−1

−
(

1

T
Z ′ (m) Z (m)

)−1
]

Ẑt (m)

+
1

T

(

Ẑt (m) − Zt (m)
)′ ( 1

T
Z ′ (m) Z (m)

)−1 (

Ẑt (m) − Zt (m)
)

+
2

T
Zt (m)′

(
1

T
Z ′ (m) Z (m)

)−1 (

Ẑt (m) − Zt (m)
)

+Zt (m)′ (Z ′ (m) Z (m)
)−1

Zt (m) .

Hence, we can write

max
1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥

≤ 1

T
max

1≤t≤T

∥
∥
∥Ẑt (m)

∥
∥
∥

2
∥
∥
∥
∥
∥

(
1

T
Ẑ ′ (m) Ẑ (m)

)−1

−
(

1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥

+
1

T
max

1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

2
∥
∥
∥
∥
∥

(
1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥

+
2

T
max

1≤t≤T
‖Zt (m)‖

∥
∥
∥
∥
∥

(
1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥

max
1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

+ max
1≤t≤T

∥
∥
∥Zt (m)′ (Z ′ (m) Z (m)

)−1
Zt (m)

∥
∥
∥ .

From that bound, it follows that
∣
∣
∣
∣ max
1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥− max

1≤t≤T

∥
∥
∥Zt (m)′ (Z ′ (m) Z (m)

)−1
Zt (m)

∥
∥
∥

∣
∣
∣
∣

is lower than A1 (m) + A2 (m) + A3 (m) where

A1 (m) =
1

T
max

1≤t≤T

∥
∥
∥Ẑt (m)

∥
∥
∥

2
∥
∥
∥
∥
∥

(
1

T
Ẑ ′ (m) Ẑ (m)

)−1

−
(

1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥

,

A2 (m) =
1

T
max

1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

2
∥
∥
∥
∥
∥

(
1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥
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and

A3 (m) =
2

T
max

1≤t≤T
‖Zt (m)‖

∥
∥
∥
∥
∥

(
1

T
Z ′ (m) Z (m)

)−1
∥
∥
∥
∥
∥

max
1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥ .

Since 1
T max1≤t≤T

∥
∥
∥Ẑt (m)

∥
∥
∥

2
≤ 1

T

∑T
t=1

∥
∥
∥Ẑt (m)

∥
∥
∥

2
= OP (1) and

(
1
T Ẑ ′ (m) Ẑ (m)

)−1
−
(

1
T Z ′ (m) Z (m)

)−1
=

OP

(

1
C2

NT

)

, we obtain that A1 (m) = OP

(

1
C2

NT

)

. Because, we have the bound

1

T
max

1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

2
≤ 1

T

T∑

t=1

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

2
, (10)

which is lower than 1
T

∑T
t=1

∥
∥
∥Ẑt (M) − Zt (M)

∥
∥
∥

2
= OP

(

1
C2

NT

)

(using Bai and Ng (2002, Theorem

1) with M denoting the set with all estimated factors), A2 (m) = OP

(

1
C2

NT

)

. From Bai (2003,

Proposition 2), max1≤t≤T

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥ = OP

(
1

T 1/2

)

+ OP

(
T 1/2

N1/2

)

, it follows that A3 (m) =

OP

(
1
T

)

+ OP

(
1

N1/2

)

as max1≤t≤T

∥
∥
∥Ẑt (m)

∥
∥
∥ = OP

(

T 1/2
)

(since 1
T max1≤t≤T

∥
∥
∥Ẑt (m)

∥
∥
∥

2
= OP (1)).

From the bounds of A1 (m), A2 (m) and A3 (m), we deduce
∣
∣
∣
∣ max
1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥− max

1≤t≤T

∥
∥
∥Zt (m)′ (Z ′ (m) Z (m)

)−1
Zt (m)

∥
∥
∥

∣
∣
∣
∣ = oP (1) .

(11)

This implies that

max
1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥ = oP (1) , (12)

as max1≤t≤T

∥
∥
∥Zt (m)′ (Z ′ (m) Z (m))−1 Zt (m)

∥
∥
∥ = oP (1) given Assumption 4 (b).

The remaining part of the proof goes similarly as the proof of Shao (1993, Equation 3.4). Noting

that, CV1 (m) = 1
T

∑T
t=1

(

1 − Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

)−2

ε̂2
t (see, Shao (1993)), we rely on

Taylor expansion to have that for any m,

(

1 − Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

)−2

is equal to

1 + 2Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m) + OP

[(

Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

)2
]

. (13)

Hence CV1 (m) = A4 (m) + 2A5 (m) + oP (A5 (m)) , where

A4 (m) =
1

T

T∑

t=1

ε̂2
t (m) and A5 (m) =

1

T

T∑

t=1

Ẑ ′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m) ε̂2
t (m) ,

since max1≤t≤T

∥
∥
∥
∥Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∥
∥
∥
∥ = oP (1) . We next study A4 (m) and A5 (m).

Given the decomposition ε̂ (m) = ε + µ − µ̃ (m) where µ = F 0α + Wβ and µ̃ (m) = P̃ (m) µ +

P̃ (m) ε, we have A4 (m) = 1
T ε′ε + L̃T (m) − 2r1T (m) , with

L̃T (m) =
1

T
µ′
(

I − P̃ (m)
)

µ +
1

T
ε′P̃ (m) ε. (14)
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and

r1T (m) =
1

T
(µ̃ (m) − µ)′ ε =

1

T

[

P̃ (m) ε −
(

I − P̃ (m)
)

µ
]′

ε =
1

T
ε′P̃ (m) ε − 1

T
µ′
(

I − P̃ (m)
)

ε.

(15)

From the definition of A4 (m) , L̃T (m) and r1T (m), we find

A4 (m) =
1

T
ε′ε − 1

T
ε′P̃ (m) ε +

1

T
µ′
(

I − P̃ (m)
)

µ + 2
1

T
µ′
(

I − P̃ (m)
)

ε. (16)

Under our Assumptions 1–3, for any m,

1

T
ε′P̃ (m) ε =

1

T
ε′P (m) ε + OP

(

1

C2
NT

)

,

1

T
µ′
(

I − P̃ (m)
)

µ = µ′ (I − P (m)) µ + OP

(

1

C2
NT

)

,

and

1

T
µ′
(

I − P̃ (m)
)

ε =
1

T
µ′ (I − P (m)) ε + OP

(

1

C2
NT

)

given Lemma 7.1. Hence, it follows that

A4 (m) =
1

T
ε′ε − 1

T
ε′P (m) ε +

1

T
µ′ (I − P (m)) µ + 2

1

T
µ′ (I − P (m)) ε + OP

(

1

C2
NT

)

.

To complete the study of A4 (m) and A5 (m), we now consider the case where m ∈ M1 and the

case where m ∈ M2. Let start with the first case. For any m ∈ M1,

A4 (m) =
1

T
ε′ε +

1

T
µ′ (I − P (m)) µ + oP (1) (17)

since 1
T ε′P (m) ε = oP (1) and 1

T µ′ (I − P (m)) ε = oP (1) (see, Groen and Kapetanios (2013, Proof

of Theorem 1)). Moreover, we have

|A5 (m)| ≤ max
1≤t≤T

{∣
∣
∣
∣Ẑ

′
t (m)

(

Ẑ ′ (m) Ẑ (m)
)−1

Ẑt (m)

∣
∣
∣
∣

}
1

T

T∑

t=1

ε̂2
t (m) , (18)

implying A5 (m) = oP (1), as the first term in the right hand side of (18) is oP (1) given Assumption 4

(b) and the second term is equal to A4 (m) , which is OP (1). Hence, for m ∈ M1,

CV1 (m) =
1

T
ε′ε +

1

T
µ′ (I − P (m)) µ + oP (1) = σ2 +

1

T
µ′ (I − P (m)) µ + oP (1) .

We now turn our attention to the second case. Because µ′ (I − P (m)) µ = 0, µ′ (I − P (m)) ε =

0 for m ∈ M2,

A4 (m) =
1

T
ε′ε − 1

T
ε′P (m) ε + OP

(

1

C2
NT

)

. (19)
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Further, A5 (m) = (r(m)+q)
T σ2 + oP

(
1
T

)

for m ∈ M2. Indeed, as

A5 (m) =
1

T
Trace

[(
1

T
Ẑ ′ (m) Ẑ (m)

)−1 1

T

T∑

t=1

Ẑt (m) Ẑ ′
t (m) ε̂2

t (m)

]

and 1
T Ẑ ′ (m) Ẑ ′ (m) = ΣZ (m) + oP (1), it holds under Assumptions 1–3 that

A5 (m) =
1

T
Trace

[(

ΣZ (m)−1 + oP (1)
) (

σ2ΣZ (m) + oP (1)
)]

=
(r (m) + q)

T
σ2 + oP

(
1

T

)

.

In consequence, for m ∈ M2

CV1 (m) =
1

T
ε′ε + 2

(r (m) + q)

T
σ2 − 1

T
ε′P (m) ε + OP

(

1

C2
NT

)

+ oP

(

1

C2
NT

)

=
1

T
ε′ε + 2

(r (m) + q)

T
σ2 − 1

T
ε′P (m) ε + OP

(

1

C2
NT

)

.

Because, in the usual case where the factors are observed, CV1 (m) = 1
T ε′ε + 2 (r(m)+q)

T σ2 −
1
T ε′P (m) ε + oP

(
1
T

)

for m ∈ M2 (see, Shao (1993)). In consequence, we denote VT (m) =

CV1 (m) −
(

1
T ε′ε + 2 (r(m)+q)

T σ2 − 1
T ε′P (m) ε

)

= OP

(

1
C2

NT

)

the additional terms due the factor

estimation when m ∈ M2.

Proof of Theorem 1. We have the following decomposition

CVd (m) =
1

d × b

∑

s∈R

∥
∥
∥(ys − Psc (m) ysc) +

(

Psc (m) − P̃sc (m)
)

ysc

∥
∥
∥

2

≡ B1 (m) + B2 (m) + B3 (m) ,

where

B1 (m) =
1

d × b

∑

s∈R

∥
∥
∥

(

Psc (m) − P̃sc (m)
)

ysc

∥
∥
∥

2
,

B2 (m) = 2
1

d × b

∑

s∈R
(ys − Psc (m) ysc)′

(

Psc (m) − P̃sc (m)
)

ysc ,

B3 (m) =
1

d × b

∑

s∈R
‖(ys − Psc (m) ysc)‖2 ,

with Psc (m) = Zs (m)
(

Zsc (m)′ Zsc (m)
)−1

Zsc (m)′ and P̃sc (m) = Ẑs (m)
(

Ẑsc (m)′ Ẑsc (m)
)−1

Ẑsc (m)′ .

The proofs will be done into two parts. The first shows that B1 (m) = oP

(
1
κ

)

and B2 (m) = oP

(
1
κ

)

,

while the second studies B3 (m) and concludes.

Part 1: Using a decomposition of
(

Psc (m) − P̃sc (m)
)

ysc and the c-r inequality, we obtain that

B1 (m) is lower than

4
1

d × b

∑

s∈R
‖B11s (m)‖2

︸ ︷︷ ︸

B11(m)

+4
1

d × b

∑

s∈R
‖B12s (m)‖2

︸ ︷︷ ︸

B12(m)

+4
1

d × b

∑

s∈R
‖B13s (m)‖2

︸ ︷︷ ︸

B13(m)

+4
1

d × b

∑

s∈R
‖B14s (m)‖2

︸ ︷︷ ︸

B14(m)

,
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with

B11s (m) =

(

Ẑs (m)

[
(
Z ′

sc (m) Zsc (m)
)−1 −

(

Ẑ ′
sc (m) Ẑsc (m)

)−1
]

Ẑ ′
sc (m)

)

ysc ,

B12s (m) =
((

Zs (m) − Ẑs (m)
) [(

Z ′
sc (m) Zsc (m)

)−1
] (

Ẑsc (m) − Zsc (m)
))

ysc ,

B13s (m) =
[

Zs (m)
(
Z ′

sc (m) Zsc (m)
)−1

(

Zsc (m) − Ẑsc (m)
)]

ysc

and

B14s (m) =
[(

Zs (m) − Ẑs (m)
) (

Z ′
sc (m) Zsc (m)

)−1
Zsc (m)

]

ysc .

Starting with B11 (m) , we have that for any m,

B11 (m) ≤ 1

d × b

∑

s∈R

∥
∥
∥Ẑs (m)

∥
∥
∥

2
∥
∥
∥
∥

(
Z ′

sc (m) Zsc (m)
)−1 −

(

Ẑ ′
sc (m) Ẑsc (m)

)−1
∥
∥
∥
∥

2 ∥
∥
∥Ẑ ′

sc (m) ysc

∥
∥
∥

2
.

Using the fact that
∥
∥
∥Ẑs (m)

∥
∥
∥ ≤

∥
∥
∥Ẑ (m)

∥
∥
∥ and the Cauchy-Schwarz inequality, it follows that

B11 (m) ≤ 1

d

∥
∥
∥Ẑ (m)

∥
∥
∥

2




1

b

∑

s∈R

∥
∥
∥
∥
∥

(
1

κ
Z ′

sc (m) Zsc (m)

)−1

−
(

1

κ
Ẑ ′

sc (m) Ẑsc (m)

)−1
∥
∥
∥
∥
∥

4
1

b

∑

s∈R

∥
∥
∥
∥

1

κ
Ẑ ′

sc (m) ysc

∥
∥
∥
∥

4




1/2

.

Because 1
d

∥
∥
∥Ẑ (m)

∥
∥
∥

2
= OP (1), to find the order of B11 (m), we next show that

B111 (m) =
1

b

∑

s∈R

∥
∥
∥
∥
∥

(
1

κ
Z ′

sc (m) Zsc (m)

)−1

−
(

1

κ
Ẑ ′

sc (m) Ẑsc (m)

)−1
∥
∥
∥
∥
∥

4

= oP

(
1

κ2

)

and

B112 (m) =
1

b

∑

s∈R

∥
∥
∥
∥

1

κ
Ẑ ′

sc (m) ysc

∥
∥
∥
∥

4

= OP (1) .

To bound B111 (m), we first write that
(

1
κZ ′

sc (m) Zsc (m)
)−1

−
(

1
κ Ẑ ′

sc (m) Ẑsc (m)
)−1

is equal to

B1111s (m) + B1112s (m), where

B1111s (m) =

(
1

κ
Z ′

sc (m) Zsc (m)

)−1 (1

κ
Ẑ ′

sc (m)
(

Ẑsc (m) − Zsc (m)
))(1

κ
Ẑ ′

sc (m) Ẑsc (m)

)−1

and

B1112s (m) =

(
1

κ
Z ′

sc (m) Zsc (m)

)−1 (1

κ

(

Ẑsc (m) − Zsc (m)
)′

Zsc (m)

)(
1

κ
Ẑ ′

sc (m) Ẑsc (m)

)−1

.

Hence by the c-r inequality, ‖B111 (m)‖ is bounded by 23
(

1
b

∑

s∈R ‖B1111s (m)‖4 + 1
b

∑

s∈R ‖B1112s (m)‖4
)

.

In particular,

1

b

∑

s∈R
‖B1111s (m)‖4 ≤ 23

∥
∥
∥(ΣZ (m))−1

∥
∥
∥

8 1

b · κ4

∑

s∈R

∥
∥
∥Ẑ ′

sc (m)
(

Ẑsc (m) − Zsc (m)
)∥
∥
∥

4
(1 + oP (1))

and

1

b

∑

s∈R
‖B1112s (m)‖4 ≤ 23

∥
∥
∥(ΣZ (m))−1

∥
∥
∥

8 1

b · κ4

∑

s∈R

∥
∥
∥
∥

(

Ẑsc (m) − Zsc (m)
)′

Zsc (m)

∥
∥
∥
∥

4

(1 + oP (1))
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since
(

1
κZ ′

sc (m) Zsc (m)
)−1

= (ΣZ (m))−1 + oP (1) given Assumption 4 (c) and (f). Combining the

arguments in Lemma 7.2 and Gonçalves and Perron (2014, Lemma A2 (b)-(c)), we can show that

1

b

∑

s∈R

∥
∥
∥
∥

1

κ

(

Ẑsc (m) − Zsc (m)
)′

Zsc (m)

∥
∥
∥
∥

4

= oP

(
1

κ2

)

and

1

b

∑

s∈R

∥
∥
∥
∥

1

κ
Ẑ ′

sc (m)
(

Ẑsc (m) − Zsc (m)
)
∥
∥
∥
∥

4

= oP

(
1

κ2

)

.

Thus, B111 (m) = oP

(
1

κ2

)

. Further, by Cauchy-Scharwz inequality and Jensen inequality, we have

B112 (m) =
1

b

∑

s∈R

∥
∥
∥
∥

1

κ
Ẑ ′

sc (m) ysc

∥
∥
∥
∥

4

≤
(

1

bκ

∑

s∈R

∑

t ∈ sc

∥
∥
∥Ẑt (m)

∥
∥
∥

8
)1/2(

1

bκ

∑

s∈R

∑

t ∈ sc

‖yt‖8

)1/2

= OP (1) ,

(20)

since 1
bκ

∑

s∈R
∑

t ∈ sc ‖yt‖8 = OP (1) from Assumption 3 and 1
bκ

∑

s∈R
∑

t ∈ sc

∥
∥
∥Ẑt (m)

∥
∥
∥

8
= OP (1).

Using 1
d

∥
∥
∥Ẑ (m)

∥
∥
∥

2
= Op (1) , B111 (m) = oP

(
1

κ2

)

and B112 (m) = OP (1), we find for any m that

B11 (m) = oP

(
1

κ

)

. (21)

We now look at B12 (m). Since
∥
∥
∥Zs (m) − Ẑs (m)

∥
∥
∥ ≤

∥
∥
∥Z (m) − Ẑ (m)

∥
∥
∥ and

(
1

Tc
Z ′

sc (m) Zsc (m)
)−1

=

(ΣZ (m))−1 + op (1), it follows that

B12 (m) ≤ 1

d

∥
∥
∥Z (m) − Ẑ (m)

∥
∥
∥

2 ∥∥
∥(ΣZ (m))−1

∥
∥
∥

2
(1 + op (1))

1

b

∑

s∈R

∥
∥
∥
∥

1

κ

(

Ẑsc (m) − Zsc (m)
)′

ysc

∥
∥
∥
∥

2

.

As 1
b

∑

s∈R
∑

t ∈ sc

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

4
= oP (1) from Lemma 7.2, we deduce

1

b

∑

s∈R

∥
∥
∥
∥

(

Ẑsc (m) − Zsc (m)
)′

ysc

∥
∥
∥
∥

2

≤
(

1

κ · b

∑

s∈R

∑

t ∈ sc

∥
∥
∥Ẑt (m) − Zt (m)

∥
∥
∥

4
)1/2(

1

κ · b

∑

s∈R

∑

t ∈ sc

‖yt‖4

)1/2

is oP

(
1

κ1/2

)

. Hence, using 1
d

∥
∥
∥Z (m) − Ẑ (m)

∥
∥
∥

2
= Op

(

1
C2

NT

)

, for any m, we obtain

B12 (m) = Op

(

1

C2
NT κ1/2

)

. (22)

For B13 (m) , we have for any m, the bound

B13 (m) ≤ 1

d

∑

s∈R
‖Zs (m)‖2

∥
∥
∥
∥
∥

(
1

κ
Z ′

sc (m) Zsc (m)

)−1
∥
∥
∥
∥
∥

2
1

b

∥
∥
∥
∥

1

κ

(

Zsc (m) − Ẑsc (m)
)′

ysc

∥
∥
∥
∥

2

Since for any m, 1
d ‖Zs (m)‖2 ≤ 1

d ‖Z (m)‖2 = OP (1) ,
(

1
κZ ′

sc (m) Zsc (m)
)−1

= ΣZ (m)+oP (1) and

1
b

∑

s∈R

∥
∥
∥
∥

1
κ

(

Zsc (m) − Ẑsc (m)
)′

ysc

∥
∥
∥
∥

2

= oP

(
1
κ

)

(using the same arguments as in Lemma 7.2 and
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Gonçalves and Perron (2014, Lemma A2 (c)), it follows that

B13 (m) = oP

(
1

κ

)

. (23)

To finish, we have that

B14 (m) = Op

(

1

C2
NT

)

, (24)

using the bound

B14 (m) ≤ 1

d

∥
∥
∥Z (m) − Ẑ (m)

∥
∥
∥

2 ∥∥
∥(ΣZ (m))−1

∥
∥
∥

2
(1 + op (1))

1

d · b

∑

s∈R

∥
∥
∥
∥

1

κ
Zsc (m)′ ysc

∥
∥
∥
∥

2

,

where 1
d

∥
∥
∥Z (m) − Ẑ (m)

∥
∥
∥

2
= OP

(

1
C2

NT

)

and

1

b

∑

s∈R

∥
∥
∥
∥

1

κ
Zsc (m)′ ysc

∥
∥
∥
∥

2

≤
(

1

b · κ

∑

s∈R

∑

t ∈ sc

‖Zt (m)‖4

)1/2(
1

b · κ

∑

s∈R

∑

t ∈ sc

‖yt‖4

)1/2

= OP (1) .

Finally, from Equations (21), (22), (23) and (24), we conclude that B1 (m) = oP

(
1
κ

)

, for any m.

By similar arguments, we can also prove that B2 (m) = oP

(
1
κ

)

.

Part 2:

We first show in this part that

B3 (m) =
1

d · b

∑

s∈R
‖(ys − Psc (m) ysc)‖2 =

1

d · b

∑

s∈R

∥
∥
∥(Id − Qs (m))−1

(

ys − Zs (m) δ̃ (m)
)∥
∥
∥

2
,

with Qs (m) = Zs (m) (Z ′ (m) Z (m))−1 Z ′
s (m) and δ̃ (m), the OLS estimator by regressing ys on

Zs (m). We use the following identity

ys − Psc (m) ysc = (Id − Qs (m))−1 [ys − Qs (m) ys − (Id − Qs (m)) Psc (m) ysc ] .

Because

(Id − Qs (m)) Psc (m)

= Psc (m) − Zs (m)
(
Z ′ (m) Z (m)

)−1
Z ′

s (m) Zs (m)
(

Zsc (m)′ Zsc (m)
)−1

Zsc (m)′

= Psc (m) − Zs (m)
(
Z ′ (m) Z (m)

)−1 ×
[

Z ′ (m) Z (m) − Zsc (m)′ Zsc (m)
] (

Zsc (m)′ Zsc (m)
)−1

Zsc (m)′

= Psc (m) − Psc (m) − Zs (m)
(
Z ′ (m) Z (m)

)−1
Zsc (m)′ = −Zs (m)

(
Z ′ (m) Z (m)

)−1
Zsc (m)′ ,

it follows that (Id − Qs (m)) (ys − Psc (m) ysc) is equal to

ys − Zs (m)
(
Z ′ (m) Z (m)

)−1
Zs (m) ys + Zs (m)

(
Z ′ (m) Z (m)

)−1
Zsc (m)′ ysc

= ys − Zs (m)
(
Z ′ (m) Z (m)

)−1
Z (m) y

= ys − Zs (m) δ̃ (m) .
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Thus ys − ỹs (m) = ys − Psc (m) ysc = (Id − Qs (m))−1
(

ys − Zs (m) δ̃ (m)
)

and

B3 (m) =
1

d · b

∑

s∈R

∥
∥
∥(Id − Qs (m))−1

(

ys − Zs (m) δ̃ (m)
)∥
∥
∥

2
.

Because Zs (m) can be treated as non generated regressors and δ̃ (m) the associated estimator, we

next apply Shao (1993, Theorem 2). Hence for m ∈ M1,

B3 (m) =
1

d · b

∑

s∈R
‖εs‖2+

1

T
δ′Z0′

(

I − Z (m)
(
Z ′ (m) Z (m)

)−1
Z ′ (m)

)

Z0δ+oP (1)+RT (m) , (25)

where RT (m) ≥ 0 and m ∈ M2,

B3 (m) =
1

d · b

∑

s∈R
‖εs‖2 +

r (m) + q

κ
σ2 + oP

(
1

κ

)

. (26)

Finally, using B1(m) = oP

(
1
κ

)

and B2(m) = oP

(
1
κ

)

, we deduce that

CVd (m) = B3 (m) + oP

(
1

κ

)

.

Furthermore, the result follows from Shao (1993, Theorem 2).

Proof of Theorem 2. The proof follows similarly as the one of Djogbenou, Gonçalves, and Perron

(2015, Theorem 3.1) by showing that the high level conditions of Gonçalves and Perron (2014) are

satisfied. We use the identity

√
κ
(

δ̂∗
d (m) − Φ∗−1

0 (m) δ̂ (m)
)

=

(
1

T
Ẑ∗′ (m) Ẑ∗ (m)

)−1

[A∗ (m) + B∗ (m) − C∗ (m)] , (27)

where A∗ (m) = Φ∗
0 (m)

√
κ 1

T

∑T
t=1 Ẑt (m) ε∗

t , B∗ (m) =
√

κ 1
T

∑T
t=1

(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)

ε∗
t

and C∗ (m) =
√

κ 1
T

∑T
t=1 Ẑ∗

t (m)
(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)′

(H∗
0 (m))−1′ α̂ (m), where plim

N,T →∞
Φ∗ (m) =

Φ∗
0 (m) and plim

N,T →∞
H∗ (m) = H∗

0 (m) are diagonal. Note that in the bootstrap world Φ∗
0 is diago-

nal (see Gonçalves and Perron (2014)) and H∗
0 (m) is an r (m) × r (m) squared submatrix of H∗

0 .

Note also that given this fact, we treat F̃ ∗
t (m) as estimating H∗

0 (m) F̃t (m) . Hence, we can use

the properties of H∗
0 as a diagonal and nonsingular matrix in order to identify the rotation matrix

associated with subvectors F̃ ∗
t (m) of F̃ ∗

t . We will establish the result in three steps proving that

A∗ (m) converges in distribution whereas B∗ (m) and C∗ (m) converge in probability to zero.

Part 1: One can write that

B∗ (m) =

√
κ

T

T∑

t=1

(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)

ε∗
t =

1√
T

T∑

t=1

(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)

ξ∗
t , (28)

with ξ∗
t = 1√

1− r+q
T

(

ε̂t − ε̂
)

. Given Gonçalves and Perron (2014, Lemma B2), B∗ (m) = OP

(
1

CNT

)

as long as B∗ = 1√
T

∑T
t=1

(

F̃ ∗
t − H∗

0 F̃t

)

ξ∗
t = OP

(
1

CNT

)

if their Conditions A∗ − D∗ are verified

with ξ∗
t replacing ε∗

t . Indeed, A∗ and B∗ are satisfied since e∗
it relies on the wild bootstrap and we
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only need to check Conditions C∗ and D∗. Starting with Condition C∗ (a) , since e∗
it and ε∗

s are

independent and e∗
it is independent across (i, t),

1

T

T∑

t=1

E∗
∣
∣
∣
∣
∣

1√
TN

T∑

s=1

N∑

i=1

ξ∗
s (e∗

ite
∗
is − E (e∗

ite
∗
is))

∣
∣
∣
∣
∣

2

=
1

T

T∑

t=1

1

T

T∑

s=1

E∗
(

ξ∗2
s

) 1

N

N∑

i=1

ẽ2
itẽ

2
isVar∗ (ηitηis)

≤ C

(

1

T − r − q

T∑

l=1

ε̂2
l

)

1

NT

N∑

i=1

T∑

t=1

ẽ4
it,

where the first equality uses the fact that Cov∗
(

e∗
ite

∗
is, e∗

jte
∗
jl

)

= 0 for i 6= j or s 6= l, and

the inequality uses the fact that E∗ (ε∗2
s

)
= 1

1− r+q
T

(
1
T

∑T
t=1 ε̂2

t − ε̂
2
)

≤ 1
T −r−q

∑T
t=1 ε̂2

t and that

Var∗ (ηitηis) is bounded under the assumptions of Theorem 2. Since 1
NT

∑N
i=1

∑T
t=1 ẽ4

it = OP (1)

and 1
T −r−q

∑T
t=1 ε̂2

t = OP (1) under Assumptions 1–3, see Gonçalves and Perron (2014), the result

follows. We now verify Condition C∗(b). We have

E∗
∥
∥
∥
∥
∥

1√
TN

T∑

t=1

N∑

i=1

λ̃ie
∗
itξ

∗
t

∥
∥
∥
∥
∥

2

=
1

TN

[
T∑

t=1

E∗
(

ξ∗2
t

)
(

N∑

i=1

λ̃′
iλ̃iE

∗
(

e∗2
it

)
)]

≤
(

1

T − r − q

T∑

s=1

ε̂2
s

)(

1

N

N∑

i=1

∥
∥
∥λ̃i

∥
∥
∥

4
)1/2(

1

NT

N∑

i=1

T∑

t=1

ẽ4
it

)1/2

where the first equality uses the fact that E∗
(

e∗
ite

∗
js

)

= 0 whenever i 6= j or t 6= s, and the third

equality the fact that E∗ (ε∗2
t

)
≤ 1

T −r−q

∑T
s=1 ε̂2

s and
(

1
T

∑T
t=1 ẽ2

it

)2
≤ 1

T

∑T
t=1 ẽ4

it. The result, that

C∗(b) holds, follows since each term of the last inequality is OP (1), see Gonçalves and Perron

(2014). To prove Condition C∗(c), we follow closely the proof in Gonçalves and Perron (2014) and

it will be sufficient to show that 1
T

T∑

t=1
ξ∗4

t = Op∗(1) in probability. Using the definition of E∗ (ξ∗4
t

)

and the c-r inequality,

E∗
(

1

T

T∑

t=1

ξ∗4
t

)

= E∗
(

ξ∗4
t

)

=
T

(T − r − q)2

T∑

s=1

(

ε̂s − ε̂
)4

≤ 23 (T )2

(T − r − q)2

1

T

T∑

s=1

ε̂4
s + 23 (T )2

(T − r − q)2 ε̂
4
.

Because 1
T

∑T
t=1 ε̂4

t = OP (1) and 1
T

∑T
t=1 ε̂t = OP (1) under Assumptions 1–3, E∗

(
1
T

∑T
t=1 ε∗4

t

)

=

OP (1) and C∗ (c) follows. For Condition D∗(a), we have E∗ (ξ∗
t ) = T

T −r−q
1
T

∑T
s=1

(

ε̂s − ε̂
)

= 0 and

1

T

T∑

t=1

E∗
(

ξ∗2
t

)

= E∗
(

ξ∗2
t

)

≤ 1

T − r − q

T∑

s=1

ε̂2
s+1 = OP (1) .

To finish, we also verify Condition D∗(b). To show that condition, which is 1√
T

∑T
t=1 Ẑtξ

∗
t

d∗

−→
N (0, Ω∗), we rely on Lyapunov Theorem by proving that the required conditions are satisfied.

Noting Ψ∗
t ≡ Ω∗− 1

2 Ẑtξ
∗
t and Ω∗ = plim

N,T →∞
E∗
(

1
T

∑T
t=1 ẐtẐ

′
tξ

∗2
t

)

, we can write Ω∗− 1

2
1√
T

∑T
t=1 Ẑtξ

∗
t =
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1√
T

∑T
t=1 Ψ∗

t , where Ψ∗
t are conditionally independent for t = 1, . . . , T, with E∗ (Ψ∗

t ) = Ω∗− 1

2 ẐtE
∗ (ξ∗

t ) =

0 and

plim
N,T →∞

Var∗
(

1√
T

T∑

t=1

Ψ∗
t

)

= Ω∗− 1

2

(

plim
N,T →∞

E∗
(

1

T

T∑

t=1

ẐtẐ
′
tξ

∗2
t

))

Ω∗− 1

2 = Iq+r.

It only remains to show that for some 1 < s < 2, ΥT ≡ 1
T d

∑T
t=1 E∗ ‖Ψ∗

t ‖2s = oP (1). Using the

bound

ΥT =
1

T s

T∑

t=1

E∗
(∥
∥
∥Ω∗− 1

2 Ẑtξ
∗
t

∥
∥
∥

2
)s

≤
∥
∥
∥Ω∗− 1

2

∥
∥
∥

2s 1

T s−1

1

T

T∑

t=1

∥
∥
∥Ẑt

∥
∥
∥

2s
E∗ ‖ξ∗

t ‖2s

and the fact that E∗ ‖ξ∗
t ‖2s = T s−1

(T −r−q)s

∑T
t=1

(

ε̂t − ε̂
)2s

, we obtain

ΥT ≤
∥
∥
∥Ω∗− 1

2

∥
∥
∥

2s
(

1

(T − r − q)s

T∑

t=1

(

ε̂t − ε̂
)2s
)

1

T

T∑

t=1

∥
∥
∥Ẑt

∥
∥
∥

2s
. (29)

To find the order in probability of ΥT , we note 1
T

∑T
t=1

∥
∥
∥Ẑt

∥
∥
∥

2s
≤
(

1
T

∑T
t=1

∥
∥
∥Ẑt

∥
∥
∥

4
)s/2

= OP (1) , as

1
T

∑T
t=1

∥
∥
∥Ẑt

∥
∥
∥

4
is OP (1). In addition, by an application of the c − r inequality, we have

1

(T − r − q)s

T∑

t=1

(

ε̂t − ε̂
)2s

≤ 22s−1 T

(T − r − q)s

(

1

T

T∑

t=1

ε̂2s
t + ε̂

2s

)

= OP

(
1

T s−1

)

,

where 1
T

∑T
t=1 ε̂2s

t ≤
(

1
T

∑T
t=1 ε̂4

t

)s/2
= OP (1) and ε̂ = OP (1) . Hence, we deduce from (29) that

ΥT = OP

(
1

T s−1

)

= oP (1) since s > 1. Thus 1√
T

∑T
t=1 Ẑtξ

∗
t

d∗

−→ N (0, Ω∗).

Part 2: By Gonçalves and Perron (2014, Lemma B4),

1√
T

T∑

t=1

Ẑ∗ (m)
(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)′

(H∗
0 (m))−1′ α̂ (m) = OP

(√
T

N

)

for any m, as it does not involve the residual bootstrap for the time series dimension. Hence, we

have for any m that

C∗ (m) =
√

κ
1

T

T∑

t=1

Ẑ∗ (m)
(

F̃ ∗
t (m) − H∗

0 (m) F̃t (m)
)′

(H∗
0 (m))−1′ α̂(m) = OP

(√
κ

N

)

= oP (1) .

Part 3: By similar steps to condition D∗ (b), Ω∗ (m)− 1

2 A∗ (m)
d∗

−→ N
(

0, Ir(m)+q

)

, where

Ω∗ (m)− 1

2 A∗ (m) = Ω∗ (m)− 1

2 Φ∗
0 (m)

√
κ

1

T

T∑

t=1

Ẑt (m) ε∗
t = Ω∗ (m)− 1

2 Φ∗
0 (m)

1√
T

T∑

t=1

Ẑt (m) ξ∗
t ,

(30)

with Ω∗ (m) = V ar∗
(

Φ∗
0 (m) 1√

T

∑T
t=1 Ẑt (m) ξ∗

t

)

and Ψ∗
t (m) ≡ Ω∗− 1

2 (m) Ẑt (m) ξ∗
t . Finally,

A∗ (m)
P−→ N

(

0, σ2Φ∗
0 (m)

(

plim
N,T →∞

1

T
Z (m)′ Z (m)

)

Φ∗
0 (m)′

)

.
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Indeed, Ω∗ (m) = Φ∗
0 (m)

(

1
T −(r+q)

∑T
t=1 Ẑt (m) Ẑt (m)′

(

ε̂t − ε̂
)2
)

Φ∗
0 (m)′, with

1

T − (r + q)

T∑

t=1

Ẑt (m) Ẑt (m)′
(

ε̂t − ε̂
)2

=
1

T − (r + q)

T∑

t=1

Ẑt (m) Ẑt (m)′ ε̂2
t + oP (1)

and 1
T −(r+q)

∑T
t=1 Ẑt (m) Ẑt (m)′ ε̂2

t an estimate of σ2 plim
N,T →∞

1
T Z (m)′ Z (m) given Assumption 3.

Hence, we have that Ω∗ (m)
P−→ σ2Φ∗

0 (m)

(

plim
N,T →∞

1
T Z (m)′ Z (m)

)

Φ∗
0 (m)′ .

From Part 1, Part 2 and Part 3, and the fact that

1

T

T∑

t=1

Ẑ∗
t (m) Ẑ∗

t (m) = Φ∗
0 (m)

[

plim
1

T
Z (m)′ Z (m)

]

Φ∗
0 (m)′ + op∗ (1)

and
√

κ
(

δ̂∗
κ (m) − Φ∗

0 (m)−1 δ̂ (m)
)

=

(
1

T
Ẑ∗′ (m) Ẑ∗ (m)

)−1

[A∗ (m) + op∗ (1)] ,

by the asymptotic equivalence Lemma,

√
κ
(

δ̂∗
κ (m) − Φ∗

0 (m)−1′ δ̂ (m)
)

d∗

−→ N



0, Φ∗
0 (m)−1′

[

plim
N,T →∞

1

T
Z (m)′ Z (m)

]−1

Φ∗
0 (m)−1



 .

Proof of Theorem 3. We start by recalling that Ft (m) is a generic limit of the candidate set of

estimated factors F̃t (m). The proof begins showing first that if there is an r0 × r (m) matrix Q (m)

such that F 0
t = Q (m) Ft (m) and no set of estimated factors m̌ such that an r0×r (m̌) matrix Q (m̌)

satisfies F 0
t = Q (m̌) Ft (m̌) , then P

(

Γ̂κ (m) < Γ̂κ (m̌)
)

−→ 1 as T, N → ∞. Second, we show that

if it exists an r0 × r (m) matrix Q (m) such that F 0
t = Q (m) Ft (m) and an r0 × r (m̌) matrix Q (m̌)

such that F 0
t = Q (m) Ft (m) , with r (m) < r (m̌) , then P

(

Γ̂κ (m) < Γ̂κ (m̌)
)

−→ 1. The first part

corresponds to the case where only one set of estimated factors belongs to M2. However, in the

second situation, our bootstrap selection rule picks the smaller set of estimated factors in M2.

Part 1: We observe that for any m,

Γ̂κ (m) = E∗
(

1

T

∥
∥
∥

(

y − Ẑ (m) δ̂ (m)
)

+
(

Ẑ (m) δ̂ (m) − Ẑ∗ (m) δ̂∗
κ (m)

)∥
∥
∥

2
)

≡ D1(m)+D2(m)+D3(m),

where

D1(m) =
1

T

∥
∥
∥y − Ẑ (m) δ̂ (m)

∥
∥
∥

2
(31)

D2(m) = E∗
(

1

T

∥
∥
∥Ẑ (m) δ̂ (m) − Ẑ∗ (m) δ̂∗

κ (m)
∥
∥
∥

2
)

and

D3(m) = 2
1

T

(

y − Ẑ (m) δ̂ (m)
)′

E∗
(

Ẑ (m) δ̂ (m) − Ẑ∗ (m) δ̂∗
κ (m)

)

.
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Using the decomposition Ẑ∗ (m) δ̂∗
κ (m) − Ẑ (m) δ̂ (m) as

Ẑ∗ (m)
(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
)

+
(

Ẑ∗ (m) − Ẑ (m) Φ∗
0 (m)′

)

Φ∗−1′
0 (m) δ̂ (m) ,

where Φ∗
0 (m) is an (r (m) + q) × (r (m) + q) submatrix of Φ∗

0 = diag (±1) the limit in probability

of Φ∗ conditionally on the sample (Gonçalves and Perron, 2014), we can write that D2(m) =

D21(m) + D22(m) + 2D23(m), with

D21(m) = E∗
((

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
)′ 1

T
Ẑ∗′ (m) Ẑ∗ (m)

(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
))

,

D22(m) = E∗
(

δ̂′ (m) Φ∗−1
0 (m)

1

T

(

Ẑ∗ (m) − Ẑ (m) Φ∗
0 (m)′

)′ (
Ẑ∗ (m) − Ẑ (m) Φ∗

0 (m)′
)

Φ∗−1′
0 (m) δ̂ (m)

)

and

D23(m) =
1

T
E∗
(

δ̂′ (m) Φ∗−1
0 (m)

(

Ẑ∗ (m) − Ẑ (m) Φ∗
0 (m)′

)′
Ẑ (m)

(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
))

.

Starting with D21(m), we can show that

D21(m) = Trace

(

E∗
(

1

T
Ẑ∗′ (m) Ẑ∗ (m)

(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
))(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
)′)

=
1

κ
Trace

((
Φ∗

0 (m) ΣZ (m) Φ∗′
0 (m)

)
Avar∗

(√
κ
(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
)))

+ oP

(
1

κ

)

.

Since Theorem 2 implies that as
√

κ
N → 0,

√
κ
(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
)

d∗

−→ N
(

0, σ2Φ∗−1′
0 (m) ΣZ (m)−1 Φ∗−1

0 (m)
)

,

if m is in M2, we deduce that

plim
N,T →∞

Avar∗
(√

κ
(

δ̂∗
κ (m) − Φ∗−1′

0 (m) δ̂ (m)
))

= σ2Φ∗−1′
0 (m) ΣZ (m)−1 Φ∗−1

0 (m) .

Thereby, for any set m of estimated factors in M2,

D21(m) =
σ2

κ
Trace

(

Φ∗
0 (m) ΣZ (m) Φ∗′

0 (m) Φ∗−1′
0 (m) ΣZ (m)−1 Φ∗−1

0 (m)
)

+oP

(
1

κ

)

=
σ2 (r (m) + q)

κ
+oP

(
1

κ

)

.

For D22, we use the fact that

D22(m) = δ̂ (m)′ Φ∗−1
0 (m) E∗

[
1

T

(

Ẑ∗ (m) − Ẑ (m) Φ∗
0 (m)

)′ (
Ẑ∗ (m) − Ẑ (m) Φ∗

0 (m)
)]

Φ∗−1′
0 (m) δ̂ (m)

(32)

and E∗
(

1
T

(

Ẑ∗ (m) − Ẑ (m) Φ∗
0 (m)

)′ (
Ẑ∗ (m) − Ẑ (m) Φ∗

0 (m)
))

is a submatrix of

D221 =
1

T

T∑

t=1

E∗
(

F̃ ∗
t − H∗

0 F̃t

) (

F̃ ∗
t − H∗

0 F̃t

)′
. (33)

Because, we treat F̃ ∗
t as estimating H∗

0 F̃t, we can use the step of the proof of Gonçalves and Perron
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(2014, Lemma 3.1), and have that

‖D221‖ ≤ 1

T

T∑

t=1

E∗
∥
∥
∥F̃ ∗

t − H∗
0 F̃t

∥
∥
∥

2
≤ C

4

T

T∑

t=1

(

E∗ ‖A∗
1t‖2 + E∗ ‖A∗

2t‖2 + E∗ ‖A∗
3t‖2 + E∗ ‖A∗

4t‖2
)

,

where

A∗
1t =

1

T

T∑

s=1

F̃ ∗
s γ∗

st, A∗
2t =

1

T

T∑

s=1

F̃ ∗
s ζ∗

st, A∗
3t =

1

T

T∑

s=1

F̃ ∗
s η∗

st, A∗
4t =

1

T

T∑

s=1

F̃ ∗
s ξ∗

st,

with γ∗
st = E∗

(
1
N

∑N
i=1 e∗

ise∗
it

)

, ζ∗
st = 1

N

∑N
i=1

(

e∗
ise∗

it − E∗
(

1
N

∑N
i=1 e∗

ise∗
it

))

, η∗
st = 1

N

∑N
i=1 λ̃′

iF̃se∗
it,

and ξ∗
st = 1

N

∑N
i=1 λ̃′

iF̃te
∗
is. Note that, we ignore

∥
∥
∥V ∗−1

0

∥
∥
∥ , with V ∗

0 the limit of the matrix containing

the first r eigenvalues of X∗X∗′/ (NT ) in decreasing order, as it is bounded. Consequently, we

find the order in probability of ‖D221‖ deriving those of 1
T

∑T
t=1 E∗ ‖A∗

1t‖2 , 1
T

∑T
t=1 E∗ ‖A∗

2t‖2 ,

1
T

∑T
t=1 E∗ ‖A∗

3t‖2 and 1
T

∑T
t=1 E∗ ‖A∗

4t‖2 .

First, by the Cauchy-Schwarz inequality, it follows that

1

T

T∑

t=1

E∗ ‖A∗
1t‖2 ≤ 1

T
E∗
((

1

T

T∑

s=1

∥
∥
∥F̃ ∗

s

∥
∥
∥

2
)(

1

T

T∑

s=1

T∑

t=1

‖γ∗
st‖2

))

=
r

T
E∗
(

1

T

T∑

s=1

T∑

t=1

‖γ∗
st‖2

)

= OP

(
1

T

)

,

(34)

using 1
T

∑T
s=1

∥
∥
∥F̃ ∗

s

∥
∥
∥

2
= Trace

(
1
T

∑T
s=1 F̃ ∗

s F̃ ∗′
s

)

= Trace (Ir) = r and the fact that the high level

condition A∗ (b) : 1
T

∑T
s=1

∑T
t=1 ‖γ∗

st‖2 = OP (1) of Gonçalves and Perron (2014) follows under our

assumptions. Second, we also have by an application of the Cauchy-Schwartz inequality that

1

T

T∑

t=1

E∗ ‖A∗
2t‖2 ≤ E∗

((

1

T

T∑

s=1

∥
∥
∥F̃ ∗

s

∥
∥
∥

2
)(

1

T 2

T∑

s=1

T∑

t=1

ζ∗2
st

))

≤ r · E∗
(

1

T 2

T∑

s=1

T∑

t=1

ζ∗2
st

)

= OP

(
1

N

)

(35)

given condition A∗ (c) of Gonçalves and Perron (2014). Thirdly, using the same arguments as

Gonçalves and Perron (2014),

1

T

T∑

t=1

E∗ ‖A∗
3t‖2 ≤ E∗





∥
∥
∥
∥
∥

1

T

T∑

s=1

F̃ ∗
s F̃ ′

s

∥
∥
∥
∥
∥

2
1

T 2

T∑

s=1

∥
∥
∥
∥

1

N
Λ̃′e∗

t

∥
∥
∥
∥

2


 ≤ r·E∗
(

1

T 2

T∑

s=1

∥
∥
∥
∥

1

N
Λ̃′e∗

t

∥
∥
∥
∥

2
)

= OP

(
1

N

)

.

(36)

Similarly,

1

T

T∑

t=1

E∗ ‖A∗
4t‖2 = OP

(
1

N

)

, (37)

and we can deduce from (34), (35), (36) and (37) that, ‖D221‖ = OP

(

C−2
NT

)

. From (32), we

obtain that D22(m) = OP

(

C−2
NT

)

. Finally, we can write by an application of the Cauchy-Schwarz

inequality that |D23(m)| ≤
√

D21(m)
√

D22(m) = OP

(
1√
κ

)

OP

(

C−1
NT

)

= OP

(
1√

κCNT

)

. Given the

bound for D21(m), D22(m) and D23(m), it follows that,

D2(m) =
σ2 (r (m) + q)

κ
+ OP

(
1√

κCNT

)

. (38)
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Moreover, we have that

D3(m) =
−2

T

(

y − Ẑ (m) δ̂ (m)
)′

Ẑ (m) Φ∗′
0 (m) (1 + oP (1)) E∗

(

δ̂∗
d (m)

)

+ oP

(
1

T

)

= oP

(
1

T

)

,

(39)

as
(

y − Ẑ (m) δ̂ (m)
)′

Ẑ (m) = 0.

We now turn our attention to D1(m). Denoting M̃ (m) = IT − P̃ (m) and M (m) = IT −P (m) ,

we have that from Lemma 7.1 that

1

T
y′M̃ (m) y =

1

T
y′M (m) y + OP

(

1

C2
NT

)

,
1

T
ε′M (m) ε =

1

T
ε′ε + OP

(

1

C2
NT

)

.

Therefore, D1(m) = 1
T y′M (m) y + OP

(

1
C2

NT

)

, which is equal to

1

T
ε′M (m) ε +

1

T
δ′Z0′M (m) Z0δ + 2

1

T
δ′Z0′M (m) ε + OP

(

1

C2
NT

)

.

Using 1
T δ′Z0′M (m) ε = oP (1) (Groen and Kapetanios, 2013), we consequently deduce that

D1(m) =
1

T
ε′ε +

1

T
δ′Z0′M (m) Z0δ + OP

(

1

C2
NT

)

. (40)

From (38), (39) and (40), it follows that

Γ̂κ (m) =
1

T
ε′ε +

1

T
δ′Z0′M (m) Z0δ +

1

T
δ′Z0′M (m) ε +

σ2 (r (m) + q)

κ
+ oP

(
1

κ

)

.

Given the assumptions that there exists matrix Q (m) such that F 0
t = Q (m) Ft (m) and no matrix

Q (m̌) such that F 0
t = Q (m̌) Ft (m̌) , it follows that M (m) Z0 = 0 and M (m̌) Z0 6= 0. Therefore,

Γ̂κ (m) =
1

T
ε′ε +

σ2 (r (m) + q)

κ
+ oP

(
1

κ

)

=
1

T
ε′ε + oP

(
1

κ

)

and

Γ̂κ
(
m′) =

1

T
ε′ε +

1

T
δ′Z0′M

(
m′)Z0δ + oP (1) = σ2 +

1

T
δ′Z0′M

(
m′)Z0δ + oP (1)

as 1
T δ′Z0′M (m) Z0δ = 1

T δ′Z0′M (m) ε = 0, 1
T δ′Z0′M (m̌) ε = oP (1) . Since

plim inf
N,T →∞

1

T
δ′Z0′M (m̌) Z0δ > 0,

if M (m̌) Z0 6= 0 given Assumption 4 (a), we have that

P
(

Γ̂κ (m) < Γ̂κ (m̌)
)

= P

(

σ2 < σ2 +
1

T
δ′Z0′M

(
m′)Z0δ + oP (1)

)

−→ 1. (41)

Part 2: In this part of our proof, we show that if it exists a matrix Q (m) such that F 0
t =

Q (m) Ft (m) and a matrix Q (m̌) such that F 0
t = Q (m) Ft (m) , with r (m) < r (m̌) then P

(

Γ̂κ (m) < Γ̂κ (m̌)
)

converges to 1. In this case,

Γ̂κ (m) =
1

T
ε′ε +

σ2 (r (m) + q)

κ
+ oP

(
1

κ

)

and Γ̂κ (m̌) =
1

T
ε′ε +

σ2 (r (m̌) + q)

κ
+ oP

(
1

κ

)

.
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Hence,

P
(

Γ̂κ (m̌) − Γ̂κ (m) > 0
)

= P
(

σ2 (r (m̌) − r (m)) > o + oP (1) > 0
)

= 1 + o (1) . (42)

From (41) and (42), we have the proof of Theorem 3.

7.2 Simulation Results

Table 1: Average number of estimated factors that are selected

CV1 BICM CVd Γ̂κ

DGP T = 100 200 100 200 100 200 100 200

DGP 1 N = 100 2.36 2.39 1.56 1.69 2.04 2.00 2.15 2.03
N = 200 2.32 2.40 1.72 1.87 2.05 2.10 2.14 2.16

DGP 2 N = 100 3.10 3.17 2.54 2.64 2.92 2.94 3.00 2.96
N = 200 3.10 3.16 2.67 2.81 2.95 3.01 3.02 3.03

DGP 3 N = 100 3.89 3.95 3.45 3.61 3.82 3.88 3.86 3.91
N = 200 3.90 3.96 3.58 3.72 3.83 3.93 3.87 3.94

DGP 4 N = 100 2.16 2.22 1.42 1.51 1.81 1.79 1.83 1.83
N = 200 2.18 2.18 1.54 1.59 1.86 1.87 1.87 1.86

Note: This table reports the average number of estimated factors that are selected over 1,000
simulations.
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Table 2: Frequencies for DGP 1 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ

T = 100 200 100 200 100 200 100 200

Estimated factors N = 100 N = 100 N = 100 N = 100

F̃t,1 01.80 00.40 43.20 31.20 06.00 03.50 03.20 02.70

F̃t,2 00.00 00.00 00.80 00.10 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,3

)

00.70 00.20 00.00 00.00 00.20 00.10 00.60 00.00
(

F̃t,1, F̃t,4

)

00.40 00.10 00.00 00.00 00.40 00.00 00.30 00.00
(

F̃t,1, F̃t,2

)⋆

63.80 63.80 56.00 68.70 83.30 93.30 78.60 91.90
(

F̃t,2, F̃t,4

)

00.10 00.00 00.00 00.00 00.10 00.00 00.10 00.00
(

F̃t,1, F̃t,2, F̃t,3

)

17.20 18.90 00.00 00.00 05.70 02.40 09.30 04.50
(

F̃t,1, F̃t,2, F̃t,4

)

11.80 12.60 00.00 00.00 03.90 00.70 06.80 00.90
(

F̃t,1, F̃t,3, F̃t,4

)

00.10 00.00 00.00 00.00 00.10 00.00 00.10 00.00
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

04.10 04.00 00.00 00.00 00.30 00.00 01.00 00.00

Estimated factors N = 200 N = 200 N = 200 N = 200

F̃t,1 01.70 00.20 27.80 12.70 04.70 00.30 02.80 00.30

F̃t,2 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,3

)

00.30 00.00 00.00 00.00 00.10 00.00 00.30 00.00
(

F̃t,1, F̃t,4

)

00.10 00.00 00.00 00.00 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,2

)⋆

67.10 63.30 72.00 87.30 85.70 89.60 81.10 84.50
(

F̃t,1, F̃t,2, F̃t,3

)

16.00 20.30 00.00 00.00 05.10 07.00 08.70 10.20
(

F̃t,1, F̃t,2, F̃t,4

)

11.90 12.90 00.10 00.00 04.10 03.00 06.30 04.40
(

F̃t,1, F̃t,3, F̃t,4

)

00.00 00.00 00.00 00.00 00.00 00.00 00.10 00.00
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

03.00 03.30 00.00 00.00 00.30 00.10 00.80 00.60

Note: The table reports the frequency of selecting each subset. ⋆ indicates the consistent set.
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Table 3: Frequencies for DGP 2 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ

T = 100 200 100 200 100 200 100 200

Estimated factors N = 100 N = 100 N = 100 N = 100

F̃t,3 00.00 00.00 00.20 00.00 00.00 00.00 00.00 00.00
(

F̃t1, F̃t,3

)

06.00 02.40 44.10 35.90 12.20 07.30 08.40 06.10
(

F̃t2, F̃t,3

)

00.10 00.00 01.10 00.20 00.40 00.00 00.20 00.00
(

F̃t,1, F̃t,2, F̃t,3

)⋆

76.80 77.80 54.60 63.90 82.60 91.80 81.90 92.30
(

F̃t,1, F̃t,3, F̃t,4

)

01.20 00.90 00.00 00.00 00.30 00.10 00.80 00.00
(

F̃t,1, F̃t,2, F̃t,4

)

01.80 00.00 00.00 00.00 00.00 00.00 00.00 00.00
(

F̃t,2, F̃t,3, F̃t,4

)

00.10 00.00 00.00 00.00 00.10 00.00 00.10 00.00
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

15.80 18.90 00.00 00.00 04.40 00.80 08.60 01.60

Estimated factors N = 200 N = 200 N = 200 N = 200

F̃t,3 00.00 00.00 00.10 00.00 00.00 00.00 00.00 00.00
(

F̃t1, F̃t,3

)

03.50 01.20 32.70 19.10 09.00 02.80 05.50 02.40
(

F̃t2, F̃t,3

)

00.00 00.00 00.50 00.10 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,2, F̃t,3

)⋆

81.70 81.30 66.70 80.90 86.20 93.50 86.70 92.20
(

F̃t,1, F̃t,3, F̃t,4

)

01.00 00.30 00.00 00.00 00.40 00.20 00.50 00.20
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

13.80 17.20 00.00 00.00 04.40 03.50 07.30 05.20

Note: See note for Table 2.
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Table 4: Frequencies for DGP 3 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ

T= 100 200 100 200 100 200 100 200

Estimated factors N = 100 N = 100 N = 100 N = 100
(

F̃t,1, F̃t,4

)

00.00 00.00 01.50 00.20 00.10 00.00 00.10 00.00
(

F̃t,2, F̃t,4

)

00.00 00.00 00.30 00.00 00.00 00.00 00.00 00.00
(

F̃t,3, F̃t,4

)

00.00 00.00 01.30 00.00 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,2, F̃t,4

)

00.10 00.00 01.00 00.10 00.10 00.00 00.10 00.00
(

F̃t,1, F̃t,3, F̃t,4

)

11.10 04.60 45.40 38.40 17.40 11.70 13.40 09.40
(

F̃t,2, F̃t,3, F̃t,4

)

00.20 00.00 02.40 00.60 00.60 00.10 00.40 00.10
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)⋆

88.60 95.40 48.10 60.70 81.80 88.20 86.00 90.50

Estimated factors N = 200 N = 200 N = 200 N = 200
(

F̃t,1, F̃t,4

)

00.00 00.00 00.40 00.00 00.00 00.00 00.00 00.00
(

F̃t,3, F̃t,4

)

00.00 00.00 00.50 00.00 00.00 00.00 00.00 00.00
(

F̃t,1, F̃t,2, F̃t,4

)

00.10 00.00 00.80 00.00 00.30 00.00 00.10 00.00
(

F̃t,1, F̃t,3, F̃t,4

)

09.70 04.00 37.70 27.60 15.70 06.90 12.20 05.60
(

F̃t,2, F̃t,3, F̃t,4

)

00.30 00.00 01.90 00.00 00.60 00.00 00.60 00.00
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)⋆

89.90 96.00 58.70 72.40 83.40 93.10 87.10 94.40

Note: See note for Table 2.
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Table 5: Frequencies for DGP 4 in percentage (there are 24 = 16 different possibilities)

CV1 BICM CVd Γ̂κ

T = 100 200 100 200 100 200 100 200

Estimated factors N = 100 N = 100 N = 100 N = 100

F̃t,1 06.70 03.50 29.70 24.80 13.20 11.20 11.00 08.90

F̃t,2 06.50 02.90 28.60 24.30 12.00 10.60 09.90 08.50
(

F̃t,1, F̃t,3

)

01.60 00.90 00.00 00.00 00.60 00.20 00.20 00.00
(

F̃t,1, F̃t,4

)

01.70 00.70 00.00 00.00 00.70 00.00 00.10 00.00
(

F̃t,1, F̃t,2

)⋆

53.80 64.00 41.70 50.90 66.50 77.10 76.10 82.60
(

F̃t,2, F̃t,3

)

01.20 01.10 00.00 00.00 00.30 0.10 00.10 0.00
(

F̃t,2, F̃t,4

)

01.60 00.50 00.00 00.00 00.60 0.00 00.00 0.00
(

F̃t,1, F̃t,2, F̃t,3

)

11.10 12.10 00.00 00.00 02.70 00.20 00.80 00.00
(

F̃t,1, F̃t,2, F̃t,4

)

12.70 11.50 00.00 00.00 03.30 00.60 00.80 00.00
(

F̃t,1, F̃t,3, F̃t,4

)

00.50 00.20 00.00 00.00 00.00 00.00 00.10 00.00
(

F̃t,2, F̃t,3, F̃t,4

)

00.40 00.20 00.00 00.00 00.10 00.00 00.10 00.00
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

02.20 02.40 00.00 00.00 00.00 00.00 00.80 00.00

Estimated factors N = 200 N = 200 N = 200 N = 200

F̃t,1 05.50 04.20 23.90 21.00 11.70 09.30 09.30 07.40

F̃t,2 05.40 04.50 22.20 20.00 09.60 08.40 08.20 07.40
(

F̃t,1, F̃t,3

)

01.10 00.50 00.00 00.00 00.40 00.20 00.20 00.10
(

F̃t,1, F̃t,4

)

01.10 00.90 00.00 00.00 00.70 00.40 00.70 00.10
(

F̃t,1, F̃t,2

)⋆

57.90 63.40 53.80 59.00 69.20 76.00 78.60 83.90
(

F̃t,2, F̃t,3

)

00.90 00.80 00.00 00.00 00.10 00.60 00.10 00.10
(

F̃t,2, F̃t,4

)

01.20 00.70 00.00 00.00 00.70 00.50 00.20 00.00
(

F̃t,1, F̃t,2, F̃t,3

)

11.60 10.90 00.00 00.00 04.50 02.00 00.10 00.50
(

F̃t,1, F̃t,2, F̃t,4

)

12.70 12.00 00.10 00.00 02.80 02.40 00.90 00.30
(

F̃t,1, F̃t,3, F̃t,4

)

00.10 00.20 00.00 00.00 00.00 00.00 00.10 00.00
(

F̃t,2, F̃t,3, F̃t,4

)

00.10 00.00 00.00 00.00 00.00 00.00 00.10 00.10
(

F̃t,1, F̃t,2, F̃t,3, F̃t,4

)

02.40 01.90 00.00 00.00 00.10 00.00 01.40 00.10

Note: See note for Table 2.
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7.3 Empirical Application Details

We present here the empirical results.

Table 6: Variation explained by estimated macro in X1 and financial factors in X2

Macro factors
(

F̃
)

Financial factors
(

G̃
)

N◦ Percentage (%) Cumulative (%) Percentage (%) Cumulative (%)

1 24.06 24.06 71.56 71.56
2 9.52 33.58 4.10 75.66
3 8.04 41.62 3.62 79.28
4 5.87 47.49 1.72 81.00
5 4.13 51.62 1.47 82.47
6 3.25 54.87 1.17 83.64

Note: The percentage of variation explained by each estimated factors is measured by the associated
eigenvalue relative to the sum of the overall eigenvalues.
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Table 7: Estimation results for Rt+1 = α′
1 (m) F̃t (m) + α′

2 (m) G̃t (m) + βWt + ut+1 (m)

Regressors CV1 BICM CVd Γ̂κ

constant 10.85⋆⋆ 6.56 11.27⋆⋆ 10.22⋆⋆

(t − stat) (2.63) (1.48) (2.51) (2.26)
CAYt 20.23 28.13⋆⋆ 21.30⋆ 22.42⋆

(t − stat) (1.64) (2.37) (1.77) (1.74)
RRELt 0.50 −0.33⋆ 0.06 −0.16
(t − stat) (1.59) (−1.75) (0.26) (−0.59)
d − pt 1.84⋆⋆ 1.03 1.89⋆⋆ 1.75⋆⋆

(t − stat) (2.67) (1.40) (2.52) (2.31)
V OLt 0.15⋆ 0.05 0.12 0.15⋆⋆

(t − stat) (1.81) (0.46) (1.28) (1.97)

F̃1t −0.71⋆⋆

(t − stat) (−2.05)

F̃3t 1.35⋆⋆ 0.99⋆⋆ 0.98⋆⋆

(t − stat) (3.67) (2.86) (2.58)

F̃4t −0.65⋆⋆

(t − stat) (−2.35)

G̃2t 0.59⋆⋆ 0.63⋆⋆

(t − stat) (2.46) (2.46)

G̃3t 0.49⋆⋆ 0.58⋆ 0.63⋆⋆

(t − stat) (2.04) (1.77) (2.51)

G̃4t −0.71⋆⋆ −0.70⋆⋆

(t − stat) (−2.42) (−2.37)

G̃6t 0.55⋆⋆ 0.55⋆⋆

(t − stat) (2.12) (1.98)

R2 0.219 0.048 0.143 0.19

F − test 6.25 7.41 7.08

F − cv 2.05 3.04 2.26

Note: The estimated coefficients are reported. The t-test statistics are presented into
parenthesis. ⋆⋆ indicates the significant coefficients at 5% whereas those significant at 10% are
indicated by ⋆. We control for some usual observed factors that are not estimated from our eco-
nomics data. These regressors are the consumption-wealth ratio (CAY), the relative T-bill (RREL),
the dividend price ratio (d-p) and the sample volatility (VOL) of one-quarter-ahead excess returns.
The columns show coefficient estimates when additional generated regressors m̂j , j = 1, 2, 3 are
selected by the different procedures. We tested whether the additional estimated factors are jointly
significant. The F -test statistic corresponds to the difference between the sum of squared residuals
of the estimated model without estimated factors and when m̂j , j = 1, 2, 3 and 4, are included
divided by the sum of squared residuals of the estimated model without estimated factors, corrected
by the degrees of freedom. The critical values are based on the result that the statistic follows a
Fisher distribution with the number of additional parameters r (m̂j) and (T − 6)−r (m̂j) as degrees
of freedom.
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Abstract

This is the supplemental appendix for Djogbenou (2019). Two sections are included. The first
provides details on the data used. It consists of a large scale of 277 macroeconomic and financial
variables in the U.S. economy. These datasets are constructed following Jurado, Ludvigson, and
Ng (2015) and McCracken and Ng (2015). The second section presents the plotted R2 while
regressing the variables on each of the estimated factors. These plots are useful for understanding
the economic information revealed by the estimated macroeconomic and financial factors.

Keywords: Factor models, big economic data, macroeconomic and financial series, macroe-
conomic and financial factors.

1 Data

The macroeconomic data are formed following McCracken and Ng (2015). Four series are dropped

to obtain a balanced dataset indexed from 1 to 130, as listed below. This macro data contains

eight groups of variables related to output and income (Group 1); labor market (Group 2); housing

(Group 3); consumption, orders and inventories (Group 4), money and credit (Group 5); interest

rates and exchange rates (Group 6); prices (Group 7) and stock market (Group 8). The quarterly

version of McCracken and Ng (2015) are downloaded from the St. Louis Federal Reserve Economic

Data (FRED). Since not all the data are available on the FRED website or some have missing

values, we complete the dataset by aggregating the appropriate monthly data from McCracken and

Ng (2015). These variables are listed with a star. Afterwards, the data are transformed to ensure

stationarity. In the Tcode column, 1, 2, 3, 4, 5, 6, and 7 correspond to level, first difference, second

difference, log transformation, first difference of the log, second difference of the log and growth

rate, respectively.

∗We gratefully thank Sydney C. Ludvigson who provided us with the dataset used in Jurado, Ludvigson, and Ng
(2015). We would also like to thank Michael McCracken and Serena Ng for making public the data that are used in
McCracken and Ng (2015).
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The financial data series are indexed from 1 to 147 and correspond to the Jurado, Ludvigson, and

Ng (2015) database. This dataset includes the group representing dividends and yields, the group

of risk factors, the group of industry portfolios and the portfolios sorted on size and book-to-market

ratio group. Because the data from Jurado, Ludvigson, and Ng (2015) are monthly, we downloaded

quarterly available from the Kenneth R. French database and constructed the remaining one using

similar steps as Jurado, Ludvigson, and Ng (2015). The quarterly returns of portfolios are obtained

by computing the three-month returns from monthly versions in the Kenneth R. French database.

We also applied Log (1 + x/100) times 400 instead of 1, 200 used by Jurado, Ludvigson, and Ng

(2015) to have the corresponding annual version. Except for the logged dividend price ratio which

corresponds in our database to the end of the corresponding quarter in Jurado, Ludvigson, and Ng

(2015), the variables in Group 1 are summed over the quarter using monthly data from Jurado,

Ludvigson, and Ng (2015). As in Ludvigson and Ng (2007), the quarterly CP factor of Cochrane

and Piazzesi (2005) is its average over the quarter.

1.1 Macroeconomic Series

Group 1 : Output and Income

No. Code Description Tcode

1 RPI Real Personal Income 5
2 W875RX1 RPI ex.Transfers 5
3 INDPRO Industrial Production Index 5
4 PFPNSS IP Final Products and Supplies 5
5 IPFINAL IP Final Products 5
6 IPCONGD IP Consumer Goods 5
7 IPDCONGD IP Durable Consumer Goods 5
8 IPNCONGD IP Nondurable Consumer Goods 5
9 IPBUSEQ IP Business Equipment 5
10 IPMAT IP Materials 5
11 IPDMAT IP Durable Materials 5
12 IPNMAT IP Nondurable Materials 5
13 IPMANSICS IP Manufacturing 5
14 IPB51222S IP Residential Utilities 5
15 IPFUELS IP Fuels 5
16 NAPMPI ISM Manufacturing: Production Index 1
17 CUMFNS Capacity Utilization: Manufacturing 2
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Group 2 : Labor Market

No. Code Description Tcode

18⋆ HWI Help-Wanted Index for US 2
19⋆ HWIURATIO Ratio of Help Wanted to Number of.Unemployed 2
20 CLF16OV Civilian Labor Force 5
21 CE16OV Civilian Employment 5
22 UNRATE Civilian Unemployment Rate 2
23 UEMPMEAN Average Duration of Unemployment 2
24 UEMPLT5 Civilians Unemployed less than 5 Weeks 5
25 UEMP5TO14 Civilians Unemployed 5-14 Weeks 5
26 UEMP15OV Civilians Unemployed greater than 15 Weeks 5
27 UEMP15T26 Civilians Unemployed 15-26 Weeks 5
28 UEMP27OV Civilians Unemployed greater than 27 Weeks 5
29⋆ CLAIMSx Initial Claims 5
30 PAYEMS All Employees: Total non farm 5
31 USGOOD All Employees: Goods-Producing 5
32 CES1021000001 All Employees: Mining and Logging 5
33 USCONS All Employees: Construction 5
34 MANEMP All Employees: Manufacturing 5
35 DMANEMP All Employees: Durable goods 5
36 NDMANEMP All Employees: Nondurable goods 5
37 SRVPRD All Employees: Service Industries 5
38 USTPU All Employees: TT&U 5
39 USWTRADE All Employees: Wholesale Trade 5
40 USTRADE All Employees: Retail Trade 5
41 USFIRE All Employees: Financial Activities 5
42 USGOVT All Employees: Government 5
43 CES0600000007 Hours: Goods-Producing 1
44 AWOTMAN Overtime Hours: Manufacturing 2
45 AWHMAN Hours: Manufacturing 1
46 NAPMEI ISM Manufacturing: Employment 1
47 CES0600000008 Ave. Hourly Earnings: Goods 6
48 CES2000000008 Ave. Hourly Earnings: Construction 6
49 CES3000000008 Ave. Hourly Earnings: Manufacturing 6

Group 3 : Housing

No. Code Description Tcode

50 HOUST Starts:Total 4
51 HOUSTNE Starts:Northeast 4
52 HOUSTMW Starts:Midwest 4
53 HOUSTS Starts:South 4
54 HOUSTW Starts:West 4
55 PERMIT Permits 4
56 PERMITNE Permits: Northeast 4
57 PERMITMW Permits: Midwest 4
58 PERMITS Permits: South 4
59 PERMITW Permits: West 4
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Group 4 : Consumption, Orders and Inventories

No Code Description Tcode

60 DPCERA3M086SBEA Real PCE 5
61⋆ CMRMTSPLx Real M&T Sales 5
62⋆ RETAILx Retail and Food Services Sales 5
63 NAPM ISM: PMI Composite Index 1
64 NAPMNOI ISM: New Orders Index 1
65 NAPMSDI ISM: Supplier Deliveries Index 1
66 NAPMII ISM: Inventories Index 1
67⋆ AMDMNOx Orders: Durable Goods 5
68⋆ AMDMUOx Unfilled Orders: Durable Goods 5
69⋆ BUSINVx Total Business Inventories 5
70⋆ ISRATIOx Inventories to Sales Ratio 2

Group 5 : Money and Credit

No. Code Description Tcode

71 M1SL M1 Money Stock 6
72 M2SL M2 Money Stock 6
73 M2REAL Real M2 Money Stock 5
74 AMBSL St.Louis Adjusted Monetary Base 6
75 TOTRESNS Total Reserves 6
76 NONBORRES Non borrowed Reserves 6
77 BUSLOANS Commercial and Industrial Loans 6
78 REALLN Real Estate Loans 1
79 NONREVSL Total Non revolving Credit 6
80⋆ CONSPI Credit to PI ratio 2
81 MZMSL MZM Money Stock 6
82 DTCOLNVHFNM Consumer Motor Vehicle Loans 6
83 DTCTHFNM Total Consumer Loans and Leases 6
84 INVEST Securities in Bank Credit 6

Group 6 : Interest Rate and Exchange Rates

No. Code Description Tcode

85 FEDFUNDS Effective Federal Funds Rate 2
86⋆ CP3M 3-Month AA Financial Commercial Paper Rate 2
87 TB3MS 3-Month T-bill 2
88 TB6MS 6-Month T-bill 2
89 GS1 1-Year T-bond 2
90⋆ GS5 5-Year T-bond 2
91 GS10 10-Year T-bond 2
92 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
93 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
94⋆ COMPAPFF 3-Month Commercial Paper Minus FEDFUNDS 1
95 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1
96 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1
97 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1

4



Group 6 : Interest Rate and Exchange Rates (cont.)

No. Code Description Tcode

98 T5YFFM 5-Year Treasury C Minus FEDFUNDS 1
99 T10YFFM 10-Year Treasury C Minus FEDFUNDS 1
100 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1
101 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1
102⋆ EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5
103⋆ EXJPUSx Japan / U.S. FX Rate 5
104⋆ EXUSUKx U.S. / U.K. FX Rate 5
105⋆ EXCAUSx Canada / U.S. FX Rate 5

Group 7 : Prices

No. Code Description Tcode

106 PPIFGS Producer Price Index: Finished Goods 6
107 PPIFCG PPI: Finished Consumer Goods 6
108 PPIITM PPI: Intermediate Materials 6
109 PPICRM PPI: CrudeMaterials 6
110⋆ OILPRICEx Crude Oil Prices: WTI 6
111 PPICMM PPI: Commodities 6
112 NAPMPRI ISM Manufacturing: Prices 1
113 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6
114 CPIAPPSL CPI for All Urban Consumers: Apparel 6
115 CPITRNSL CPI for All Urban Consumers: Transportation 6
116 CPIMEDSL CPI for All Urban Consumers: Medical Care 6
117 CUSR0000SAC CPI for All Urban Consumers: Commodities 6
118 CUUR0000SAD CPI for All Urban Consumers: Durables 6
119 CUSR0000SAS CPI for All Urban Consumers: Services 6
120 CPIULFSL CPI for All Urban Consumers: All Items Less Food 6
121 CUUR0000SA0L2 CPI for All Urban Consumers: All items less shelter 6
122 CUSR0000SA0L5 CPI for All Urban Consumers: All items less medical care 6
123 PCEPI Personal Consumption Expenditures: Chain-type Price Index 6
124 DDURRG3M086SBEA Personal Consumption Expenditures: Durable goods 6
125 DNDGRG3M086SBEA Personal Consumption Expenditures: Nondurable goods 6
126 DSERRG3M086SBEA Personal Consumption Expenditures: Services 6

Group 8 : Stock Market

No. Code Description Tcode

127⋆ S&P 500 S&P’s Common Stock Price Index: Composite 5
128⋆ S&P: indust S&P’s Common Stock Price Index: Industrials 5
129⋆ S&P div yield S&P’s Composite Common Stock: Dividend Yield 2
130⋆ S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 5
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1.2 Financial Data Set

Group 1 : Yield and Dividends

No. Code Description Tcode

1 D_log(DIV) Log difference of sum of the dividends in the last 4 quarters 1
2 D_log(P) Log difference of CRSP portfolio price when dividends are not reinvested 1
3 D_DIVreinvested Log difference of sum of the dividends in the last 4 quarters (reinvested) 1
4 D_Preinvested Log difference of CRSP portfolio price when dividends are reinvested 1
5 d-p DIVreinveste - Preinveste = log(DIV) - log(P) 1

Group 2 : Risk Factors

No. Code Description Tcode

6 R15-R11 Small stock value spread: (Small, High) minus (Small, Low) sorted on (size, B/M) 1
7 factor Piazzesi-Cochrane risk factor, quarterly average 1
8 Mkt-RF Fama-French market risk factor: Market excess return 1
9 SMB Fama-French market risk factor: Small Minus Big, sorted on size 1
10 HML Fama-French market risk factor: High Minus Low, sorted on book-to-market 1
11 UMD Momentum risk factor: Up Minus Down, sorted on momentum 1

Group 3 : Industries Portfolio

No. Code Description Tcode

12 Agric Agric industry portfolio 1
13 Food Food industry portfolio 1
14 Beer Beer industry portfolio 1
15 Smoke Smoke industry portfolio 1
16 Toys Toys industry portfolio 1
17 Fun Fun industry portfolio 1
18 Books Books industry portfolio 1
19 Hshld Hshld industry portfolio 1
20 Clths Clths industry portfolio 1
21 MedEq MedEq industry portfolio 1
22 Drugs Drugs industry portfolio 1
23 Chems Chems industry portfolio 1
24 Rubbr Rubbr industry portfolio 1
25 Txtls Txtls industry portfolio 1
26 BldMt BldMt industry portfolio 1
27 Cnstr Cnstr industry portfolio 1
28 Steel Steel industry portfolio 1
29 Mach Mach industry portfolio 1
30 ElcEq ElcEq industry portfolio 1
31 Autos Autos industry portfolio 1
32 Aero Aero industry portfolio 1
33 Ships Ships industry portfolio 1
34 Mines Mines industry portfolio 1

Group 3 : Industries Portfolio (cont.)

No. Code Description Tcode

35 Coal Coal industry portfolio 1
36 Oil Oil industry portfolio 1
37 Util Util industry portfolio 1
38 Telcm Telcm industry portfolio 1
39 PerSv PerSv industry portfolio 1
40 BusSv BusSv industry portfolio 1
41 Comps Comps industry portfolio 1
42 Chips Chips industry portfolio 1
43 LabEq LabEq industry portfolio 1
44 Paper Paper industry portfolio 1
45 Boxes Boxes industry portfolio 1
46 Trans Trans industry portfolio 1
47 Whisl Whisl industry portfolio 1
48 Rtail Rtail industry portfolio 1
49 Meals Meals industry portfolio 1
50 Banks Banks industry portfolio 1
51 Insur Insur industry portfolio 1
52 RIEst RIEst industry portfolio 1
53 Fin Fin industry portfolio 1
54 Other Other industry portfolio 1
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Group 4 : Size/Book-to-Market

No. Code Description Tcode

55 ports_2 (small, 2) Portfolio sorted on (size, book-to-market) 1
56 ports_4 (small, 4) Portfolio sorted on (size, book-to-market) 1
57 ports_5 (small, 5) Portfolio sorted on (size, book-to-market) 1
58 ports_6 (small, 6) Portfolio sorted on (size, book-to-market) 1
59 ports_7 (small, 7) Portfolio sorted on (size, book-to-market) 1
60 ports_8 (small, 8) Portfolio sorted on (size, book-to-market) 1
61 ports_9 (small, 9) Portfolio sorted on (size, book-to-market) 1
62 ports_high (small, high) Portfolio sorted on (size, book-to-market) 1
63 ports_low (small, low) Portfolio sorted on (size, book-to-market) 1
64 port2_2 (2, 2) Portfolio sorted on (size, book-to-market) 1
65 port2_3 (2, 3) Portfolio sorted on (size, book-to-market) 1
66 port2_4 (2, 4) Portfolio sorted on (size, book-to-market) 1
67 port2_5 (2, 5) Portfolio sorted on (size, book-to-market) 1
68 port2_6 (2, 6) Portfolio sorted on (size, book-to-market) 1
69 port2_7 (2, 7) Portfolio sorted on (size, book-to-market) 1
70 port2_8 (2, 8) Portfolio sorted on (size, book-to-market) 1
71 port2_9 (2, 9) Portfolio sorted on (size, book-to-market) 1
72 port2_high (2, high) Portfolio sorted on (size, book-to-market) 1
73 port2_low (2, low) Portfolio sorted on (size, book-to-market) 1
74 port3_2 (3, 2) Portfolio sorted on (size, book-to-market) 1
75 port3_3 (3, 3) Portfolio sorted on (size, book-to-market) 1
76 port3_4 (3, 4) Portfolio sorted on (size, book-to-market) 1
77 port3_5 (3, 5) Portfolio sorted on (size, book-to-market) 1
78 port3_6 (3, 6) Portfolio sorted on (size, book-to-market) 1
79 port3_7 (3, 7) Portfolio sorted on (size, book-to-market) 1
80 port3_8 (3, 8) Portfolio sorted on (size, book-to-market) 1
81 port3_9 (3, 9) Portfolio sorted on (size, book-to-market) 1
82 port3_high (3, high) Portfolio sorted on (size, book-to-market) 1
83 port3_low (3, low) Portfolio sorted on (size, book-to-market) 1
84 port4_2 (4, 2) Portfolio sorted on (size, book-to-market) 1
85 port4_3 (4, 3) Portfolio sorted on (size, book-to-market) 1
86 port4_4 (4, 4) Portfolio sorted on (size, book-to-market) 1
87 port4_5 (4, 5) Portfolio sorted on (size, book-to-market) 1
88 port4_6 (4, 6) Portfolio sorted on (size, book-to-market) 1
89 port4_7 (4, 7) Portfolio sorted on (size, book-to-market) 1
90 port4_8 (4, 8) Portfolio sorted on (size, book-to-market) 1
91 port4_9 (4, 2) Portfolio sorted on (size, book-to-market) 1
92 port4_high (4, high) Portfolio sorted on (size, book-to-market) 1
93 port4_low (4, low) Portfolio sorted on (size, book-to-market) 1
94 port5_2 (5, 2) Portfolio sorted on (size, book-to-market) 1
95 port5_3 (5, 3) Portfolio sorted on (size, book-to-market) 1
96 port5_4 (5, 4) Portfolio sorted on (size, book-to-market) 1
97 port5_5 (5, 5) Portfolio sorted on (size, book-to-market) 1
98 port5_6 (5, 6) Portfolio sorted on (size, book-to-market) 1
99 port5_7 (5, 7) Portfolio sorted on (size, book-to-market) 1

7



Group 4 : Size/Book-to-Market (cont.)

No. Code Description Tcode

100 port5_8 (5, 8) Portfolio sorted on (size, book-to-market) 1
101 port5_9 (5, 9) Portfolio sorted on (size, book-to-market) 1
102 port5_high (5, high) Portfolio sorted on (size, book-to-market) 1
103 port5_low (5, low) Portfolio sorted on (size, book-to-market) 1
104 port6_2 (6, 2) Portfolio sorted on (size, book-to-market) 1
105 port6_3 (6, 3) Portfolio sorted on (size, book-to-market) 1
106 port6_4 (6, 4) Portfolio sorted on (size, book-to-market) 1
107 port6_5 (6, 5) Portfolio sorted on (size, book-to-market) 1
108 port6_6 (6, 6) Portfolio sorted on (size, book-to-market) 1
109 port6_7 (6, 7) Portfolio sorted on (size, book-to-market) 1
110 port6_8 (6, 8) Portfolio sorted on (size, book-to-market) 1
111 port6_9 (6, 9) Portfolio sorted on (size, book-to-market) 1
112 port6_high (6, high) Portfolio sorted on (size, book-to-market) 1
113 port6_low (6, low) Portfolio sorted on (size, book-to-market) 1
114 port7_2 (7, 2) Portfolio sorted on (size, book-to-market) 1
115 port7_3 (7, 3) Portfolio sorted on (size, book-to-market) 1
116 port7_4 (7, 4) Portfolio sorted on (size, book-to-market) 1
117 port7_5 (7, 5) Portfolio sorted on (size, book-to-market) 1
118 port7_6 (7, 6) Portfolio sorted on (size, book-to-market) 1
119 port7_7 (7, 7) Portfolio sorted on (size, book-to-market) 1
120 port7_8 (7, 8) Portfolio sorted on (size, book-to-market) 1
121 port7_9 (7, 9) Portfolio sorted on (size, book-to-market) 1
122 port7_low (7, low) Portfolio sorted on (size, book-to-market) 1
123 port8_2 (8, 2) Portfolio sorted on (size, book-to-market) 1
124 port8_3 (8, 3) Portfolio sorted on (size, book-to-market) 1
125 port8_4 (8, 4) Portfolio sorted on (size, book-to-market) 1
126 port8_5 (8, 5) Portfolio sorted on (size, book-to-market) 1
127 port8_6 (8, 6) Portfolio sorted on (size, book-to-market) 1
128 port8_7 (8, 7) Portfolio sorted on (size, book-to-market) 1
129 port8_8 (8, 7) Portfolio sorted on (size, book-to-market) 1
130 port8_9 (8, 9) Portfolio sorted on (size, book-to-market) 1
131 port8_high (8, high) Portfolio sorted on (size, book-to-market) 1
132 port8_low (8, low) Portfolio sorted on (size, book-to-market) 1
133 port9_2 (9, 2) Portfolio sorted on (size, book-to-market) 1
134 port9_3 (9, 3) Portfolio sorted on (size, book-to-market) 1
135 port9_4 (9, 4) Portfolio sorted on (size, book-to-market) 1
136 port9_5 (9, 5) Portfolio sorted on (size, book-to-market) 1
137 port9_6 (9, 6) Portfolio sorted on (size, book-to-market) 1
138 port9_7 (9, 7) Portfolio sorted on (size, book-to-market) 1
139 port9_8 (9, 8) Portfolio sorted on (size, book-to-market) 1
140 port9_high (9, high) Portfolio sorted on (size, book-to-market) 1
141 port9_low (9, low) Portfolio sorted on (size, book-to-market) 1
142 port10_2 (10, 2) Portfolio sorted on (size, book-to-market) 1
143 port10_3 (10, 3) Portfolio sorted on (size, book-to-market) 1
144 port10_4 (10, 4) Portfolio sorted on (size, book-to-market) 1
145 port10_5 (10, 5) Portfolio sorted on (size, book-to-market) 1
146 port10_6 (10, 6) Portfolio sorted on (size, book-to-market) 1
147 port10_7 (10, 7) Portfolio sorted on (size, book-to-market) 18



2 Plots of the R-squared Regressing the Variables on each Esti-

mated Factors

The R2 that are related to macroeconomic and financial estimated factors are plotted here.

2.1 Macroeconomic Factors

Figure 1: Marginal R2 for Estimated Macro Factor 1

Note: This figure plots the different R2 obtained after regressing the variables in X1 on in each
estimated factor.

Figure 2: Marginal R2 for Estimated Macro Factor 2

Note: See note for Figure 1.
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Figure 3: Marginal R2 for Estimated Macro Factor 3

Note: See note for Figure 1.

Figure 4: Marginal R2 for Estimated Macro Factor 4

Note: See note for Figure 1.

Figure 5: Marginal R2 for Estimated Macro Factor 5

Note: See note for Figure 1.
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Figure 6: Marginal R2 for Estimated Macro Factor 6

Note: See note for Figure 1.

2.2 Financial Factors

Figure 7: Marginal R2 for Estimated Financial Factor 1

Note: This figure plots the different R2 obtained after regressing the factor on variables in X2.

Figure 8: Marginal R2 for Estimated Financial Factor 2

Note: See note for Figure 7.
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Figure 9: Marginal R2 for Estimated Financial Factor 3

Note: See note for Figure 10.

Figure 10: Marginal R2 for Estimated Financial Factor 4

Note: See note for Figure 7.

Figure 11: Marginal R2 for Estimated Financial Factor 5

Note: See note for Figure 7.
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Figure 12: Marginal R2 for Estimated Financial Factor 6

Note: See note for Figure 7.
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