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Abstract 

 

In this essay, we propose the use of information markets to predict annual snowfall 

accumulation in New York City. Our goal is to examine whether the aggregation of 

private information amongst individuals has the ability to forecast a phenomenon that is 

long-accepted to be exogenous: weather. Specifically, futures contracts data were used as 

the representative information market. Modelling snowfall as count data, the variables 

Closing Price, Open Interest, and variations of the two were used as regressors in 

Negative Binomial models.  

In the latter half of the essay, we compare our futures market forecast of snowfall with 

meteorological forecasts. 
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1. Introduction 

 

“But who wants to be foretold the weather? It is bad enough when it comes, without our having the 

misery of knowing about it beforehand.”  

― Jerome K. Jerome, Three Men in a Boat 

 

As we know from personal experience, weather can be unpredictable. Albeit the 

technologically sophisticated tools meteorologists have at their disposals, generally one 

can recall instances of when the weatherman ‘got it wrong.’ Weather, for good reason, is 

typically treated as exogenous in academic literature. 

Weather lures great curiosity because it is essentially an all-powerful, age-old force that 

distorts our intended outcomes. A restaurant that loses two customers tonight due to 

heavy snow may not be able to sell two extra meals to make up for loss sales next week. 

Agents experience actual economic losses due to bad weather; therefore, without a doubt, 

there is tremendous value in being able to forecast weather accurately. Whole industries, 

particularly those who are ill-abled to contain inventory, are the most sensitive to the 

burden of weather fluctuations. To be able to simply know the weather in advance results 

in more control in inventory management. From as short as twelve hours in advance to 

an entire week, possessing accurate weather forecasts can translate into economic gains. 

In this paper, we suggest a creative new method for predicting snowfall by way of using 

information markets. Otherwise known as ‘prediction markets,’ they are designed to tease 

out privately-held information from market participants. The most curious and 

spectacular aspect of information markets is that they are able to aggregate private 

information together. Taken together, the bits and pieces of proprietary information 

together may be powerful enough to predict future outcomes.  We appeal, in a sense, to 

the old adage that is the ‘wisdom of crowds.’ 

http://www.goodreads.com/author/show/3352.Jerome_K_Jerome
http://www.goodreads.com/work/quotes/4476508
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In this paper, we explore the ability and effectiveness of a weather futures prediction 

market in forecasting the amount of accumulated snowfall in Central Park, New York. 

1.1     Motivation: Weather Fluctuations are Costly 

For certain industries such as the fashion and restaurant businesses where inventory 

management is very tight, weather fluctuations can incur profit loss. The main problem 

of these industries is that there is no balancing effect.3 When a heavy snow storm hits 

during the night, some people will find their marginal cost of eating out augmented due 

to the bad weather and instead, decide to stay home. While a furniture seller will likely 

be able to sell a couch this season no matter what weather occurs today, a restaurant 

that loses a family of four as customers on a Tuesday may not necessarily make up their 

business tomorrow, or next week, when the weather is better. People’s preferences can 

change in the short-run. Another angle of thinking about the balancing effect problem is 

that weather fluctuations can lessen sales volume. Rather than omitting discrete sales like 

a meal, weather can also lessen sales of products whose nature is a continuous variable. 

For instance, hydroelectric power companies will generate less electricity – and therefore, 

sell less electricity – when there is less rainfall. 

1.2     Weather Derivatives: Curious and Atypical 

The examination of the ability of information markets to predict was precisely chosen to 

be carried out with weather derivatives because they have special characteristics unlike 

traditional, vanilla contracts. The most obvious difference is that the underlying 

commodity of a weathers futures is not traded in the spot market.4 This is important for 

our purposes because it eliminates a secondary venue for insurance, thereby focusing all 

the information signals of what the market believes will happen into futures contracts.  

                                                           
3 Jewson and Anders give other examples of businesses that can suffer from a lack of balancing effect: An amusement 
park will receive fewer visitors when it rains; a natural gas supply company will sell less gas in warmer winters. 
4 For example, one cannot ‘buy that it is raining’ like they can barrels of gas for immediate delivery. 
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For instance, a person requiring soybeans two months from now, but who suspects prices 

will rise in the meantime, has two choices: they can either purchase the soybeans they 

require today on the spot market, or enter into a futures contract for delivery two 

months later, thereby locking in the price. The private information that soybean prices 

will rise can be diverted between these two outlets, but this works against our primary 

goal because price signals from the spot market is ambiguous: people may be purchasing 

soybeans simply because they require some to use today, and not necessarily because they 

believe prices will be rising. This ambiguity problem is eliminated by the non-existence of 

weather spot markets. 

Secondly, weather is specific to its particular geographical location. A particular weather 

contract will most likely only be traded by the people who are affected by it, especially if 

it was bought as insurance in the first place. 

Lastly, and most importantly for our purposes, there is no issue of moral hazard. One 

cannot influence a weather contract’s underlying outcome by any mortal methods. This 

point eliminates one of the common arguments against the power of prediction markets, 

that market participants may inherently be biasing the outcome for economic gains. A 

person with a long position in a rainfall contract will not be able to make it more likely 

to rain in order to increase the payout of their contracts! 

 

2. Literature Review 

There is very little literature on the prediction of weather using information markets. As 

far as we know, our study is the first to examine the effectiveness of information markets 

on an accumulated weather figure such as snowfall. 
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Earlier related literature stemmed from the field of futures and options. In Roll (1984), it 

was reasoned that futures prices should take anticipated weather changes – the 

predictable portion of weather – from publicly published meteorological forecasts into 

account. Roll theorized that price changes in futures prices are solely due to 

unanticipated, exogenous weather shocks. The author was able to show that orange juice 

prices were a significantly better predictor of evening temperature forecast error than the 

forecast error made on the previous day.5 Roll found that around 90% of the variability 

in temperature was accounted for by meteorological forecasts. As for the remaining 10%, 

orange juice prices were able to predict a significant portion of it, beyond what the 

meteorological forecast was able to do. This essentially means that futures prices are able 

to significantly predict the variability in weather.  

Aside from temperature, Roll also attempted to predict rainfall levels using the same set 

of futures data. Being a type of precipitation, this was of especial interest to us; however, 

Roll found that orange juice futures had no significant predicative power for rainfall. 

Simmons and Sutter (2011) conducted regression analysis on tornadoes using dataset of 

over 50,000 tornadoes between 1957 and 2007. A variety of regressors were used, 

including the strength of the tornado, time when casualties occurred, and various 

demographic variables.6 Two independent variables were examined: fatalities and injuries. 

A Poisson model was used to model fatalities and the Negative Binomial for injuries, due 

to evidence of overdispersion. This research bares great similarity to this essay because 

despite the great number of observations, most tornadoes do no kill or injure, thereby 

leaving Simmons and Sutter with a dataset of only 1,300 tornadoes with which to run 

regressions. In other words, this dataset contains an excess number of zeroes, much like 

our snowfall data. 

                                                           
5 Roll defined forecast error, in this context, to be the difference between the temperature forecast issued by the 
National Weather Service and the actual outcome. 
6 Examples of demographic variables used include the population density in an area (the more people in an area, the 
more likely that higher amounts of people are hit by the tornado) and income (research has shown that people consider 
safety a luxury good; wealthier people will purchase weather ratios and install tornado shelters, etc.). 
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The above two citations represent the scant existing literature we found directly related 

to the topic of this essay; however, it is possible to draw lessons from other, related 

research. Most of the existing literature concerned market design, answering questions 

regarding best practices for policy analysis, for small and illiquid markets, or to prevent 

foul play within the markets. Keeping this in mind, we shall now discuss what we felt 

were the most pertinent for our purposes. 

Wolfers and Zitzewitz (2004) theorize that in a truly efficient information market, where 

payoffs are tied to eventual outcomes that will occur in the futures, the most accurate 

predictor of the outcome will be the market price.7 As part of the definition, they further 

assert that no combination of polls or other information will be more accurate than the 

prediction given by the market. 

Experiments have been conducted to show that information does eventually aggregate in 

market equilibrium. McKelvey and Ordeshook (1985) demonstrate in a laboratory 

experiment that elections where voters who each had private information about 

candidates as well as public signals via polling eventually saw information aggregate to 

form one majority opinion. Taking this into account, we would expect the futures prices 

in our proposed study to converge over time towards an outcome indicating one clear 

winner. 

In practice, Galebach, Pennock, Servan-Schreiber, and Wolfers (2004) designed an 

experiment to show that prediction markets based on play-money can be just as accurate 

as those based on actual money. Their result demonstrates that platforms without the 

goal of monetary gain can be accurate in predictions. We mention this in order lend some 

credibility to our results, which are derived from futures contracts of miniscule monetary 

value.  

                                                           
7Information Markets: A New Way of Making Decisions, Ch. 1. 
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3. Data 

3.1     Intrade Platform 

For our representative futures market, data was used from the now defunct Intrade.com.8 

Intrade was a web-based trading exchange whose members traded contracts with one 

another based on what traders think would occur. It is essentially a simplified futures 

exchange, except available contracts are based off of events that stock exchanges do not 

offer. For instance, one can take a position on who they think will be the next winner of 

Best Picture at the Academy Awards, or the next Democratic nominee in a presidential 

election. 

Since contracts are quite small, without doubt it is possible that Intrade serves as a 

vehicle for speculators; however, we believe that the Intrade market also attracts 

informed, purposeful traders primarily because it can serve as an insurance medium 

against real events. For instance, it would be difficult to find a contract at a financial 

institution to hedge the risk for something as specific as President Bush’s approval rating 

passing 60% by December 31, 2006.9 On the other hand, such contracts do exist on 

Intrade, meaning that agents who stand to gain or lose based on this outcome will flock 

to Intrade as a form of insurance. This necessity makes Intrade a suitable prediction 

market.10 

3.2     Snowfall Futures Contracts 

As a proxy for how much snow the market thinks will fall in New York City, we used 

historical trading data on futures contracts based off of snowfall accumulation in Central 

Park between November 1st to March 31st  of each year.11 For every winter season, 

                                                           
8 Intrade.com has been defunct as of December 2014.  
9 We would also expect finding a counterparty to be difficult, in this case, for other reasons. 
 
11 We have data until April 1st of each year, but most futures contracts did not fluctuate in April, and in some cases, 
contracts ended before April.  
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contracts ranging from accumulations of 10+ inches, 20+ inches, to 70+ inches are sold. 

Intrade specifically writes the contracts to pertain to mutually exclusive outcomes. For 

example, Barack Obama being elected as President in 2012 is a binary outcome - he is 

either elected or he is not. This exclusion feature ensures that market participants are 

able to play positions as accurately as possible to what they think or know will be true. 

In terms of snowfall, a contract will settle at $0 if snowfall is less than the number of 

inches specified in the contract. A contract will settle at $10 if snowfall is equal to or 

more than the number of inches specified in the contract.12 For instance, if accumulated 

snowfall measured from November 1st to April 30th is 37.1 inches, then the 40+ and 50+ 

inches contracts would settle at $0. Traders who took long positions on the above two 

contracts will lose the amount equal to their initial invested principal. The 30+ inches 

contract – in this case, the winning contract – will settle at $10 per contract. The 10+ 

and 20+ inches contracts are technically supposed to pay off according to the contract 

rules, but in every case we examined from 2003 to 2013, contracts satisfying the correct 

amount of snow, but were further away from the actual amount of snowfall, were retired 

as soon as the accumulated snowfall entered the next, ascending category of contracts. 

As an example, below lies contract values for futures contracts trading in the 2005 to 

2006 winter season, where it ultimately snowed an accumulation of 40.0 inches. The 

‘Value’ of a contract on a given day is henceforth defined to be the Closing Price 

multiplied by the Open Interest. Trading hours lasted from 3:45 AM to 3:00 AM the 

following morning in Eastern Time each day. This is equivalent to 8:45 AM to 8:00AM in 

Ireland, where Intrade was operating. 

 

Figure 1     Value of Futures Contracts Trading in the 2005 – 06 Winter Season 

                                                           
12 Please see Table 1 in the Appendix for contract rules. 
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3.3     Actual Snow Fall Data 

For actual snow fall levels, we used data from the National Centers for Environmental 

Information gathered between the years 1890 to 2004 at the weather station in Central 

Park.13 Observations occurring on February 29th were taken out of leap years because 

they do not occur every year. We wanted to render the data set to include observations 

from the same dates across different years. 

By industry standards set by the National Weather Service (NWS), daily snowfall is 

measured at midnight each day of the local time zone. In order for snowfall to be 

consistently measured over time, NWS requires that stations record the maximum level 

                                                           
13  New York Central Park Obs Belvedere Tower, NY. 
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of snowfall that has fallen since the last record.14 Measurement is taken to the nearest 0.1 

inch. 

Like much of weather-related data, there is no hope of stationarity. From historical 

observations over the last sixty years,15 the majority of days exhibited no snowfall. It is 

clear that simply first differencing, or any higher degrees of differencing however number 

of times, will not achieve stationarity since most values are sandwiched between zeroes. 

The dataset is not fit for time series techniques. 

3.4     Meteorological Forecasts 

We obtained forecasts by meteorologists using the API named Forecast for the popular 

mobile application, Dark Sky.16 Dark Sky contains a wealth of weather information 

gathered by professionals working at government weather stations. The API allows users 

to query most locations around the world and returns weather data such as current 

conditions, hour-by-hour forecasts, and even minute-by-minute forecasts for the next day. 

For historical snowfall forecasts, only the forecasts for the snowfall in the next 24 hours 

are retained in the database. Historical day-to-day forecasts were not kept, which is 

unfortunate because it limits our scope to examining the relative effectiveness between 

meteorological and futures contracts’ forecasts up to 24 hours ahead. 

  

 

 

 

                                                           
14 NWS defines snowfall as the accumulation of new snow and ice since the last observation, prior to melting or settling. 
Snowfall is measured as soon as it stops snowing. Taken from the Snow Measurement Guidelines for National Weather 
Service Surface Observing Programs (September 2013). 
15 Please see Tables 2a to 2h in the Appendix. 
16  API, or Application Programming Interface, is a set of data structures, functions, tools, and objects used in software 

programming. It was fortunate for us that Dark Sky’s API was hosted online and access was free of charge. 
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4. Model 

4.1     Initial Assessment 

We first start off with a simple, sample observation: Between the years of 2003 to 2008 

during which Intrade offered contracts on Central Park’s annual accumulated snowfall, 

the markets were able to successfully predict the snowfall outcome in most years well 

ahead of contract termination. Evidently, it is not farfetched to presume that futures 

contracts have some degree of capability to predict. 

Table 2     Sample Prediction Ability of Futures Contracts 

 

Year 2003-04 2004-05 2005-06 2006-07 2007-08 

Accumulated Snow Fall (inches) 42.6 41.1 40.0 12.4 11.9 

VALUE       
Did the winning 
contract predict the 
correct snowfall 
accumulation? 

Yes Yes Yes Yes No 

 
Since when? 

January 
20th, 
2004 

March 
15th, 
2005 

February 
13th, 
2006 

January 
10th, 
2007 

Markets 
predicted 
that the 
20+ 
inches 
contract 
would 
win. 

PRICE      
Did the winning 
contract predict the 
correct snowfall 
accumulation? 

Yes Yes Yes No Yes 

 
Since when? 

January 
13th, 
2004 

March 
15th, 
2005 

February 
22nd, 
2006 

Markets 
predicted 
that the 
20+ 
inches 
contract 
would 
win.* 

December 
13th, 
2007 

*March 2008 futures data were cut off for unexplained reasons. 

 

Modelling snowfall required some creativity on our part due to lacking existing literature. 

In order to obtain an idea of what we were dealing with, we firstly started with graphing 
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historical daily Central Park snowfall levels in inches. Below, we graph the snowfall data 

from January 1st, 1940 to April 30th, 2003.17 There does not appear to be a drift in any 

particular direction over the years. 

Figure 2  

 

 

From observation, spikes in snowfall mainly occur between the months of December and 

early March of the following year.18 Though infrequent, very few spurts of snow occur in 

November or April. For this reason, we will only be analyzing snowfall between 

December 1st and March 31st of each season. Additionally, the variables of most futures 

contracts which terminated before April do not move at all; henceforth, we will only be 

analyzing contract movements from November 1st to March 31st of each year. November 

futures were included in our analysis because anticipations for December snowfall will 

have shown up, theoretically, in November contract movements. 

Next, we examine the occurrences of different levels of snowfall over each day in order to 

see whether certain days or weeks during the winter season have a penchant for snowing 

                                                           
17 Data from prior to 1940 contained missing values and were thus omitted. 
18 Figure 2: The jagged black lines represent the 3-day moving average. The 3-day period was chosen arbitrarily 
because most occurrence of snowfall seems to last no more than 3 consecutive days. 
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relatively more than others. Looking at the tabulated figures in Tables 2a to 2i in the 

Appendix, we see that snow falls more often and in greater amounts during January and 

February. 

‘More than 2.0 inches of snowfall’ was chosen to be its own separate category because 

among the days that did snow from December 1st to March 31st each year between the 

years 1940 and 2003, the average of snowfall level was 2.0 inches. In other words, average 

snowfall conditioned on snow occurring is 2.0 inches per day. Any occurrence of more 

than 2.0 inches in a day can therefore be interpreted as an ‘above average’ level of 

snowfall. 

Table 3     Summary of Snowfall Frequencies, December 1st, 1940 to March 31st, 1999 

 Frequency of Days with 
Snow 

Frequency of Days with 
Above Average Snowfall 

December 123 46 
January 181 54 
February 147 69 
March 100 45 

 

 

It is interesting to note from Table 3 that while Central Park snows more frequently in 

January, February is more prone to above average snowfalls. 

4.2     Zero-Inflated Snowfall Data 

Historically, 90% of the days between November 1st and March 31st of each year have 

experienced no snowfall. This fact renders typical quantitative methods useless,19 where 

modelling strategies such as analyzing autocorrelation functions is not available due to 

the vast number of zeroes. For instance, the figure below illustrates the frequency of snow 

at different levels during the 2005 to 2006 winter season: 

                                                           
19  Other models we considered include Intermittent Demand Analysis, Sparse Data Analysis, and related zero-inflated 
time series models used in biostatistics to model disease outbreak. 
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Figure 3      

 

Please refer to the Appendix, Figures 1a to 1i for annual snowfall distributions from 2003 

to 2013. 

4.3     Treatment as Count Data 

While the Roll orange juice paper was a major inspiration to this essay, a noteworthy 

impediment to our simply replicating his methodologies is that the nature of our datasets 

is different. Roll was predicting temperature, a value that can fluctuate up and down. 

Contrastingly, our futures contracts are based on snowfall accumulation, a value that can 

never decrease. We will employ lags of variables from futures contracts as regressors like 

Roll, but we will not be able to run OLS regressions. 

Taking the above into account, we chose to model snowfall as count data. The main 

justification for treating snowfall as count data is as follows: our primary focus is not 
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concerned with ‘which day’ in which snowfall occurred or ‘how much snow fell during this 

particular month.’ Instead, our main question is: How many inches of snowfall 

accumulated between November 1st and April 30th? As one will notice, the question was 

purposely devised so as to be answerable by our futures contract data.  

This allows us to circumvent the use of zero-inflated time series techniques; furthermore, 

a count model has the added feature of taking into account the fact that snowfall cannot 

be negative. 

Although the amount of snowfall is continuous, weather forecasts themselves typically 

report accuracy to a tenth of an inch. For instance, actual snowfall of 20.53 inches would 

naturally be rounded to 20.5 inches in published meteorological reports. 

Keeping the above goal in mind, we propose to render the data as follows: each 0.1 inch 

of snowfall will be deemed as one ‘count.’ For instance, a day reporting 2.1 inches of 

snowfall will have experienced 0.1 inches of snowfall 21 times. Similarly, a day reporting 

30.1 inches of snowfall will likewise be interpreted to have counted 0.1 inches of snowfall 

301 times. Since we are not particularly interested in the rate of snow falling over certain 

hours in a day, nor do we have data on snowfall patterns of high and low during a 

particular day (eg. we do not have any descriptive evidence that it snows more during 

the night, merely that it snowed a certain amount), we believe our choice of rendition to 

be a reasonable simplification that will allow us to model snowfall. Additionally, using a 

small unit of 0.1 inches rather than 1 or 2 inches, provides enough granularity to model 

snowfall levels as given by weather reports. 

One caveat is that simplifying snowfall to discrete data may potentially round off days 

where snowfall is less than or equal to 0.09 inches to 0. In other words, our count data 

may significantly misrepresent the number of days that snowed; however upon examining 

historical daily snowfall from 1940 to the present (again, between the days of November 1 
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and March 31 of each year), we found that of the days that did snow there was never a 

record between 0 and 0.09 inches. We will use this ample historical evidence going 

forward and assume that the lowest amount of snowfall on any given day is 0.1 inches. 

4.4     Graphing Snowfall Data: A Fishy Distribution? 

In order to model snowfall count data, we first attempted to model the relationship 

between snowfall and different contracts’ movements by appealing to a Poisson regression. 

The main rationale to starting with a Poisson model is that merely plotting snowfall 

levels, conditioned on snowfall occurring, reveals a Poisson-esque, positively-skewed 

distribution. 

 

Figure 4     Conditional Distribution of Snowfall Frequency, Years 2003 to 2013 

 

 

If we examine the data more granularly on a monthly basis, we see the same indicators of 

a Poisson distribution, albeit more weakly: 
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Figure 5a to 5d     Conditional Distribution of Snowfall Frequency by Months, 2003 to 2013 

 

 

 

From these visual representations, it seems advisable for us to begin with a Poisson 

regression. 

4.5     Prediction Variables 

Aside from identifying a possible distribution, we require regressors that we suspect to be 

the best for predictions. For a successful net result, we must catch the most informative 

regressors. Referring back to the figures below as an example, the futures’ behaviour 

during the 2005 to 2006 season provides some insight into our approach: 

From Figure 1, it is evident that the contract which pays off if snow accumulates 

anywhere between 40.0 inches and 49.9 inches was considered the clear winner well before 
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the end of the season; furthermore, it should be highlighted that it had been considered 

the winner since February 12th, which is 78 days in advance of contract termination. 

There also exist notable fluctuations from the 20+ and 30+ inches contracts. The 

termination of the 30+ inches contract on February 12th corresponds to a 24.1 inches 

snowfall which occurred on that same day, bringing up the total snowfall accumulation 

count to 38 inches. 

The above description supports what should already be intuitive: that the contracts’ 

variables move in tandem with snowfall fluctuations. The question is this: which 

characteristics of the contracts provide the most information? 

The following variables were used in our regressions because they concluded a clear 

winner when graphed: Closing Price, Open Interest, and Value. Value was created 

because we discovered that in the several instances where we added Value to a model 

composed of solely Closing Prices and Open Interest, the addition significantly improved 

the fit of the model. This improvement was identified by running LR tests. 

In the following Figures 6a and 6b, we see the 40+ Inches contract rise above the other 

contracts, indicating that it is believed to be most likely to occur. Please see Appendix, 

Figures 2a to 4c for graphs of contract’ Closing Price, Open Interest, and Value for the 

sample of years 2003 to 2008. 

Figure 6a to 6c 
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Contrastingly, the variables Session High, Session Low, Lifetime High, Lifetime Low 

Session Open, and Trading Volume, when graphed, were identified as poor indicators for 

determining the winning contract. At any point in time, too many fluctuations occur 

between the different contracts, and thus do not clearly indicate a winner (eg. if a 

contract’s session open was constantly fluctuating to zero, then this does not tell us 

anything, just that is it volatile). In particular, Trading Volume makes sense as a 

deficient proxy of information because it merely illustrates the amount of contracts that 

actually transact each day. The implication, of course, is that it does not take into 

account contracts that were unable to find counterparty. 

Please see Appendix, Figures 5a to 6b, for sample graphic representation of the variables 

Session High and Trading Volume. 
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4.6     Poisson Regression Estimation 

Models at different lags using different types of contracts were tried.20 Since we do not 

have a particular hypothesis regarding which contracts would be the best predictor of 

future snowfall, our general approach was to run a ‘catch-all’ regression first and then 

remove insignificant variables.  

However, before running any regressions, the 60+ inches contract was excluded from all 

years because from our graphs, we see that it almost never varies and therefore conveys 

very little information about what traders think about snowfall. The reason we tried the 

regression at different lags is because later, we will attempt to determine how far into the 

future for which closing prices have predictive powers. 

Model 1: Closing Price21 

 

 

No Lag Lag 1 Lag 2 Lag 3 Lag 4 

close10 0.0122 0.0049 0.0062 0.0094 0.008 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

close20 0.0053 -0.0199* -0.0067 -0.005 -0.0086 

 
(0.02) (0.01) (0.01) (0.01) (0.01) 

close30 0.0164 0.0435 0.0021 0.0049 0.0274 

 
(0.02) (0.02) (0.03) (0.02) (0.03) 

close40 -0.1254 -0.1264* -0.1348**  -0.1254* -0.1268* 

 
(0.12) (0.06) (0.04) (0.05) (0.05) 

close50 0.0771 0.0862 0.0956 0.0921 0.0813 

 
(0.09) (0.05) (0.05) (0.05) (0.05) 

Constant 0.0937 1.0231 1.2655**  0.8737 0.7466 

  (0.83) (0.58) (0.44) (0.58) (0.69) 

Obs. 56 56 57 57 57 

chi2 5.39 23.02 15.66 13.35 16.43 

BIC 387.46 338.88 328.82 347.47 346.61 

Pearson 482.9248 331.6693 226.8973 266.4998 259.9568 

 

                                                           
20 In other words, types of models being composed solely of either contracts’ Closing Prices, Open Interests, or Values. 
21 Standard errors are reported in brackets. Coefficients with significance to 0.05 denoted with *, significance to 0.01 
denoted with **, and significance to 0.001 denoted with ***. 
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Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

close10 0.0075 -0.0057 -0.0037 0.0043 -0.0123 

 
(0.01) (0.01) (0.00) (0.01) (0.01) 

close20 -0.0085 -0.0199 -0.0086 0.0057 -0.0017 

 
(0.01) (0.02) (0.02) (0.01) (0.01) 

close30 0.0244 0.0589 0.0597 0.0043 0.0536**  

 
(0.03) (0.04) (0.03) (0.02) (0.02) 

close40 -0.1343**  -0.1080**  -0.0831**  -0.0901*** -0.0703*** 

 
(0.05) (0.04) (0.03) (0.02) (0.01) 

close50 0.0882 0.0692 0.0224 0.0874*** 0.0443**  

 
(0.05) (0.04) (0.02) (0.02) (0.02) 

Constant 0.8143 1.3410*   0.8453 0.373 0.7917 

  (0.59) (0.68) (0.54) (0.35) (0.47) 

Obs. 57 60 61 60 61 

chi2 18.18 15.39 21.37 98.02 49.02 

BIC 339.75 353.77 339.43 280.83 19.19 

Pearson 245.0128 261.2661 239.8488 143.3224 180.7143 

 

Model 2: Open Interest 

 

No Lag Lag 1 Lag 2 Lag 3 Lag 4 

open10 0.0059 0.0066 0.0032 -0.0002 0.0015 

 
(0.01) (0.00) (0.01) (0.00) (0.00) 

open20 0.0033 0.0026 0.0052 0.0118*** 0.0123*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

open30 -0.0218*   -0.0222*   -0.0198*   -0.0207*   -0.0218**  

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open40 0.0269*   0.0293*   0.0270*   0.0303*   0.0322*   

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open50 -0.0064 -0.0101 -0.0099 -0.0164 -0.0203*   

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

Constant 0.9011**  0.8993**  0.8655**  0.5609 0.5274 

  (0.30) (0.30) (0.33) (0.32) (0.30) 

Obs. 58 59 60 60 60 

chi2 96.22 50.69 28.4 52.27 44.29 

BIC 333.84 339.47 359.34 338.73 333.97 

Pearson 196.6828 198.025 224.7223 196.4744 187.4663 
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Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

open10 -0.005 -0.0095 -0.0071 -0.0088 -0.0084 

 
(0.00) (0.01) (0.01) (0.01) (0.01) 

open20 0.0134*** 0.0065**  0.0078**  0.0065*** 0.0083*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

open30 -0.0210**  -0.0113 -0.0198*   -0.0141 -0.0211*   

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open40 0.0340*   0.0184 0.0315 0.0096 0.0400*   

 
(0.01) (0.02) (0.02) (0.01) (0.02) 

open50 -0.0143 -0.0017 -0.0151 0.0069 -0.0261 

 
(0.01) (0.02) (0.01) (0.02) (0.02) 

Constant 0.5242 1.0244**  1.0667*** 1.3307*** 0.9980*** 

  (0.29) (0.33) (0.23) (0.38) (0.20) 

Obs. 60 63 65 66 67 

chi2 83.55 21.83 10.42 19.19 14.39 

BIC 320.33 406.47 390.43 430.57 391.16 

Pearson 173.7358 314.9056 251.0031 347.4961 244.875 

 

 

Model 3: Value 

 

No Lag Lag 1 Lag 2 Lag 3 Lag 4 

value10 0.0001 0.0001 0 0 0.0001 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value20 0 0 0.0001 0.0001*** 0.0002*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value30 -0.0003 -0.0003 -0.0002 -0.0003*   -0.0004**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value40 0.0003 0.0004 0.0003 0.0004*   0.0006**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value50 -0.0001 -0.0001 -0.0001 -0.0003*   -0.0004**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 0.9433**  0.8729**  1.0449*** 0.5920*   0.4088 

  (0.34) (0.32) (0.32) (0.28) (0.29) 

Obs. 58 59 60 60 60 

chi2 92.21 42.69 31.58 42.27 31.74 

BIC 354.35 362.43 375.86 344.53 324.71 

Pearson 
 

247.0029 268.4271 214.8568 195.7805 
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Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

value10 -0.0001 -0.0001 0 0 -0.0001 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value20 0.0002*** 0.0001 0 0 0.0001**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value30 -0.0003*   -0.0001 -0.0002*   -0.0001 -0.0002 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value40 0.0005*   0.0002 0.0002 0.0002 0.0003 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

value50 -0.0002 -0.0002 0 -0.0002 -0.0002 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 0.5735*   1.2048 1.3968*** 1.3669* 1.1860*** 

  (0.27) (0.75) (0.36) (0.64) (0.31) 

Obs. 60 45 65 49 67 

chi2 75.65 8.75 8.89 7.73 15.31 

BIC 328.91 369.34 441.23 391.66 441.64 

Pearson 195.3574 401.0949 411.0352 411.1509 407.1374 

 

At this point, it is advisable to stop running the Poisson regressions. For every Poisson 

regression that we have run so far, the Pearson goodness-of-fit test22 indicates that the 

Poisson model is not a good fit for our data.  

4.7     The Problem of Overdispersion 

It became apparent that overdispersion was present, implying that our Poisson model 

does not fit well. Poisson models implicitly assume that the conditional mean of the 

dependent variable and its conditional variance are equal. As Cameron and Trivedi 

(2009) note, the fundamental limitation of the Poisson model is that it characterizes its 

entire distribution in terms of one scalar parameter, the mean (𝜇). If a count model is ill-

fitted by the Poisson, an improvement may be brought about by seeking a model 

containing more information – or said another way, one with more parameters. Failure to 

correct for overdispersion results in standard error estimates that are too small and 

results in too much confidence in the results.  

                                                           
22 The Pearson goodness-of-fit chi-squared test calculates a test static and a p-value for was significant for every 

Poisson model we ran. In other words, [Prob. > Chi2(df)]  =  0.00 for every Poisson regression. STATA documentation 
suggests trying the Negative Binomial regression if this occurs. 
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For each year in our analysis, it is evident that the variance was always larger than the 

mean - a clear sign of overdispersion. 

Table 4     An Illustration of Overdispersion in the Data 

 2005-06 2006-07 2007-08 2008-09 2010-11 2011-12 

Mean 3.29 1.02 0.97 2.28 5.12 0.37 

Variance 518.53 30.56 6.18 78.45 379.70 15.30 

 

In practice, an overdispersed Poisson model can be replaced with a Negative Binomial, 

which is known to be a more accurate model in cases of discrete, overdispersed data. In 

fact, the Negative Binomial distribution can be derived as a Poisson random variable.23In 

actuarial practises, it has been used to model the rate at which people encounter 

accidents based on weather. 

The negative binomial model is a form of generalized linear model (GLM) for count data. 

It is important to use a GLM model because it allows for dependent variables (or 

response variable) with a non-normal distribution of errors. Intuitively, we would expect 

this to be true for snowfall, or any natural, weather-related phenomenon. We will assume 

that the count variable Yi , the number of 0.1 inches of snow in a day, follows a Poisson-

like process, but that the variation is greater than a true Poisson.  

The first two moments of the Negative Binomial Model are as follows: 

 

𝐸(𝑌𝑖 | 𝜇𝑖, 𝛼) =  𝜇𝑖 

𝑉𝐴𝑅(𝑌𝑖 | 𝜇𝑖, 𝛼) =  𝜇𝑖 +  
𝜇𝑖

2

𝜔
=  𝜇𝑖  (1 +

𝜇𝑖

𝜔
) 

 

There is a constant scale parameter, 𝜔. Unless 𝜔 is very large, the variance of Yi in the 

negative binomial will increase faster than that of the Poisson. 𝜔 can also be interpreted 
                                                           
23 It should be noted that we did not merely default to the negative binomial model after failing with the Poisson 

because using the Negative Binomial yields the same conditional mean. 
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as a sort of inverse of the amount of dispersion, 𝛼. The larger it gets, the more closely the 

model becomes a Poisson (where the variance of the count equals the mean). We are able 

to estimate the regression coefficients and parameter 𝜔 by way of maximum likelihood.  

The expected count 𝜇𝑖
∗ is the expected number of 0.1 inches of snow conditioned on it 

being a day i with snow.  𝜇𝑖
∗ is a gamma-distributed, unobservable random variable with 

a mean of  𝜇𝑖 and constant scale parameter. For any observation i, 

𝜇𝑖
∗ ~  Γ ( 

1

𝛼
 , 𝛼𝜇𝑖) ~ Γ ( 𝜔 ,

𝜇𝑖

𝜔
) 

 where 𝛼 > 0,   𝜇𝑖 > 0 

Therefore,  

𝑉𝐴𝑅(𝑌𝑖) = 𝐸[𝑉𝐴𝑅(𝑌𝑖|𝜇𝑖
∗)] + 𝑉𝐴𝑅[𝐸(𝑌𝑖|𝜇𝑖

∗)] 

 = 𝐸(𝜇𝑖
∗) + 𝑉𝐴𝑅(𝜇𝑖

∗) 

= 𝜇𝑖  (1 +
𝜇𝑖

𝜔
) 

Additionally, as noted earlier, the negative binomial distribution has been used to model 

tornadoes. In chapter three of Simmons and Sutter’s book Economic and Societal Impacts 

of Tornadoes, negative binomial regressions were run in order to analyse tornado 

casualties. They regressed the number of fatalities (yes, it is a count model) caused by 

tornadoes over 1950 – 2007 on independent variables such as the intensity measure of a 

tornado, time of day for when the tornado occurred, and the month of the occurrence, 

among many others. The above examples indicate that it is not entirely far-fetched for us 

to model snowfall using a count data model. 

The zero-inflated negative binomial model was also considered. Although quantitatively it 

may yield a better specification, we chose not to pursue it because the nature of our data 
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suggests against the existence of any inflation factor.24 25 We thereby proceed with the 

Negative Binomial model because it is the best model available to us. 

4.8     The Negative Binomial Model 

We will be using a Negative Binomial Distribution26. Our model is as follows: Imagine 

that during the course of a day, an x-number of repeated trials occur. A trial can be held 

once every half-hour, once every five minutes, or any other hypothetical increments that 

matches the pace of change in weather conditions. The same Negative Binomial 

distribution exists for each day. The more snowfall we count on a given day, the more 

snowfall is accumulated over months towards the end result that determines the winning 

contract. 

Assumption #1:    Each trial can result in two possible outcomes:  

 Success with probability P: No Snow 

 Failure with probability 1 - P:  0.1 Inches of Snow 

Assumption #2:    The probability of success, P, is the same on every trial. 

Assumption #3:    The trials are independent. 

Assumption #4:    The same number of trials occurs each day. 

 

Taken together, the Assumptions 1 to 4 can be represented by the tree diagram below: 

 

 

 

 

                                                           
24 In a zero-inflated negative binomial model, it is assumed that observed values are caused by two separate 
distributions: first, a binary process (inflation factor) of 0 or 1, and then a second, typical count process such as the 
Poisson or Negative Binomial. If the binary process yields 0, then the observed value is simply 0. If the binary process 
is 1, then the observed value will be from the count mode: 0, 1, 2, etc. Therefore, an observation of 0 may be the result 
of the binary process yielding 0, or due to the result of the count model yielding 0, conditioned on the binary process 
yielding 1. 
25 Spurious relations are a serious crime! 
26 Other commonly-used names include the Pascal, or Polya distribution. 
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Figure 5     Tree Diagram of Snowfall in One Day, if P = 0.95 

 

 

The tree diagram maps a subset of nodes that can occur in a day. As illustrated, only one 

branch will finish with no snow at all during the entire day. All other branches, aside 

from the branch yielding no snow, together represent a distribution of snowfall, 

conditioned on snow falling at all. This simple model accurately captures the fact that 

zero snow is the most likely outcome, and that smaller amounts of snowfall is more likely 

than larger amounts. 

Out of the above four assumptions, Assumption 2 is probably the most questionable. If it 

is satisfied, this would imply that subsequent snowfalls after a snowfall are equally likely 

as snowfalls occurring after a period of no snow. This may conflict with intuition since 

one could argue that if snow actually occurred, then the weather conditions must have 

made it more likely for it to snow in that moment and in any subsequent moment in time 

close to it. 
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While a valid argument, we would like to point out the simple observation that 

historically, only 10% of the days 7,260 days we surveyed that occurred between 

November and March since 1940 have snowed. It is clearly more likely for it to not snow 

on any given day, despite cycling through numerous trials, meaning that probability P 

(probably of not snowing) must be greater than probability 1 - P. Even if it were to snow 

in a trial, we will assume that it only makes it slightly more likely for it to snow in the 

next trial, insignificantly lowering the large probability P slightly. 

 

5. Regression Results 

5.1     Negative Binomial Regression Results 

The Negative Binomial regression utilizes the method of maximum likelihood in order to 

estimate coefficients. Within all the regression tables below, the parameter Alpha – or 

dispersion parameter - is always greater than 0, confirming our suspicions of data 

overdispersion and validating our use of the Negative Binomial model.27 

In order to determine the significance of model, the p-values of a Wald chi-square 

statistic was used. It tests whether all coefficients are simultaneously equal to zero. 

Additionally, in order to compare the fit of different specifications that passed the Wald 

test, we relied mainly on the Bayesian Information Criterion (BIC), which presents the 

key advantages of firstly, controlling for overfitting and secondly, having the ability to 

compare models that are not nested. The BIC allows us to directly compare specifications 

with one another, where a smaller BIC statistic indicates that one particular model is 

better relative to another.28 A composition of futures prices from various lags could all be 

                                                           
27 If Alpha = 0, then the model reduces to a Poisson model. The fact that it is > 0 indicates that using a Poisson is 
incorrect. 
28  When comparing the BIC statistics for two models, the interpretation of the magnitude of absolute difference is as 

follows: 0 – 2 (Weak), 2 – 6 (Positive), 6 – 10 (Strong), >10 (Very Strong).  
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potential candidates as regressors within the same regression depending on the level of 

information perforation reflected in the BIC. 

5.2     Model 1: Closing Price 

Similar to the process with which we chose models to regress with the Poisson model, we 

will do the same with the Negative Binomial model: 

 
No Lag Lag 1 Lag 2 Lag 3 Lag 4 

close10 0.0134 0.0107 0.0091 0.0098 0.0104 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

close20 0.0017 -0.0036 -0.002 -0.0026 -0.0043 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

close30 0.018 0.0192 -0.0115 0.002 0.0227 

 
(0.02) (0.02) (0.02) (0.02) (0.02) 

close40 -0.0636 -0.0733 -0.1056**  -0.0893* -0.0935* 

 
(0.05) (0.04) (0.04) (0.04) (0.04) 

close50 0.0242 0.0512 0.0753*   0.0664 0.0571 

 
(0.04) (0.04) (0.03) (0.03) (0.03) 

Constant -0.1421 0.1951 1.0260**  0.6546 0.3408 

  
(0.88) 

(0.56) (0.32) (0.45) (0.54) 

Obs. 56 56 57    57 57 

chi2 7.5 13.44 11.13    8.91 10.77 

alpha 1.13 0.98 0.72    0.86 0.86 

BIC 265.34 259.8 255.23    261.29 260.74 

Pearson 
114.27 

84.01 
54.55 66.47 64.12 

 

 

 

   

 
Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

close10 0.0109 -0.0007 -0.0002 0.0108 -0.0017 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

close20 -0.0025 -0.004 0.0025 0.0082 -0.0055 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

close30 0.0143 0.0293 0.039 0.0036 0.0469*   

 
(0.02) (0.02) (0.02) (0.02) (0.02) 

close40 -0.1089**  -0.0737**  -0.0751*** -0.0854*** -0.0591*** 

 
(0.04) (0.02) (0.02) (0.02) (0.01) 

close50 0.0679 0.0473 0.0226 0.0683*** 0.0256 

 
(0.04) (0.03) (0.02) (0.02) (0.02) 

Constant 0.4328 0.7907 0.4575 -0.1009 0.4164 

  (0.47) (0.65) (0.52) (0.37) (0.55) 

Obs. 57    60 61 60 61 
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chi2 10.33    11.67 15.14 36.11 27.64 

Alpha 0.81    0.9 0.69 0.53 0.68 

BIC 258.52    273.97 270.53 257.51 269.17 

Pearson 59.42 65.95 60.62 
41.34 

51.88 

 

By the BIC and Pearson statistic, Closing Prices lagged at three days seem to be the best 

predictor of snowfall. It is also noteworthy to point out that the 40+ Inches contract was 

significant as a regressor for regressions starting from Lag 2 and beyond. 

5.4 Model 2: Open Interest 

 

 
No Lag Lag 1 Lag 2 Lag 3 Lag 4 

open10 0.001 0.0029 -0.0013 -0.0016 -0.0007 

 
(0.01) (0.01) (0.00) (0.00) (0.00) 

open20 0.0054*   0.0043*   0.0087*** 0.0126*** 0.0128*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

open30 -0.0171**  -0.0177**  -0.0169**  -0.0188**  -0.0193**  

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open40 0.0209*   0.0231*   0.0238**  0.0272**  0.0284**  

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open50 -0.002 -0.0063 -0.0089 -0.0149 -0.0177 

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

Constant 0.8085*   0.8137*   0.6785*   0.5171 0.5143 

  (0.33) (0.34) (0.32) (0.31) (0.31) 

Obs. 58 59 60 60 60 

chi2 67.83 45.39 18.26 60.44 52.86 

Alpha 0.75 0.73 0.75 0.64 0.63 

BIC 259.64 265.92 271.9 267.42 267.07 

Pearson 46.57 
47.93 47.98 46.76 

44.56 
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Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

open10 -0.0058 -0.0129*   -0.0053 -0.002 -0.0071 

 
(0.00) (0.01) (0.01) (0.01) (0.01) 

open20 0.0140*** 0.0092**  0.0076**  0.0098**  0.0081**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

open30 -0.0186**  -0.0093 -0.0173**  -0.0175*   -0.0154*   

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open40 0.0297**  0.0179 0.0281*   0.0162 0.0290**  

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

open50 -0.0137 0.001 -0.0152 -0.0023 -0.0208*   

 
(0.01) (0.01) (0.01) (0.01) (0.01) 

Constant 0.5054 0.7794**  0.9910*** 1.0132*** 0.9621*** 

  (0.31) (0.29) (0.25) (0.27) (0.22) 

Obs. 60 63 65 66 67 

chi2 69.37 24.22 15.63 14.91 18.72 

Alpha 0.56 0.88 0.79 0.89 0.75 

BIC 262.73 288.41 295.87 306.45 306.69 

Pearson 42.58 62.83 54.96 
 

63.69 58.10 

 

We make note that for the majority of the regressions, Open Interest for the 20+, 30+, 

and 40+ Inches contracts were significant regressors. 

5.4     Model 3: Value 

 

No Lag Lag 1 Lag 2 Lag 3 Lag 4 

10+ inches 0 0 0 0 0 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

20+ inches 0.0001* 0 0.0001**  0.0001*** 0.0002*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

30+ inches -0.0002* -0.0002* -0.0002**  -0.0002**  -0.0003**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

40+ inches 0.0002* 0.0003* 0.0002 0.0003*   0.0004**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

50+ inches 0 -0.0001 0 -0.0002 -0.0003 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 0.8342* 0.7451* 0.9051**  0.6040*   0.5015 

  (0.35) (0.34) (0.28) (0.31) (0.32) 

Obs. 58 59 60 60 60 

chi2 61.25 35.21 17.12 54.03 49.34 

alpha 0.84 0.82 0.81 0.7 0.67 

BIC 263.19 269.67 273.88 270.29 269.61 

Pearson 56.76 59.7 53.65 52.70 52.23 
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Lag 5 Lag 10 Lag 15 Lag 20 Lag 25 

10+ inches -0.0001 -0.0001 0 -0.0001 -0.0001 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

20+ inches 0.0002*** 0.0001* 0.0001 0.0001 0.0001**  

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

30+ inches -0.0002**  -0.0001 -0.0002*   -0.0001 -0.0002*   

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

40+ inches 0.0003*   0.0004 0.0002 0.0001 0.0003*   

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

50+ inches -0.0001 -0.0003 -0.0001 -0.0002 -0.0002 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 0.6455*   1.0216* 1.3297*** 1.2830* 1.1252*** 

  (0.29) (0.52) (0.32) (0.57) (0.30) 

Obs. 60 45 65 49 67 

chi2 55.32 9.73 11.13 4.27 20.48 

Alpha 0.64 1.14 0.98 1.1 0.91 

BIC 266.99 229.52 305.03 252.78 314.26 

Pearson 49.63 70.98 84.12 88.16 92.92 

 

For Value, it appears that the 20+ and 30+ Inches Contracts are significant at lags of 

five days or less.  

In addition to the above three models, we also ran what we call a ‘Combined’ model 

composed of all significant regressors from the previous three models. 
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5.5     Model 4: Combination of Significant Regressors from Models 1 to 3 

 
No Lag 

 
Lag 1 

 
Lag 2 

open 20+ -0.0522 open 20+ -0.0071 close 40+ -0.0491 

 
(0.04) 

 
(0.01) 

 
(0.03) 

open 30+ -0.0833*** open 30+ -0.0243*   close 50+ 0.012 

 
(0.02) 

 
(0.01) 

 
(0.03) 

open 40+ 0.1783*** open 40+ 0.0220**  open 20+ 0.0068 

 
(0.05) 

 
(0.01) 

 
(0.01) 

value 20+ 0.0006 value 20+ 0.0001 open 30+ -0.0123 

 
(0.00) 

 
(0.00) 

 
(0.01) 

value 30+ 0.0008**  value 30+ 0.0001 open 40+ 0.0143*   

 
(0.00) 

 
(0.00) 

 
(0.01) 

value 40+ -0.0018*** Constant 1.0599*** value 20+ 0 

 
(0.00) 

 
(0.28) 

 
(0.00) 

Constant 0.8643*** 
  

value 30+ 0 

 
(0.22) 

   
(0.00) 

    
Constant 1.2587*** 

          (0.32) 

Obs. 58 Obs. 58 Obs. 57 

chi2 62.44 chi2 31.69 chi2 21.45 

Alpha 0.46 Alpha 0.74 Alpha 0.62 

BIC 251.95 BIC 258.43 BIC 257.01 

Pearson 34.36 Pearson 44.77 Pearson 37.48 

 

 
Lag 3 

 
Lag 4 

 
Lag 5 

close 40+ -0.016 close 40+ -0.0061 close 40+ -0.0153 

 
(0.01) 

 
(0.02) 

 
(0.02) 

open 20+ 0.0161 open 20+ 0.0142 open 20+ 0.0377*   

 
(0.01) 

 
(0.02) 

 
(0.02) 

open 30+ -0.0569 open 30+ -0.0539 open 30+ -0.0769**  

 
(0.03) 

 
(0.04) 

 
(0.03) 

open 40+ 0.087 open 40+ 0.0787 open 40+ 0.0891**  

 
(0.06) 

 
(0.05) 

 
(0.03) 

value 20+ -0.0001 value 20+ -0.0001 value 20+ -0.0003 

 
(0.00) 

 
(0.00) 

 
(0.00) 

value 30+ 0.0005 value 30+ 0.0005 value 30+ 0.0008*   

 
(0.00) 

 
(0.00) 

 
(0.00) 

value 40+ -0.0009 value 40+ -0.0008 value 40+ -0.0010**  

 
(0.00) 

 
(0.00) 

 
(0.00) 

Constant 0.9027*** Constant 0.8619**  Constant 0.8181**  

  (0.25)   (0.27)   (0.25) 

Obs. 60 Obs. 60 Obs. 60 

chi2 24.59 chi2 28.8 chi2 34.97 

Alpha 0.61 Alpha 0.69 Alpha 0.54 

BIC 274.79 BIC 276.73 BIC 270.4 

Pearson 40.67 Pearson 38.51 Pearson 36.5 
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Lag 10 

 
Lag 15 

 
Lag 20 

close 40+ -0.0295 close 40+ -0.0199 close 40+ -0.0303*   

 
(0.02) 

 
(0.02) 

 
(0.01) 

close 10+ -0.0074 open 20+ 0.0037*   close 50+ 0.0539**  

 
(0.01) 

 
(0.00) 

 
(0.02) 

close 20+ 0.0146 open 30+ -0.012 open 20+ 0.0007 

 
(0.01) 

 
(0.01) 

 
(0.00) 

close 20+ 0 open 40+ 0.0097*   open 30+ -0.0002 

 
(.) 

 
(0.00) 

 
(0.00) 

Constant 1.1627 value 30+ 0 Constant 0.8228*** 

 
(0.91) 

 
(0.00) 

 
(0.19) 

  
Constant 1.4846*** 

        (0.34)     

Obs. 63 Obs. 65 Obs. 85 

chi2 3.34 chi2 13.48 chi2 11.64 

Alpha 1.18 Alpha 0.84 Alpha 0.83 

BIC 294.61 BIC 298.82 BIC 393.83 

Pearson 94.46 Pearson 67.1 Pearson 99.82 

 

 
Lag 25 

close 30+ 0.0335**  

 
(0.01) 

close 40+ -0.0356**  

 
(0.01) 

open 20+ 0.0338 

 
(0.02) 

open 30+ -0.0462*   

 
(0.02) 

open 40+ 0.0412 

 
(0.02) 

open 50+ -0.0202**  

 
(0.01) 

value 20+ -0.0003 

 
(0.00) 

value 30+ 0.0004 

 
(0.00) 

value 40+ -0.0002 

 
(0.00) 

Constant 0.3478 

  (0.39) 

Obs. 67 

chi2 63.36 

Alpha 0.49 

BIC 307.14 

Pearson 43.94 

 

 

Overall, the combination model yielded the best, if not better, model at each lag. Again, 

we appeal to the BIC and Pearson statistic in order to draw this conclusion. At this point, 
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we have systematically run several preliminary regressions. From our results, we are able 

to determine a model within each lag that fares better than others. 

 

6. Meteorological Forecasts 

6.1     Accuracy 

We were able to obtain professional, meteorological forecasts that forecasted the amount 

of snowfall to occur in the next twenty-four hours. Given that we have scientific forecasts, 

market forecasts, and the actual level of snowfall that occurred, we are able to compare 

how well our market forecast fared next to snowfall forecasts conducted by professional 

meteorologists. 

First off, let us examine a subset of the data. Below lies a sample of snowfall and forecast 

data from the 2003 to 2004 winter season. As we can see, meteorological forecasts are 

mediocre at best. 

Table 5     Subset of Meteorological Forecasts from Dark Sky 

 Snowfall Forecast  Snowfall Forecast 
December 5th, 
2003 

6.0 3.387 January 14th, 
2004 

0 0.531 

December 6th, 
2003 

0 1.808 January 15th, 
2004 

0 2.058 

December 13th, 
2003 

0 0.237 January 16th, 
2004 

0.2 0 

December 25th, 
2003 

5.0 0 January 17th, 
2004 

0.5 0 

January 5th, 
2004 

0.315 0 January 26th, 
2004 

0.9 0.138 

January 6th, 
2004 

0.315 0 January 27th, 
2004 

0.9 4.810 

January 8th, 
2004 

0.984 0 January 28th, 
2004 

0 4.020 

All figures are denoted in inches. 

The sample subset presented denotes the general accuracy observed from the data: it 

seems to be almost impossible to correctly forecast the exact inches of snow that will fall. 

It is pertinent that we reframe our question: What if we instead consider a successful 
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meteorological forecast to be one where it correctly predicts whether any snow will occur 

at all? Below lies the frequency of this new, less stringent definition of successful forecast 

during the winter seasons of 2003 to 2008: 

Table 6     Frequency of Correct and Incorrect Meteorological Forecasts 

Year 2003/04 2004/05 2005/06 2006/07 2007/08 
Correct 
Forecast 

3 15 6 8 4 

Incorrect 
Forecast 

9 19 9 11 8 

 

Evidently, professional forecasts have some ability in prediction, but it is mediocre at 

best. Knowing this, several hypotheses worth examining come to mind: 

6.2     Hypothesis 1: Did the meteorologists or the futures market do a better job of 

forecasting? 

Before attempting to answer this question, we must define a comparable futures contract 

to the meteorological forecast.  

The earliest publicly-disseminated meteorological forecast for snowfall on December 7th is 

published at 5:00 am New York Time on December 7th. On the other hand, the futures 

market starts trading at 3:45am in New York each day (8:45am Ireland time, where the 

Intrade markets are legally registered) and ends at 3:00am the next day; therefore, the 

most accurate futures forecast for accumulated snowfall made on December 7th had its 

last trading period from 3:45am of December 6th through to 3:00am of December 7th. In 

other words, the closest, comparable futures model to the 24-hours ahead meteorological 

forecast is the futures forecast of the same day in question, the No Lag model.
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Figure 7     Example of Temporal Concerns for Various Forecast Methods for December 7th  

 

 
December 6th  

      
December 7th  

    

 
12:00am 2:00am 3:00am 3:45am 4:00am 5:00am … 11:00pm 12:00am … 3:00am 3:45am 4:00am 5:00am 

Meteorological 
Forecast 

     

Forecast 
for Dec. 
6

th
  

              

Forecast 
for Dec. 
7

th
 

Made 
Here 

Futures Model: No 
Lag 

   
            

Forecast 
for Dec. 
7

th
 

Made 
Here 

    

Futures Model: 
Lag 1 

  

Forecast 
for Dec. 
6th 

      
  

     Daily Actual Snow 

        
  

     

         
  

     

          
All times are denoted locally for Central Park, NY. 
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To test Hypothesis 1, we will compare regression models (conditioned on snow occurring) 

using our previously derived ‘best model’ with a regression model composed of solely the 

meteorological forecast. Before we do this, we examine the futures models we have had so 

far in order to determine the ‘best’ model comparable to the meteorological forecast. In 

the following comparison of models with No Lags, the Combination model has the 

smallest BIC and Pearson statistic, indicating that it is the model with the best fit 

amongst the four. 

Table 7     Comparison of No Lag Models 

 Closing Price Open Interest Value Combination 
Obs. 56 58 58 58 
chi2 7.5 67.83 61.25 62.44 
Alpha 1.13 0.75 0.84 0.46 
BIC 265.34 259.64 263.19 251.95 
Pearson 114.27 46.57 56.76 34.36 

 

Therefore, we will be comparing results from the following models, namely: 

Table 8     Comparison Models and their Regressors 

 Regressand Regressor(s) 
Futures No Lag Model Snowfall Variables at No Lags: 

 Open Interest of the 20+ Inches Contract 

 Open Interest of the 30+ Inches Contract 

 Open Interest of the 40+ Inches Contract 

 Value of the 20+ Inches Contract 

 Value of the 30+ Inches Contract 

 Value of the 40+ Inches Contract 
Meteorological Model Snowfall Meteorological forecast of snowfall to accumulate over the 

next 24 hours 
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The regression results are as follows: 

 

Meteor 
Forecast 

 

Futures 
Forecast 

Meteor 0.2200*** Open 20+ -0.0522 

 
(0.06) 

 
(0.04) 

Constant 0.4727*** Open 30+  -0.0833*** 

 
(0.13) 

 
(0.02) 

  
Open 40+  0.1783*** 

   
(0.05) 

  
Value 20+  0.0006 

   
(0.00) 

  
Value 30+ 0.0008**  

   
(0.00) 

  
Value 40+ -0.0018*** 

   
(0.00) 

  
Constant 0.8643*** 

      (0.22) 

Obs. 99 Obs. 58 

chi2 13.65 chi2 62.44 

alpha 0.57 alpha 0.46 

BIC 417.49 BIC 251.95 

Pearson 133.84 Pearson 34.36 

 

The regression results indicate that our futures model is a better fit. Specifically, the BIC 

and Pearson statistic are lower for the futures model. 

Using the regression results, we now predict snowfall. We are interested to see which 

model generates values most closely matching actual snowfall.  If traders’ opinions are 

more accurate than the meteorological forecasts, then it would mean that there is 

significant private information being captured by the futures market. Contrastingly, if the 

meteorological forecasts are more accurate than the traders’ opinions, then perhaps not 

all traders follow the weather forecast and there is information asymmetry present among 

participating traders. 

Below, we graph the meteorological forecast and futures forecast on days that snowed. 
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Figure 9     Actual Snowfall vs. Meteorological and Futures Forecasts (in Inches) 
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Our forecast does not seem to fare too badly against the meteorological forecast. In order 

to obtain a precise comparison, the root mean squared error (RMSE) was calculated for 

each model.29 The RMSE for the No Lag futures model was 3.77, while the RMSE for the 

Meteorological model was 5.47. Without a doubt, our futures forecast predicted more 

accurately than the meteorological forecast. This is an interesting result because the 

futures forecast is made two hours prior at 3:00am relative to the meteorological forecast 

at 5:00am. 

In order to confirm our results, we conducted a simple examination of the predicted 

values from both models. On the snow days between December 2003 and March 31st, 

2013, 94% of the meteorologically forecasted snowfall fell within one standard deviation of 

the snowfall sample standard deviation, conditioned on it being a snow day. On the other 

hand, 96% of the futures forecasts fell within one standard deviation of the snowfall 

sample standard deviation. Both are very close, and evidently, the predictive ability of 

the meteorological forecast should not be dismissed, which presents our motivation for 

Hypothesis 2: 

6.3     Hypothesis 2: How much improvement is brought upon the futures model by 

including public information in our previous regression models? 

This hypothesis is concerned with testing the existence of semi-strong form efficiency in 

futures markets. The meteorological forecast represents public information because it is 

available to all traders. If the addition of the term brings about a significant 

improvement in forecasting ability then we may take this as indication that not all 

traders took this information into account. In a sense, Hypothesis 2 deals with the 

efficiency of publicly available information. 

                                                           

29 Root Mean Squared Error (RMSE) is defined to be √
1

𝑛
∑ (𝑠𝑛𝑜𝑤𝑓𝑎𝑙𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)2𝑛

𝑖=1 . The RMSE was chosen for 

comparative purposes due to its greater sensitivity to the occasional large error, or deviation, from the actual snowfall.  
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In order to test this hypothesis, we ran our futures forecast model with the additional 

meteorological forecast as a new regressor. The results are as follows: 

 

 
Nested 

 
Full 

open 20+ -0.0522 open 20+ -0.0174 

 
(0.04) 

 
(0.03) 

open 30+ -0.0833*** open 30+ -0.0989*** 

 
(0.02) 

 
(0.02) 

open 40+ 0.1783*** open 40+ 0.1433**  

 
(0.05) 

 
(0.05) 

value 20+ 0.0006 value 20+ 0.0002 

 
(0.00) 

 
(0.00) 

value 30+ 0.0008**  value 30+ 0.0010*** 

 
(0.00) 

 
(0.00) 

value 40+ -0.0018*** value 40+ -0.0015**  

 
(0.00) 

 
(0.00) 

Constant 0.8643*** meteor 0.1957*** 

 
(0.22) 

 
(0.04) 

  
Constant 0.5690**  

      (0.20) 

Obs. 58 Obs. 58 

chi2 62.44 chi2 103.81 

alpha 0.46 Alpha 0.17 

BIC 251.95 BIC 231.51 

Pearson 34.36 Pearson 22.96 

 

 

We ran the Wald Test to see whether the addition of meteorological forecasts 

significantly improves the model.30 The p-value for the test was smaller than 0.000, 

indicating that the meteorological forecast does significantly improve the model.31 

In fact, the additional meteorological forecast term made coefficients in the nested model 

more significant. After we predicted the values using the combined model, we found that 

                                                           
30 We considered running the Likelihood Ratio (LR) test, but STATA did not allow us to do so given that our 
regressions were run with robust standard errors; however, when we ran the LR test with non-robust standard errors, 
we obtained the same conclusion as the Wald Test: that the Meteorological forecast variable improves our overall, 
forecast model. The test statistic was chi-square (df=1) = 24.50. 
31 The test statistic was chi-square(df=1) = 30.99. 
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the RMSE became 3.37 compared to the nested model (or entirely futures model) of 

3.68.32 BIC is now 231.51, and the Pearson statistic came to 22.96, both of which are 

improvements from the best-specified model we had from Section 1 (the Combination 

model, No Lags, which had BIC = 251.95 and Pearson = 34.36). 

6.4     Hypothesis 3: How many lags does it take for the futures contract to predict on 

the same level as the meteorological contract? 

It was determined that the 24-hours ahead meteorological forecast fared worse than the 

most comparable futures contract. This goes against intuition. It should be that the 

further into the future a prediction attempts to predict, the more likely it will be that the 

prediction is less accurate; however, as we saw from Hypothesis 1, the futures forecast 

made two hours before the meteorological forecast proved to be more accurate. 

We now pose the following question: How many days ahead can we predict using futures 

contracts before the ability of the contracts become comparable to the prediction ability 

of the meteorological forecast? In other words: we would like to examine at which futures 

lag is the meteorological forecast comparable?  

 

 

 

 

 

 

 

                                                           
32 The RMSEs for Hypothesis 2 were calculated with 58 observations instead of 61 observations. This was because some 
variables decrease in number of observations available due to the process of lagging it. 
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Figure 10     Graph and Table of RMSE of Different Lags 

 

 

Dashes represent the RMSE of the meteorological forecast. 

 

According to the RMSE figures presented in Figure 10, futures contracts at all lags 

available to us are better predictors than the 24-hour ahead meteorological forecast. In 

other words, the futures market is sure to predict more accurately than the 

meteorological forecast up to 25 days in advance.33 This result confirms the same result 

reflected in the BIC and Pearson statistic. In particular, the models composed of a 

                                                           
33 It is important to note that we are calculating RMSE for days in which snowfall occurred. While this is consistent 
with our earlier methodologies and analysis of the conditional distribution, it also has the disadvantage of omitting 
error from the days where no snow fell, but where the meteorological forecast predicted positive snowfall. It, however, 
does not change the qualitative result of our regression,that our futures model predicts better than the meteorological 
model. Adding the days we are omitting will simply raise the RMSE of the meteorological model. 

No Lag Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 10 Lag 15 Lag 20 Lag  25

Close 5.81 5.79 5.76 5.77 5.79 5.80 5.76 5.75 5.76 5.75

Open 5.68 5.66 5.87 5.62 5.62 6.58 5.91 5.66 5.65 5.65

Value 5.68 5.68 5.96 5.64 5.62 5.61 5.83 5.68 5.75 5.65

Combined 5.62 5.70 5.81 5.63 5.63 5.59 5.85 5.65 5.70 5.67
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combination of Closing Prices, Open Interest, and Value seem to fare consistently well 

relative to other contract.  

It is interesting to note that the model composed solely of the Closing Prices of contracts 

exhibited the peculiar overall trait of slightly decreasing RMSE as the number of lags 

increases. In other words, this model returns lower prediction errors the further into the 

future one forecasted. The RMSE of the Open Interest, Value, and the Combined model 

fluctuate up and down, but remain around the same mean overall. Please see Appendix, 

Figures 7a to 7d for the individual RMSEs of different models along with their trend lines. 

While the pattern of Closing Price’s RMSEs may seem counterintuitive it may be that 

the nearer to a date, the noisier Closing Price becomes. More information is revealed day 

by day because with each day that passes, it becomes less and less likely for the 

accumulated snowfall to become more than the current level. Traders may be responding 

to this information. The examination of this hypothesis is beyond the scope of our 

discussion. 

 

7. Conclusion 

Information markets are a marvelous invention that does not receive enough attention. 

As we have shown, even phenomena that is supposed to be exogenous such as weather 

can be better predicted using information markets up to 24 hours better than the 

professional, meteorological forecast. Amongst this finding, perhaps the most potent 

result is that snowfall for the next 24 hours can be better predicted even by futures 

contracts trading up to twenty-five days in the past. Although most of our coefficients 

are small in magnitude, they are nevertheless significant. 

The potential for information markets clearly has not been fully explored in other areas of 

social sciences. The ability to predict real events accurately ahead of time can present 
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great advantages in policy decisions. It is our hope that this simple study illustrates the 

possibilities of utilizing information markets, so that instances of its use become more 

prevalent. 
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9. Figures 

 

Figures 1a to 1j.      Annual Snowfall Conditional Distributions  
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Figures 2a to 2d 

 

Closing Price of Contracts, 2003 – 2008 

Winning Contract Denoted in Black Lines 
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Figures 3a to 3d 

 

Open Interest of Contracts, 2003 – 2008 

Winning Contract Denoted in Black Lines 
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Figures 4a to 4d 

 

Value of Contracts, 2003 – 2008 

Winning Contract Denoted in Black Lines 
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Figures 5a to 5b 

 

Session High of Contracts, 2003 – 2005 

 

 

 

 

Figures 6a to 6b 

 

Trading Volume of Contracts, 2003 – 2005 
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Figures 7a to 7d 

 

Root Mean Squared Error (RMSE) of Models 
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10. Tables 

 

Table 1     Intrade Contract Rules for Snowfall in Central Park, NYC.  

Contract Rules:  

 

A contract will settle (expire) at 100 ($10.00) if snowfall is equal to, or greater than, the number of 

inches specified in the contract.  

A contract will settle (expire) at 0 ($0.00) if snowfall is less than the number of inches specified in the 

contract.  

 

Expiry will be based on snowfall data published by the National Weather Service.  

 

Any changes to the result after the contract has expired will not be taken into account - Contract 

Rule 1.4  

Due to the nature of this prediction market contract you are obligated to read Contract Rule 

1.7 (Unforeseen Circumstances) and Contract Rule 1.8 (Time Protection). Intrade may invoke these 

rules in its absolute discretion if deemed appropriate.  

 

http://www.intrade.com/jsp/intrade/help/index.jsp?page=rules.html
http://www.intrade.com/jsp/intrade/help/index.jsp?page=rules.html
http://www.intrade.com/jsp/intrade/help/index.jsp?page=rules.html
http://www.intrade.com/jsp/intrade/help/index.jsp?page=rules.html
http://www.intrade.com/jsp/intrade/help/index.jsp?page=rules.html
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Table 2b. Frequency of Daily Snowfall Levels, December 1940-2003 
        

                

 

Dec 
01 

Dec 
02 

Dec 
03 

Dec 
04 

Dec 
05 

Dec 
06 

Dec 
07 

Dec 
08 

Dec 
09 

Dec 
10 

Dec 
11 

Dec 
12 

Dec 
13 

Dec 
14 

Dec 
15 

0.0 inches 60 59 58 58 56 56 56 59 50 57 56 56 56 56 53 

0.1 inches 
   

1 1 1 
   

1 1 
 

2 
 

1 

0.2 inches 
 

1 
   

2 
  

2 
  

1 
   0.3 inches 

     
1 2 

 
1 

   
1 1 1 

0.4 inches 
           

1 
   0.5 inches 

  
1 

 
1 

   
2 

      0.6 inches 
        

1 1 
     0.7 inches 

    
1 

     
1 

   
2 

0.8 inches 
         

1 
     0.9 inches 

               1.0 inches 
          

1 
    1.1 inches 

      
2 

 
1 

      1.2 inches 
               1.3 inches 
               1.4 inches 
             

1 
 1.5 inches 

       
1 1 

      1.6 inches 
               1.7 inches 
             

1 
 1.8 inches 

               1.9 inches 
        

1 
      2.0 inches 

               > 2.0 inches 
  

1 1 1 
   

1 
 

1 2 1 1 3 
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Table 2b. Frequency of Daily Snowfall Levels, December 1940-2003 
         

                 

 

Dec 
16 

Dec 
17 

Dec 
18 

Dec 
19 

Dec 
20 

Dec 
21 

Dec 
22 

Dec 
23 

Dec 
24 

Dec 
25 

Dec 
26 

Dec 
27 

Dec 
28 

Dec 
29 

Dec 
30 

Dec 
31 

0.0 inches 55 57 55 53 54 54 51 55 54 53 56 51 56 51 56 57 

0.1 inches 1 
 

1 1 
 

2 1 
  

1 
 

1 1 
   0.2 inches 

    
1 

 
2 2 

        0.3 inches 1 
 

1 
 

1 
    

1 
 

1 
 

3 1 
 0.4 inches 1 1 1 

 
1 

    
2 

  
1 1 

  0.5 inches 1 
        

1 
 

2 
    0.6 inches 

      
1 

 
1 

     
2 

 0.7 inches 
                0.8 inches 
        

1 
       0.9 inches 

  
1 

             1.0 inches 
 

1 
         

1 1 
   1.1 inches 

 
1 

    
1 

         1.2 inches 
     

1 
 

1 
        1.3 inches 

    
1 

           1.4 inches 
  

1 
             1.5 inches 

                1.6 inches 
     

1 
          1.7 inches 1 

               1.8 inches 
      

1 
      

2 
  1.9 inches 

                2.0 inches 
            

1 
   > 2.0 inches 

   
6 2 2 3 2 3 2 4 3 

 
3 1 3 
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Table 2c. Frequency of Daily Snowfall Levels, January 1940-2003 

                

 

Jan 
01 

Jan 
02 

Jan 
03 

Jan 
04 

Jan 
05 

Jan 
06 

Jan 
07 

Jan 
08 

Jan 
09 

Jan 
10 

Jan 
11 

Jan 
12 

Jan 
13 

Jan 
14 

Jan 
15 

0.0 inches 52 56 51 55 52 50 46 52 50 53 52 47 50 52 51 

0.1 inches 1 1 1 1 1 2 
 

2 1 
  

1 1 
 

1 

0.2 inches 1 
    

1 
  

1 1 1 1 2 1 3 

0.3 inches 1 
   

2 2 
 

1 1 
 

2 
   

1 

0.4 inches 
 

1 2 
  

1 
  

3 
  

2 2 
  0.5 inches 2 

 
2 

 
1 

        
1 

 0.6 inches 
 

1 1 1 
  

1 
   

1 1 
   0.7 inches 

  
1 

            0.8 inches 
  

1 
     

1 
  

1 
  

1 

0.9 inches 
      

2 
 

1 
   

1 
 

1 

1.0 inches 
      

1 1 1 
  

1 
  

1 

1.1 inches 
   

1 
     

1 
     1.2 inches 

               1.3 inches 
    

1 
 

2 
     

1 
  1.4 inches 

               1.5 inches 
    

1 1 
   

1 
     1.6 inches 

         
1 

     1.7 inches 
 

1 
        

1 
    1.8 inches 

  
1 

   
1 

    
2 

 
2 

 1.9 inches 
          

1 
    2.0 inches 

    
1 

 
3 1 

     
1 1 

> 2.0 inches 2 
  

2 
 

3 4 3 1 3 2 4 3 3 
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Table 2d Frequency of Daily Snowfall Levels, January 1940-2003 
         

                 

 

Jan 
16 

Jan 
17 

Jan 
18 

Jan 
19 

Jan 
20 

Jan 
21 

Jan 
22 

Jan 
23 

Jan 
24 

Jan 
25 

Jan 
26 

Jan 
27 

Jan 
28 

Jan 
29 

Jan 
30 

Jan 
31 

0.0 inches 49 52 55 52 43 53 58 55 56 51 52 51 54 53 52 49 

0.1 inches 1 2 
  

2 1 
   

1 1 1 
  

1 2 

0.2 inches 1 1 1 2 1 1 
 

1 
  

1 1 1 2 1 3 

0.3 inches 1 
  

1 
     

1 
 

1 
 

2 
 

1 

0.4 inches 
   

1 1 
        

1 2 2 

0.5 inches 
  

1 
 

5 
    

2 
      0.6 inches 1 

  
1 

     
1 2 

 
1 

   0.7 inches 
    

1 
 

1 
         0.8 inches 

    
2 

    
1 

    
1 1 

0.9 inches 1 
          

1 
  

1 1 

1.0 inches 
  

1 
  

2 
 

1 
     

1 
 

1 

1.1 inches 
    

1 1 
          1.2 inches 

           
1 

    1.3 inches 
 

3 
 

1 
      

1 1 
    1.4 inches 

           
1 1 

   1.5 inches 1 
  

1 
    

1 
     

1 
 1.6 inches 

     
2 

          1.7 inches 
 

1 
         

1 
    1.8 inches 

        
1 

   
1 1 

  1.9 inches 1 
      

1 
        2.0 inches 

    
2 

  
1 

        > 2.0 inches 4 1 2 1 2 
 

1 1 2 3 3 1 2 
 

1 
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Table 2e Frequency of Daily Snowfall Levels, February 1940-2003 
        

                

 

Feb 
01 

Feb 
02 

Feb 
03 

Feb 
04 

Feb 
05 

Feb 
06 

Feb 
07 

Feb 
08 

Feb 
09 

Feb 
10 

Feb 
11 

Feb 
12 

Feb 
13 

Feb 
14 

Feb 
15 

0.0 inches 53 48 53 50 54 47 50 48 53 57 52 50 48 47 49 

0.1 inches 1 2 
 

3 
 

1 
    

2 
 

2 
 

3 

0.2 inches 
 

2 
 

1 1 
 

1 2 
    

2 
 

1 

0.3 inches 
  

1 1 
 

2 
  

1 
  

1 
 

1 
 0.4 inches 

 
1 

   
2 2 

 
2 

   
1 

 
2 

0.5 inches 
 

1 2 1 
   

3 
  

1 1 
   0.6 inches 1 

 
1 

         
1 

  0.7 inches 
               0.8 inches 
  

1 
          

2 
 0.9 inches 1 

    
1 

     
1 

   1.0 inches 
 

2 1 
    

1 
    

1 1 1 

1.1 inches 
           

1 1 2 
 1.2 inches 

        
1 

    
1 

 1.3 inches 
         

1 
  

2 
 

1 

1.4 inches 
      

1 
        1.5 inches 

 
1 

             1.6 inches 
 

1 
             1.7 inches 

          
1 2 

   1.8 inches 
   

1 
    

1 
      1.9 inches 

     
1 

         2.0 inches 2 
    

1 
   

1 
  

1 1 1 

> 2.0 inches 2 2 2 3 5 5 6 5 2 1 4 4 1 5 2 
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Table 2f Frequency of Daily Snowfall Levels, February 1940-2003 
      

              

 

Feb 
16 

Feb 
17 

Feb 
18 

Feb 
19 

Feb 
20 

Feb 
21 

Feb 
22 

Feb 
23 

Feb 
24 

Feb 
25 

Feb 
26 

Feb 
27 

Feb 
28 

0.0 inches 50 55 54 53 55 56 52 52 53 51 55 57 53 

0.1 inches 
        

1 
 

2 
  0.2 inches 

 
1 

   
1 

   
1 

   0.3 inches 1 
     

2 
 

2 2 
  

1 

0.4 inches 1 
 

1 
 

1 1 1 2 1 1 1 
 

1 

0.5 inches 
  

1 
   

1 
   

1 
 

1 

0.6 inches 1 
  

1 
       

2 
 0.7 inches 2 

 
1 

     
1 

    0.8 inches 1 1 
          

1 

0.9 inches 
            

1 

1.0 inches 1 
      

1 1 
    1.1 inches 

      
1 

      1.2 inches 
             1.3 inches 
             1.4 inches 
 

1 
       

1 1 
  1.5 inches 

 
1 

  
1 

    
1 

   1.6 inches 1 
     

2 1 
     1.7 inches 

 
1 1 

          1.8 inches 
        

1 2 
   1.9 inches 

    
1 

        2.0 inches 
    

1 
      

1 1 

> 2.0 inches 2 
 

2 6 1 2 1 4 
 

1 
  

1 
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Table 2g Frequency of Daily Snowfall Levels, March 1940-2003 
        

                

 

Mar 
01 

Mar 
02 

Mar 
03 

Mar 
04 

Mar 
05 

Mar 
06 

Mar 
07 

Mar 
08 

Mar 
09 

Mar 
10 

Mar 
11 

Mar 
12 

Mar 
13 

Mar 
14 

Mar 
15 

0.0 inches 51 53 51 55 54 55 54 52 58 56 59 53 53 50 58 

0.1 inches 3 1 
 

1 2 
  

4 
       0.2 inches 

   
1 1 1 2 

  
1 

 
1 

 
1 

 0.3 inches 1 
   

1 
 

1 
  

1 
 

2 1 1 
 0.4 inches 

            
1 1 

 0.5 inches 
         

1 
   

1 
 0.6 inches 

       
1 

 
1 

     0.7 inches 
   

1 
        

1 
  0.8 inches 1 

              0.9 inches 
           

1 
   1.0 inches 

  
3 

       
1 

  
1 

 1.1 inches 
           

1 
 

1 
 1.2 inches 

    
1 

 
1 

        1.3 inches 
             

1 
 1.4 inches 

 
1 1 

         
1 1 

 1.5 inches 
               1.6 inches 
           

1 
   1.7 inches 

  
1 

            1.8 inches 
 

1 
     

1 
      

1 

1.9 inches 
               2.0 inches 1 

 
1 2 1 

          > 2.0 inches 3 4 3 
  

4 2 2 2 
  

1 3 1 1 
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Table 2h. Frequency of Daily Snowfall Levels, March 1940-2003 
         

                 

 

Mar 
16 

Mar 
17 

Mar 
18 

Mar 
19 

Mar 
20 

Mar 
21 

Mar 
22 

Mar 
23 

Mar 
24 

Mar 
25 

Mar 
26 

Mar 
27 

Mar 
28 

Mar 
29 

Mar 
30 

Mar 
31 

0.0 inches 55 52 55 56 56 56 53 60 59 60 57 59 57 54 59 58 

0.1 inches 
  

1 
            

2 

0.2 inches 1 
 

1 
  

1 
    

2 
 

1 1 
  0.3 inches 

 
1 

          
1 

   0.4 inches 
 

1 
         

1 
    0.5 inches 

 
1 

            
1 

 0.6 inches 
  

1 
 

1 
     

1 
     0.7 inches 

                0.8 inches 1 1 
   

1 
          0.9 inches 

                1.0 inches 
                1.1 inches 
 

1 
              1.2 inches 

        
1 

       1.3 inches 
     

1 
          1.4 inches 

                1.5 inches 
 

2 
          

1 
   1.6 inches 

                1.7 inches 
    

1 
           1.8 inches 1 

            
1 

  1.9 inches 
      

2 
         2.0 inches 1 

  
1 

            > 2.0 inches 1 1 2 3 2 1 5 
      

4 
   


