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Abstract

We propose a semiparametric local polynomial Whittle with noise estimator of the memory pa-
rameter in long memory time series perturbed by a noise term which may be serially correlated.
The estimator approximates the log-spectrum of the short-memory component of the signal as
well as that of the perturbation by two separate polynomials. Including these polynomials we
obtain a reduction in the order of magnitude of the bias, but also inflate the asymptotic vari-
ance of the long memory estimator by a multiplicative constant. We show that the estimator is
consistent for d ∈ (0, 1), asymptotically normal for d ∈ (0, 3/4), and if the spectral density is
suffi ciently smooth near frequency zero, the rate of convergence can become arbitrarily close to
the parametric rate,

√
n. A Monte Carlo study reveals that the proposed estimator performs

well in the presence of a serially correlated perturbation term. Furthermore, an empirical in-
vestigation of the 30 DJIA stocks shows that this estimator indicates stronger persistence in
volatility than the standard local Whittle (with noise) estimator.

JEL Classifications: C22.

Keywords: Bias reduction, local Whittle, long memory, perturbed fractional process, semipara-
metric estimation, stochastic volatility.

1 Introduction
We are interested in estimation of the memory parameter in a so-called perturbed fractional

process,

zt = yt + wt, (1)

i.e. a signal-plus-noise model where the signal process yt is a long memory process with memory
parameter d which is perturbed by the additive noise term wt. These processes are a version of the
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random walk plus noise or local level unobserved components model, e.g. Harvey (1989), except
the signal is a long memory process rather than a random walk. They have found extensive use
in modeling the long memory characteristics of many observed time series, in particular financial
volatility.

Another motivation for the perturbed fractional process is the version of the long memory
stochastic volatility (LMSV) model for financial returns proposed by Bollerslev & Jubinski (1999),

rt = κe(yt+xt)/2ut, (2)

where rt denotes the return, yt is the (long memory component of) log-volatility of the returns, xt
is a short-memory process, and yt, xt, and ut are independent. Under this model rt is a martingale
difference sequence if ut is a martingale difference sequence. Model (2) generalizes the usual LMSV
model introduced by Breidt, Crato & de Lima (1998) and Harvey (1998),

rt = κeyt/2ut. (3)

The reasoning behind (2) is that allowing for different short-lived news impacts, while imposing
a common long memory component, may provide a better characterization of the joint volume-
volatility relationship in the context of the Mixture of Distributions Hypothesis, which asserts that
stock returns and trading volumes are jointly dependent on the same underlying latent information
arrival process. The formulation in (2) allows the volatility to be affected by both long and short-
lived news impacts, which is also consistent with the findings of Liesenfeld (2001). It therefore
seems natural that an estimator of the memory in log r2

t should be able to incorporate both (2) and
(3).

The LMSV models (2) and (3) imply that a logarithmic transformation of the squared returns
series, log r2

t , becomes a long memory signal-plus-noise process (1) where the signal yt corresponds to
(the long memory component of) the log-volatility of the original returns series and wt is an additive
noise term. Specifically, in model (2), log r2

t = yt+xt+ log κ2 + log u2
t , i.e. wt = xt+ log κ2 + log u2

t .
In the context of the LMSV model (3), wt is usually assumed to be i.i.d., but to allow for short-
memory persistence in wt as implied by (2) we will not make that restriction here. In general,
when wt is not assumed to be i.i.d., zt is referred to as a perturbed fractional process.1 For reviews
of fractionally integrated processes and some applications, see Baillie (1996), Henry & Zaffaroni
(2003), or Robinson (2003). In particular, long memory in volatility has received considerable
interest recently.2

If we assume that the log-volatility process {yt} and the noise process {wt} are independent,
the spectral density of zt can be written as

fz (λ) = λ−2dφy (λ) + φw(λ), (4)

where fy(λ) = λ−2dφy (λ) is the spectrum of the signal yt, φw(λ) is the spectrum of the noise term
wt, and d is the degree of long memory in yt (or equivalently in zt).

The assumption of independence between the processes {yt} and {wt} rules out the so-called
1 In the following we use the terms “long memory process”and “fractionally integrated process”or just “fractional

process”synonymously, although strictly speaking a fractional process is a particular form of a long memory process.
2See, e.g., Ding, Granger & Engle (1993), Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault (1998), Ray

& Tsay (2000), Andersen, Bollerslev, Diebold & Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003),
Wright (2002), Hurvich & Ray (2003), and Arteche (2004) among others.
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leverage effect. This assumption is common in the random walk plus noise unobserved components
models, and has also been imposed by Breidt et al. (1998), Deo & Hurvich (2001), and Arteche
(2004), among others, in the LMSV model. To accommodate the leverage effect, we could allow
contemporaneous correlation, while the return process remains a martingale difference sequence by
replacing yt with yt−1 in (3). An additional assumption of distributional symmetry around (0, 0)

would imply that the spectral density decomposition in (4) holds, see Harvey, Ruiz & Shephard
(1994). Alternatively, the model could be modified along the lines of model (P2) of Hurvich,
Moulines & Soulier (2005).

In semiparametric spectral estimation of long memory models, the spectrum (4) is typically
approximated using the periodogram of the data near the zero frequency, i.e. for frequencies up
to λm = 2πm/n only, where n is the sample size and m is a user-chosen bandwidth number
which tends to infinity slower than n such that λm → 0. Although the popular log-periodogram
regression estimator of Geweke & Porter-Hudak (1983) and Robinson (1995b) and the local Whittle
(LW) estimator of Künsch (1987) and Robinson (1995a) both preserve consistency and asymptotic
normality when applied to perturbed fractional processes, as shown recently by Deo & Hurvich
(2001) and Arteche (2004), these estimators can be severely biased since they do not take the
perturbation into account. Indeed, for non-perturbed processes (where φw(λ) = 0) the bias of the
standard semiparametric frequency domain estimators is of order O(λ2

m), whereas the leading bias
term when φw(λ) 6= 0 is of order O(λ2d

m ) (in both cases assuming suffi cient smoothness of the spectral
density). As shown in Deo & Hurvich (2001) and Arteche (2004), this bias is typically negative and
can be very large (note that d < 1). Therefore, estimating long memory in perturbed time series
can be challenging, and calls for an estimator which explicitly accounts for the perturbation.

Sun & Phillips (2003), Hurvich & Ray (2003), Hurvich et al. (2005), and Arteche (2006), among
others, have proposed such estimators with φy(λ) and φw(λ) locally approximated by constants as
λ → 0, see section 2 below. On the other hand, we propose an estimator where we allow the
logarithms of both the spectrum of the short-memory component of the signal and the spectrum
of the perturbation, i.e. log φy(λ) and log φw(λ), to be approximated by polynomials hy(θy, λ) and
hw(θw, λ) of (finite and even) orders 2Ry and 2Rw near the zero frequency, thereby obtaining a bias
reduction depending on the smoothness of φy(λ) and φw(λ) near the origin. The approach taken here
in modeling the short-run dynamics by a polynomial was introduced by Andrews & Guggenberger
(2003) and Andrews & Sun (2004) for non-perturbed processes, but is novel in the context of
perturbed fractional processes. To maintain generality, φy(λ) and φw(λ) are only characterized by
regularity conditions near frequency zero instead of imposing specific functional forms.

The LMSV model (3) often assumes that the noise term is i.i.d. in which case φw(λ) = σ2
w/(2π)

is a constant. This case is of independent interest and is considered in simulations and in an
empirical study in Frederiksen & Nielsen (2008). In that paper φy(λ) itself is approximated by
a polynomial and φw(λ) by a constant as λ → 0 thus focusing on exactly the LMSV model (3).
However, the theory for their estimator is developed in the present paper.3

3Note that their specification involves modeling φy(λ) rather than log φy(λ) by a polynomial. The two approaches
provide the same degree of local approximation to the spectral density, so our proofs are valid with little change for
their specification as well. However, the approach taken here is preferred in practice since the estimate of φy(λ) is
guaranteed to be positive. Note also that
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Thus, to allow serial dependence in the noise as in (2) above we include both polynomials,
hy(θy, λ) and hw(θw, λ), and call the resulting estimator the local polynomial Whittle with noise
(LPWN) estimator. Furthermore, empirical studies have typically found that the noise term has
much higher (long-run) variance than the short-memory component of the signal. Indeed, Breidt
et al. (1998) and Hurvich & Ray (2003) find that the noise term may be as much as 10 or 20 times
as variable as the short-memory component of the signal. Thus, careful modeling of the noise term
is important and this consideration has lead us to approximate the log-spectrum of the noise term
by a polynomial instead of a constant as λ→ 0.

Our results show that introducing hy(θy, λ) and hw(θw, λ) inflates the asymptotic variance of the
long memory estimator, d̂, by a multiplicative constant which depends on the true long memory
parameter, d, and decreases when d increases. However, we obtain a reduction in the order of
magnitude of the bias if φy(λ) and φw(λ) are suffi ciently smooth near frequency zero. We show
that the estimator is consistent for d ∈ (0, 1), asymptotically normal for d ∈ (0, 3/4), and if φy(λ)

and φw(λ) are infinitely smooth near frequency zero, the rate of convergence can become arbitrary
close to the parametric rate, n1/2. This constitutes a rate of convergence improvement relative to
Sun & Phillips (2003), Hurvich & Ray (2003), and Hurvich et al. (2005) who are only able to obtain
a semiparametric rate of convergence, m1/2, which is much slower than the parametric rate due to
their requirement that m1+2β/n2β → 0 for some β ∈ (0, 2].

We present the results of a Monte Carlo study which illustrates the usefulness of the proposed
LPWN estimator. Compared to standard estimators, such as Hurvich & Ray’s (2003) local Whittle
with noise (LWN) estimator, the LPWN estimator is able to achieve considerable bias reductions in
practice, especially in cases with short-run dynamics in both the signal and noise components. We
also include an empirical application to daily log-squared returns series of the 30 DJIA stocks where
the LPWN estimator indicates stronger persistence in volatility than the standard estimators, and
for most of the stocks produce estimates of d in the nonstationary region.

The remainder of the paper is organized as follows. In the next section we discuss semiparametric
spectral estimation of long memory for perturbed processes and formally define the proposed local
Whittle estimator. In section 3 we establish consistency and asymptotic normality of the estimator.
Section 4 investigates the finite sample performance in simulations, and section 5 presents the
empirical application. Section 6 concludes. The proofs of our theorems are gathered in the appendix.

2 Local Whittle estimation of perturbed fractional processes
Semiparametric frequency domain estimators for non-perturbed fractional processes are based

on the local approximation

fz (λ) ∼ Gλ−2d as λ→ 0, (5)

where G = φy(0) > 0 is a constant and the symbol “∼”means that the ratio of the left- and right-
hand sides tends to one in the limit. Thus, the estimators enjoy robustness to short-run dynamics,
since they use only information from periodogram ordinates in the vicinity of the origin.

The local Whittle (LW) estimation method of Künsch (1987) and Robinson (1995a) has become
popular because of its likelihood interpretation, nice asymptotic properties, and mild assumptions.
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It is defined as the minimizer of the (negative) local Whittle likelihood function

Q (G, d) =
1

m

m∑
j=1

[
log
(
Gλ−2d

j

)
+
Iz (λj)

Gλ−2d
j

]
, (6)

where m = m(n) is a bandwidth number which tends to infinity as n→∞ but at a slower rate than
n, λj = 2πj/n are the Fourier frequencies, and Iz(λ) = (2πn)−1|

∑n
t=1 zte

itλ|2 is the periodogram
of zt. Note that the estimator is invariant to a non-zero mean since j = 0 is left out of the
minimization. Concentrating (6) with respect to G, the estimator of d is

d̂LW = arg min
d

log Ĝ(d)− 2d
1

m

m∑
j=1

log λj

 , Ĝ(d) =
1

m

m∑
j=1

λ2d
j Iz (λj) .

It was shown by Robinson (1995a) that
√
m(d̂LW − d)

d→ N(0, 1/4), (7)

and later by Velasco (1999) that the range of consistency is d ∈ (−1/2, 1] and the range of asymptotic
normality is d ∈ (−1/2, 3/4).

To reduce the asymptotic bias of the LW estimator, Andrews & Sun (2004) suggested to replace
the constant, logG, in (6) by the polynomial logG−

∑R
r=1 θrλ

2r
j . That is, to model the logarithm

of the spectral density of the short-memory component by a polynomial instead of a constant in
the vicinity of the origin. This leads to the following (negative) local Whittle likelihood function,

Q (G, d,θ) =
1

m

m∑
j=1

log

(
λ−2d
j G exp

(
−

R∑
r=1

θrλ
2r
j

))
+

Iz (λj)

λ−2d
j G exp

(
−
∑R

r=1 θrλ
2r
j

)
 ,

such that

(d̂LPW , θ̂) = arg min
d∈(−1/2,1/2),θ∈Θ

log Ĝ(d,θ)− 2d
1

m

m∑
j=1

log λj −
1

m

m∑
j=1

R∑
r=1

θrλ
2r
j

 ,
Ĝ(d,θ) =

1

m

m∑
j=1

λ2d
j exp

(
R∑
r=1

θrλ
2r
j

)
Iz (λj) ,

where Θ is a compact and convex set in RR. As shown by Andrews & Sun (2004), this method
does, however, increase the asymptotic variance of d̂ in (7) by a multiplicative constant.

For non-perturbed fractional processes, the asymptotic bias of d̂LW and d̂LPW is of order
O(λ

min{s,2}
m ) and O(λ

min{s,2+2R}
m ), respectively, where s is a measure of the smoothness of the

spectral density near frequency zero, see below. However, for perturbed fractional processes the
bias is of order O(λ

min{s,2d}
m ) and, as shown by e.g. Hurvich & Ray (2003) and Arteche (2004), this

bias is typically negative and can be very severe.
For perturbed fractional processes we have the spectral representation (4), which implies fz(λ) ∼

Gλ−2d + Gθρ as λ → 0, where the constant θρ = φw(0)/φy(0) > 0 is the long-run noise-to-
signal ratio. There are two main consequences: first, the extra additive term θρ needs to be
taken into account to avoid serious asymptotic bias as mentioned above, and second the rate of
convergence of the estimators is reduced if the extra term is not modeled. The latter follows because
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the choice of bandwidth parameter is severely constrained for perturbed fractional processes when
the perturbation term in (4) is not modeled. Thus, for non-perturbed processes (with s ≥ 2)
the bandwidth requirement is typically m = o(n4/5), whereas for perturbed processes it is m =

o(n2d/(1+2d)) (apart from logarithmic terms). Since the estimator is
√
m−consistent and d ≤ 1 this

is a serious constraint.
To allow for (moderate) nonstationarity in volatility we generalize (1) as

zt =

{
yt + wt∑t

s=1 xs + wt

if d ∈ (0, 1/2) ,
if d ∈ [1/2, 1) ,

(8)

where, if d ∈ [1/2, 1), xt has spectrum of the form fx(λ) = λ−2dxφx (λ) with memory parameter
dx = d − 1. Defining yt =

∑t
s=1 xs if d ∈ [1/2, 1), this approach allows zt = yt + wt to possibly

be nonstationary with memory parameter d ∈ (0, 1). Velasco (1999), Hurvich & Ray (2003), and
Hurvich et al. (2005) also assume this type of process. Since {

∑t
s=1 xs} is nonstationary zt does

not have a spectral density if d ∈ [1/2, 1) but it has a pseudo spectral density, see e.g. Hurvich &
Ray (1995) and Velasco (1999). Thus, we may define

fz (λ) =

{
fy (λ) + fw (λ)∣∣1− eiλ∣∣−2

fx (λ) + fw (λ)
if d ∈ (0, 1/2)
if d ∈ [1/2, 1)

= λ−2d
(
φy(λ) + λ2dφw(λ)

)
, (9)

where we maintain the assumption of independence between {yt} and {wt}.
The functions φy(λ) and φw(λ) are both positive constants at λ = 0, so we set φy(0) = G and

φw(0) = Gθρ. Since both functions are everywhere positive we model their logarithms. Specifically,
we propose to approximate the logarithms of φy(λ) and φw(λ) by

log φy(λ) ' logG+ hy(θy, λ) and log φw(λ) ' logG+ log θρ + hw(θw, λ), (10)

respectively, where G > 0 and ha(θa, λ) =
∑Ra

r=1 θa,rλ
2r, a = y, w.4 If Ra = 0 we set ha(θa, λ) = 0.

Note that the parameter θρ is the long-run noise-to-signal ratio because φw(0)/φy(0) = θρ, and
thus we assume θρ > 0. Defining also the function

h(d,θ, λ) = exp(hy(θy, λ)) + θρλ
2d exp(hw(θw, λ)) (11)

with θ = (θ′y, θρ,θ
′
w)′, we approximate (9) or equivalently (4) locally near the zero frequency by

fz(λ) = λ−2d exp(log φy(λ)) + exp(log φw(λ)) ' Gλ−2dh(d,θ, λ),

which yields the (concentrated) local Whittle log-likelihood

Q(d,θ) = log Ĝ(d,θ)− 2d

m

m∑
j=1

log λj +
1

m

m∑
j=1

log h(d,θ, λj), (12)

Ĝ(d,θ) =
1

m

m∑
j=1

λ2d
j Iz(λj)

h(d,θ, λj)
. (13)

Thus, we propose to minimize (12) over the admissible set D ×Θ,

(d̂, θ̂) = arg min
(d,θ)∈D×Θ

Q (d,θ) ,

4Note that log φy(λ) and log φw(λ) are symmetric around λ = 0 and are therefore approximated by even polyno-
mials.
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where Θ is a compact and convex set in RRy × (0,∞)×RRw and D = [d1, d2] with 0 < d1 < d2 < 1.
This defines the LPWN estimator.

Note that h(d,θ, λ) = 1 is the standard local Whittle specification in (6), which does not ex-
plicitly account for the perturbation. For Ry = Rw = 0 we get h(d,θ, λ) = 1 + θρλ

2d, where φy(λ)

and φw(λ) in (4) are both modeled locally by constants, which is the LWN estimator of Hurvich &
Ray (2003) and Hurvich et al. (2005) (parameterization (P1)). Thus, our model parameterization
includes the standard LW estimator and the LWN estimator as special cases. Furthermore, the
model with Rw = 0, where the noise is modeled by a constant near the zero frequency, is ana-
lyzed empirically and in simulations by Frederiksen & Nielsen (2008), using the asymptotic theory
provided here.

3 Asymptotic properties
In this section we first introduce the assumptions needed to establish consistency and asymptotic

normality of the proposed estimator for the perturbed fractional process, and consequently we
present the main results in two theorems. In the following, true values of the parameters are
denoted by subscript zero and bxc denotes the integer part of a real number x. We also define a
function φ(λ) to be smooth of order s at λ = 0 if, in a neighborhood of λ = 0, φ (λ) is bsc times
continuously differentiable with bsc−derivative, φ(bsc), satisfying |φ(bsc) (λ)−φ(bsc) (0) | ≤ C |λ|s−bsc

for some constant C <∞.

A1 The noise process {wt} is independent of the signal process {yt}.

A2 The spectral density of zt is fz (λ) = λ−2d0G0
φy(λ)

φy(0) +G0θ0ρ
φw(λ)
φw(0) , where φy (λ) and φw(λ) are

real, even, positive, continuous functions on [−π, π), and d0 ∈ D = [d1, d2] with 0 < d1 <

d2 < 1.

A3 The functions φy (λ) and φw(λ) are smooth of orders sy and sw at λ = 0, where sy > 2Ry,
sw > 2Rw, and sy, sw ≥ 1.

Assumption A1 is the independence assumption used above to write the spectral density of zt as
the sum of the (pseudo) spectral densities of yt and wt. Assumption A3 is a smoothness condition
on the functions φy (λ) and φw(λ) similar to that applied by Andrews & Sun (2004). Note that
Assumption A3 holds for all sy < ∞ when, e.g., yt is a finite order ARFIMA process, and for all
sw < ∞ when, e.g., wt is a finite order ARMA process. Under Assumption A3 we establish the
following Taylor series expansions of log φy (λ) and log φw(λ) around λ = 0 (recall that odd order
derivatives of even functions are zero at frequency zero),

log φy (λ) = log φy(0) +

bsy/2c∑
r=1

θy,rλ
2r +O (λsy) as λ→ 0

and

log φw (λ) = log φy(0) + log
φw (0)

φy(0)
+

bsw/2c∑
r=1

θw,rλ
2r +O (λsw) as λ→ 0.
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With these expansions we can now state (10) more precisely as

log φy (λ) = logG0 + hy(θ0y, λ) +O(λmin{sy ,2+2Ry}) as λ→ 0,

log φw (λ) = logG0 + log θ0ρ + hw(θ0w, λ) +O(λmin{sw,2+2Rw}) as λ→ 0,

where the true valuesG0 and θ0 = (θ′0y, θ0ρ,θ
′
0w)′ are thusG0 = φy (0), (θ0a)r = 1

(2r)!
∂2r

∂λ2r
log φa (λ)|λ=0 , r =

1, . . . , Ra, a = y, w, and θ0ρ = φw(0)/φy(0). Hence, defining the function

g(d,θ, λ) = G0λ
−2dh(d,θ, λ), (14)

the approximation g(d0,θ0, λ) to fz (λ) satisfies

fz (λ)

g(d0,θ0, λ)
= 1 +

exp (hy(θ0y, λ))
(

exp
(
O(λmin{sy ,2+2Ry})

)
− 1
)

h(d0,θ0, λ)

+λ2d0θ0ρ

exp (hw(θ0w, λ))
(

exp
(
O(λmin{sw,2+2Rw})

)
− 1
)

h(d0,θ0, λ)

= 1 +O(λmin{sy ,2+2Ry}) + λ2d0O(λmin{sw,2+2Rw}) as λ→ 0 (15)

using the well known expansion exp(x) = 1 + x+ x2

2! + . . . of the exponential function.

A4 (a) The signal yt has zero mean and admits an infinite order moving average representation
yt =

∑∞
j=0 βyjεt−j (stationary case) or ∆yt = xt =

∑∞
j=0 βyjεt−j (nonstationary case), where∑∞

j=0 β
2
yj < ∞ and εt satisfies, for all t, E (εt| Ft−1) = 0, E

(
ε2
t

∣∣Ft−1

)
= 1, E

(
ε3
t

∣∣Ft−1

)
=

µε3 <∞, and E
(
ε4
t

∣∣Ft−1

)
= µε4 <∞ almost surely, where Ft−1 is the σ-field generated by

{εs, s < t}.

(b) There exists a random variable ε with E(ε2) < ∞ such that for all τ > 0 and some K > 0,
P (|εt| > τ) < KP (|ε| > τ).

(c) For βy (λ) =
∑∞

k=0 βyke
ikλ, the derivative satisfies ∂

∂λβy (λ) = O
(
|βy (λ) |/λ

)
as λ→ 0.

A5 (a) The noise wt has zero mean and admits an infinite order moving average representation
wt =

∑∞
j=0 βwjηt−j , where

∑∞
j=0 β

2
wj < ∞ and ηt satisfies, for all t, E (ηt| Ft−1) = 0,

E
(
η2
t

∣∣Ft−1

)
= 1, E

(
η3
t

∣∣Ft−1

)
= µη3 < ∞, and E

(
η4
t

∣∣Ft−1

)
= µη4 < ∞ almost surely,

where Ft−1 is the σ-field generated by {ηs, s < t}.

(b) There exists a random variable η with E(η2) < ∞ such that for all τ > 0 and some K > 0,
P (|ηt| > τ) < KP (|η| > τ).

(c) For βw (λ) =
∑∞

k=0 βwke
ikλ, the derivative satisfies ∂

∂λβw (λ) = O (|βw (λ) |/λ) as λ→ 0.

We assume that the signal process yt has zero mean. Since our estimator is a function of
the periodogram at nonzero frequencies only, this is without loss of generality in the stationary
case. In the nonstationary case the zero mean assumption implies that zt is free of linear trends
which does entail a loss of generality in that case. Importantly, Assumptions A4 and A5 allow for
non-Gaussian processes. Note that Assumptions A1-A4 plus the assumption that wt is white noise
with finite fourth moment imply the assumptions needed on yt and wt to prove consistency and
asymptotic normality (if, in addition, d2 < 3/4) of the LWN estimator of Hurvich & Ray (2003).
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It follows from Theorems 1 and 2 below that their results for the LWN estimator are also valid for
our more general assumptions on wt in Assumption A5.

A6 Θ is a compact and convex subset of RRy × (0,∞)× RRw and θ0 is in the interior of Θ.

We are now ready to prove consistency of our estimator. Some assumptions could be relaxed
somewhat to prove this theorem, see e.g. Hurvich et al. (2005), but for simplicity we have preferred
to list only one set of assumptions which will be used also for the proof of asymptotic normality
below. The proofs of both theorems are given in the appendix.

Theorem 1 If Assumptions A1-A6 hold and the bandwidth m = m (n) is such that
1

m
+
m

n
→ 0, (16)

then d̂− d0 = oP ((log n)−5).

Note that the theorem proves consistency only for the estimator of the memory parameter (at
logarithmic rate). There is no proof of consistency for the estimators of the polynomial parameters
θ. The strategy of proof in Hurvich et al. (2005) would require next a separate proof of consistency
for the polynomial parameters. However, we follow instead the method of proof in Andrews & Sun
(2004) which does not require an intermediate result on the consistency of θ̂. Thus, we present
next the joint asymptotic normality5 result for d̂ and θ̂. Let I{A} be the indicator function of the
event A.

Theorem 2 Let Assumptions A1-A6 hold with d0 in the interior of D = [d1, d2], 0 < d1 < d2 <

3/4, and suppose the bandwidth m = m (n) is such that

m1+4Ry

n4Ry
+
m1+4(d0+Rw)

n4(d0+Rw)
→∞ and

m2ϕy+1

n2ϕy
+
m2ϕw+4d0+1

n2ϕw+4d0
→ 0, (17)

where ϕa = min {sa, 2 + 2Ra} , a = y, w. Then d̂ and θ̂ are both consistent and

Bn

(
d̂− d0

θ̂ − θ0

)
d→ N(0,Ω−1

Ry ,Rw
), ΩRy ,Rw =

 4 µ′Ry ν ′Rw
µRy ΓRy ψ′Ry ,Rw
νRw ψRw,Ry ΨRw

 ,

where Bn = Bn (d0) is the (Ry +Rw + 2) × (Ry +Rw + 2) deterministic diagonal matrix with
diagonal elements

(Bn)11 =
√
m, (Bn)k+1,k+1 =

√
mλ2k

m for k = 1, . . . , Ry,

and (Bn)k+Ry+2,k+Ry+2 =
√
mλ2d0+2k

m for k = 0, . . . , Rw,

µRy and νRw = νRw(d0, θ0ρ) are the vectors

(µRy)k =
−4k

(1 + 2k)2 for k = 1, . . . , Ry and (νRw)k+1 =
−4(d0 + k)θ

I{k≥1}
0ρ

(1 + 2d0 + 2k)2 for k = 0, . . . , Rw,

5Note that asymptotic normality is obtained when d0 ∈ (0, 3/4). Phillips & Shimotsu (2004) showed that the
asymptotic distribution of the local Whittle estimator is non-normal for d0 ∈ [3/4, 1], and we conjecture that a
similar result holds for the LPWN estimator.
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ΓRy and ΨRw = ΨRw(d0, θ0ρ) are the Ry ×Ry and (Rw + 1)× (Rw + 1) matrices(
ΓRy

)
ik

=
4ik

(1 + 2i+ 2k) (1 + 2i) (1 + 2k)
for i, k = 1, . . . , Ry,

(ΨRw)i+1,k+1 =
4(d0 + i)(d0 + k)θ

I{k≥1}+I{i≥1}
0ρ

(1 + 2i+ 2k + 4d0) (1 + 2i+ 2d0) (1 + 2k + 2d0)
for i, k = 0, . . . , Rw,

and ψRw,Ry = ψRw,Ry(d0, θ0ρ) is the (Rw + 1)×Ry matrix

(ψRw,Ry)i+1,k =
4k(d0 + i)θ

I{i≥1}
0ρ

(1 + 2d0 + 2k + 2i) (1 + 2d0 + 2i) (1 + 2k)
for i = 0, . . . Rw, k = 1, . . . , Ry.

If Ry = 0 define Ω0,Rw =

(
4 ν ′Rw
νRw ΨRw

)
.

First of all, we note that by setting Ry = Rw = 0 we obtain as a special case the results for the
LWN estimator of Hurvich & Ray (2003). Secondly, the leading (Ry + 1)× (Ry + 1) submatrix of
ΩRy ,Rw is the same as that obtained by Andrews & Sun (2004). Third, we note that the asymptotic
variance of

√
m(d̂− d0) is free of the parameters θ0, including the noise-to-signal ratio6 θ0ρ, but it

depends on d0. In fact, the use of the polynomials hy(θy, λ) and hw(θw, λ) increases the asymptotic
variance of d̂ by a multiplicative constant compared to the LWN estimator of Hurvich & Ray (2003).
For example, by use of the partitioned matrix inverse formula we note that the (1,1) element of Ω−1

0,0,
i.e. the asymptotic variance of the LWN estimator, with d0 = 0.4 is approximately 1.27, and the
corresponding elements of Ω−1

1,0, Ω
−1
0,1, and Ω−1

1,1 are approximately 2.85, 2.33, and 5.24, respectively.
Andrews & Sun (2004) obtain a similar result for their LPW estimator in a non-perturbed model.
In particular, the variance of the LPWN estimator with Ry = 1, Rw = 0 is 2.25 times that of the
LWN estimator, which is exactly the same multiplicative constant found by Andrews & Sun (2004).

The first condition in (17) guarantees that all the elements of the scaling matrix Bn diverge
as n → ∞, which is a minimal condition for consistency. The second condition restricts the
expansion rate of the bandwidth to control bias and ensures that the estimator uses only information
from periodogram ordinates suffi ciently near the zero frequency. Alternatively, we can view the
bandwidth conditions in (17) separately for the signal process and the noise process. In this way
we would write the conditions as

m1+4Ry

n4Ry
→∞, m

2ϕy+1

n2ϕy
→ 0 and

m1+4(d0+Rw)

n4(d0+Rw)
→∞, m

2ϕw+4d0+1

n2ϕw+4d0
→ 0.

It is now easy to see that the bandwidth conditions for both the signal process and the noise process
are always compatible because sy > 2Ry and sw > 2Rw, respectively, by Assumption A3.

Note that the second condition in (17) implies that if φy (λ) and φw (λ) are infinitely smooth
near frequency zero, i.e. if they are smooth of any orders sy <∞ and sw <∞, then any (Ry, Rw)

can be chosen and the estimator is n1/2−δ consistent for all δ > 0. Hence, in that case, the rate of
convergence is arbitrarily close to the parametric rate. Thus, the condition (17) allows the band-
width m to be much larger than for the LWN estimator and the standard LW estimator, which
(assuming sy ≥ 2, sw ≥ 2) require that m5n−4 → 0 and m4d0+1n−4d0 → 0, respectively, see Hurvich
& Ray (2003) and Arteche (2004). Therefore, Theorem 2 provides an improvement in the rate

6This fact can be seen using the formula for the inverse of a partitioned matrix.
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of convergence relative to existing estimators of the memory parameter for perturbed fractional
processes. This comes at the cost of an increase in the asymptotic variance by a multiplicative
constant, but that is clearly more than off-set by the faster rate of convergence, at least asymp-
totically. For example, in the empirically relevant case of d0 = 0.4, which is a typical value of d0

for financial volatility series, the LW estimator is at most n0.31-consistent and the LWN estimator
is at most n0.4-consistent, whereas our estimator can be arbitrarily close to n0.5-consistent if the
spectral density is suffi ciently smooth near the zero frequency.

As in Andrews & Sun (2004) we could calculate the asymptotic bias which is of orderO((m/n)ϕy+

(m/n)2d0+ϕw), see the proof of Lemma 1(e) in the appendix. This is in contrast to the orders
O((m/n)2) and O((m/n)2d0) (assuming suffi cient smoothness) for the LWN and LW estimators,
respectively, see Hurvich & Ray (2003) and Arteche (2004). Thus, as in Andrews & Sun (2004) for
the pure long memory case, the order of magnitude of the asymptotic bias is smaller when modeling
the (smooth) spectral density of the short-memory component locally by a polynomial instead of
a constant. Furthermore, a data-dependent adaptive procedure to select Ry, Rw, and m could be
derived in the same manner as in Andrews & Sun (2004). Then Ry, Rw, and m would adapt to the
smoothness of φy (λ) and φw (λ) and therefore depend on sa ∈ [sla, s

u
a], where 1 ≤ sla ≤ sua <∞ for

a = y, w.
Finally, with the asymptotic distribution in Theorem 2, it is possible to conduct inference also

on θ. In particular, it is possible to test for the existence of the short-run components, possibly as
a prior tool to select the most effi cient estimator. However, note that the rate of convergence of
the polynomial parameters is

√
mλ2r

m (for θy,r) and
√
mλ2d0+2r

m (for θw,r) which can be quite slow.

4 Finite sample comparisons
In this section we present simulation results to examine the finite sample bias and root mean

squared error (RMSE) of our LPWN estimator. The LPWN estimator is implemented with (Ry, Rw)

equal to (1, 0), (0, 1), and (1, 1), denoted LPWN(Ry,Rw), and is compared with the LWN estimator.
From Hurvich & Ray (2003) we know that the LWN estimator is superior to the LW estimator in
terms of bias and RMSE in the context of the standard LMSV model. Furthermore, Hurvich et al.
(2005) show that the polynomial log-periodogram regression estimator of Andrews & Guggenberger
(2003) suffers from severe bias in the case of perturbed fractional processes and the LPW estimator
is expected to perform similarly. Therefore, to conserve space we only present the results for the
LWN and LPWN estimators. Results for the LW estimator are available from the authors upon
request.

4.1 Monte Carlo setup
We simulate model (1), i.e.

zt = yt + wt, (18)

where {yt} is the signal process and {wt} is the perturbation process. We model {wt} as an ARMA
process and {yt} as an ARFIMA process, and consider five different DGPs for these processes. The
setup for {yt} and {wt} is

(1− αyL) (1− L)d yt =
(
1 + βyL

)
εt, εt ∼ NID(0, σ2

ε), (19)

(1− αwL)wt = (1 + βwL) ηt, ηt ∼ NID(0, 1), (20)
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with parameter configurations

Model I : (αy, βy, αw, βw) = (0, 0, 0, 0),

Model II : (αy, βy, αw, βw) = (0.8, 0, 0, 0),

Model III : (αy, βy, αw, βw) = (0, 0, 0, 0.8),

Model IV : (αy, βy, αw, βw) = (0, 0, 0.8, 0),

Model V : (αy, βy, αw, βw) = (0.8, 0,−0.8, 0).

We remark that in all the models the noise-to-signal ratio is given as

nsr =
fw(0)

f(1−L)dyt
(0)

=

(1+βw)2

(1−αw)2

σ2
ε
(1+βy)

2

(1−αy)2

. (21)

For each Monte Carlo DGP we generated 10, 000 time series with a sample size of 2048, 4096,
or 8192.7 For all estimators we set the bandwidth as m =

⌊
an0.8

⌋
, where a ∈ {3/4, 1, 5/4}. The

parameter of interest, d, is set equal to 0.4. For the noise-to-signal ratio, we choose nsr ∈ {5, 10, 15},
and the variance σ2

ε is set as a function of (αy, βy, αw, βw) such that the nsr has the desired value.
The values of d, nsr, (αy, βy), (αw, βw), and the sample sizes are chosen to reflect empirical findings
on long memory in volatility (see the references in the introduction for some examples). The chosen
parameter values for the short-run contamination in the signal and the noise are also inspired by
the results from the empirical (parametric) analysis of the DJIA stocks in section 5 below.

The signal {yt} was generated by the circulant embedding method as described in Davies &
Harte (1987), see also Beran (1994, pp. 215-217). Numerical optimization was carried out in Ox
using the SQP constrained optimization algorithm, see Doornik (2006). We used D = [0.01, 0.99]

and constrained the long-run noise-to-signal ratio θρ to be in the interval [10−6, 106]. The initial
values were set as follows. For the LWN estimator we used d = 0.25 and θρ = 1. As starting value
for the LPWN estimators we used the LWN estimate of (d, θρ) if it was in the interior of the set
[0.01, 0.99]× [0.01, 100], c.f. Assumption A2. Otherwise, the starting value of (d, θρ) was set equal
to (0.25, 1).8 As starting values for the polynomial parameters we used 0.

4.2 Monte Carlo results
Tables 1-5 display the results of the simulation study and show how the two different sources of

bias, i.e. the additive noise term and the contamination from the short-memory dynamics in both
the signal and the noise, affect the estimators.

[Table 1 about here]

In the case where there is no contamination by short-run dynamics in the signal or noise, i.e.
Model I with results displayed in Table 1, the bias is small for all estimators. The theoretical
inflation of the variances from h (λ, d,θ) is also noticeable in the RMSEs. Additionally, the RMSE
decreases as either the sample size or bandwidth increase.

7The number of observations is chosen as a power of two in order to use the fast Fourier transform in calculating
the periodogram. This speeds up the simulations considerably compared to using the discrete Fourier transform.

8We tried different starting values for d in these cases and the results were indistinguishable.
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[Table 2 about here]

In Table 2 we consider model II, i.e. the signal is an ARFIMA process with
(
αy, βy

)
= (0.8, 0)

and the noise is serially uncorrelated. Here we would presume that the LPWN(1,0) and LPWN(1,1)
estimators are the better choices, at least for higher bandwidths. We see that we are able to obtain
a reduction in bias relative to the LWN estimator. Overall, the two LPWN estimators modeling
the short-run part of the signal with a polynomial, i.e. LPWN(1,0) and LPWN(1,1), outperform
the LWN estimator in terms of bias, and for nsr = 5 the LPWN(1,0) estimator is mostly also
superior in terms of RMSE. When nsr is 10 or higher, the noise component appears to be the most
important term and modeling the signal with a polynomial does not improve the RMSE compared
to the LWN estimator.

[Table 3 about here]

We consider next Model III, i.e. where there is MA contamination in the additive noise term,
with results presented in Table 3. The results for the LPWN(0,1) and LPWN(1,1) estimators
are similar to those in Table 1. That is, there is essentially no bias in those estimators. On the
other hand, there is rather severe negative bias in the LWN estimator. Indeed, for the two higher
bandwidth choices in Panels B and C the LPWN(0,1) (and sometimes the LPWN(1,1)) estimators
generally have the lowest RMSE compared to the LWN.

[Table 4 about here]

Table 4 contains results for Model IV, where there is AR contamination in the additive noise
term. The LWN estimator now suffers from moderate positive bias and the LPWN(0,1) estimator
is, as expected, able to almost eliminate this bias and is nearly unbiased in most cases. Similarly
to Table 3, the LPWN(0,1) estimator clearly outperforms the other estimators in terms of RMSE
for the two higher bandwidth choices in Panels B and C.

[Table 5 about here]

Results for Model V where
(
αy, βy

)
= (0.8, 0) and (αw, βw) = (−0.8, 0) are shown in Table

5. The LWN estimator suffers from severe positive bias, and its RMSE is also higher than for
the previous models. On the other hand, the LPWN estimators have relatively low biases, and
in particular the LPWN(1,1) estimator appears essentially unbiased. When compared in terms of
RMSE the LPWN estimators are clearly superior as well. Thus, we have a considerable reduction in
bias for all LPWN estimators compared to the LWN estimator, and we also have quite a remarkable
reduction in RMSE.

To sum up, the Monte Carlo study shows the usefulness of estimators that explicitly take the
short-run dynamics in the perturbation into account, i.e. the LPWN estimators where (Ry, Rw) =

(0, 1) and (Ry, Rw) = (1, 1), although the LPWN estimator with (Ry, Rw) = (1, 0) also performs
well. All three estimators generally have much smaller biases than the LWN estimator and are fairly
robust to serial correlation in the perturbation and to contamination from short-memory dynamics
in the signal.
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5 Long memory in DJIA stock volatility
This section analyzes the long memory in daily log-squared returns series of the 30 DJIA stocks

corrected for the effects of stock splits and dividends from 1 January 1990 to 31 March 2008, for
a sample of n = 4753. To avoid the problem of taking logarithm of zero we based the analysis on
adjusted log-squared returns using the method of Fuller (1996, pp. 495-496), i.e. we analyze

log r̃2
t = log

(
r2
t + α

)
− α

r2
t + α

,

where α = 0.02
n

∑n
t=1 r

2
t . We estimate the long memory in log r̃2

t using the proposed LPWN estima-
tor. We implement the estimator with (Ry, Rw) equal to (1, 0), (0, 1), and (1, 1), and with starting
values as in the Monte Carlo study above. For comparison we also report standard LW, LPW, and
LWN estimates. For all estimators we set the bandwidth as m =

⌊
an0.8

⌋
, where a ∈ {3/4, 1, 5/4}.

[Table 6 about here]

Table 6 presents the results for the LW, LPW, and LWN estimators. As expected from theory,
the LW and LPW estimators are decreasing in the bandwidth and appear downward biased. For
the LWN estimator the memory estimates of some of the stocks are in the stationary region, but
for the most part they are in the nonstationary region.

[Table 7 about here]

In Table 7 we present the results for the three variants of the LPWN estimator, i.e. for (Ry, Rw)

equal to (1, 0), (0, 1), and (1, 1). First of all, as expected from theory and the simulations above, it
is clear that this estimator does not suffer from the downward bias that increases with bandwidth as
is present in the LW and LPW estimators. Second, we note that the three different implementations
of the estimator agree with each other for most stocks and bandwidth choices. Thirdly, the LPWN
estimates are similar to the LWN estimates, although the LPWN(0,1) and LPWN(1,1) estimates
are slightly higher on average.

To emphasize the importance of the polynomial approximation of the signal process {yt} and
the pertubation process {wt}, we also fitted an extended parametric LMSV-ARFIMA(1,d,1)-(1,1)
model, where the extension is that the noise is modeled by an ARMA process. That is, we model
the periodogram of log r̃2

t using the Whittle likelihood framework of Fox & Taqqu (1986) and Breidt
et al. (1998), where the fitted model has spectral density

fz (λ) =
σ2
ε

2π

(
2 sin

λ

2

)−2d
(
1 + 2βy cosλ+ β2

y

)(
1− 2αy cosλ+ α2

y

) +
σ2
η

2π

(
1 + 2βw cosλ+ β2

w

)
(1− 2αw cosλ+ α2

w)
. (22)

In Table 8 the resulting estimates are reported, where we have removed insignificant ARMA terms
from both the signal and the noise.

[Insert Table 8 about here]

The estimated values of d from the parametric results are in line with those from the LWN and
LPWN estimators in Tables 6 and 7. Furthermore, there is significant (at 10% level) short-run
dynamics in the signal (19 out of 30 cases), in the noise (16 out of 30 cases), and in both the signal

14



and noise (13 out of 30 cases). The estimated (long-run) nsr can be calculated from the parameter
estimates as in (21), and for most of the stocks it is in the vicinity of 10 − 30, although there are
cases where the estimated nsr is very high because the estimate of σ2

ε is very small. Taking the
high nsr’s and significant short-run dynamics in both the signal and the noise into consideration
stresses the importance of the LPWN estimators.

6 Concluding remarks
In this paper we have proposed a semiparametric local polynomial Whittle with noise estimator

of the degree of long memory, d, in fractionally integrated time series perturbed by additive short-
run noise. The estimator models the log-spectrum of the the short-memory component of the signal
and that of the perturbation by finite even polynomials instead of constants near the zero frequency.
This is shown to yield a bias reduction depending on the smoothness of the spectra. However,
including the polynomials inflates the asymptotic variance of d̂ by a multiplicative constant which
depends on the true long memory parameter, d.

We have shown that the estimator is consistent for d ∈ (0, 1), asymptotically normal for d ∈
(0, 3/4), and if the spectral density is suffi ciently smooth near frequency zero the rate of convergence
becomes arbitrary close to the parametric rate,

√
n.

Our Monte Carlo study shows that the proposed local polynomial Whittle with noise estimator
is able to achieve considerable bias reductions in practice compared to standard (e.g., local Whittle
with noise) estimators, especially in cases with short-run dynamics in both the signal and noise
components. In an empirical investigation of the 30 DJIA stocks the local polynomial Whittle with
noise estimator indicated stronger persistence in volatility than standard estimators, and for most
of the stocks produced estimates of d in the nonstationary region.

Appendix A: Proof of Theorem 1
This proof follows the proofs of Theorem 3.1 and Lemma C.2 of Hurvich et al. (2005). As in

their proofs, to show consistency of d̂ we need to separately prove that limn→∞ P (d̂ ∈ D1) = 0 and

that (d̂ − d0)I{d̂ ∈ D2}
P→ 0, where D1 = (−∞, d0 − 1/2 + ε) ∩D, D2 = [d0 − 1/2 + ε,+∞) ∩D,

ε < 1/4, and I{A} is the indicator function of the event A.
Let αk (d,θ) = hk(d0,θ0)

hk(d,θ) . Then the proof that (d̂ − d0)I{d̂ ∈ D2}
P→ 0 proceeds as in Hurvich

et al. (2005, pp. 1303-1305) by showing that

Zm =

m∑
k=1

k2(d−d0)αk(d,θ)∑m
j=1 j

2(d−d0)αj(d,θ)

(
Iz (λk)

fz (λk)
− 1

)
= oP (1) (23)

uniformly on (d,θ) ∈ D2 ×Θ and that

Rm = log

(
1 +

∑m
k=1 k

2(d−d0) (αk (d,θ)− 1)∑m
j=1 j

2(d−d0)

)
− 1

m

m∑
k=1

log (1 + (αk (d,θ)− 1)) = o (1) (24)

uniformly on (d,θ) ∈ D ×Θ.
Note that, from Lemma 2(iii)-(v), there exists a constant C > 0 such that

sup
(d,θ)∈D×Θ,k=1,...,m

|αk (d,θ)− 1| = sup
(d,θ)∈D×Θ,k=1,...,m

∣∣∣∣hk(d0,θ0)− hk(d,θ)

hk(d,θ)

∣∣∣∣ ≤ C (m/n)2d1 ,
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since d ≥ d1 > 0. Now we use that log (1 + x) = x+O(x2) as x→ 0 to obtain

sup
(d,θ)∈D×Θ

|Rm| ≤ C sup
(d,θ)∈D×Θ

sup
k=1,...,m

|αk (d,θ)− 1| ≤ C (m/n)2d1 = o (1) .

To show (23) we apply Proposition A.1 of Hurvich et al. (2005), which holds here since our
Assumptions A1-A6 imply their Assumptions (H1)-(H3) with the exception that we allow serially
correlated peturbation terms. It is, however, easily shown that replacing their Assumption (H2)
with our Assumption A5, their Proposition A.1 still holds. The only other change is that the term
(k/n)min(β,d0) in their eq. (F.15) should be replaced by (k/n)min(ϕy ,ϕw) due to the more accurate
approximation of fz (λ) offered by the included polynomials in our function h(d,θ, λ) in (11), see
also Lemma 3 below. Thus, from their Proposition A.1, letting

ck =
k2(d−d0)αk(d,θ)∑m
j=1 j

2(d−d0)αj(d,θ)
,

then for K ∈ (0,∞) and all k ∈ {1, . . . ,m− 1}, we need to show that |ck − ck+1| ≤ Km−εkε−2 and
|cm| ≤ Km−1 uniformly on (d,θ) ∈ D2 ×Θ, which implies (23).

Note that, uniformly on (d,θ) ∈ D2 × Θ, we have that
∑m

j=1 j
2(d−d0)αj(d,θ) ≥ Cm2(d−d0)+1

and |k2(d−d0)αk(d,θ)− (k + 1)2(d−d0)αk+1(d,θ)| ≤ Ck2(d−d0)−1 using the mean value theorem and
Lemma 2, see also Hurvich et al. (2005, p. 1305). It follows that

sup
(d,θ)∈D2×Θ

∣∣∣∣∣k2(d−d0)αk(d,θ)− (k + 1)2(d−d0)αk+1(d,θ)∑m
j=1 j

2(d−d0)αj(d,θ)

∣∣∣∣∣ ≤ sup
(d,θ)∈D2×Θ

C

∣∣∣∣∣ k2(d−d0)−1

m2(d−d0)+1

∣∣∣∣∣ ≤ Ck2ε−2m−2ε,

sup
(d,θ)∈D2×Θ

∣∣∣∣∣ m2(d−d0)αm(d,θ)∑m
j=1 j

2(d−d0)αj(d,θ)

∣∣∣∣∣ ≤ Cm−1,

which proves (23).
The proof that limn→∞ P (d̂ ∈ D1) = 0 follows exactly as in Hurvich et al. (2005, pp. 1305-1306)

since their Proposition A.1 holds in our case as well. Hence d̂ P→ d0. To strengthen this result to
d̂− d0 = oP ((log n)−5) we use the proof of Lemma C.2 of Hurvich et al. (2005) without change.

Appendix B: Proof of Theorem 2
For the proof of Theorem 2 we need the score and Hessian (both multiplied by m) of (12):

Sn (d,θ) = Ĝ (d,θ)−1
m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
Xj ,

Hn (d,θ) = H1n (d,θ) + H2n (d,θ) ,

H1n (d,θ) = Ĝ (d,θ)−2

Ĝ (d,θ)

m∑
j=1

λ2d
j Iz (λj)

hj (d,θ)
XjX

′
j −m

 1

m

m∑
j=1

λ2d
j Iz (λj)

hj (d,θ)
Xj

 1

m

m∑
j=1

λ2d
j Iz (λj)

hj (d,θ)
Xj

′ ,

H2n(d,θ) = Ĝ (d,θ)−1
m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
∂Xj

∂(d,θ′)
,
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where Xj = (X1j ,X
′
2j ,X

′
3j)
′ with

X1j =
2 exp(hyj(θy)) log λj

hj (d,θ)
,X2j =

(
−λ2

j exp(hyj(θy))

hj (d,θ)
, . . . ,

−λ2Ry
j exp(hyj(θy))

hj (d,θ)

)′
,

X3j =

(
−λ2d

j exp(hwj(θw))

hj (d,θ)
,
−λ2d+2

j θρ exp(hwj(θw))

hj (d,θ)
, . . . ,

−λ2d+2Rw
j θρ exp(hwj(θw))

hj (d,θ)

)′
,

hj (d,θ) = h(d,θ, λj), haj(θa) = ha(θa, λj), a = y, w, and Dn (η) = {d ∈ D : (log n)5 |d − d0| < η}
for η > 0. Note that Xj is the vector of partial derivatives of − log(λ−2d

j hj(d,θ)). Also define

Jn =
m∑
j=1

(
Xj −

1

m

m∑
k=1

Xk

)(
Xj −

1

m

m∑
k=1

Xk

)′
.

We next state a lemma adapted from Lemma 2 of Andrews & Sun (2004), henceforth abbreviated
AS. The proof is given in the next section.

Lemma 1 Under the assumptions of Theorem 2 we have, as n→∞,
(a) B−1

n JnB
−1
n → ΩRy ,Rw ,

(b)
∥∥B−1

n (H1n (d0,θ0)− Jn) B−1
n

∥∥ = oP (1) and
∥∥B−1

n H2n (d0,θ0) B−1
n

∥∥ = oP (1) ,

(c) supθ∈Θ

∥∥B−1
n (Hkn (d0,θ)−Hkn (d0,θ0)) B−1

n

∥∥ = oP (1) , k = 1, 2,

(d) supd∈Dn(ηn),θ∈Θ

∥∥B−1
n (Hkn (d,θ)−Hkn (d0,θ)) B−1

n

∥∥ = oP (1) , k = 1, 2, for all sequences
of constants {ηn}n≥1 for which ηn = o (1) ,

(e) B−1
n Sn (d0,θ0)

d→ N
(
0,ΩRy ,Rw

)
.

Since the LPWN likelihood (12) is a continuous function on a compact set the LPWN estimator
exists. From Lemma 1 we know by Lemma 1 of AS that there exists a solution to the first order
conditions with probability tending to one, and that the solution satisfies the result in Theorem 2.
If the (negative) likelihood function is strictly convex and twice differentiable then the solution to
the first order conditions is unique and minimizes (12) and hence equals the LPWN estimator.

Thus, all that remains is to show that the Hessian is positive definite which proves convexity.
The positive definiteness ofH1n follows as in eq. (5.1) of AS. Compared to AS we have the additional
term H2n, for which we know that

∥∥B−1
n H2n(d,θ)B−1

n

∥∥ = oP (1) uniformly on (d,θ) ∈ Dn (ηn)×Θ

by Lemma 1(b)-(d) and the triangle inequality. Since d̂ ∈ Dn (ηn) with probability tending to
one by Theorem 1, this shows that Hn is positive definite with probability tending to one, which
concludes the proof.

Appendix C: Proof of Lemma 1
We now turn to the proof of Lemma 1, which follows the method of proof for Lemma 2 of AS,

with modifications to allow d ≥ 1/2 (following Velasco (1999)) and to accommodate the additive
noise term in the spectral density (see Lemma 3), and with an additional proof for each of (b), (c),
and (d) of negligibility of the term H2n.

C.1 Proof of (a)
This follows by approximating sums by integrals, see Lemma 2 of Andrews & Guggenberger

(2003).
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C.2 Proof of (b), first statement
This proof roughly follows that of Lemma 2(b) in AS. Corresponding to their (A.6), define

G̃a,b,c,c1,c2(d,θ) = m−1
m∑
j=1

λ2d
j Iz(λj)

hj(d,θ)c1+c2+1

(
2 exp(hyj(θy)) log λj

hj (d,θ)

)a
(j/m)2b θcρ

× exp(c1hyj(θy) + c2hwj(θw)),

Ĝa,b,c(d,θ) = m−1
m∑
j=1

λ2d
j Iz(λj)

hj(d,θ)
(2 log λj)

a (j/m)2b θcρ,

Ja,b,c = G0m
−1

m∑
j=1

(2 log λj)
a (j/m)2b θc0ρ,

for a, c, c1, c2 = 0, 1, 2 and b = 0, 1, . . . , 2Ry, d, d+ 1, . . . , d+Rw +Ry, 2d, 2d+ 1, . . . , 2d+ 2Rw. The
elements of B−1

n H1n (d,θ) B−1
n are (omitting the arguments for brevity)

(1, 1) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃2,0,0,0,0 − G̃2

1,0,0,0,0

)
,

(1, 1 + k) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃1,k,0,1,0 − G̃1,0,0,0,0G̃0,k,0,1,0

)
,

(1, 2 +Ry + i) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃1,i+d,I{i≥1},0,1 − G̃1,0,0,0,0G̃0,i+d,I{i≥1},0,1

)
,

(1 + k1, 1 + k2) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃0,k1+k2,0,2,0 − G̃0,k1,0,1,0G̃0,k2,0,1,0

)
,

(1 + k, 2 +Ry + i) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃0,k+i+d,I{i≥1},1,1 − G̃0,k,0,1,0G̃0,i+d,I{i≥1},0,1

)
,

(2 +Ry + i1, 2 +Ry + i2) : G̃−2
0,0,0,0,0

(
G̃0,0,0,0,0G̃0,i1+i2+2d,I{i1≥1}+I{i2≥1},0,2 − G̃0,i1+d,I{i1≥1},0,1G̃0,i2+d,I{i2≥1},0,1

)
,

for k, k1, k2 = 1, . . . , Ry and i, i1, i2 = 0, . . . , Rw. The corresponding elements of B−1
n JnB

−1
n are

given by the same expressions with G̃a,b,c,c1,c2 replaced by Ja,b,c. To prove the first statement of
Lemma 1(b) it suffi ces to show that (since b is a function of d, we distinguish between b and b0)

∆a,b0,c =
∣∣∣Ĝa,b0,c(d0,θ0)− Ja,b0,c

∣∣∣ = oP ((logm)−2), (25)

∆̃a,b0,c,c1,c2 =
∣∣∣G̃a,b0,c,c1,c2(d0,θ0)− Ĝa,b0,c(d0,θ0)

∣∣∣ = oP ((log n)2(m/n)2d0). (26)

Note that, because B−1
n JnB

−1
n = O((logm)2), ∆̃a,b0,c,c1,c2 = oP ((logm)−2) would be suffi cient to

prove part (b) for H1n, but we show the stronger version since it will be useful in the proof of part
(c).

In view of Lemma 3 below, the proof of (A.9) in AS pp. 598-599 works also for our eq. (25),
where we find that (with ξk,n(d) defined in Lemma 3)

∆a,b0,c = OP

(
(logm)am−1ξm,n(d0) + (logm)amϕyn−ϕy + (logm)amd0+ϕwn−d0−ϕw

+ (logm)am2d0n−2d0 + (logm)a+1m2d0−1n−d0 + (logm)am−1/2
)
,

which is

OP

(
(logm)a+2/3m−2/3 + (logm)am−1/2n−1/4 + (logm)a(m/n)min(ϕy ,d0+ϕw,2d0)

+(logm)a+1m2d0−1n−d0 + (logm)am−1/2
)
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in the stationary case and

OP

(
(logm)a+2/(5−4d0)m1/(5−4d0)−1 + (logm)a+1m2d0−2 + (logm)am(d0−1)/2n−1/2(log n)5/4

+(logm)a+1/2n−1/4md0−1 + (logm)a(m/n)min(ϕy ,d0+ϕw,2d0) + (logm)a+1m2d0−1n−d0 + (logm)am−1/2
)

in the nonstationary case. By (17) and d0 < d2 < 3/4, clearly ∆a,b0,c = oP ((logm)−2) in both
cases.

To prove (26) we write G̃a,b0,c,c1,c2(d0,θ0)− Ĝa,b0,c(d0,θ0) as

θc0ρ
m

m∑
j=1

λ2d0
j Iz(λj)

hj(d0,θ0)

[
exp(c1hyj(θ0y) + c2hwj(θ0w))

hj(d0,θ0)c1+c2

(
2 exp(hyj(θ0y)) log λj

hj (d0,θ0)

)a
− (2 log λj)

a

](
j

m

)2b0

=
θc0ρ
m

m∑
j=1

λ2d0
j Iz(λj)

hj(d0,θ0)

[
(1 +O((j/n)2d0))(1 +O((j/n)2))a

(1 +O((j/n)2d0))c1+c2+a
(2 log λj)

a − (2 log λj)
a

](
j

m

)2b0

by Lemma 2(i)-(ii). Using the definition of Ĝa,b,c(d,θ) and the fact that Ĝa,b0,c(d0,θ0) = OP ((logm)a)

by (25), we have

∆̃a,b,c,c1,c2 =
θc0ρ
m

m∑
j=1

λ2d0
j Iz(λj)

hj(d0,θ0)

[
(1 +O((j/n)2d0)) (2 log λj)

a − (2 log λj)
a
]( j

m

)2b0

= OP ((m/n)2d0(log n)aĜ0,b0,c(d0,θ0)) = OP

(
(m/n)2d0(log n)a

)
.

C.3 Proof of (e)
We now prove part (e) since it will be useful in the proof of the remaining statements. By (25)

and (26) with a = b = c = c1 = c2 = 0 we get that Ĝ (d0,θ0)
P→ G0, so that, apart from smaller

order terms,

B−1
n Sn (d0,θ0) = m−1/2

m∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 1

m

m∑
k=1

Iz (λk)

gk (d0,θ0)

)
X̃0,j

= m−1/2
m∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 1

)(
X̃0,j −

1

m

m∑
k=1

X̃0,k

)
, (27)

where gj (d,θ) = g (d,θ, λj) and X̃j = (X1,j , X̃
′
2,j , X̃

′
3,j)
′ with

(X̃2,j)k = −exp(hyj(θy))(j/m)2k

hj (d,θ)
, (X̃3,j)i+1 = −θ

I{i≥1}
ρ exp(hwj(θw))(j/m)2d+2i

hj (d,θ)

for k = 1, . . . , Ry and i = 0, . . . , Rw, and X̃0,j is X̃j evaluated at (d0,θ0).
As in AS p. 601 we write the right-hand side of (27) as T1,n + T2,n + T3,n + T4,n, where

T1,n = m−1/2
m∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)− E

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

))(
X̃0,j −

1

m

m∑
k=1

X̃0,k

)
,

T2,n = m−1/2
m∑
j=1

(
EIz (λj)

fz (λj)
− 1

)
fz (λj)

gj (d0,θ0)

(
X̃0,j −

1

m

m∑
k=1

X̃0,k

)
,
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T3,n = m−1/2
m∑
j=1

(2πIε (λj)− 1)

(
X̃0,j −

1

m

m∑
k=1

X̃0,k

)
,

T4,n = m−1/2
m∑
j=1

(
fz (λj)

gj (d0,θ0)
− 1

)(
X̃0,j −

1

m

m∑
k=1

X̃0,k

)
.

Then we show that T3,n
d→ N

(
0,ΩRy ,Rw

)
while Ti,n = oP (1) for i = 1, 2, 4.

Clearly the proof for T3,n of AS works here as well. We just have to verify that m−1
∑m

j=1 ζ
2
j →

β′ΩRy ,Rwβ, where

ζj = β′(X̃0,j −
1

m

m∑
k=1

X̃0,k) and ΩRy ,Rw =

 4 µ′Ry ν ′Rw
µRy ΓRy ψ′Ry ,Rw
νRw ψRw,Ry ΨRw

 ,

which follows from part (a) of the lemma.
To show the result for T1,n we use summation by parts:

T1,n = m−1/2
m−1∑
k=1

(
X̃0,k − X̃0,k+1

) k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)− E

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

))

+

(
X̃0,m −

1

m

m∑
k=1

X̃0,k

)
m−1/2

m∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)− E

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

))

= m−1/2
m−1∑
k=1

O(k−1)OP (ξk,n(d0) + kϕy+1/2n−ϕy + k1/2+2d0n−2d0)

+O(1)m−1/2OP (ξm,n(d0) +mϕy+1/2n−ϕy +m1/2+2d0n−2d0)

= OP (m−1/2(logm)ξm,n(d0) + (m/n)min(ϕy ,2d0)),

where ξk,n(d) is defined in Lemma 3. The second equality applies Lemma 3 and that X̃0,k−X̃0,k+1 =

O(k−1) uniformly in k = 1, . . . ,m and X̃0,m− 1
m

∑m
k=1 X̃0,k = O(1), follows by approximating sums

by integrals, see also AS p. 602. Thus T1,n = OP ((logm)5/3m−1/6+(logm)n−1/4+(m/n)min(ϕy ,2d0))

in the stationary case and T1,n = OP ((logm)1+2/(5−4d0)m−(3−4d0)/(10−8d0) + (logm)2m2d0−3/2 +

(logm)(log n)5/4n−1/2md0/2 +(logm)3/2n−1/4md0−1/2 +(m/n)min(ϕy ,2d0)) in the nonstationary case.
Since d0 belongs to the interior of the parameter space it follows that T1,n = oP (1).

To prove the result for T2,n we use Robinson’s (1995b) Theorem 2, i.e., that EIy (λj) /fy (λj) =

1 + O(j−1(log j)) uniformly in j = 1, . . . ,m in the stationary case, as well as Velasco’s (1999)
Theorem 1, which shows that EIy (λj) /fy (λj) = 1 + O(j2d0−2(log j)) uniformly in j = 1, . . . ,m

in the nonstationary case. Note that, as in AS, the remainder terms are different from those
of Robinson (1995b) and Velasco (1999) because of the normalization by fy (λj) rather than by
G0λ

−2d0
j . Thus, as in the proof of Lemma 3 we can write

EIz (λj)

fz (λj)
− 1 =

fy (λj)− fz (λj)

fz (λj)

(
EIy (λj)

fy (λj)
− 1

)
+

(
EIy (λj)

fy (λj)
− 1

)
+

2
√
fy (λj)

fz (λj)

E Re (Iyw(λj))√
fy (λj)

+
EIw(λj) + fy (λj)− fz (λj)

fz (λj)
.

Because EIw (λj) = fw(λj) + O(j−1(log j)) and fz (λj) − fy (λj) = fw (λj), the last term is
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O(j−1(log j)λ2d0
j ). By the same reasoning and by independence of {yt} and {wt}, the second

to last term is OP (λd0j j
−1(log j)) in the stationary case and OP (λd0j j

2d0−2(log j)) in the nonsta-
tionary case, see also the proof of Lemma 3 below and the second to last equation on p. 108 of
Velasco (1999). We thus obtain the bounds EIz (λj) /fz (λj)− 1 = O(j−1(log j)) for the stationary
case and EIz (λj) /fz (λj) − 1 = O(j2d0−2(log j)) for the nonstationary case, for all j = 1, . . . ,m.
We also have that fz (λj) /gj (d0,θ0)− 1 = O((j/n)ϕy + (j/n)2d0+ϕw) for all j = 1, . . . ,m by (15).
Therefore, in the stationary case, T2,n can be bounded similarly to (A.24) of AS,

T2,n = m−1/2
m∑
j=1

O(j−1(log j))O(logm) = O((logm)3m−1/2),

using also that |X̃0,j − 1
m

∑m
k=1 X̃0,k| = O(logm) uniformly in j = 1, . . . ,m. In the nonstationary

case we find in the same way that

T2,n = m−1/2
m∑
j=1

O(j2d0−2(log j))O(logm) = O((logm)3m2d0−3/2).

In both the stationary and nonstationary cases, T2,n is o(1) since d0 < d2 < 3/4.
The proof for T4,n follows from summation by parts and the approximation fz (λj) /gj(d0,θ0)−

1 = O((j/n)ϕy + (j/n)2d0+ϕw) for all j = 1, . . . ,m, which implies that

T4,n =
1√
m

m−1∑
k=1

(
X̃0,k − X̃0,k+1

) k∑
j=1

(
fz (λj)

gj (d0,θ0)
− 1

)
+

(
X̃0,m −

1

m

m∑
k=1

X̃0,k

)
1√
m

m∑
j=1

(
fz (λj)

gj (d0,θ0)
− 1

)

=
1√
m

m−1∑
k=1

O(k−1)

k∑
j=1

O((j/n)ϕy + (j/n)2d0+ϕw) +O(1)
1√
m

m∑
j=1

O((j/n)ϕy + (j/n)2d0+ϕw)

= O(m1/2+ϕyn−ϕy +m1/2+2d0+ϕwn−2d0−ϕw).

Condition (17) shows that this is oP (1).

C.4 Proof of (b), second statement
The matrix B−1

n H2n(d,θ)B−1
n is symmetric and has (i, l)’th and (l, i)’th elements

−Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
(X̃j)i

λ2d
j exp(hwj(θw))(2 log λj)

hj (d,θ)
, i = 1, . . . , Ry + 1, l = 1,

Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
X1j(X̃j)i, i = Ry + 2, . . . , R+ 2, l = 1,

−Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
(X̃j)i((X̃j)l + (j/m)2(l−1)), i, l = 2, . . . , Ry + 1,

−Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
(X̃j)i((X̃j)l + (j/m)2(l−Ry−2)), i, l = Ry + 2, . . . , R+ 2,

Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
(X̃j)i(X̃j)l, i = 2, . . . , Ry + 1, l = Ry + 2, . . . , R+ 2,
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with R = Ry +Rw. To prove the second statement of Lemma 1(b) we have to show that these are
all negligible when evaluated at (d0,θ0). It suffi ces to prove the result for the generic term

Vn (d,θ) = Ĝ (d,θ)−1 1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d,θ)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d,θ)

)
(X̃j)Ry+2qj(d,θ), (28)

where qj(d0,θ0) depends on j but is at most of order O
(
(log n)2

)
and satisfies qj+1(d0,θ0) −

qj(d0,θ0) = O(j−1(log n)) uniformly in j = 1, . . . ,m. Summation by parts on Vn(d0,θ0) yields

Ĝ (d0,θ0)−1 qm(d0,θ0)
1

m

m∑
j=1

(
λ2d
j Iz (λj)

hj (d0,θ0)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d0,θ0)

)
(X̃0,j)Ry+2

+Ĝ (d0,θ0)−1 1

m

m−1∑
l=1

(ql(d0,θ0)− ql+1(d0,θ0))
l∑

j=1

(
λ2d
j Iz (λj)

hj (d0,θ0)
− 1

m

m∑
k=1

λ2d
k Iz (λk)

hk (d0,θ0)

)
(X̃0,j)Ry+2

=
1

m
qm(d0,θ0)OP (m1/2) +

1

m

m−1∑
l=1

(ql(d0,θ0)− ql+1(d0,θ0))OP (l1/2) = OP

(
m−1/2(log n)2

)
,

where the first equality follows from part (e) of the lemma.

C.5 Proof of (c)
First we prove the result for H1n, where we need to show that

sup
θ∈Θ

∣∣∣G̃a,b0,c,c1,c2(d0,θ)− G̃a,b0,c,c1,c2(d0,θ0)
∣∣∣ = oP ((log n)2(m/n)2d0)

for a, c, c1, c2 = 0, 1, 2 and b = 0, 1, . . . , 2Ry, d, d + 1, . . . , d + Rw + Ry, 2d, 2d + 1, . . . , 2d + 2Rw.
Again, showing that the difference is oP ((logm)−2) informly in θ ∈ Θ would be suffi cient to prove
part (c) for H1n, but the stronger version listed in the above equation will be useful in the proof
for H2n. By the triangle inequality and (26) it suffi ces to show that

sup
θ∈Θ

∣∣∣G̃a,b0,c,c1,c2(d0,θ)− Ĝa,b0,c(d0,θ)
∣∣∣+sup

θ∈Θ

∣∣∣Ĝa,b0,c(d0,θ)− Ĝa,b0,c(d0,θ0)
∣∣∣ = oP ((log n)2(m/n)2d0).

(29)
The first term on the left-hand side of (29) is can be bounded in exactly the same way as (26),

and the result follows using Lemma 2(i)-(ii). The second term on the left-hand side of (29) is

sup
θ∈Θ

∣∣∣∣∣∣m−1
m∑
j=1

λ2d0
j Iz(λj)

hj (d0,θ0)

(
hj (d0,θ0)

hj (d0,θ)
− 1

)
(2 log λj)

a

(
j

m

)2b0

∣∣∣∣∣∣
= sup

θ∈Θ,j=1,...,m

∣∣∣∣hj (d0,θ0)

hj (d0,θ)
− 1

∣∣∣∣m−1
m∑
j=1

Iz(λj)

hj (d0,θ0)
(2 log λj)

a

(
j

m

)2b0

= Ĝa,b0,c(d0,θ0) sup
θ∈Θ,j=1,...,m

∣∣∣∣hj (d0,θ0)− hj (d0,θ)

hj (d0,θ)

∣∣∣∣ ,
noting that all the terms inside the summation on the right-hand side of the first equality are
positive. From Lemma 2(ii),(iv) and Ĝa,b0,c(d0,θ0) = OP ((logm)a), it follows that the second term
on the left-hand side of (29) is OP ((logm)a(1 + o(1))−1λ2d0

m ), which proves (29).
Next we prove the result for H2n. Again, it suffi ces to show the result for the generic term

Vn (d,θ) defined in (28), i.e. we must show that supθ∈Θ |Vn(d0,θ)− Vn(d0,θ0)| = oP (1). By (25)
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and (29) we have that

sup
θ∈Θ

Ĝ(d0,θ)
P→ G0, (30)

and supθ∈Θ |Vn(d0,θ)− Vn(d0,θ0)| is, apart from a term that is negligible uniformly in θ,

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
Iz (λj)

gj (d0,θ)
− 1

m

m∑
k=1

Iz (λk)

gk (d0,θ)

)
exp(hwj(θw))(j/m)2d0

hj (d0,θ)
qj(d0,θ)

− 1

m

m∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 1

m

m∑
k=1

Iz (λk)

gk (d0,θ0)

)
exp(hwj(θ0w))(j/m)2d0

hj (d0,θ0)
qj(d0,θ0)

∣∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
Iz (λj)

gj (d0,θ)

exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− Iz (λj)

gj (d0,θ0)

exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)(
j

m

)2d0

∣∣∣∣∣∣ (31)

+ sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

1

m

m∑
k=1

(
Iz (λk)

gk (d0,θ)

exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− Iz (λk)

gk (d0,θ0)

exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)(
j

m

)2d0

∣∣∣∣∣∣ .(32)

By the triangle inequality, (31) is bounded by

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

Iz (λj)

gj (d0,θ0)

(
j

m

)2d0 (exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)∣∣∣∣∣∣ (33)
+ sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
j

m

)2d0 ( Iz (λj)

gj (d0,θ)
− Iz (λj)

gj (d0,θ0)

)
exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)

∣∣∣∣∣∣ . (34)

Note that, by inspection of the definition of qj(d,θ) in (28) and application of Lemma 2(i)-(ii), it
holds that

sup
θ∈Θ,j=1,...,m

∣∣∣∣exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

∣∣∣∣ = O(λ2d0
m (log n)2), (35)

such that (33) is

(33) = OP

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

Iz (λj)

gj (d0,θ0)

(
j

m

)2d0

λ2d0
m (log n)2

∣∣∣∣∣∣


= OP

(
Ĝ0,d0,0(d0,θ0)λ2d0

m (log n)2
)

= OP (λ2d0
m (log n)2).

Applying summation by parts to (34) we get the bound

sup
θ∈Θ

∣∣∣∣∣∣exp(hwm(θw))

hm (d0,θ)
qm(d0,θ)

1

m

m∑
j=1

(
j

m

)2d0 ( Iz (λj)

gj (d0,θ)
− Iz (λj)

gj (d0,θ0)

)∣∣∣∣∣∣
+ sup
θ∈Θ

∣∣∣∣∣ 1

m

m−1∑
k=1

(
exp(hwk(θw))

hk (d0,θ)
qk(d0,θ)− exp(hwk+1(θw))

hk+1 (d0,θ)
qk+1(d0,θ)

)

×
k∑
j=1

(
j

m

)2d0 ( Iz (λj)

gj (d0,θ)
− Iz (λj)

gj (d0,θ0)

)∣∣∣∣∣∣ .
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The first term is

sup
θ∈Θ

∣∣∣∣exp(hwm(θw))

hm (d0,θ)
qm(d0,θ)

1

G0

(
Ĝ0,d0,c(d0,θ)−Ĝ0,d0,c(d0,θ0)

)∣∣∣∣ = oP

(
(log n)2(log n)2(m/n)2d0

)
by (29), Lemma 2(i)-(ii), and supθ∈Θ qm(d0,θ) = O((log n)2). The second term is

OP

(
sup
θ∈Θ

∣∣∣∣∣ 1

m

m−1∑
k=2

(
exp(hwk(θw))

hk (d0,θ)
qk(d0,θ)− exp(hwk+1(θw))

hk+1 (d0,θ)
qk+1(d0,θ)

)(
k

m

)2d0

k(log n)2

(
k

n

)2d0
∣∣∣∣∣
)

= OP

(
sup
θ∈Θ

∣∣∣∣∣ 1

m

m−1∑
k=2

exp(hwk(θw))

hk (d0,θ)
(qk(d0,θ)− qk+1(d0,θ))

(
k

m

)2d0

k(log n)2

(
k

n

)2d0
∣∣∣∣∣
)

+OP

(
sup
θ∈Θ

∣∣∣∣∣ 1

m

m−1∑
k=2

qk+1(d0,θ)

(
exp(hwk(θw))

hk (d0,θ)
− exp(hwk+1(θw))

hk+1 (d0,θ)

)(
k

m

)2d0

k(log n)2

(
k

n

)2d0
∣∣∣∣∣
)
,

which, using supθ∈Θ |qk(d0,θ)− qk+1(d0,θ)| = O(k−1 log n) and supθ∈Θ |qk+1(d0,θ)| = O((log n)2),
is

OP

(
1

m

m−1∑
k=2

(
k

m

)2d0

(log n)3

(
k

n

)2d0

+
1

m

m−1∑
k=1

(log n)4
(
λ2d0
k+1 − λ

2d0
k

)( k
m

)2d0

k

(
k

n

)2d0
)

= OP

(
1

m

m−1∑
k=2

(
k

m

)2d0

(log n)3

(
k

n

)2d0

+ (log n)4λ2d0
m

1

m

m−1∑
k=1

(
k

m

)2d0 (k
n

)2d0
)

= OP

(
(log n)3(m/n)2d0 + (log n)4(m/n)4d0

)
.

Thus both terms of (34) are oP (1) by (17) because d0 > d1 > 0.
Along the same lines we rewrite (32) as

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)(
j

m

)2d0 1

m

m∑
k=1

Iz (λk)

gk (d0,θ0)

∣∣∣∣∣∣
+ sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)

(
j

m

)2d0 1

m

m∑
k=1

(
Iz (λk)

gk (d0,θ)
− Iz (λk)

gk (d0,θ0)

)∣∣∣∣∣∣
and, using the definition of Ĝa,b,c(d,θ), this is equal to

sup
θ∈Θ

∣∣∣∣∣∣Ĝ0,0,0(d0,θ0)

G0

1

m

m∑
j=1

(
exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)(
j

m

)2d0

∣∣∣∣∣∣
+ sup
θ∈Θ

∣∣∣∣∣∣ 1

G0

(
Ĝ0,0,0(d0,θ)− Ĝ0,0,0(d0,θ0)

) 1

m

m∑
j=1

exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)

(
j

m

)2d0

∣∣∣∣∣∣
= OP

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)− exp(hwj(θ0w))

hj (d0,θ0)
qj(d0,θ0)

)(
j

m

)2d0

∣∣∣∣∣∣


+oP

sup
θ∈Θ

∣∣∣∣∣∣(log n)2
(m
n

)2d0 1

m

m∑
j=1

exp(hwj(θw))

hj (d0,θ)
qj(d0,θ)

(
j

m

)2d0

∣∣∣∣∣∣
 ,
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where the second term is easily seen to be oP ((log n)4(m/n)2d0) = oP (1). By (35), the first term is

OP

sup
θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(m
n

)2d0
(log n)2

(
j

m

)2d0

∣∣∣∣∣∣
 = OP ((log n)2(m/n)2d0).

This is oP (1) which proves part (c).

C.6 Proof of (d)
Again, we first prove the result for H1n which follows if

sup
d∈Dn(ηn),θ∈Θ

∣∣∣G̃a,b,c,c1,c2(d,θ)− G̃a,b0,c,c1,c2(d0,θ)
∣∣∣ = oP ((logm)−2) (36)

for a, c, c1, c2 = 0, 1, 2 and b = 0, 1, . . . , 2Ry, d, d + 1, . . . , d + Rw + Ry, 2d, 2d + 1, . . . , 2d + 2Rw.
Defining

Ẽa,b,c,c1,c2(d,θ) =
1

m

m∑
j=1

j2dIz(λj)

hj(d,θ)c1+c2+1

(
2 exp(hyj(θy)) log λj

hj (d,θ)

)a
(j/m)2b θcρ

× exp(c1hyj(θy) + c2hwj(θw)),

Êa,b,c(d,θ) =
1

m

m∑
j=1

j2dIz(λj)

hj(d,θ)
(2 log λj)

a (j/m)2b θcρ,

we need to show that, for all a, c, c1, c2 = 0, 1, 2 and b = 0, 1, . . . , 2Ry, d, d + 1, . . . , d + Rw +

Ry, 2d, 2d+ 1, . . . , 2d+ 2Rw,

Za,b,c,c1,c2 (ηn) := sup
d∈Dn(ηn),θ∈Θ

∣∣∣Ẽa,b,c,c1,c2(d,θ)− Ẽa,b0,c,c1,c2(d0,θ)
∣∣∣ = oP (n2d0(logm)−2),

see also AS p. 600. Since b is a function of d, we distinguish between b and b0 which are obviously
the same in case b = 0, 1, . . . , 2Ry. By the triangle inequality it is suffi cient to show that

sup
d∈Dn(ηn),θ∈Θ

∣∣∣Ẽa,b,c,c1,c2(d,θ)− Êa,b,c(d,θ)
∣∣∣+ sup

d∈Dn(ηn),θ∈Θ

∣∣∣Êa,b,c(d,θ)− Êa,b0,c(d0,θ)
∣∣∣

+ sup
θ∈Θ

∣∣∣Êa,b0,c(d0,θ)− Ẽa,b0,c,c1,c2(d0,θ)
∣∣∣

=: Z1,a,b,c,c1,c2(ηn) + Z2,a,b,c(ηn) + Z3,a,b0,c,c1,c2(ηn) = oP (n2d0(logm)−2).

The result for Z3,a,b0,c,c1,c2(ηn) follows from part (c) of the lemma since it does not depend on d.
For Z2,a,b,c(ηn) we find that

Z2,a,b,c(ηn)

= sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

[
j2dIz(λj)

hj(d,θ)

(
j

m

)2b

− j2d0Iz(λj)

hj(d0,θ)

(
j

m

)2b0
]

(2 log λj)
a

∣∣∣∣∣∣
= sup

d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

(
j2d − j2d0

)
Iz(λj)

1

hj(d,θ)

(
j

m

)2b

(2 log λj)
a

∣∣∣∣∣∣
+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

j2d0Iz(λj)

(
1− hj(d,θ)

hj(d0,θ)

(
j

m

)2b0−2b
)

1

hj(d,θ)

(
j

m

)2b

(2 log λj)
a

∣∣∣∣∣∣ .
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By Lemma 2(iii), the first term of Z2,a,b,c(ηn) is bounded by

sup
d∈Dn(ηn)

∣∣∣∣∣∣ 1

m

m∑
j=1

j2d0Iz(λj)(1 + o(1))−1(2 log λj)
a
∣∣∣j2d−2d0 − 1

∣∣∣
∣∣∣∣∣∣ ,

which is oP (n2d0(logm)−2) as in (A.18) of AS.
The second term of Z2,a,b,c(ηn) is bounded by

sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

j2d0Iz(λj)

(
1− hj(d,θ)

hj(d0,θ)

)
1

hj(d,θ)

(
j

m

)2b

(2 log λj)
a

∣∣∣∣∣∣ (37)

+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

j2d0Iz(λj)
1

hj(d0,θ)

((
j

m

)2b0

−
(
j

m

)2b
)

(2 log λj)
a

∣∣∣∣∣∣ , (38)

and using Lemma 2(iii),(v) we find that (37) is

OP

 1

m

m∑
j=1

j2d0Iz(λj)λ
2d1
m (log n)a

 = OP

 1

m

m∑
j=1

λ2d0
j Iz(λj)

( n
2π

)2d0
λ2d1
m (log n)a

 .

Noting thatm−1
∑m

j=1 λ
2d0
j Iz(λj) = Ĝ0,0,0(d0, (0

′, 1,0′)′) = G0(1+oP (1)), (37) is oP (n2d0(logm)−2).
By the mean value theorem, xa = xb + (a− b)xa∗(log x) for a ≤ a∗ ≤ b which implies that

sup
d∈Dn(ηn),j=1,...,m

∣∣∣∣∣
(
j

m

)2b0

−
(
j

m

)2b
∣∣∣∣∣ = O

(
sup

d∈Dn(ηn)
(b0 − b) (logm)

)
= O

(
(log n)−5ηn(logm)

)
.

Thus, applying also Lemma 2(ii), (38) is

OP

 1

m

m∑
j=1

j2d0Iz(λj)(log n)a−5(logm)ηn

 = OP

(
ηnn

2d0(log n)a−5(logm)Ĝ0,0(d0, (0
′, 1,0′)′)

)
,

which is oP
(
n2d0(logm)−2

)
because ηn = o (1) and a ≤ 2.

Next, Z1,a,b,c,c1,c2(ηn) is

sup
d∈Dn(ηn)
θ∈Θ

∣∣∣∣∣∣θ
c
ρ

m

m∑
j=1

j2d0Iz(λj)

hj(d,θ)
j2d−2d0

[
exp(c1hyj(θy) + c2hwj(θw))

hj(d,θ)c1+c2

(
2 exp(hyj(θy)) log λj

hj (d,θ)

)a
− (2 log λj)

a

](
j

m

)2b
∣∣∣∣∣∣ .

Using the arguments applied to (26) and using Lemma 2(i),(iii), the result for Z1,a,b,c,c1,c2(ηn)

follows.
We proceed to show that supd∈Dn(ηn),θ∈Θ B−1

n ‖H2n(d,θ)−H2n(d0,θ)‖B−1
n = oP (1) or equiv-

alently that supd∈Dn(ηn),θ∈Θ |Vn(d,θ)− Vn(d0,θ)| = oP (1). Since we have shown (36) we have that

Ĝ(d,θ)
P→ G uniformly in d ∈ Dn(ηn) and θ ∈ Θ, so we need to show that the following is oP (1) :

sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
Iz (λj)

gj (d,θ)
− 1

m

m∑
k=1

Iz (λk)

gk (d,θ)

)
exp(hwj(θw))(j/m)2d

hj (d,θ)
qj(d,θ)

− 1

m

m∑
j=1

(
Iz (λj)

gj (d0,θ)
− 1

m

m∑
k=1

Iz (λk)

gk (d0,θ)

)
exp(hwj(θw))(j/m)2d0

hj(d0,θ)
qj(d0,θ)

∣∣∣∣∣∣ ,
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which is bounded by

sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))

(
Iz (λj)

gj (d,θ)

qj(d,θ)

hj(d,θ)

(
j

m

)2d

− Iz (λj)

gj (d0,θ)

qj(d0,θ)

hj(d0,θ)

(
j

m

)2d0
)∣∣∣∣∣∣ (39)

+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))

m

m∑
k=1

(
Iz (λk)

gk (d0,θ)

qj(d0,θ)

hj(d0,θ)

(
j

m

)2d0

− Iz (λk)

gk (d,θ)

qj(d,θ)

hj(d,θ)

(
j

m

)2d
)∣∣∣∣∣∣ .(40)

By the triangle inequality we get the bounds

(39) ≤ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))Iz (λj)

gj (d0,θ)

((
j

m

)2d

−
(
j

m

)2d0
)
qj(d0,θ)

hj(d0,θ)

∣∣∣∣∣∣ (41)

+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))Iz (λj)

gj (d0,θ)

(
j

m

)2d(gj (d0,θ)

gj (d,θ)
− 1

)
qj(d0,θ)

hj(d0,θ)

∣∣∣∣∣∣ (42)
+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

exp(hwj(θw))Iz (λj)

gj (d,θ)

(
j

m

)2d( qj(d,θ)

hj(d,θ)
− qj(d0,θ)

hj(d0,θ)

)∣∣∣∣∣∣ (43)

and

(40) ≤ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

((
j

m

)2d0

−
(
j

m

)2d
)
qj(d0,θ)

hj(d0,θ)

exp(hwj(θw))

m

m∑
k=1

Iz (λk)

gk (d0,θ)

∣∣∣∣∣∣ (44)

+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
j

m

)2d qj(d0,θ)

hj(d0,θ)

exp(hwj(θw))

m

m∑
k=1

Iz (λk)

gk (d0,θ)

(
1− gk (d0,θ)

gk (d,θ)

)∣∣∣∣∣∣(45)
+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

(
j

m

)2d( qj(d0,θ)

hj(d0,θ)
− qj(d,θ)

hj(d,θ)

)
exp(hwj(θw))

m

m∑
k=1

Iz (λj)

gk (d,θ)

∣∣∣∣∣∣ . (46)
The required results for (41) and (44) follow using the mean value theorem as in (38), whereas the
results for (42) and (45) follow as in (37). For (43) and (46) we note that, by inspection of the
definition of qj(d,θ) in (28), c.f. (35), it suffi ces to prove the result for

exp(hwj(θw))

(
qj(d,θ)

hj (d,θ)
− qj(d0,θ)

hj (d0,θ)

)
= exp(2hwj(θw))

(
(j/m)2d

hj(d,θ)2
− (j/m)2d0

hj(d0,θ)2

)
=

(
j

m

)2d(exp(2hwj(θw))

hj(d,θ)2
− exp(2hwj(θw))

hj(d0,θ)2

)
+

exp(2hwj(θw))

hj(d0,θ)2

((
j

m

)2d

−
(
j

m

)2d0
)
.

Inserting this into (43) ((46) follows in the same way) we get the bound

(43) ≤ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

Iz (λj)

gj (d,θ)

(
j

m

)4d(exp(2hwj(θw))

hj(d,θ)2
− exp(2hwj(θw))

hj(d0,θ)2

)∣∣∣∣∣∣
+ sup
d∈Dn(ηn),θ∈Θ

∣∣∣∣∣∣ 1

m

m∑
j=1

Iz (λj)

gj (d,θ)

(
j

m

)2d exp(2hwj(θw))

hj(d0,θ)2

((
j

m

)2d

−
(
j

m

)2d0
)∣∣∣∣∣∣ ,
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which we can handle similarly to (37) and (38), respectively.

Appendix D: Auxiliary lemmas
We now state two useful lemmas, which are used in the proofs of the main theorems. The first

is stated without proof and gathers some properties of the function hj(d,θ), which all follow by
compactness of Θ and the expansion exp(x) = 1 + x+ x2

2! + . . . of the exponential function.

Lemma 2 Let haj(θa) =
∑Ra

r=1 θa,rλ
2r, a = y, w, hj(d,θ) = exp (hyj(θy)) + λ2d

j θρ exp (hwj(θw)),
0 < d1 < d2 < 1, and let Θ be compact. Then, as n→∞,

(i) supθ∈Θ exp(haj(θa)) = 1 +O((j/n)2) for a = y, w,
(ii) infθ∈Θ hj (d0,θ)c = 1 +O((j/n)2d0) for c = 0, 1, 2,
(iii) infd∈[d1,d2],θ∈Θ hj (d,θ)c = 1 +O((j/n)2d2) for c = 0, 1, 2,

(iv) supθ∈Θ |hj(d0,θ0)− hj(d0,θ)| = O((j/n)2d0),
(v) supd∈[d1,d2],θ∈Θ |hj(d0,θ)− hj(d,θ)| = O((j/n)2d1).

The next lemma provides approximations of the periodogram of zt by that of εt, following well
known results from, e.g., Robinson (1995a), Velasco (1999), AS, and Hurvich et al. (2005).

Lemma 3 Let Assumptions A1-A6 hold. Then, as n→∞ and for all k = 1, . . . ,m,

k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

)
= OP

(
ξk,n(d0) + kϕy+1n−ϕy + kd0+ϕw+1n−d0−ϕw + k1+2d0n−2d0 + k2d0n−d0(log k)

)
and

k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)− E

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

))
= OP

(
ξk,n(d0) + kϕy+1/2n−ϕy + k1/2+2d0n−2d0

)
,

where

ξk,n(d) = k1/3(log k)2/3 + k1/2n−1/4

in the stationary case, and in the nonstationary case

ξk,n(d) = k1/(5−4d)(log k)2/(5−4d) + k2d−1(log k) + n−1/2k(1+d)/2(log n)5/4 + n−1/4kd(log k)1/2.

Proof. Define g̃j(d,θ) = λ−2d
j G0 exp(hyj(θy)) and write

k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

)
=

k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)

)
+

k∑
j=1

(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

)
.

(47)
In the stationary case the second term on the right-hand side of (47) is OP (k1/3(log k)2/3 +

kϕy+1n−ϕy+k1/2n−1/4) by (A.13)(i) of AS, and in the nonstationary case it isOP (k1/(5−4d0)(log k)2/(5−4d0)+

kϕy+1n−ϕy + k2d0−1(log k) + n−1/2k(1+d0)/2(log n)5/4 + n−1/4kd0(log k)1/2) by slight modification of
Lemma 1 of Velasco (1999) to account for the better approximation of fy(λj) due to the polynomial
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in g̃j(d0,θ0) (the required modification is the same as that used by AS to modify (4.8) of Robinson
(1995a) to obtain their (A.13)(i)). The first term on the right-hand side of (47) is

Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)
=

g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)

(
Iy (λj)

g̃j(d0,θ0)
− 1

)
(48)

+
2
√
G0θ0ρ exp(hwj(θ0w))g̃j(d0,θ0)

gj (d0,θ0)

Re (Iyw(λj))√
G0θ0ρ exp(hwj(θ0w))g̃j(d0,θ0)

(49)

+
Iw(λj) + g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)
, (50)

where Iab(λ) = 1
2πn

∑n
t=1

∑n
s=1 atbse

i(s−t)λ denotes the cross-periodogram between the two series
at and bt. Using summation by parts on (48) we find that

k∑
j=1

g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)

(
Iy (λj)

g̃j(d0,θ0)
− 1

)

=

k−1∑
j=1

(
g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)
− g̃j+1(d0,θ0)− gj+1 (d0,θ0)

gj+1 (d0,θ0)

) j∑
l=1

(
Iy (λl)

g̃l(d0,θ0)
− 1

)

+
g̃k(d0,θ0)− gk (d0,θ0)

gk (d0,θ0)

k∑
j=1

(
Iy (λj)

g̃j(d0,θ0)
− 1

)
,

which is OP ((k/n)2d0(k1/3(log k)2/3 +kϕy+1n−ϕy +k1/2n−1/4 +k1/2)) in the stationary case whereas
it is OP ((k/n)2d0(k1/(5−4d0)(log k)2/(5−4d0) + kϕy+1n−ϕy + k2d0−1(log k) +n−1/2k(1+d0)/2(log n)5/4 +

n−1/4kd0(log k)1/2 + k1/2)) in the nonstationary case, by the same methods as applied previously
and using also (4.9) of Robinson (1995a) and that |g̃j(d0,θ0)/gj (d0,θ0) − 1| ≤ C(j/n)2d0 . Next,
(50) is easily seen to be OP ((j/n)2d0) because E|Iw(λj)| = OP (1) uniformly in j = 1, . . . ,m. Since
{yt} and {wt} are independent (49) is OP ((j/n)d0(j−1(log j) + (j/n)min(ϕy ,ϕw))) in the stationary
case by Theorem 2 of Robinson (1995b), yielding a contribution to (47) of OP ((k/n)d0((log k) +

k1+min(ϕy ,ϕw)n−min(ϕy ,ϕw))). In the nonstationary case we use Theorem 1 of Velasco (1999) which
shows that Re(Iyw(λj))|g̃j (d0,θ0) |−1/2|G0θ0ρ exp(hwj(θ0w))|−1/2 = OP (j2d0−2(log j)+(j/n)min(ϕy ,ϕw)),
yielding a contribution to (47) of OP ((k/n)d0(k2d0−1(log k)+k1+min(ϕy ,ϕw)n−min(ϕy ,ϕw))) (Velasco’s
result has to be modified to accommodate multivariate time series, but the modification is simple
by comparing e.g. his equation (A.1) with equation (4.3) of Robinson (1995b), see also the second
to last equation on p. 108 of Velasco (1999)). The difference in the remainder terms relative to
Robinson (1995b) and Velasco (1999) is due to the different remainder term in the approximation
of fy(λj) by g̃j (d0,θ0) due to the polynomial in g̃j (d0,θ0).
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To prove the second result we write
k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)− E

(
Iz (λj)

gj (d0,θ0)
− 2πIε (λj)

))

=
k∑
j=1

(
Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)
− E

(
Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)

))
(51)

+
k∑
j=1

(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)− E

(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

))
. (52)

By (A.21) of AS, (52) is OP (k1/3(log k)2/3 + kϕy+1/2n−ϕy + k1/2n−1/4) in the stationary case,
and by (slight modification of) Lemma 1 of Velasco (1999), (52) is OP (k1/(5−4d0)(log k)2/(5−4d0) +

kϕy+1/2n−ϕy + k2d0−1(log k) + n−1/2k(1+d0)/2(log n)5/4 + n−1/4kd0(log k)1/2) in the nonstationary
case. For eq. (51) we write

Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)
− E

(
Iz (λj)

gj (d0,θ0)
− Iy (λj)

g̃j(d0,θ0)

)
=

g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)

[(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

)
− E

(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

)]
(53)

+
2
√
g̃j(d0,θ0)

gj (d0,θ0)

Re (Iyw(λj)− EIyw(λj))√
g̃j(d0,θ0)

(54)

+
G0θ0ρ exp(hwj(θ0w))

gj (d0,θ0)

[(
Iw (λj)

G0θ0ρ exp(hwj(θ0w))
− 2πIη(λj)

)
− E

(
Iw (λj)

G0θ0ρ exp(hwj(θ0w))
− 2πIη(λj)

)]
(55)

+
g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)
(2πIε (λj)− 1) +

G0θ0ρ exp(hwj(θ0w))

gj (d0,θ0)
(2πIη(λj)− 1) , (56)

using also that G0θ0ρ exp(hwj(θ0w)) = gj (d0,θ0)− g̃j(d0,θ0).
Using summation by parts the contribution from the last term of (56) is G0θ0ρ times

k∑
j=1

exp(hwj(θ0w))

gj (d0,θ0)
(2πIη(λj)− 1)

=
k−1∑
j=1

(
exp(hwj(θ0w))

gj (d0,θ0)
− exp(hwj+1(θ0w))

gj+1 (d0,θ0)

) j∑
l=1

(2πIη(λl)− 1) +
exp(hwk(θ0w))

gk (d0,θ0)

k∑
j=1

(2πIη(λj)− 1)

=
k−1∑
j=1

∣∣∣∣exp(hwj(θ0w))gj+1 (d0,θ0)− exp(hwj+1(θ0w))gj (d0,θ0)

gj (d0,θ0) gj+1 (d0,θ0)

∣∣∣∣OP (j1/2) +
exp(hwk(θ0w))

gk (d0,θ0)
OP (k1/2)

= OP

k−1∑
j=1

j2d0−1/2n−2d0

+OP (k1/2+2d0n−2d0) = OP (k1/2+2d0n−2d0),

using (4.9) of Robinson (1995a) for the second equality. The first term of (56) is handled in exactly
the same way yielding the same contribution. For the term (54) we can split it up in the same way
as (55) and the last term of (56), and the contribution is the same.
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Using summation by parts on (53) its contribution to (51) is
k−1∑
j=1

(
g̃j(d0,θ0)− gj (d0,θ0)

gj (d0,θ0)
− g̃j+1(d0,θ0)− gj+1 (d0,θ0)

gj+1 (d0,θ0)

)

×
j∑
l=1

[(
Iy (λl)

g̃l(d0,θ0)
− 2πIε (λl)

)
− E

(
Iy (λl)

g̃l(d0,θ0)
− 2πIε (λl)

)]

+
g̃k(d0,θ0)− gk (d0,θ0)

gk (d0,θ0)

k∑
j=1

[(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

)
− E

(
Iy (λj)

g̃j(d0,θ0)
− 2πIε (λj)

)]
,

which isOP
(

(k/n)2d0(k1/3(log k)2/3 + kϕy+1/2n−ϕy + k1/2n−1/4)
)
in the stationary case using (A.21)

of AS. In the nonstationary case we use Lemma 1 of Velasco (1999) and get that the contribution
of (53) to (51) is

OP ((k/n)2d0(k1/(5−4d0)(log k)2/(5−4d0) + kϕy+1/2n−ϕy + k2d0−1(log k)

+ n−1/2k(1+d0)/2(log n)5/4 + n−1/4kd0(log k)1/2)).

Finally the term (55) is handled in exactly the same way as the stationary case of (53) yielding the
contribution OP

(
(k/n)2d0(k1/3(log k)2/3 + kϕw+1/2n−ϕw + k1/2n−1/4)

)
to (51).
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Table 1: Simulation results for Model I
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

⌊
(3/4)n0.8

⌋
5 2048 0.0025 0.1215 -0.0239 0.1260 0.0149 0.1499 0.0169 0.1551

4096 0.0007 0.0832 -0.0180 0.0901 0.0056 0.1036 0.0129 0.1069
8192 0.0024 0.0588 -0.0106 0.0667 0.0024 0.0738 0.0091 0.0755

10 2048 0.0037 0.1663 -0.0294 0.1724 0.0208 0.1906 0.0087 0.1950
4096 0.0009 0.1067 -0.0235 0.1176 0.0056 0.1265 0.0086 0.1283
8192 0.0022 0.0723 -0.0137 0.0829 0.0024 0.0880 0.0088 0.0886

15 2048 0.0065 0.1999 -0.0317 0.2064 0.0245 0.2201 -0.0085 0.2238
4096 0.0009 0.1292 -0.0254 0.1409 0.0088 0.1493 0.0042 0.1512
8192 0.0015 0.0846 -0.0154 0.0962 0.0035 0.0962 0.0062 0.0967

Panel B: m =
⌊
n0.8

⌋
5 2048 0.0033 0.1097 -0.0243 0.1176 0.0072 0.1343 0.0123 0.1398

4096 0.0017 0.0755 -0.0174 0.0850 0.0026 0.0945 0.0100 0.0955
8192 0.0035 0.0536 -0.0084 0.0619 0.0034 0.0685 0.0111 0.0695

10 2048 0.0080 0.1532 -0.0224 0.1634 0.0165 0.1751 0.0063 0.1810
4096 0.0012 0.0979 -0.0205 0.1099 0.0024 0.1119 0.0054 0.1140
8192 0.0035 0.0666 -0.0120 0.0767 0.0035 0.0776 0.0079 0.0784

15 2048 0.0097 0.1893 -0.0218 0.1984 0.0223 0.2070 -0.0018 0.2142
4096 0.0031 0.1205 -0.0191 0.1337 0.0057 0.1347 0.0024 0.1372
8192 0.0024 0.0785 -0.0131 0.0896 0.0038 0.0850 0.0041 0.0865

Panel C: m =
⌊
(5/4)n0.8

⌋
5 2048 0.0041 0.1037 -0.0214 0.1130 0.0054 0.1260 0.0120 0.1295

4096 0.0036 0.0708 -0.0146 0.0802 0.0018 0.0867 0.0101 0.0877
8192 0.0043 0.0494 -0.0072 0.0568 0.0029 0.0610 0.0101 0.0624

10 2048 0.0053 0.1429 -0.0212 0.1558 0.0108 0.1634 0.0056 0.1694
4096 0.0029 0.0918 -0.0163 0.1045 0.0033 0.1066 0.0060 0.1085
8192 0.0032 0.0625 -0.0102 0.0713 0.0040 0.0725 0.0074 0.0726

15 2048 0.0056 0.1836 -0.0189 0.1928 0.0168 0.1999 0.0008 0.2074
4096 0.0029 0.1125 -0.0144 0.1245 0.0059 0.1239 0.0044 0.1280
8192 0.0040 0.0742 -0.0079 0.0835 0.0059 0.0791 0.0053 0.0809

Note: The polynomial approximation used under the heading “LPWN(Ry , Rw)” is (Ry , Rw).

Table 2: Simulation results for Model II with (αy, βy) = (0.8, 0) and (αw, βw) = (0, 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

⌊
(3/4)n0.8

⌋
5 2048 0.0460 0.1158 -0.0046 0.1115 0.0145 0.1234 0.0106 0.1272

4096 0.0315 0.0786 -0.0140 0.0800 -0.0022 0.0838 -0.0006 0.0856
8192 0.0217 0.0555 -0.0195 0.0629 -0.0113 0.0620 -0.0093 0.0637

10 2048 0.0264 0.1486 -0.0212 0.1568 0.0159 0.1695 0.0014 0.1729
4096 0.0151 0.0955 -0.0259 0.1107 -0.0046 0.1167 -0.0057 0.1149
8192 0.0081 0.0649 -0.0258 0.0827 -0.0158 0.0834 -0.0110 0.0817

15 2048 0.0206 0.1806 -0.0278 0.1894 0.0190 0.1977 -0.0126 0.2049
4096 0.0074 0.1156 -0.0314 0.1333 0.0001 0.1369 -0.0062 0.1375
8192 0.0020 0.0769 -0.0274 0.0958 -0.0082 0.0949 -0.0069 0.0936

Panel B: m =
⌊
n0.8

⌋
5 2048 0.0667 0.1177 0.0105 0.1109 0.0298 0.1213 0.0197 0.1232

4096 0.0516 0.0839 0.0001 0.0786 0.0127 0.0822 0.0109 0.0823
8192 0.0410 0.0621 -0.0057 0.0586 0.0018 0.0562 0.0027 0.0585

10 2048 0.0457 0.1433 -0.0006 0.1530 0.0281 0.1615 0.0085 0.1631
4096 0.0298 0.0922 -0.0109 0.1049 0.0131 0.1098 0.0057 0.1081
8192 0.0224 0.0638 -0.0140 0.0759 0.0032 0.0788 0.0015 0.0756

15 2048 0.0368 0.1760 -0.0051 0.1862 0.0289 0.1895 -0.0007 0.1950
4096 0.0221 0.1100 -0.0132 0.1271 0.0125 0.1270 0.0012 0.1275
8192 0.0141 0.0723 -0.0153 0.0887 0.0099 0.0857 0.0037 0.0851

Panel C: m =
⌊
(5/4)n0.8

⌋
5 2048 0.0803 0.1230 0.0283 0.1138 0.0436 0.1217 0.0296 0.1226

4096 0.0662 0.0910 0.0162 0.0773 0.0293 0.0847 0.0235 0.0817
8192 0.0552 0.0703 0.0077 0.0544 0.0156 0.0560 0.0149 0.0559

10 2048 0.0546 0.1393 0.0155 0.1505 0.0396 0.1561 0.0195 0.1577
4096 0.0416 0.0923 0.0056 0.1025 0.0271 0.1082 0.0150 0.1046
8192 0.0328 0.0654 -0.0014 0.0710 0.0201 0.0785 0.0127 0.0730

15 2048 0.0422 0.1734 0.0087 0.1824 0.0378 0.1869 0.0096 0.1908
4096 0.0310 0.1058 0.0039 0.1202 0.0261 0.1192 0.0114 0.1206
8192 0.0241 0.0715 -0.0004 0.0840 0.0234 0.0814 0.0130 0.0817

Note: The polynomial approximation used under the heading “LPWN(Ry , Rw)” is (Ry , Rw).
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Table 3: Simulation results for Model III with(αy, βy) = (0, 0) and (αw, βw) = (0, 0.8)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

⌊
(3/4)n0.8

⌋
5 2048 -0.0549 0.1202 -0.0565 0.1193 0.0158 0.1543 0.0203 0.1602

4096 -0.0397 0.0887 -0.0373 0.0868 0.0056 0.1046 0.0160 0.1106
8192 -0.0251 0.0632 -0.0216 0.0635 0.0022 0.0749 0.0110 0.0779

10 2048 -0.0833 0.1626 -0.0874 0.1627 0.0100 0.1927 0.0083 0.1988
4096 -0.0602 0.1169 -0.0588 0.1140 0.0005 0.1295 0.0110 0.1352
8192 -0.0390 0.0811 -0.0353 0.0796 0.0001 0.0889 0.0102 0.0926

15 2048 -0.1009 0.1903 -0.1095 0.1943 0.0061 0.2213 -0.0082 0.2272
4096 -0.0762 0.1411 -0.0755 0.1377 -0.0051 0.1521 0.0017 0.1577
8192 -0.0500 0.0971 -0.0465 0.0941 -0.0081 0.0987 0.0030 0.1008

Panel B: m =
⌊
n0.8

⌋
5 2048 -0.1034 0.1325 -0.0910 0.1237 0.0108 0.1400 0.0199 0.1484

4096 -0.0768 0.1032 -0.0600 0.0885 0.0034 0.0969 0.0156 0.1012
8192 -0.0509 0.0729 -0.0352 0.0609 0.0037 0.0696 0.0147 0.0728

10 2048 -0.1496 0.1796 -0.1419 0.1752 0.0158 0.1872 0.0131 0.1928
4096 -0.1153 0.1434 -0.0978 0.1257 0.0024 0.1215 0.0139 0.1260
8192 -0.0767 0.1003 -0.0602 0.0842 0.0011 0.0842 0.0132 0.0874

15 2048 -0.1817 0.2113 -0.1801 0.2131 0.0160 0.2202 -0.0006 0.2266
4096 -0.1416 0.1714 -0.1254 0.1546 -0.0006 0.1450 0.0079 0.1509
8192 -0.0975 0.1235 -0.0812 0.1055 -0.0048 0.0948 0.0095 0.0985

Panel C: m =
⌊
(5/4)n0.8

⌋
5 2048 -0.1465 0.1548 -0.1425 0.1572 0.0156 0.1296 0.0236 0.1367

4096 -0.1222 0.1341 -0.0974 0.1113 0.0057 0.0900 0.0175 0.0935
8192 -0.0868 0.0987 -0.0619 0.0742 0.0047 0.0633 0.0161 0.0670

10 2048 -0.1971 0.2022 -0.2114 0.2225 0.0226 0.1752 0.0156 0.1808
4096 -0.1757 0.1856 -0.1545 0.1667 0.0084 0.1170 0.0155 0.1192
8192 -0.1297 0.1424 -0.1041 0.1151 0.0046 0.0790 0.0165 0.0816

15 2048 -0.2243 0.2279 -0.2543 0.2631 0.0309 0.2154 0.0122 0.2203
4096 -0.2091 0.2174 -0.1951 0.2065 0.0101 0.1397 0.0077 0.1437
8192 -0.1603 0.1730 -0.1347 0.1456 0.0057 0.0927 0.0162 0.0942

Note: The polynomial approximation used under the heading “LPWN(Ry , Rw)” is (Ry , Rw).

Table 4: Simulation results for Model IV with (αy, βy) = (0, 0) and (αw, βw) = (0.8, 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

⌊
(3/4)n0.8

⌋
5 2048 0.0233 0.0375 -0.0622 0.0897 -0.0017 0.0542 -0.0364 0.0707

4096 0.0123 0.0251 -0.0595 0.0750 0.0027 0.0351 -0.0392 0.0570
8192 0.0016 0.0161 -0.0569 0.0647 0.0031 0.0181 -0.0457 0.0574

10 2048 0.0384 0.0487 -0.1088 0.1276 -0.0157 0.0615 -0.0597 0.0781
4096 0.0209 0.0304 -0.1074 0.1174 -0.0005 0.0428 -0.0710 0.0800
8192 0.0032 0.0170 -0.1048 0.1101 0.0032 0.0179 -0.0829 0.0885

15 2048 0.0490 0.0577 -0.1364 0.1516 -0.0244 0.0694 -0.0720 0.0859
4096 0.0265 0.0349 -0.1386 0.1466 -0.0024 0.0512 -0.0907 0.0974
8192 0.0041 0.0172 -0.1376 0.1417 0.0036 0.0186 -0.1069 0.1106

Panel B: m =
⌊
n0.8

⌋
5 2048 0.0361 0.0441 -0.0486 0.0748 -0.0058 0.0454 -0.0533 0.0859

4096 0.0291 0.0347 -0.0500 0.0644 -0.0119 0.0339 -0.0480 0.0639
8192 0.0206 0.0251 -0.0515 0.0595 -0.0141 0.0280 -0.0380 0.0455

10 2048 0.0623 0.0676 -0.0858 0.1039 -0.0161 0.0485 -0.0848 0.1093
4096 0.0501 0.0538 -0.0916 0.1008 -0.0235 0.0403 -0.0601 0.0718
8192 0.0356 0.0385 -0.0953 0.1001 -0.0284 0.0383 -0.0568 0.0607

15 2048 0.0806 0.0848 -0.1102 0.1250 -0.0228 0.0520 -0.0866 0.1118
4096 0.0646 0.0676 -0.1178 0.1252 -0.0315 0.0458 -0.0580 0.0676
8192 0.0463 0.0486 -0.1239 0.1277 -0.0386 0.0470 -0.0705 0.0736

Panel C: m =
⌊
(5/4)n0.8

⌋
5 2048 0.0413 0.0472 -0.0322 0.0627 -0.0004 0.0415 -0.0448 0.0818

4096 0.0369 0.0405 -0.0374 0.0529 -0.0088 0.0296 -0.0488 0.0671
8192 0.0317 0.0342 -0.0416 0.0499 -0.0123 0.0232 -0.0493 0.0586

10 2048 0.0738 0.0774 -0.0633 0.0841 -0.0062 0.0413 -0.0904 0.1170
4096 0.0661 0.0684 -0.0737 0.0833 -0.0139 0.0311 -0.0928 0.1057
8192 0.0559 0.0574 -0.0819 0.0867 -0.0195 0.0282 -0.0719 0.0810

15 2048 0.0972 0.1000 -0.0844 0.1010 -0.0086 0.0415 -0.1180 0.1408
4096 0.0869 0.0887 -0.0963 0.1038 -0.0163 0.0330 -0.1036 0.1198
8192 0.0727 0.0740 -0.1073 0.1110 -0.0254 0.0330 -0.0598 0.0717

Note: The polynomial approximation used under the heading “LPWN(Ry , Rw)” is (Ry , Rw).
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Table 5: Simulation results for Model V with (αy, βy) = (0.8, 0) and (αw, βw) = (−0.8, 0)
LWN LPWN(1,0) LPWN(0,1) LPWN(1,1)

nsr n Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: m =

⌊
(3/4)n0.8

⌋
5 2048 0.1119 0.1574 0.0111 0.1297 0.0355 0.1450 0.0016 0.1437

4096 0.0750 0.1049 -0.0088 0.0857 0.0043 0.0889 0.0001 0.0873
8192 0.0509 0.0725 -0.0181 0.0646 -0.0088 0.0612 -0.0068 0.0631

10 2048 0.1217 0.1977 0.0226 0.1848 0.0688 0.1935 0.0085 0.1991
4096 0.0771 0.1236 -0.0037 0.1267 0.0343 0.1378 0.0102 0.1317
8192 0.0494 0.0818 -0.0163 0.0901 0.0016 0.0949 -0.0010 0.0868

15 2048 0.1334 0.2381 0.0314 0.2162 0.0654 0.2108 -0.0084 0.2241
4096 0.0848 0.1470 0.0062 0.1513 0.0537 0.1520 0.0216 0.1569
8192 0.0526 0.0938 -0.0070 0.1068 0.0380 0.1105 0.0244 0.1087

Panel B: m =
⌊
n0.8

⌋
5 2048 0.1940 0.2187 0.0574 0.1711 0.0999 0.1952 -0.0103 0.1679

4096 0.1364 0.1522 0.0111 0.0996 0.0456 0.1248 -0.0017 0.1018
8192 0.0990 0.1098 -0.0038 0.0620 0.0107 0.0658 0.0058 0.0598

10 2048 0.2196 0.2670 0.0781 0.1965 0.1007 0.1947 -0.0061 0.1971
4096 0.1474 0.1723 0.0540 0.1515 0.1036 0.1684 0.0169 0.1478
8192 0.1018 0.1185 0.0134 0.1024 0.0898 0.1370 0.0293 0.1103

15 2048 0.2049 0.3152 0.0407 0.2103 0.0683 0.2007 -0.0126 0.2139
4096 0.1637 0.2003 0.0601 0.1547 0.0834 0.1508 0.0117 0.1564
8192 0.1095 0.1310 0.0386 0.1202 0.1003 0.1314 0.0494 0.1257

Panel C: m =
⌊
(5/4)n0.8

⌋
5 2048 0.2858 0.3023 0.1089 0.2088 0.1421 0.2190 -0.0048 0.1535

4096 0.2068 0.2163 0.0765 0.1676 0.1198 0.1914 -0.0051 0.1062
8192 0.1524 0.1587 0.0153 0.0740 0.0340 0.0886 0.0012 0.0602

10 2048 0.2544 0.3636 -0.0191 0.1714 0.0519 0.1641 -0.0009 0.1658
4096 0.2283 0.2446 0.0830 0.1563 0.1113 0.1644 0.0056 0.1314
8192 0.1618 0.1715 0.0940 0.1521 0.1524 0.1786 0.0247 0.1157

15 2048 0.0766 0.4017 -0.1026 0.2031 0.0195 0.1870 -0.0091 0.1954
4096 0.2324 0.2818 0.0021 0.1396 0.0390 0.1277 -0.0008 0.1324
8192 0.1766 0.1894 0.0709 0.1221 0.0863 0.1266 0.0148 0.1061

Note: The polynomial approximation used under the heading “LPWN(Ry , Rw)” is (Ry , Rw).
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Table 6: Local Whittle estimation of long memory in volatility of DJIA stocks
m =

⌊
(3/4)n0.8

⌋
m =

⌊
n0.8

⌋
m =

⌊
(5/4)n0.8

⌋
Ticker Symbol LW LPW LWN LW LPW LWN LW LPW LWN

AA 0.1554
(0.0195)

0.2313
(0.0292)

0.6079
(0.0355)

0.1379
(0.0169)

0.1978
(0.0253)

0.6063
(0.0308)

0.1349
(0.0151)

0.1735
(0.0226)

0.5629
(0.0285)

AIG 0.2372
(0.0195)

0.3310
(0.0292)

0.6216
(0.0352)

0.2042
(0.0169)

0.2990
(0.0253)

0.6471
(0.0299)

0.1830
(0.0151)

0.2697
(0.0226)

0.6603
(0.0265)

AXP 0.2462
(0.0195)

0.3411
(0.0292)

0.6231
(0.0351)

0.2115
(0.0169)

0.3089
(0.0253)

0.6514
(0.0298)

0.1987
(0.0151)

0.2747
(0.0226)

0.6335
(0.0270)

BA 0.1771
(0.0195)

0.2115
(0.0292)

0.5124
(0.0385)

0.1509
(0.0169)

0.2066
(0.0253)

0.5336
(0.0327)

0.1396
(0.0151)

0.1900
(0.0226)

0.5142
(0.0298)

C 0.2458
(0.0195)

0.3242
(0.0292)

0.6138
(0.0354)

0.2141
(0.0169)

0.2992
(0.0253)

0.6310
(0.0302)

0.1889
(0.0151)

0.2776
(0.0226)

0.6557
(0.0266)

CAT 0.1596
(0.0195)

0.2229
(0.0292)

0.5263
(0.0380)

0.1280
(0.0169)

0.2022
(0.0253)

0.5788
(0.0315)

0.1122
(0.0151)

0.1781
(0.0226)

0.5946
(0.0278)

DD 0.0801
(0.0195)

0.1211
(0.0292)

0.4093
(0.0433)

0.0810
(0.0169)

0.0956
(0.0253)

0.3367
(0.0420)

0.0721
(0.0151)

0.0967
(0.0226)

0.3482
(0.0368)

DIS 0.1853
(0.0195)

0.2477
(0.0292)

0.7505
(0.0325)

0.1744
(0.0169)

0.2134
(0.0253)

0.6824
(0.0292)

0.1576
(0.0151)

0.2050
(0.0226)

0.6705
(0.0264)

GE 0.2131
(0.0195)

0.2807
(0.0292)

0.7272
(0.0329)

0.1808
(0.0169)

0.2580
(0.0253)

0.7545
(0.0281)

0.1661
(0.0151)

0.2324
(0.0226)

0.7463
(0.0252)

GM 0.1803
(0.0195)

0.1949
(0.0292)

0.3965
(0.0441)

0.1602
(0.0169)

0.2027
(0.0253)

0.4091
(0.0375)

0.1358
(0.0151)

0.1982
(0.0226)

0.4614
(0.0315)

HD 0.1958
(0.0195)

0.2724
(0.0292)

0.7417
(0.0326)

0.1723
(0.0169)

0.2432
(0.0253)

0.7401
(0.0283)

0.1490
(0.0151)

0.2249
(0.0226)

0.7647
(0.0250)

HON 0.1951
(0.0195)

0.2418
(0.0292)

0.4460
(0.0414)

0.1787
(0.0169)

0.2253
(0.0253)

0.4242
(0.0368)

0.1681
(0.0151)

0.2117
(0.0226)

0.4073
(0.0336)

HPQ 0.1951
(0.0195)

0.2573
(0.0292)

0.8454
(0.0310)

0.1845
(0.0169)

0.2290
(0.0253)

0.7584
(0.0280)

0.1557
(0.0151)

0.2297
(0.0226)

0.8045
(0.0245)

IBM 0.2151
(0.0195)

0.2915
(0.0292)

0.6535
(0.0344)

0.1931
(0.0169)

0.2638
(0.0253)

0.6359
(0.0301)

0.1702
(0.0151)

0.2464
(0.0226)

0.6593
(0.0265)

INTC 0.2106
(0.0195)

0.2620
(0.0292)

0.6798
(0.0338)

0.1807
(0.0169)

0.2533
(0.0253)

0.6894
(0.0291)

0.1541
(0.0151)

0.2378
(0.0226)

0.7289
(0.0254)

JNJ 0.2182
(0.0195)

0.2961
(0.0292)

0.6415
(0.0347)

0.1940
(0.0169)

0.2641
(0.0253)

0.6394
(0.0301)

0.1600
(0.0151)

0.2566
(0.0226)

0.7019
(0.0258)

JPM 0.2440
(0.0195)

0.3166
(0.0292)

0.6062
(0.0356)

0.2173
(0.0169)

0.2866
(0.0253)

0.6058
(0.0308)

0.1953
(0.0151)

0.2684
(0.0226)

0.6164
(0.0273)

KO 0.2032
(0.0195)

0.2889
(0.0292)

0.8077
(0.0316)

0.1833
(0.0169)

0.2506
(0.0253)

0.7923
(0.0275)

0.1600
(0.0151)

0.2361
(0.0226)

0.8157
(0.0243)

MCD 0.1317
(0.0195)

0.2005
(0.0292)

0.7193
(0.0330)

0.1171
(0.0169)

0.1701
(0.0253)

0.7117
(0.0287)

0.1151
(0.0151)

0.1423
(0.0226)

0.6718
(0.0263)

MMM 0.1592
(0.0195)

0.2235
(0.0292)

0.9206
(0.0301)

0.1431
(0.0169)

0.1944
(0.0253)

0.8713
(0.0266)

0.1305
(0.0151)

0.1770
(0.0226)

0.8399
(0.0241)

MO 0.2112
(0.0195)

0.2738
(0.0292)

0.5148
(0.0384)

0.1879
(0.0169)

0.2505
(0.0253)

0.5163
(0.0332)

0.1628
(0.0151)

0.2402
(0.0226)

0.5498
(0.0288)

MRK 0.1731
(0.0195)

0.2031
(0.0292)

0.4632
(0.0405)

0.1540
(0.0169)

0.1931
(0.0253)

0.4600
(0.0352)

0.1220
(0.0151)

0.2003
(0.0226)

0.5379
(0.0291)

MSFT 0.2305
(0.0195)

0.3173
(0.0292)

0.6135
(0.0354)

0.2023
(0.0169)

0.2883
(0.0253)

0.6223
(0.0304)

0.1778
(0.0151)

0.2632
(0.0226)

0.6516
(0.0267)

PFE 0.1892
(0.0195)

0.2733
(0.0292)

0.6201
(0.0352)

0.1644
(0.0169)

0.2407
(0.0253)

0.6325
(0.0302)

0.1450
(0.0151)

0.2203
(0.0226)

0.6500
(0.0267)

PG 0.2173
(0.0195)

0.2391
(0.0292)

0.5829
(0.0362)

0.1945
(0.0169)

0.2435
(0.0253)

0.5525
(0.0321)

0.1678
(0.0151)

0.2397
(0.0226)

0.5919
(0.0278)

SBC 0.2088
(0.0195)

0.2841
(0.0292)

0.5856
(0.0361)

0.1866
(0.0169)

0.2582
(0.0253)

0.5784
(0.0315)

0.1683
(0.0151)

0.2393
(0.0226)

0.5839
(0.0280)

UTX 0.1934
(0.0195)

0.2646
(0.0292)

0.6712
(0.0340)

0.1650
(0.0169)

0.2417
(0.0253)

0.6893
(0.0291)

0.1551
(0.0151)

0.2121
(0.0226)

0.6709
(0.0263)

VZ 0.2174
(0.0195)

0.2788
(0.0292)

0.5923
(0.0359)

0.1866
(0.0169)

0.2642
(0.0253)

0.6139
(0.0306)

0.1681
(0.0151)

0.2438
(0.0226)

0.6188
(0.0273)

WMT 0.2005
(0.0195)

0.2793
(0.0292)

0.7924
(0.0318)

0.1668
(0.0169)

0.2573
(0.0253)

0.8247
(0.0271)

0.1496
(0.0151)

0.2301
(0.0226)

0.8312
(0.0242)

XOM 0.1817
(0.0195)

0.2373
(0.0292)

0.4535
(0.0410)

0.1507
(0.0169)

0.2254
(0.0253)

0.5013
(0.0337)

0.1408
(0.0151)

0.1982
(0.0226)

0.4863
(0.0306)

Note: Asymptotic standard errors in parentheses.
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Table 7: LPWN estimation of long memory in volatility of DJIA stocks
m =

⌊
(3/4)n0.8

⌋
m =

⌊
n0.8

⌋
m =

⌊
(5/4)n0.8

⌋
Ticker Symbol (1, 0) (0, 1) (1, 1) (1, 0) (0, 1) (1, 1) (1, 0) (0, 1) (1, 1)

AA 0.5704
(0.0549)

0.5702
(0.0757)

0.6120
(0.1122)

0.6023
(0.0464)

0.6029
(0.0649)

0.4701
(0.1030)

0.5629
(0.0428)

0.6200
(0.0578)

0.6191
(0.0868)

AIG 0.5941
(0.0539)

0.5974
(0.0751)

0.6178
(0.1120)

0.6056
(0.0462)

0.6020
(0.0649)

0.6092
(0.0972)

0.6283
(0.0407)

0.6214
(0.0578)

0.6145
(0.0869)

AXP 0.6015
(0.0536)

0.6100
(0.0748)

0.6028
(0.1125)

0.6147
(0.0459)

0.6077
(0.0648)

0.5962
(0.0976)

0.6017
(0.0415)

0.6352
(0.0576)

0.6099
(0.0870)

BA 0.5081
(0.0580)

0.6615
(0.0739)

0.6654
(0.1109)

0.5334
(0.0491)

0.5796
(0.0654)

0.6030
(0.0974)

0.5157
(0.0446)

0.5664
(0.0588)

0.5641
(0.0882)

C 0.6160
(0.0530)

0.6593
(0.0740)

0.6882
(0.1104)

0.6284
(0.0455)

0.6306
(0.0645)

0.6317
(0.0967)

0.6398
(0.0404)

0.6178
(0.0579)

0.6175
(0.0868)

CAT 0.5010
(0.0585)

0.5261
(0.0770)

0.5255
(0.1156)

0.5243
(0.0495)

0.5167
(0.0670)

0.4979
(0.1014)

0.5520
(0.0432)

0.5421
(0.0593)

0.5402
(0.0890)

DD 0.3581
(0.0701)

0.3638
(0.0863)

0.3510
(0.1313)

0.3483
(0.0617)

0.4387
(0.0700)

0.4478
(0.1044)

0.3666
(0.0536)

0.3773
(0.0659)

0.4330
(0.0944)

DIS 0.7497
(0.0488)

0.8328
(0.0727)

0.8286
(0.1091)

0.6789
(0.0440)

0.8474
(0.0630)

0.8383
(0.0945)

0.6670
(0.0396)

0.7881
(0.0565)

0.7878
(0.0847)

GE 0.7269
(0.0494)

0.7742
(0.0729)

0.8034
(0.1092)

0.7550
(0.0421)

0.7544
(0.0632)

0.7556
(0.0949)

0.7466
(0.0378)

0.7609
(0.0566)

0.7620
(0.0849)

GM 0.3993
(0.0659)

0.5542
(0.0761)

0.2600
(0.1505)

0.4240
(0.0552)

0.4506
(0.0695)

0.5365
(0.0996)

0.4104
(0.0503)

0.4114
(0.0640)

0.4186
(0.0954)

HD 0.7044
(0.0500)

0.7534
(0.0730)

0.5764
(0.1134)

0.7393
(0.0425)

0.7452
(0.0633)

0.7040
(0.0954)

0.7425
(0.0379)

0.7358
(0.0567)

0.7042
(0.0854)

HON 0.4456
(0.0621)

0.7722
(0.0729)

0.8197
(0.1091)

0.4315
(0.0547)

0.5835
(0.0653)

0.6591
(0.0961)

0.4194
(0.0497)

0.4981
(0.0605)

0.5835
(0.0877)

HPQ 0.8446
(0.0466)

0.9218
(0.0727)

0.9606
(0.1093)

0.7540
(0.0421)

0.9184
(0.0630)

0.8839
(0.0944)

0.8127
(0.0366)

0.8219
(0.0564)

0.8401
(0.0845)

IBM 0.6526
(0.0517)

0.6980
(0.0735)

0.7179
(0.1100)

0.6355
(0.0453)

0.6783
(0.0638)

0.6768
(0.0958)

0.6541
(0.0400)

0.6511
(0.0574)

0.6488
(0.0862)

INTC 0.6769
(0.0509)

0.7809
(0.0729)

0.8081
(0.1092)

0.6873
(0.0437)

0.7155
(0.0635)

0.7400
(0.0950)

0.6965
(0.0389)

0.6900
(0.0570)

0.6864
(0.0856)

JNJ 0.6441
(0.0520)

0.6649
(0.0739)

0.6981
(0.1103)

0.6415
(0.0451)

0.6689
(0.0640)

0.6678
(0.0960)

0.6268
(0.0407)

0.6086
(0.0580)

0.6098
(0.0870)

JPM 0.6090
(0.0533)

0.6591
(0.0740)

0.6590
(0.1110)

0.6084
(0.0461)

0.6465
(0.0642)

0.6438
(0.0964)

0.6201
(0.0409)

0.6273
(0.0577)

0.6294
(0.0866)

KO 0.7990
(0.0476)

0.8041
(0.0728)

0.7929
(0.1093)

0.7924
(0.0413)

0.8299
(0.0630)

0.8048
(0.0946)

0.7974
(0.0369)

0.7922
(0.0564)

0.8160
(0.0846)

MCD 0.4935
(0.0589)

0.6956
(0.0735)

0.4919
(0.1175)

0.4920
(0.0511)

0.7148
(0.0635)

0.4943
(0.1016)

0.4878
(0.0459)

0.7481
(0.0566)

0.5001
(0.0906)

MMM 0.9199
(0.0451)

0.9893
(0.0729)

0.9879
(0.1094)

0.8702
(0.0399)

0.9808
(0.0632)

0.9611
(0.0947)

0.8384
(0.0362)

0.9869
(0.0566)

0.9645
(0.0847)

MO 0.5207
(0.0573)

0.5703
(0.0757)

0.5868
(0.1130)

0.5226
(0.0496)

0.5476
(0.0661)

0.5499
(0.0991)

0.5060
(0.0451)

0.5055
(0.0602)

0.5119
(0.0901)

MRK 0.4637
(0.0608)

0.5836
(0.0754)

0.5988
(0.1126)

0.4644
(0.0526)

0.5420
(0.0663)

0.5481
(0.0992)

0.4575
(0.0474)

0.4327
(0.0629)

0.4280
(0.0947)

MSFT 0.6095
(0.0533)

0.6327
(0.0744)

0.6694
(0.1108)

0.6104
(0.0461)

0.6090
(0.0648)

0.6060
(0.0973)

0.6276
(0.0407)

0.6152
(0.0579)

0.6078
(0.0870)

PFE 0.6152
(0.0530)

0.6012
(0.0750)

0.6320
(0.1116)

0.6217
(0.0457)

0.6153
(0.0647)

0.6137
(0.0971)

0.6128
(0.0411)

0.6058
(0.0580)

0.6056
(0.0871)

PG 0.5740
(0.0547)

0.8113
(0.0728)

0.7787
(0.1093)

0.5447
(0.0486)

0.6809
(0.0638)

0.7760
(0.0947)

0.5856
(0.0420)

0.6035
(0.0581)

0.6219
(0.0867)

SBC 0.5828
(0.0544)

0.6089
(0.0748)

0.6023
(0.1125)

0.5821
(0.0471)

0.5864
(0.0652)

0.5876
(0.0978)

0.5830
(0.0421)

0.5752
(0.0586)

0.5941
(0.0874)

UTX 0.6734
(0.0510)

0.6872
(0.0736)

0.6863
(0.1105)

0.6687
(0.0443)

0.6683
(0.0640)

0.6758
(0.0958)

0.6713
(0.0395)

0.6955
(0.0570)

0.6158
(0.0869)

VZ 0.5935
(0.0539)

0.7149
(0.0733)

0.7093
(0.1101)

0.6126
(0.0460)

0.6158
(0.0647)

0.6764
(0.0958)

0.5984
(0.0416)

0.6036
(0.0581)

0.6046
(0.0871)

WMT 0.7926
(0.0477)

0.8095
(0.0728)

0.7760
(0.1094)

0.7892
(0.0414)

0.7729
(0.0631)

0.7972
(0.0946)

0.8020
(0.0368)

0.7882
(0.0565)

0.7890
(0.0847)

XOM 0.4575
(0.0612)

0.4979
(0.0780)

0.5176
(0.1160)

0.4436
(0.0539)

0.4410
(0.0699)

0.4567
(0.1038)

0.4690
(0.0468)

0.4843
(0.0609)

0.4768
(0.0918)

Note: The heading “(Ry , Rw)” indicates the LPWN(Ry , Rw) estimator. Asymptotic standard errors in parentheses.
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Table 8: Parametric Whittle estimation of long memory in volatility of DJIA stocks
Ticker Symbol d̂ α̂y β̂y σ̂2ε α̂w β̂w σ̂2η

AA 0.5777
(0.0943)

−0.5431
(0.1864)

− 0.1634
(0.1122)

0.0362
(0.0206)

− 3.3266
(0.1360)

AIG 0.6377
(0.0748)

−0.7946
(0.1447)

− 0.2771
(0.1629)

−0.8357
(0.0925)

0.9185
(0.3044)

2.8112
(0.7084)

AXP 0.5915
(0.0695)

− −0.7416
(0.0863)

1.9245
(0.2775)

0.2959
(0.1167)

− 1.2799
(0.3486)

BA 0.5532
(0.1019)

−0.9275
(0.2558)

0.6585
(0.2779)

0.1152
(0.0844)

− 0.0584
(0.0215)

3.2629
(0.1125)

C 0.6201
(0.0671)

− − 0.0913
(0.0482)

− − 3.1170
(0.0866)

CAT 0.4444
(0.1982)

− − 0.2211
(0.4432)

0.6814
(0.1389)

−0.7236
(0.1823)

3.2299
(0.5543)

DD 0.2478
(0.0978)

−0.7859
(0.3492)

0.8867
(0.3360)

0.7682
(0.8560)

− − 4.1923
(0.7411)

DIS 0.7555
(0.1331)

− − 0.0125
(0.0161)

− 0.0604
(0.0160)

3.3340
(0.0758)

GE 0.7509
(0.1177)

0.6409
(0.2936)

−0.8718
(0.0901)

0.1393
(0.1774)

− − 3.1386
(0.1740)

GM 0.5040
(0.1438)

−0.9730
(0.0440)

0.9371
(0.1043)

0.1624
(0.2038)

0.6010
(0.2992)

−0.5739
(0.2931)

3.2918
(0.2419)

HD 0.6211
(0.1200)

0.4356
(0.0676)

−0.8670
(0.0453)

1.5042
(0.5819)

− − 1.8557
(0.5603)

HON 0.4166
(0.0672)

−0.3490
(0.3161)

− 0.6309
(0.4581)

−0.6202
(0.3682)

0.6475
(0.3093)

2.7333
(0.4812)

HPQ 0.9298
(0.1684)

−0.9010
(0.1339)

− 0.0085
(0.0133)

0.6844
(0.1604)

−0.6567
(0.1633)

3.3724
(0.0762)

IBM 0.6775
(0.0978)

−0.6652
(0.1972)

− 0.1063
(0.0743)

0.0325
(0.0196)

− 3.1645
(0.1037)

INTC 0.7168
(0.0865)

−0.8816
(0.1020)

− 0.0712
(0.0557)

−0.9341
(0.0319)

0.9686
(0.0836)

3.0632
(0.3243)

JNJ 0.5824
(0.1038)

0.3924
(0.0799)

−0.7923
(0.0630)

0.9809
(0.7210)

− − 2.4001
(0.6923)

JPM 0.5798
(0.0624)

− − 0.1461
(0.0688)

− − 3.1921
(0.1005)

KO 0.8234
(0.1214)

−0.7461
(0.2712)

− 0.0249
(0.0267)

− 0.0423
(0.0166)

3.2834
(0.0802)

MCD 0.6211
(0.1290)

0.5379
(0.1005)

−0.8949
(0.0414)

0.8105
(0.4203)

− − 2.6296
(0.4025)

MMM 0.7032
(0.1748)

− − 0.0128
(0.0236)

− − 3.5654
(0.0871)

MO 0.5410
(0.0760)

0.6217
(0.3652)

− 0.0185
(0.0339)

− 0.0349
(0.0194)

3.2044
(0.0876)

MRK 0.4903
(0.0764)

− − 0.1430
(0.0873)

− − 3.2380
(0.1142)

MSFT 0.5987
(0.0725)

−0.7656
(0.1451)

− 0.2990
(0.1846)

−0.8105
(0.0887)

0.8940
(0.2491)

2.8675
(0.6008)

PFE 0.6093
(0.0850)

− − 0.0777
(0.0428)

− − 3.3014
(0.0872)

PG 0.5724
(0.0741)

− − 0.0901
(0.0565)

− − 3.1889
(0.0942)

SBC 0.5518
(0.0657)

− − 0.1294
(0.0681)

− − 3.2578
(0.1018)

UTX 0.6159
(0.1041)

0.5142
(0.0943)

−0.8598
(0.0475)

0.8469
(0.4559)

− − 2.5056
(0.4314)

VZ 0.6778
(0.1022)

−0.5928
(0.3156)

− 0.1039
(0.0747)

− 0.0714
(0.0240)

3.2410
(0.1074)

WMT 0.8328
(0.1229)

− − 0.0078
(0.0087)

− 0.0363
(0.0154)

3.4027
(0.0733)

XOM 0.4962
(0.0698)

− − 0.1532
(0.0839)

− − 3.2217
(0.1109)

Note: Asymptotic standard errors (evaluated as the inverse of the negative Hessian) in parentheses.
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