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1 Introduction

Forecasting key macroeconomic time series such as consumption, interest rates,

and inflation remains one of the most important responsibilities of macroecono-

metrics. Central banks, government institutions, and private sector companies

all make important decisions based on forecasts of these variables. Forecasters

must make two decisions when performing their vocation: choosing a model

and a statistical methodology. The goal of this paper was to consider the

forecasting accuracy of two forecasting models and two statistical methodolo-

gies. The performance of each model was judged on its ability to both forecast

different variables and maintain the consistency of its results over time.

Two types of models were considered: constrained and unconstrained.

The constrained type was a Dynamic Stochastic General Equilibrium (DSGE)

model and the unconstrained type was a Vector Autoregression (VAR) model.

The variables of a DSGE model were constrained in the values they could

take by the structure imposed from the underlying economic theory of the

model.1 In contrast, a VAR model placed no constraints between its variables,

other than a linear structure. Both models were estimated by two statistical

techniques: maximum likelihood (ML) and Bayesian. The four models stud-

ied and compared in this paper were: Bayesian DSGE (B-DSGE), maximum

likelihood DSGE (ML-DSGE), VAR, and Bayesian VAR (BVAR).

Comparing the forecasting ability of different models is important for three

reasons. First, the relative ability of different model types and statistical

methodologies to accurately predict and describe real world data series is de-

termined. Second, the specific weaknesses of models are highlighted which al-

lows them to be addressed.2 Third, future researchers are given a benchmark

1For example, the relationship between consumption and investment was that their sum
must equal output.

2A DSGE model which is particularly bad at forecasting inflation can prompt a re-
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to see if augmenting features of a specific model improve its performance.

Once model forecasts are generated, a researcher is tasked with deciding on

how to measure ‘performance.’ In this paper, five Canadian time series were

forecasted: (i) consumption, (ii) investment, (iii) money-balances, (iv) gross

interest rates, and (v) gross inflation rates. Additionally, four aspects of fore-

casting performance were considered. First, different forecast horizons were

used ranging from one- to four-quarters-ahead.3 Second, an ordinal measure

of forecasting performance, mean squared errors (MSEs), allowed models to be

relatively ranked. Third, model forecasts were compared head-to-head, and

differences in performance were tested for statistical significance. Fourth, a

range of forecasting start dates were considered to determine both the robust-

ness of the results and the dynamics of forecasting performance.

This paper differentiated itself from the existing DSGE forecasting litera-

ture through several aspects. Forecasting took place over a contemporary time

frame, including the recent financial crisis. A range of model types were esti-

mated with Canadian data using two statistical methodologies. Performance

was evaluated on a wide series of measures including dynamic start dates which

tested for robustness. The final results showed that the unconstrained VAR

model, estimated by classical methods, yielded the most accurate forecasts.

The evidence for the result came from measures of relative performance, the

number of statistically significant tests, and the degree of robustness across

start dates.

Background

DSGE models are the main policy tool in macroeconomics for analyzing key

policy questions. Examples of such questions include: (i) Under which sit-

searcher to reconsider the model’s price formation mechanism.
3A k-step-ahead forecast predicts the value of a variable k quarters in the future.
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uations does the money supply and consumption positively covary? (ii) How

persistent are shocks to the economy? (iii) Which variables react most strongly

to a change in interest rates? The advantage of DSGE models are that they

are microfounded, able to incorporate new designs in their structure,4 provide

quantitative measures of policy trade-offs, and address the ‘Lucas critique’.5

DSGE models can be written in a state-space representation which allows

them to make forecasts of any of their model’s variables. Traditional fore-

casting models, such as VARs, are also representable in a state-space form,

but they impose no structural relationship between variables. This presents a

natural research question: does imposing a specific structure derived from eco-

nomic theory, and constraining the relationship between variables, improve the

forecasting results for important macroeconomic time series? Recent literature

suggested that, in certain cases, the constraints imposed by the DSGE model

improved forecasting accuracy when compared to a range of other benchmark

models.

The growth of computer power allows the estimation of increasingly com-

plicated DSGE models by both classical and Bayesian techniques. Classical

methods involve finding a vector of parameters which maximize a likelihood

function (known as maximum likelihood estimation). Such an approach re-

quires numerical methods which explore high-dimensional spaces to find the

optimal point. In contrast to classical methods, the Bayesian approach as-

sumes the vector of parameters is itself a random vector and maps this vector

into a probability distribution (the posterior). In Bayesian DSGE models, the

4For example, the financial crisis prompted theoreticians to develop models with new
‘financial frictions’ which reflected the recent business cycle experience.

5DSGE models use agents with rational expectations that ensure all variables are simul-
taneously related to each other and that the solution to the dynamic system is made up of
the ‘deep’ parameters of the economy. See Lucas (1976) for the original ‘Lucas Critique’ or
Tesfatsion (2013) for a contemporary and readable overview.
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parameter vector which maximizes the median6 of the posterior probability

distribution is chosen as the optimal vector.

Bayesian estimation has been described as a “bridge” between the cali-

bration techniques used by the early DSGE models7 and the ML approach

(Griffoli, 2008, pg. 83). The specification of a probability distribution for

each parameter (a prior) is comparable to calibration. The use of data to

inform the parameter values is akin to maximum likelihood. Estimating a

DSGE model by Bayesian methods has several advantages. First, priors can

ensure that parameter estimates conform to economic theory and empirical

evidence.8 Second, and related, ML estimation can suffer from identification

issues when several combinations of parameters achieve the same likelihood or

flat subspaces lead to “the dilemma of absurd parameter estimates” (Griffoli,

2008, p. 78). For a more technical discussion of the differences between ML

and Bayesian estimation see Sections 9.2.3 and 9.2.4 in the appendix.

Macroeconomists have long known that a constrained model can outper-

form a more flexible one as long as its constraints are not too inconsistent with

the underlying data generating process.

... recent theoretical work gives rigorous foundation .... that in

high dimensional models restricted estimators can easily produce

smaller forecast or projection errors than unrestricted estimators

... (Sims, 1980, pg. 25)

The relative forecasting performance between constrained and unconstrained

6Other moment possibilities include the mean, mode, or minimum variance. However
the Bayesian DSGE literature has adopted the median as its moment of choice.

7Early dynamic stochastic models were known as real business cycle (RBC) models (see
Kydland and Prescott (1982)) and they differed from today’s DSGE models in that they
did not have ‘frictions’ which caused nominal variables to impact the real economy.

8For example, a variable which is logically bounded between zero and one can take a
beta distribution so that there is no probability weight outside this domain. For a further
discussion see Chapter 2 of King (1998).
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models is determined by the trade-off between the number of constraints im-

posed on a model and the degree of finite sample bias (Dib et al., 2008, pg.

139). If the constraints implied by the DSGE model are useful representations

of reality then this would weight forecasting performance in its favour due to

the larger number of variables an unconstrained model, such as a VAR, would

need to estimate.9 However, the constrained model will suffer from misspeci-

fication more, relative to an unconstrained model, when the data is generated

from a more complex process.

The difference between the Bayesian and classical VAR was that the former

addressed the problem of overparameterization by reducing the number of

parameters to a handful of hyperparameters.10 While the BVAR appeared to

have the best of both worlds - an unconstrained model unplagued by finite

sample bias - it suffered from an increasing dependence on the choice if its

priors. See Sections 6.4 and 6.5 for a discussion of the two models.

The post-1992 period of Canadian macroeconomic history was the most

conducive to the New Keynesian (NK)11 model used by this paper, as this was

when the Bank of Canada began its inflation targeting regime and successfully

disciplined inflation expectations and actual rates close to 2%. The number

of pseudo out-of-sample forecasting periods, which took place from 2003-Q1

to 2013-Q4, provided sufficient power to test whether one model’s forecasting

performance was superior to another’s. Forecasting start dates ranged from

2003-Q1 to 2011-Q2 for the dynamic tests.

9In this paper the VAR model had to estimate 50 parameters compared to only 25 for
the DSGE.

10A hyperparameter maps its value to multiple parameters, thereby reducing the dimen-
sions of the parameter space.

11The NK acronym became associated with dynamic stochastic models which incorpo-
rated frictions. Related to a previous footnote, empirical evidence showed that the friction-
less RBC models failed to describe important aspects of business cycle behavior and NK
models became the norm. Consequently, the acronyms NK and DSGE are used interchange-
ably throughout this paper.
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Researchers remain divided on the use of out-of-sample forecasts for model

evaluation.12 Out-of-sample forecasting accuracy requires that the data be par-

titioned into estimation and forecasting portions, which means not all available

information is used. In contrast, an in-sample model comparison with a likeli-

hood or Bayes ratio uses all the available data. This method has indisputably

more statistical power. However, the out-of-sample approach allows the re-

searcher to ask different questions that are of interest to central banks and

related institutions. Such questions can include: (i) Since 2003, which model

produced the most accurate forecasts of inflation? (ii) Do the results change

for yearly rather than quarterly forecasts? (iii) Which model performed best

during the financial crisis? (iv) How does model performance differ across the

Bayesian and classical methodologies?13

The use of out-of-sample forecasts addressed two concerns brought up in

previous papers. First, little evidence existed as to the robustness of DSGE

models.

... DSGE model’s ... forecast samples ... do not cover events,

such as a deep recession, that are particularly difficult to foresee.

(Christoffel et al., 2010, pg. 5)

The use of dynamic forecast tests with contemporary data showed how DSGE

model performance changed from the time of the ‘great moderation’ to the

‘great recession.’ Second, in-sample fit could not identify which variables a

model was particularly poor at predicting. This was why some researchers,

particularly those affiliated with central banks, have focused on out-of-sample

forecasts so that,

12For a discussion of the advantages and disadvantages see Diebold (2012) and for an
argument against see Clements and Hendry (2005).

13While Bayes and likelihood ratios can be compared between DSGE and VAR models in
certain cases, a Bayesian model cannot be compared to a classical model through in-sample
fit.
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... the success[es] in forecasting individual series may provide more

information to help improve the model. (Edge et al., 2010, pg. 19)

The structure of the rest of the paper is as follows: Section 2 provides a

literature review and list of technical sources. Section 3 presents the struc-

ture of the New Keynesian model. Section 4 explains the methodology used

to construct the data series. Section 5 details model calibration, including

the choice of Bayesian priors. Section 6 analyzes the parameter estimates and

their implications. Section 7 examines the forecasting results of all four mod-

els. Section 8 provides concluding remarks and directions for further research.

Lastly, Section 9 contains an appendix with the relevant model equations,

methodologies, and figures. Items which are contained in the appendix will

be cited as such throughout the paper. All codes, directions to replicate re-

sults, and additional figures can be found in the following Dropbox folder:

https://db.tt/FD9eZJpi.
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2 Literature Review

Forecasting macroeconomic time series has a voluminous literature stretching

back decades. The use of DSGE models to make forecasts has a more recent

history. Empirically estimated DSGE models go as far back as Christiano

and Eichenbaum (1992), Smith (1993) and Watson (1993). Historic attempts

to compare the fit and forecasting performance of DSGE models to other

benchmarks yielded poor results. Bergin (2003) found that a random walk

outperformed a DSGE model for most open-economy variables at one-step-

ahead forecasts14 and Schorfheide (2000) found that the Bayes ratio of a DSGE

to a BVAR was extremely low. A Bank of England report best summarized

the consensus of the time:

“The ... desire that a model should be both theoretically and empir-

ically coherent ... has proven impossible to satisfy ... and therefore

a trade-off is perceived to exist.” (Pagan, 2003, pg. 68)

In their breakthrough paper, Smets and Wouters (2003) were the first to

show that the forecasting accuracy of a large-scale DSGE model was compa-

rable to, or better than, a VAR and BVAR for inflation, exchange rates, and

interest rates in the euro-area. The results were intriguing and widely recog-

nized. The fit of a DSGE model improved when there were more frictions and

shocks. Frictions allowed the DSGE model to better match the data by es-

timating more parameters. The large-scale model’s ten autoregressive shocks

helped to pick up autocorrelations in the data.

Since 2003, a significant amount of DSGE forecasting research emerged.

Papers differentiated themselves through several features including, but not

limited to, the type of model, estimation method, measure of performance, and

14A model whose MSE is higher than a random walk should not be used for forecasting.
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data set used. Ireland (2004) was able to show that a small-scale DSGE model

estimated by classical methods could beat VAR models over a long period of

US post-war data in out-of-sample forecasting.15 Many central banks have

developed their own DSGE models to match features of their country’s econ-

omy. The Swedish central bank’s (Sveriges Riksbank) open-economy model

proved a competent forecaster for real exchange rates, exports and imports

(Adolfson et al. (2007)). The paper also considered forecasting performance

beyond point estimates through density forecasts and predictive densities. See

Christoffel et al. (2010) for a similar but more contemporary paper.

Edge et al. (2010) showed that the Federal Reserve’s large-scale closed-

economy ‘Edo’ model had forecasts comparable, if not better than, those made

by Federal Reserve staff. The paper used real-time data to ensure the DSGE

model forecasted with the non-revised data that was available to the Federal

Reserve staff at the time. Kolasa et al. (2012) also used real-time data to

forecast US time series but included external information, through conditional

forecasting, and compared the performance of the DSGE model to the Survey

of Professional Forecasters (SPF). The inclusion of external information was

able to make the forecasts comparable if not superior to the SPF.16 Other

examples of conditional forecasting include Julliard and Maih (2010).

The most common NK model used in the DSGE forecasting literature was

the closed-economy model from the Smets and Wouters (2007) paper originally

used to forecast US time series. For an overview of the forecasting ability of

several DSGE models for different measures of forecasting performance see

Del Negro and Schorfheide (2012). Table 1 tabulates key features of existing

research and their relation to this paper.

15While the DSGE model only had one shock, three additional shocks were added through
measurement errors.

16In contrast, earlier research found that DSGE models were not able to beat the SPF
(Rubaszek and Skrypcyzynki (2008)).
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The majority of empirically estimated DSGE models forecasted American

and European data series. This paper was interested in forecasting Canadian

time series. There was a small literature of Canadian-estimated DSGE mod-

els. The Bank of Canada developed a large-scale open-economy model, titled

‘Totem II’ (Dorich et al. (2013)), and estimated it by classical techniques.

While the model is used by the Bank of Canada for quarterly forecasts, its

accuracy has not been analyzed in a public document. Lubik and Schorfheide

(2007) estimated a small-scale open-economy model with Bayesian methods,

for several countries including Canada, with a monetary policy rule that in-

cluded exchange rates.17

Within the literature, Dib et al. (2008) was the most relevant to this paper.

The authors estimated a medium-scale DSGE model by classical techniques

to forecast Canadian time series and compared its forecasting accuracy with

a VAR and BVAR. This paper expanded upon the work done by Dib, Gam-

moudi, and Moran by using: more recent data (including the financial cri-

sis),18 Bayesian techniques, and dynamic tests. There were many similarities

in model design between this paper, Ireland (2003), and Dib et al. (2008). A

discussion of the differences between the models can be found in Section 3.5.

An alternative approach to estimating and forecasting with DSGE models

was the hybrid DSGE-VAR approach. The following thought experiment,

paraphrased from Del Negro and Schorfheide (2006), best explained the link

between DSGE and VAR models. A VAR of order p, when provided sufficient

data generated from a DSGE system would have parameters which yielded

autocorrelations that matched those of the DSGE model’s up until the pth

autocorrelation. Therefore, a mapping between the parameters of the DSGE

17Their empirical result suggested that the policy rate in Canada was affected by exchange
rate movements.

18The aforementioned paper used data up until 2004-Q1 whereas this paper has obser-
vations until 2013-Q4.
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and VAR model existed. The DSGE-VAR literature used a hyperparameter

(λ) to capture how far the estimated VAR parameters (resulting from the

actual data) were from the parameters implied by the DSGE mapping.

The actual forecasting model used by the DSGE-VAR was a BVAR whose

prior mean and covariance was set to the implied DSGE values and the inverse

of λ, respectively. The DSGE-VAR approach was both a highly innovative way

of specifying priors and measuring DSGE model fit. This hybrid method was

similar to comparing likelihood or Bayes ratios rather than the measures of

forecasting performance that this paper was interested in. Other hybrid DSGE

models, such as Bekiros and Paccagnini (2013)’s factor-augmented DSGE-VAR

model, can be found in the literature.

After the financial crisis, many commentators wondered why macroeco-

nomic models failed to forecast the largest economic downturn since the Great

Depression. While DSGE models that incorporated financial ‘frictions’ and

‘accelerators’ were around since the new millennium (see Bernanke et al.

(1999)), a flurry of research has been underway to develop new microfounded

mechanisms that capture the dynamics of financial markets. A full discussion

of these models is beyond the purview of this literature review and readers

are directed toward recent literature surveys by Brunnermeier et al. (2012)

and Brazdik et al. (2012) as well as a growing database19 of DSGE models

(Wieland et al. (2012)) for more information.

Despite the general impression that DSGE models ‘failed to predict’ the

crisis, there has been a paucity of published research into their relative fore-

casting performance during this period.20 Del Negro and Schorfheide (2012)

found that standard DSGE models saw their forecasting performance deteri-

19A database of DSGE models organized by their distinctive paradigms can be found at:
www.macromodelbase.com.

20However, several working papers, including Rubaszek and Kolasa (2014), are currently
investigating this topic.
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orate during the crisis years. A further contribution of this paper was to add

needed evidence of DSGE forecasting accuracy during the financial crisis for

a range of measures.

Bayesian models have become increasingly common due to the growth of

computer power. Markov Chain Monte Carlo (MCMC) methods are algo-

rithms which sample from complicated probability spaces and approximate

the posterior. Such spaces, which are multi-dimensional integrals, cannot usu-

ally be analyzed by standard numerical methods. An and Schorfheide (2007),

Fernandez-Villaverde (2010), and Guerron-Quintana and Nason (2012) pro-

vided literature surveys of Bayesian methods and their applications to DSGE

models.

Six technical documents were particularly useful in the creation of this pa-

per. The mathematical appendix to Ireland (2003)21 provided robust model

explanations and a suite of Matlab files. The material for Lawrence Chris-

tiano’s course on ‘Estimation, Solution and Policy Analysis using Equilibrium

Monetary Models’ had an informative and technical overview of Bayesian tech-

niques and DSGE models (see Christiano (2014)). An introductory textbook

to Bayesian techniques can be found in Lancaster (2004). Three documents

were especially helpful for the implementation of Dynare (the software used

by this paper to estimate the DSGE models). Pfeifer (2014) showed how ob-

servation equations were best specified in Dynare. The Dynare User Guide

from Griffoli (2008) was an indispensable overview about both the method-

ologies and practical uses of the software. Den Haan (2011) explained the

Bayesian approach to DSGE models and its implementation in Dynare. The

next section discusses the structure of the New Keynesian model.

21The mathematical appendix is cited as Ireland (2002) in the References section.
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3 Closed Economy Model

Numerous DSGE models were used in the literature to forecast macroeconomic

time series. This paper’s specific NK model was chosen as it was very similar

to the model used by Dib et al. (2008). Choosing a model close in design to

the aforementioned paper had two advantages. First, if similar results were

discovered, and the Bayesian DSGE was found to be the best forecaster, this

result could be attributed to the statistical methodology rather than a different

model design. Second, the parameter estimates between the models could be

contrasted.

The remainder of this section details the four agents of the model and their

respective optimization problems as well as modifications to the NK model.

The exact order is as follows: Subsections 3.1 to 3.4 discuss the representative

household, representative finished goods-producing firm, intermediate goods-

producing firms, and the central bank, respectively. Lastly, Subsection 3.5

examines model differences between this paper and similar ones found in the

literature. Additional equations and a general summary of the model can be

found in Section 9.1 in the appendix.

3.1 Representative Household

During period t, the representative household supplied to each of the i inter-

mediate goods-producing firms Ht(i) units of labour at a wage rate of Wt and

Kt−1(i) units of capital at a rental rate of Qt. The household received total

nominal factor payments of WtHt + QtKt−1. The household’s endowment of

labour was normalized to 1.
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Ht =

∫ 1

0

Ht(i)di

Kt−1 =

∫ 1

0

Kt−1(i)di

At the end of period t, the representative household made consumption and

investment decisions with the factor payments it earned over the period and the

cash balances it had from the previous period. The representative household

purchased the finished good Yt at a price of Pt which it could consume as a

consumption good Ct or use as an investment good It to generate a capital good

Kt. However, investments were transformed into productive capital goods at

an additional cost when the growth rate of capital from periods t to t + 1

differed from the deterministic growth rate g. For every unit of investment the

household paid an adjustment cost as shown in equation (1). The magnitude of

the friction was determined by the level of the capital stock and the parameter

φK ≥ 0.

Φ(Kt, Kt−1) =
φK
2

(
Kt

gKt−1

− 1

)2

Kt−1 (1)

The parameter g was the deterministic growth rate of capital along the

balanced growth path. Equation (2) presents the law of motion of the capital

stock, where δ was the depreciation rate, and χt was a shock to the marginal

efficiency of capital.

Kt = (1− δ)Kt−1 + χtIt (2)
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ln(χt) = ρχln(χt−1) + εχt (3)

The household’s budget constraint for period t is shown in equation (4),

where Dt were firm profits accruing to the household, and Rt was the gross

interest rate.

Mt−1 + Tt +Bt−1 +WtHt +QtKt−1 +Dt (4)

≥Pt(Ct + It + Φ(Kt, Kt−1)) +
Bt

Rt

+Mt

The household had preferences over an infinite time horizon as shown in

equation (5). Utility was a non-separable function of a composite good (made

up of consumption and real money balances) and leisure: u(Ct,Mt/Pt, 1−Ht).

A non-separable utility function ensured that changes to the nominal interest

rate would have impacts on the real variables.

E0

∞∑
t=0

βt
{
at

γ

γ − 1
ln
(
C

γ−1
γ

t + e
1
γ

t (Mt/Pt)
γ−1
γ
)

+ ηln(1−Ht)

}
(5)

There were two shocks in the utility function. First, there was a general

preference shock (at) to the composite good. Second, there was a specific

money-demand shock (et) within the composite good.

ln(at) = ρaln(at−1) + εat (6)

ln(et) = (1− ρe)ln(e) + ρeln(et−1) + εet (7)

The household faced the following maximization problem.
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max
Ct,Ht,Mt,Bt,It,Kt

E0

∞∑
t=0

βtu(Ct,Mt/Pt, 1−Ht)

Subject to:

Mt−1 + Tt +Bt−1 +WtHt +QtKt−1 +Dt

Pt
≥ Ct + It + Φ(Kt, Kt−1) +

BtR
−1
t +Mt

Pt

Kt = (1− δ)Kt−1 + χtIt

The first-order conditions (FOCs) that resulted from the above constrained

maximization problem are found in the appendix in Section 9.1.1. Combining

the relevant-first order conditions yielded equation (8), the money demand

equation. The parameter γ > 0 was, by a first-order Taylor approximation,

the interest elasticity of money demand.22 Even though the utility function was

non-separable, there would always be a positive demand for both consumption

and real money balances as long as the net interest rate was not zero.

Ctet =

(
Mt

Pt

)
(1−R−1

t )γ (8)

3.2 Finished Goods-Producing Firm

The representative finished goods-producing firm used Yt(i) units of each in-

termediate good to produce a single finished good Yt. In any one period t the

representative finished goods-producing firm sought to maximize its profits

by choosing the level of output and the amount of each input i, subject to a

technological constraint.

22Section 9.1.1 provides details on the derivation of the money demand equation and the
interpretation of γ.
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max
Yt,Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di

Subject to:

(∫ 1

0

Yt(i)
θ−1
θ

) θ
θ−1

≥ Yt

Combining the three FOCs of the above constrained optimization yielded

the demand curve for each intermediate good, as shown in equation (9), where

θ represents the price elasticity of demand.

Yt(i) = Yt

(
Pt(i)

Pt

)−θ
(9)

3.3 Intermediate Goods-Producing Firms

The ith intermediate goods-producing firm would hire Ht(i) units of labour,

rent Kt−1(i) units of capital from the representative household, and set prices

Pt(i) to maximize the present value of the firm, subject to the constraint that

the output must lie on the demand curve (seen in equation (9)). Formally, the

firm sought to maximize its market value over an infinite horizon.

max
Ht(i),Kt−1(i),Pt(i)

E0

∞∑
t=0

βtΛt
Dt(i)

Pt

Subject to:

Dt(i)

Pt
=

(
Pt(i)

Pt

)1−θ

Yt −
WtHt(i) +QtKt−1(i)

Pt
− φp

2

(
Pt(i)

ΠPt−1(i)
− 1

)2

Yt(
Pt(i)

Pt

)−θ
Yt = Yt(i) ≤ AtKt−1(i)α[gtHt(i)]

1−α
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ln(At) = ρAln(At−1) + (1− ρa)ln(A) + εAt

Where Dt(i) was the firm’s profits in time t, Π was the steady-state rate

of inflation growth, and [βtΛt/Pt] was the marginal utility of an additional

dollar of profit in time t.23 The second constraint shows that output assumed

a Cobb-Douglas production mechanism with a total factor productivity shock

At and a deterministic rate of growth g. The resulting first-order conditions

are found in the appendix in Section 9.1.2. Firm i paid a cost to change its

prices at a rate different than the gross steady-state rate of inflation, as shown

below. The magnitude of the pricing friction was determined by the level of

output and the parameter φp ≥ 0.

φp
2

(
Pt(i)

ΠPt−1(i)
− 1

)2

Yt (10)

3.4 Central Bank

The central bank set the gross nominal interest rate (Rt) in response to de-

viations of gross inflation (Πt) and detrended output (yt = Yt/g
t) about their

steady states. The monetary policy rule is defined in equation (11).24 The

strength of the central bank response to deviations of output and inflation

was determined by the relative magnitude of ωR to ωy and ωΠ.

ωRR̃t = ωπΠ̃t + ωyỹt + ln(vt) (11)

ln(vt) = ρvln(vt−1) + εt (12)

23As the representative consumer owned the profits of the firm, her marginal utility
determined the firm’s net present value.

24Tilde’s denote percent deviations about the steady state, where Π̃t = Πt−Π
Π ,R̃t = Rt−R

R ,

ỹt = yt−y
y .
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Given the Bank of Canada’s explicit mandate to maintain low, stable, and

predictable inflation about the 2% inflation target, it may seem unnecessary

to include the output gap in the central bank response function. However,

this paper was agnostic as to whether the Bank of Canada indirectly targeted

inflation through the output gap, and the parameters which best fit the data

were chosen. As was standard in the literature, there was a first-order autore-

gressive monetary policy shock (vt).

3.5 Comparison to the Literature

The most important difference between this paper, Dib et al. (2008), and

Ireland (2003) was that the latter two made use of a money growth variable,

µt = Mt/Mt−1, which was important for two reasons. First, it pinned down

the steady-state inflation rate. Second, it was included in the central bank

response function. This paper chose not to include money growth as it seemed

unlikely that the Bank of Canada would consider the growth rate of the money

supply when making policy rate decisions.

Central Bank Response Function

Drysdale (2014) : ωRR̃t = ωπΠ̃t + ωyỹt + ln(vt)

Dib et al. (2008) : R̃t = ωΠΠ̃t + ωyỹt + ωµµ̃t + ln(vt)

Ireland (2003) : ωRR̃t = ωΠΠ̃t + ωyỹt + ωµµ̃t + ln(vt)

While all papers made use of a capital adjustment friction, there were

subtle differences between them. Dib et al. (2008) applied the penalty to

the square of the difference in the gross capital growth rate and the gross
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economic growth rate. In contrast, Ireland (2003) applied the penalty to the

square of the percentage difference of the gross capital growth rate relative

to the economic growth rate. This paper employed the approach of Ireland

(2003).

Capital Adjustment Friction

Dib et al. (2008) :
φk
2

(
Kt+1

Kt

− (1 + g)

)2

Kt

Ireland (2003)/Drysdale (2014) :
φk
2

(
Kt+1

gKt

− 1

)2

Kt

The production function of this paper differed from the other two in that

the total factor productivity shock (TFP) did not solely apply to labour pro-

ductivity. This type of Cobb-Douglas production function was employed by

other papers such as Ireland (2004).

Production Function

Drysdale (2014) : AtK
α
t [gtHt]

1−α

Dib et al. (2008)/Ireland (2003) : Kα
t [Atg

tHt]
1−α

This paper shared the same pricing friction as Ireland (2003) whereas Dib

et al. (2008) used the more common Calvo pricing friction which yielded the

familiar New Keynesian Phillips Curve. The variable 1− ς was the probability

that the firm was able to reset its prices. The Calvo mechanism and ς variable

were not used in this paper.
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Price Adjustment Friction

Dib et al. (2008) : Π̃t = βΠ̃t+1 +
(1− ς)(1− βς)

ς
m̃ct

Ireland (2003)/Drysdale (2014) :
φp
2

(
Pt(i)

ΠPt−1(i)
− 1

)2

Yt
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4 Data

Five data series were used to estimate the model: (i) consumption, (ii) in-

vestment, (iii) money-balances, (iv) gross interest rates, and (v) gross infla-

tion rates. The data series were of quarterly frequency, seasonally adjusted

(where relevant), spanned from 1992-Q1 to 2013-Q4, and totaled 88 observa-

tions. Consumption, investment, and money-balances were in real per-capita

terms. Quarterly population estimates were used to construct the per capita

variables.25

The DSGE model in this paper contained neither an international sec-

tor nor a government. The most appropriate data series from the national

accounts for investment was the sum of capital spending and changes in in-

ventories. Real per capita money balances used M2 as a measure of the money

supply.26 Interest rate data came from the yield on 3-month Canadian gov-

ernment treasury bills (this particular quarterly maturity imitated Bt in the

model).

Inflation was calculated as the quarterly gross change in a weighted average

of the consumption and investment price deflator series, which are shown in

Figure 1. The weights were determined by the relative share of each series

to total output. As consumption ranged from 72-82% of total output over

the sample, the data series used to estimate the model most resembled the

consumption price deflator series.

The variables of the log-linearized DSGE model were measured in percent-

age deviations from the steady state. A Hodrick-Prescott (HP) filter was able

to separate the data series into a trend and cyclical component. The cyclical

25Note that the population estimates were for the total Canadian population whereas
Dib et al. (2008) used the working age population.

26M2 is comprised of: currency outside banks, chartered bank demand and notice de-
posits, chartered bank personal term deposits, and inter-bank demand and notice deposits.
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Figure 1: Inflation rates from price deflators

component was the estimate of the variable’s percentage deviation from its

steady state. However, two-sided HP filters estimate the trend and cyclical

component at time t with both future and past observations. This makes

them unsuitable for the recursive state-space nature of estimated DSGE mod-

els (Pfeifer, 2014, pg. 30). A solution to this problem was to use a one-sided

HP filter, first implemented by Stock and Watson (1999) to forecast inflation.

The advantage of this filter was that the trend and cyclical components were

estimated using the data available only until that point in time.27

Figures 2(a) and 2(b) present the five Canadian time series. In 1992 the

Bank of Canada adopted inflation targeting and by 1995 the 2% target was

firmly entrenched in the Bank of Canada’s joint inflation-control agreement

with the Government of Canada.28 As Figure 2(b) shows, since 1992, inflation

has been consistently mean-reverting about the 2% level.

Figures 3(a) and 3(b) present the cyclical component of the data after the

one-sided HP filter was applied.29 The only difference between the data used to

27See http://ideas.repec.org/c/dge/qmrbcd/181.html for the relevant Matlab files
to implement this filter.

28See http://www.bankofcanada.ca/wp-content/uploads/2010/11/inflation_

control_target.pdf.
29The parameter which controls the sensitivity of the trend component growth rate, λ,

was set to 1600 (the literature standard for quarterly data).
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Figure 2: Time series in levels

(a) Invesment, consumption, and money-balances (per
capita in 2007 dollars) (b) Net inflation and interest rates

estimate the model and the figures seen in this section is that the visual data is

presented in annualized percentage form. Figure 3(a) shows that consumption

was fairly stable except during the financial crisis when it fell 10% below its

potential. Investment, as could be expected, was more volatile and saw two

downward swings since 2000. Money demand appeared countercyclical and

saw a positive spike during the financial crisis. This could be explained by

the very low interest rates that occurred during this period which reduced the

opportunity cost of holding cash.

Figure 3: Detrended variables using one-sided HP filter

(a) Consumption, investment, and money-balances (b) Interest and inflation rates
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5 Calibration

Before the DSGE model could be estimated by Bayesian and ML techniques

three things were required. First, a certain number of the parameters were

fixed due to a lack of data and identification issues. Second, the algorithm

which estimated the maximum likelihood model required the specification of

an initial point. Third, Bayesian estimation required the specification of a

prior distribution for each variable. The three subsections found below discuss

each of these issues in turn.

5.1 Fixed Parameters

A DSGE model estimated with likelihood-based methods cannot have more ob-

servables than shocks (an issue known as ‘stochastic singularity’). The model

used in this paper had five shocks and five observables. The large number of

parameters (twenty-five) relative to observables, combined with a lack of data

needed to estimate certain variables (like the capital stock), meant that not

all parameters could be estimated. Table 2 shows the eight parameters which

were fixed.

Table 2: Fixed Parameters

Parameters Value

Elasticity of demand θ 6
Capital share α 0.33
Depreciation rate δ 0.025
Weight on leisure η 1.35
Time preference β 0.99
Growth rate g 1.004
Steady-state inflation Π 1.005
Composite good shock STD σa 0.1

The elasticity of demand (θ), the capital share of production (α), the de-

preciation rate (δ), and the utility weight of leisure (η) were fixed due to a
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lack of data on profits, the capital stock, and hours worked. The standard

deviation (STD) of the composite good utility shock (σa) was fixed in order to

pin down the relative size of the other shocks and aid in their identification.30

δ was set to the literature standard of 0.025, and implied an annual deprecia-

tion rate of 10.4%. θ was set to 6 which implied a 20% markup of prices over

marginal costs in the steady state31 and was the value set by Ireland (2003). α

and η were set to 0.33 and 1.35, respectively, as was done in Dib et al. (2008).

The ex-post result suggested that the representative household spent 51.7% of

their time endowment working which contrasted to Dib et al. (2008)’s estimate

of 33%.32

The values of β, Π, and g were fixed for three reasons. First, the steady-

state value of the natural interest rate, R = gΠ/β, did not conform well to

the data (a result also found by Rubaszek and Skrypcyzynki (2008)). The pa-

rameter β was therefore fixed to a plausible value. Second, the growth rates of

money, consumption, and investment differed. This was confirmed by a simple

OLS regression of the logged variables on a constant and a trend term. The

estimate suggested that consumption, investment, and money-balances grew

at an annualized rate of 1.019%, 1.029%, and 1.026%, respectively. Following

Ireland (2003), heterogeneous growth rates were ignored in order to keep the

conceptual framework of a single growth rate (g) intact. The trend rate of

growth was fixed to 1.021% (annualized) – the estimate of the output growth

rate.33

30The estimation suffered from stability issues when the standard deviations of all five
shocks were estimated.

31The intermediate goods-producing firms’ ratio of prices to marginal costs in the steady-
state were θ

θ−1 .
32The calculation of H can be found in the Matlab files located in the Dropbox link.
33In Ireland (2003) the author detrended the series with a simple OLS procedure instead

of fixing g.
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5.2 Maximum Likelihood Initialization

A model estimated by maximum likelihood techniques requires a specification

of initial values that conform to the Blanchard-Kahn (BK) conditions which

ensure dynamic determinacy (see Blanchard and Kahn (1980)). Different ini-

tial values can lead to different ML results in high-dimensional spaces in the

presence of local maxima. The initial values were mainly chosen to match

either economic theory or previous papers.

Table 3 presents the initial values and upper and lower bounds (if any) of

all estimated parameters. γ was set to 0.014 which was Atta-Mensah (2004)’s

empirical estimate of money demand elasticity in Canada. φk, e, and ωy

closely resembled the estimates of Ireland (2003). The standard deviations of

the shock variables were set to the initial value of the fixed shock (σa). The

autocorrelation parameters, except monetary policy persistence, were set to be

highly autoregressive. The other coefficients were set to ensure that the BK

stability conditions were met and were adjusted through trial and error. DSGE

models with many parameters have a higher chance that an initial parameter

combination will yield dynamic indeterminacy. It is plausible that a different

set of initial values that conformed to the BK conditions could have yielded

different results.34

5.3 Bayesian Priors

Each variable estimated by Bayesian methods required the specification of a

prior distribution.35 A distribution which best conformed to the likely prob-

ability space of the parameter was chosen. This paper followed precedents

34This fact highlights one of the weaknesses of ML estimation for medium- and large-scale
DSGE models.

35In Bayesian estimation it is possible to have a ‘non-informative’ prior, but this is not
the convention with Bayesian DSGE use.
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Table 3: Initial Values – Maximum Likelihood Estimation

Parameters Initial Value Lower Bound Upper Bound

Money demand elasticity γ 0.014
Capital adjustment friction φk 30
Price adjustment friction φp 30
Steady-state TFP A 7
Steady-state money demand e 2.7
Interest responsiveness ωR 3
Inflation responsiveness ωΠ 3.1
Output gap responsiveness ωy -0.022
Composite good persistence ρa 0.99 0.00001 0.9999
Money demand persistence ρe 0.90 0.00001 0.9999
TFP persistence ρA 0.90 0.00001 0.9999
Investment productivity persistence ρχ 0.90 0.00001 0.9999
Monetary policy persistence ρv 0.01 0.00001 0.9999
Money demand STD σe 0.10 0.00001 1
TFP STD σA 0.10 0.00001 1
Investment productivity STD σχ 0.10 0.00001 1
Monetary policy STD σv 0.10 0.00001 1

in the literature and linked specific types of parameters to one of four prior

distributions.36 Columns 3 to 5 of Table 4 present the prior distribution type,

mean, and standard deviation of each parameter.

The standard deviation of the shocks (σ) followed an inverse gamma dis-

tribution with a mean of either 0.01 or 0.10 and a standard deviation of 2.

Inverse gamma distributions have a form similar to income or wealth distri-

bution: left-truncated at zero, a high peak about the median, and a long

right-tail. The autoregressive coefficients (ρ) followed a beta distribution with

a mean and standard deviation of 0.5 and 0.2, respectively. Beta distributions

are bounded between (0, 1) and, with a mean of 0.5, are symmetric in struc-

ture. The standard deviations and autoregressive coefficients were similar to

the prior values chosen by Smets and Wouters (2007). The elasticity of money

36The priors of this paper were similar to those of Smets and Wouters (2003), Del Negro
and Schorfheide (2004), Smets and Wouters (2007), and Kolasa et al. (2012).

31



demand was also given a beta distribution as empirical estimates have found it

to be inelastic. The capital and price adjustment frictions, as well as monetary

policy coefficients, followed a normal distribution as their effects were influ-

enced by the relative values of other parameters and therefore required the

most flexible distribution. Lastly, the intercepts of the autoregressive shock

processes (e and A) were given gamma distributions that were left-truncated

at zero and had a slight right-skew.
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6 Estimation Results

Analyzing parameter estimates is important for several reasons. First, the de-

gree of robustness in results across the literature can be determined. Second,

the parameter values have implications for the structure of the Canadian econ-

omy. Third, the ML and Bayesian methods can be contrasted. Subsections

6.1 and 6.2 discuss the parameter estimates of the DSGE model estimated by

maximum likelihood and Bayesian techniques, respectively.

While differences in parameter estimates can have a quantitative impact

through forecasting, there are also qualitative implications via impulse re-

sponse functions (IRFs). In Subsection 6.3 the differences and similarities

between the Bayesian and ML impulse responses are highlighted. Lastly Sub-

sections 6.4 and 6.5 outline the VAR and BVAR models, respectively.

6.1 Maximum Likelihood DSGE

Table 5 presents the parameter estimates alongside previous findings from Ire-

land (2003) and Dib et al. (2008). Not all the parameters values were directly

comparable though. The steady-state value of the TFP shock impacted the

steady-state output differently due to the varying construction of the Cobb-

Douglas production function (see Section 3.5). Additionally, some parameter

values were only interpretable relative to others (such as monetary policy co-

efficients or frictions) so that different results may have still implied similar

impulse responses. The majority of shock processes, autoregressive coefficients,

and (relative) monetary policy coefficients were similar to at least one of the

two other papers. However, there were strong differences in the estimates of

money demand elasticity, the intercepts of the shock processes, and the capital

and price adjustment frictions.
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6.2 Bayesian DSGE

Columns 6 to 9 of Table 4 show the posterior estimates of the mode, mean,

and standard deviation for each of the parameters. The mode and mean were

within two standard deviations of each other for every parameter (except γ

and ωR) suggesting a fairly tight convergence in the posterior distribution.

The Bayesian estimates strongly differed from the maximum likelihood results

(shown in Column 10) in four instances. The price adjustment friction (φp),

persistence of monetary policy shocks (ρv), and the intercept of the TFP pro-

cess (A) were all fractions of the ML estimates. In contrast, the Bayesian

estimate of investment productivity persistence (ρχ) was closer to the result

found in Ireland (2003) which was much higher than the ML estimate.

Another difference was that the Bayesian estimate of the central bank re-

sponse coefficient to the output gap was insignificant, whereas the ML estimate

had a small and negative, but significant result. Whether these differences in

estimates had important effects on the models’ policy implications could be

seen by comparing their impulse responses.

6.3 Impulse Response Functions

Figure 4 presents the impulse responses to a 1% deviation in three shock

terms over 40 quarters at the estimated parameter values. Subfigures 4(a),

4(c), and 4(e) on the left column, and Subfigures 4(b), 4(d), and 4(f) on the

right column, display the impulse responses for the ML and Bayesian models,

respectively. The Bayesian IRFs are presented at the median of the estimates.

The impulse responses of the variables to the shocks Ãt and χ̃t were similar

for both Bayesian and ML estimates and were thus not included.37

Shocks to the composite good and money demand had the same impact,

37However, these figures can be found in the Dropbox link.

36



Figure 4: Impulse response functions - 1% Shock

(a) ML-DSGE: Composite good shock (ãt) (b) Bayesian DSGE: Composite good shock (ãt)

(c) ML-DSGE: Money demand shock (ẽt) (d) Bayesian DSGE: Money demand shock (ẽt)

(e) ML-DSGE: Monetary policy shock (ṽt) (f) Bayesian DSGE: Monetary policy shock (ṽt)

(g) Legend
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qualitatively, between the Bayesian and ML models. Investment and money-

balances had the largest magnitude of responses as can be seen in the subfigures

throughout Figure 4. Money-balances were the most persistent, and after 40

periods remained more than 1% below and above their state-state values for

the composite good and money demand shock, respectively. Interest rates

and inflation had very small deviations when compared to other variables.

The exception was when a positive shock to monetary policy (a ‘tightening’)

caused a sharp deflation for the first few quarters, as Subfigures 4(e) and 4(f)

show.

The relationship between money-balances and consumption differed when

there was an inter- and intra-composite good shock. A shock making the com-

posite good more desirable relative to leisure (ãt) increased, or had no impact

on, consumption while decreasing money-balances, as Subfigures 4(a) and 4(b)

show. The money demand equation (8) states that money-balances will in-

crease when consumption increases (and vice versa) unless the interest rate

increases by an offsetting amount. The small increase of R̃t above its steady-

state from a shock to ãt was able to decrease the demand for money, even

though the composite good became more desirable. In contrast, a shock mak-

ing money-balances more desirable within the composite good (ẽt) increased

both money-balances and consumption because the interest rate fell below its

steady state, as shown in Subfigures 4(c) and 4(d).

The only qualitative difference in impulse responses between the ML and

Bayesian models occurred for a monetary policy shock. This was likely due to

the different estimates of the price adjustment friction and persistence of the

monetary policy shock, as noted in Subsection 6.2. A tightening of monetary

policy caused money-balances to increase above their steady-state values in

the ML model, whereas they decreased at first in the Bayesian model.
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6.4 Vector Autoregressions

Equation (13) presents a VAR of order p without a trend or a constant, as this

fits the nature of the data used. The vector yt is a 5× 1 cross-section of data,

yt = [c̃t ĩt m̃
d
t R̃t Π̃t]

′, and Ak ∈ {1, .., p} is a 5× 5 coefficient matrix.

yt = A1yt−1 + ...+Apyt−p + ut (13)

An order of lag length p = 2 was determined by the final prediction error

(FPE) criterion. Rubaszek and Skrypcyzynki (2008) also found a lag length of

2 when using the FPE criterion with US data. Equation (13) can be written

as a first-order process by stacking the vectors and defining the appropriate

matrix.

 yt
yt−1

 =

A1 A2

I5 05


yt−1

yt−2

+

ut
05

 ←→

ξt = Aξt−1 + vt (14)

If the estimate of A had moduli of eigenvalues which were less than one

then the process was stable.38 After a stable estimate had been found, the VAR

model could forecast future values k-steps-ahead based on recursive methods.

yt+k|t = A1yt+k−1|k +A2yt+k−2|t (15)

38With a maximum lag length of 8 the FPE criterion chose 8 lags, but this yielded an
estimate of A that was not stable. A second round of tests with a maximum lag length of
4 then yielded an order of 2.
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6.5 Bayesian VAR

One criticism of the classical VAR model was that it suffered from overparam-

eterization, as the number of parameters grew exponentially with the order

of lags. The Bayesian VAR avoided the potential problem of overfitting by

shrinking the parameter space through the use of hyperparameters. The Min-

nesota prior (see Doan et al. (1984)) was a formula for determining the prior

distribution of all parameters through three hyperparameters. First, the el-

ements of the coefficient matrix Ak, as seen in equation (13), were given a

Gaussian prior of the following form.

aiik ∼ N (1, σ2
iik) (16)

aijk ∼ N (0, σ2
ijk), if i 6= j (17)

The expected value of the coefficients of the ith and jth variable in equation

i were assumed to be one and zero, with a standard deviation determined by

the order of the lag and whether or not the element was on the diagonal

of the coefficient matrix. This implied a prior which was a random walk,

E[yi,t] = yi,t−1 + ...+yi,t−p, for the ith row of equation (13). The prior standard

deviation of the coefficient for variable j in equation i of order k was determined

by the following formula.

σijk = θ · w(i, j) · k−φ ·
(
σ̂kj
σ̂ki

)
(18)

In Bayesian estimation a smaller prior standard deviation implies more

‘confidence’ about the prior mean. This is also known as the ‘tightness’ of the
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prior. The hyperparameter θ determined overall tightness, φ determined the

decay rate, and w(i, j) was element ij of the weighting matrix. A higher value

of θ implied a more diffuse prior. The higher the lag order, the smaller the

standard deviation and hence the tighter the prior. Lastly, the weight matrix

determined the relative tightness of variable j in equation i. The parameters

σ̂ki and σ̂kj were estimates from running the following univariate autoregression

of order k with n variables and calculating the standard error for the matching

coefficient.

yit = a11y1,t−1 + a12y2,t−1 + ...+ a1nyn,t−1 + ...+ ap1y1,t−p + ap2y2,t−p + ...+ apnyn,t−p

The BVAR was estimated using a Gibbs sampler with 10,000 runs and a

10% burn-in rate. The Minnesota prior specifies the following values for the

hyperparameters.

W =



1 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1


, θ = 0.1, φ = 1
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7 Forecasting

The data series for each variable had 88 observations from 1992-Q1 to 2013-Q4.

All models had at most 44 forecasts from 2003-Q1 to 2013-Q4 for all variables

at each forecast horizon. The Bayesian DSGE model used the median of its

forecast values, as is the convention in the literature. This section considers

four dimensions of forecast evaluation. The first dimension displays the model

forecasts alongside the actual time series. These images provide intuition into

the forecasting ability, model dynamics, and relationship between forecasting

horizon and accuracy.

The second dimension compares models head-to-head using the Diebold-

Mariano (DM) test39 for forecast accuracy over 44 of the 88 periods (2003-

Q1 to 2013-Q4). Models had 44 periods (1992-Q1 to 2002-Q4) to estimate

their parameters followed by 41-44 periods of pseudo out-of-sample forecasts

at each k-step-ahead.40 The third dimension considers how the DM test statis-

tic changed, if at all, with the forecasting start date. The fourth dimension

illustrates how the mean-squared errors (MSEs) for each variable and model

changed with the forecasting start state. Subsections 7.1 to 7.4 address these

four dimensions of forecast evaluation in turn.

Visual examples in this section are drawn from various forecasting horizons

and variables in order to highlight the most interesting findings. However, a

full range of figures can be found in the appendix for the interested reader.

Figures 15 to 18 contains all subfigures of actual forecast data. Figures 19 to

23 contain the dynamic DM test statistics for five head-to-head model com-

parisons. Lastly, Figures 24 to 28 show the MSE plots.

39For a full description of the DM test see Section 9.3 in the appendix.
40Whenever the forecasting start date occurred, the k-step-ahead forecast would lose k−1

observations.
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7.1 Time Series Forecasts

All models had similar forecasts for consumption, investment, and money-

balances (with the exception of the Bayesian DSGE for money-balances) at

the one-step-ahead horizon. Figure 5 shows the one- and four-step-ahead fore-

casts for consumption. The one-quarter-ahead forecasts, unsurprisingly, lagged

exactly one-quarter behind the trough of the business cycle in 2009-Q1. Diver-

gences between model forecasts were seen in the year-ahead-forecasts. How-

ever, the forecasts of 2009-Q1, which occurred in 2008-Q1, had all models

predicting consumption above its steady-state value.41

Figure 5: Forecasts of consumption

(a) One-step-ahead (b) Four-step-ahead (c) Legend

Whereas the forecasts for consumption and investment were similar across

models at the shortest horizon, the forecasts of interest rates exposed the

weaknesses in some models. Figure 6 presents the one- and four-step-ahead

forecasts for the interest rate data. Two observations stand out. First, the

volatility of the BVAR was immense, and suggested the model could not credi-

bly forecast interest rate data. Second, the BVAR and Bayesian DSGE models

41This result is emblematic of the failure of standard macroeconomic models, and con-
comitantly macroeconomists, to predict the financial crisis, as discussed in Section 2.
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both predicted a much larger fall in interest rates than actually occurred at

the trough of the business cycle.

Figure 6: Forecasts of interest rates

(a) One-step-ahead (b) Four-step-ahead (c) Legend

Two other interesting visual phenomena occurred in the forecast results.

The first phenomenon was that the Bayesian DSGE model wildly over-predicted

the upswing in money-balances during the financial crisis, as Figure 7 shows.

Even ignoring this massive error in 2009, the Bayesian DSGE model had the

most volatile predictions for money-balances and was a poor forecaster for this

variable in general. The result was surprising because of both the scale of the

forecast error and its difference to the ML-DSGE (an identical model different

only in estimation technique).

Bayesian forecasts took into account both parameter and shock uncer-

tainty.42 The combination of these two uncertainties caused a much different

estimate of the state of the DSGE system with Bayesian estimation. This ex-

plains why the interest rate and money-balance forecasts, as seen in Figures 6

42In a linearized state-space system, all deviations in steady-state values are driven by
the vector of shocks (the σ’s) - the ‘state’ of the system. A state-space observer system
uses a matrix of observations in order to estimate these shocks (see Section 9.2.1 in the
appendix).
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and 7, were starkly below and above their steady-states values, respectively.43

Figure 7: Forecasts of money-balances

(a) One-step-ahead (b) Legend

The second phenomenon was the flat inflation forecasts of the ML-DSGE

model. Figure 8 presents the one-step-ahead forecasts of inflation. Even at

this short time-scale, accuracy was lacking for most models. What this figure

revealed, alongside Figures 6 and 7, was that there was a flawed mechanism

between interest rates, money-balances, and inflation in the DSGE model.

An advantage of DSGE models is that their system output and forecasts are

internally consistent and explainable. In order to achieve a variability close to

the true level of inflation (as the Bayesian DSGE did) the forecasts of interest

rates and money-balances needed to be implausibly large. In contrast, the

ML-DSGE had more accurate money-balance forecasts, but at the expense

of credible inflation rates. While the out-of-sample forecasts of the DSGE

models were lacklustre, their errors provided a clear diagnosis of the faulty

mechanisms within the NK model.

43Recall the tight link between money demand and interest rates from the money demand
equation (8).
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Figure 8: Forecasts of inflation rates

(a) One-step-ahead (b) Legend

7.2 DM Test - Maximum Forecast Range

The DM test had a null hypothesis that the expected difference in the squared

forecasting errors between two models was zero. Table 6 presents the DM

test statistic and p-values for all model comparisons. A negative test statistic

implied that the first listed model had smaller forecast errors than the second.

If the absolute value of the test statistic was large enough, then the p-value was

sufficiently small to reject the null hypothesis. As the DM test was symmetric,

a p-value less (greater) than 0.05 (0.95) implied that the first (second) listed

model was superior to the second (first) at the 5% level.

Subtables 6(a) and 6(b) present the results of the ML-DSGE model against

the VAR and BVAR. At the 5% level, the ML-DSGE outperformed the VAR

for consumption at the one-step-ahead horizon. However, the VAR had sta-

tistically significant results over the ML-DSGE for money-balances, inflation,

and interest rates at one- and two-step-ahead forecasts. The BVAR did not

have any significant results against the ML-DSGE. However for investment,

money-balances, inflation, and interest rates the ML-DSGE outperformed the

BVAR, especially at three- and four-step-ahead forecasts. A similar result
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emerged for the Bayesian DSGE against the VAR and BVAR, as seen in Sub-

tables 6(c) and 6(d). The VAR outperformed the NK model in investment,

money-balances, inflation, and interest rates. The Bayesian DSGE beat the

BVAR with no losses against, but did not score as many wins as the ML-DSGE

did against the BVAR (10 significant test statistics compared to 4).

As transitivity would suggest, and Table 6(e) shows, the VAR was sig-

nificantly better than the BVAR at all forecast horizons for money-balances,

inflation, and interest rates. However, for consumption forecasts, no clear win-

ner emerged. Lastly, the head-to-head comparison of the DSGE model by ML

and Bayesian approaches can be seen in Table 6(f). The Bayesian DSGE was

outperformed by the classical model for consumption and investment in six

of the eight cases. Median forecasts from the Bayesian model had only one

significant result: one-step-ahead inflation forecasts.

7.3 DM Test - Moving Forecast Range

In the previous subsection, half of the observations were used for the out-

of-sample forecasting period. The division was arbitrary, and model perfor-

mance could have been conditional on when forecasting started. Delaying

a forecasting start date provides more observations for parameter estimation

which should, in theory, improve forecasting performance. However, DSGE

models are highly stylized and their forecasting ability may be variant to both

underlying policy and structural conditions.

This subsection analyzes how the p-values of the DM test changed along-

side the forecasting start date. Three questions are specifically addressed:

(i) Were the statistically significant results of 2003-Q1 (which corresponds to

the findings in Table 6) robust over time? (ii) Did performance become sig-

nificant at future dates? (iii) How did the financial crisis affect test results?
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While the power of the DM test decreased with later forecasting start dates,

there was no apparent decrease in the number of significant results.

In Table 6(a) the ML-DSGE outperformed the VAR in consumption whereas

the VAR had better forecasts in the other three variables, at the one-step-ahead

horizon. Figure 9 shows that this result was highly stable. The only exception

was when the consumption forecast from the ML-DSGE became insignificant

for six quarters during the financial crisis. This subfigure is emblematic of the

dynamic relation in test statistics for the ML-DSGE and VAR. In this case, the

third dimension of forecast evaluation did not add any more information than

is contained in Table 6(a). During the financial crisis, the p-values of many

variables spiked upwards which indicated a relative decline in the forecasting

performance of the ML-DSGE (see Figure 19 in the appendix). However, the

effect was not strong enough to cause the p-values to move above the critical

value.

Figure 9: ML-DSGE versus VAR

(a) One-step-ahead (b) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the ML-DSGE (VAR) model.
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Table 6: Model comparison by DM test (p-values in parenthesis and k denotes the
forecast horizon)

(a) ML-DSGE†† versus VAR∗∗

k = 1 k = 2 k = 3 k = 4

c̃ -1.844†† -1.032 -0.604 -0.486
(0.036) (0.154) (0.275) (0.315)

ĩ 1.650 -0.633 -1.367 -1.524
(0.947) (0.265) (0.090) (0.068)

m̃d 3.071∗∗ 1.762∗∗ 1.158 -0.233
(0.998) (0.957) (0.873) (0.408)

Π̃ 2.693∗∗ 1.709∗∗ 1.455 1.372
(0.995) (0.953) (0.923) (0.911)

R̃ 3.211∗∗ 1.859∗∗ 1.533 1.401
(0.999) (0.965) (0.934) (0.916)

(b) ML-DSGE†† versus BVAR⊕

k = 1 k = 2 k = 3 k = 4

c̃ -1.019 -0.801 -0.466 -0.388
(0.157) (0.214) (0.322) (0.350)

ĩ -2.718†† -2.312†† -2.224†† -2.543††

(0.005) (0.013) (0.016) (0.008)
m̃d 0.400 -0.070 -0.704 -2.419††

(0.654) (0.472) (0.243) (0.010)

Π̃ 0.614 -0.209 -1.846†† -2.665††

(0.729) (0.418) (0.036) (0.006)

R̃ -0.413 -1.814†† -4.789†† -3.885††

(0.341) (0.038) (0.00002) (0.0002)

(c) Bayesian DSGE‡‡ versus VAR∗∗

k = 1 k = 2 k = 3 k = 4

c̃ -0.086 0.440 0.654 0.715
(0.466) (0.669) (0.742) (0.761)

ĩ 1.876∗∗ 0.083 -0.725 -0.964
(0.966) (0.533) (0.236) (0.170)

m̃d 1.682∗∗ 1.265 1.157 1.099
( 0.950) (0.894) (0.873) (0.861)

Π̃ 2.727∗∗ 1.756∗∗ 1.476 1.451
(0.995) (0.957) (0.926) (0.923)

R̃ 3.048∗∗ 1.815∗∗ 1.505 1.441
(0.998) (0.962) (0.930) (0.921)

(d) Bayesian DSGE‡‡ versus BVAR⊕

k = 1 k = 2 k = 3 k = 4

c̃ 0.380 0.789 0.488 0.324
(0.647) (0.783) (0.686) (0.626)

ĩ 0.593 1.401 1.511 1.492
(0.722) (0.916) (0.931) (0.928)

m̃d 1.337 1.216 1.133 1.079
(0.906) (0.884) (0.868) (0.856)

Π̃ -0.746 -1.149 -2.255‡‡ -2.240‡‡

(0.230) (0.128) (0.015) (0.015)

R̃ -0.378 - -5.090‡‡ -4.269‡‡

(0.354) (-) (0.00001) (0.0001)

(e) VAR∗∗ versus BVAR⊕

k = 1 k = 2 k = 3 k = 4

c̃ 0.710 0.409 -0.032 -0.218
(0.759) (0.658) (0.488) (0.414)

ĩ -1.893∗∗ 0.164 1.070 1.306
(0.033) (0.565) (0.855) (0.901)

m̃d -3.146∗∗ -2.084∗∗ -1.902∗∗ -2.062∗∗

(0.002) (0.022) (0.032) (0.023)

Π̃ -3.565∗∗ -2.535∗∗ -1.993∗∗ -1.954∗∗

(0.0005) (0.008) (0.026) (0.029)

R̃ -3.110∗∗ -2.000∗∗ -2.214∗∗ -2.501∗∗

(0.002) (0.026) (0.016) (0.008)

(f) Bayesian DSGE‡‡ versus ML-DSGE††

k = 1 k = 2 k = 3 k = 4

c̃ 2.060†† 1.907†† 1.497 1.123
(0.977) (0.968) (0.929) (0.866)

ĩ 2.528†† 2.076†† 1.879†† 1.885††

(0.992) (0.978) (0.966) (0.967)
m̃d 1.352 1.224 1.152 1.110

(0.908) (0.886) (0.872) (0.863)

Π̃ -1.732‡‡ -1.223 -0.964 -0.557
(0.045) (0.114) (0.170) (0.290)

R̃ -0.026 0.419 0.366 1.245
(0.490) (0.661) (0.642) (0.890)

Symbols: †† (ML-DSGE), ‡‡ (Bayesian DSGE), ∗∗ (VAR), and ⊕ (BVAR) denote that
the relative forecasting errors of the respective model were statistically significant at the
5% level.

49



In Table 6(b) the classical NK model was the clear winner against the

BVAR with 10 of 20 tests in its favour and none against. However, an analysis

of its dynamic results showed that its performance in many variables dete-

riorated over time. Figure 10 shows that at the two- and three-step-ahead

forecasts the ML-DSGE model lost its statistically significant performance for

interest rates and inflation within a year, respectively. This result was infor-

mative: the NK model was not as good at forecasting certain variables as the

estimates from 2003 would have suggested. The upward spike in p-values be-

tween 2008-2010 showed that the relative performance of the BVAR increased

during this period.

Figure 10: ML-DSGE versus BVAR

(a) Two-step-ahead (b) Three-step-ahead (c) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result for the
ML-DSGE (BVAR) model.

In other instances, forecast differences which were insignificant converged to

regions of significance. In Subtable 6(f) the classically estimated DSGE model

outperformed its Bayesian counterpart with 6 of the 20 tests in its favour

and only one against. However, by 2010, the forecasting results were even

more in its favour. Figure 11 shows that at 2003-Q1, the classical model had

three significant results at the two- and three-step-ahead forecast horizons. By
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the end of the sample the ML-DSGE had significant results for: consumption,

investment, and inflation at the 5% level as well as money-balances and interest

rates at the 10% level, for both forecast horizons. The visual evidence revealed

a clear decline in the Bayesian model’s forecasting performance near the end

of the sample, as indicated by the upward surge in p-values.

Figure 11: Bayesian DSGE versus ML-DSGE

(a) Two-step-ahead (b) Three-step-ahead (c) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result for the
Bayesian DSGE (ML-DSGE) model.

7.4 MSEs - Moving Forecast Range

The MSE from any vector of forecasts is simply the average of the sum of

squared forecasting errors: (1/N)
∑N

t=1 e
2
t . This measure is one of the many

metrics used to evaluate forecasting performance.44 MSEs weight forecasting

errors symmetrically and penalize larger variances. The MSE measure cannot

be compared across variables. However, MSEs are effective at ranking models

for a specific variable and forecast horizon. A model with a smaller MSE is a

‘better’ forecaster. Comparing MSEs for a given variable and forecast horizon

44Other methods include root mean squared error or absolute error loss.
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provides a more intuitive understanding of performance across models. In

contrast, the DM test can only compare two models at a time. The logarithm

of the MSE was used to facilitate an easier visualization.

Figure 12: Consumption - (log) MSE

(a) One-step-ahead (b) Two-step-ahead (c) Legend

Figure 12 shows that the ML-DSGE model had the smallest MSEs for all

forecasting start dates (except for three quarters in 2011). The NK model had

statistically significant results in 3 of the 6 possible cases at the one- and two-

step ahead horizons for the DM tests in 2003-Q1, as seen in Tables 6(a), 6(b),

and 6(f). However, the evidence contained in Figure 12 presents a stronger

endorsement for the ML-DSGE model due to its consistent performance across

start dates in forecasting consumption at a short-term horizon.

Comparing MSEs across time showed that two models could switch po-

sitions for having the smallest MSEs. Figure 13 shows the two- and three-

step ahead forecasts for investment. From 2003-2009, the ML-DSGE had the

smallest errors, but afterwards the classical VAR became the most accurate

forecaster, and maintained this performance until the end of the sample. This

added further evidence that the unconstrained models had better performances

during the financial crisis, whereas the stylized NK models did best at fore-
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Figure 13: Investment - (log) MSEs

(a) Two-step-ahead (b) Three-step-ahead (c) Legend

casting variables during more ‘normal’ times of economic activity.

Figure 14: Interest rates and inflation - (log) MSEs

(a) Interest rates: one-step-ahead (b) Inflation: one-step-ahead (c) Legend

The poor performances in interest rate and inflation forecasts by the NK

and BVAR models were dramatically confirmed by the visual evidence of the

dynamic MSEs. Figure 14 displays the MSEs for the one-step-ahead interest

rate and inflation forecasts. Given that the MSEs are shown in logarithms,

the performance of the classical VAR was exceedingly better than the other

models. The classical and Bayesian DSGE models alongside the BVAR model
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all had similar (and large) MSEs. The result confirmed the need to improve

this NK model’s ability to accurately match the inflation and interest rates

processes of the Canadian economy.
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8 Conclusions

An unconstrained VAR model can have superior forecasting results compared

to a DSGE model for two reasons. First, changes in the underlying structure

of the data can be accounted for by new parameter estimates.45 Second, the

lag structure and unspecified relationship between variables provides powerful

short-term forecasts by, in effect, overparameterizing the model. However, the

advantages of a VAR are not always sufficient to ensure superior forecasts.

Empirical results showed that DSGE models could outperform VAR models

(see discussion in Section 2). In small sample sizes, which most macroeco-

nomic time series are, cross-equation restrictions may improve the fit of the

model. For example, imposing the restriction that output is the sum of con-

sumption and investment, which is almost certainly true, reduces the number

of parameters needed to estimate this relationship.

The results of this paper were threefold. The first result was that the

classical VAR model outperformed the New Keynesian models and its Bayesian

counterpart in forecasting important Canadian macroeconomic time series.46

The evidence was comprehensive. The VAR won 25 of the 60 possible head-

to-head tests against all other models, while losing only one. The significant

test statistics found in 2003 were robust over time, and more significant results

were achieved at later dates. The MSEs of the classical VAR for inflation and

interest rates were fractions of the other models at all forecast horizons. The

trade-offs that could have benefited the restricted model were overpowered by

the flexible specification of the VAR. This finding was unfortunate as DSGE

models are powerful tools for policy analysis and there is a natural desire

amongst their users that they also be competent forecasters.

45It is well known that VAR coefficients have not remained stable over time, especially
the relationship between unemployment and inflation.

46The one exception to this dominance was in consumption.
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The second result was that the use of Bayesian techniques to estimate

either the DSGE or VAR model did not improve forecasting accuracy. The

BVAR was the worst performer, with no tests in its favour. The Bayesian

DSGE both underperformed and had results that were not as robust as its

classically estimated counterpart. The third result was that the financial crisis

proved deleterious for the forecasting performance of both the classical and

Bayesian DSGE models. The poor performances of the NK models during

2008-2010 were, unfortunately, in keeping with the generally perceived notion

that macroeconometric models ‘missed’ the crash.

Areas for further research

The uneventful findings of this paper likely speak more to its own weaknesses

than those of Bayesian techniques or DSGE model forecasting. An array of

options for improving this DSGE model and its estimation exist for future

research. As the choice of model matters, it may be that this specific NK

model did not conform well to Canadian time series. An open-economy model

that interacts with US monetary policy seems a more plausible, if not compli-

cated, representation of the Canadian economy. A panoply of DSGE models

that include financial frictions, heterogeneous agents and firms, and learning

mechanisms may contain more realistic restrictions and improve forecasting

results.

The use of more complicated models advantages the Bayesian over the clas-

sical approach as it is much easier to integrate functions of the model’s outcome

than to maximize them (see Fernandez-Villaverde (2010)).47 The MCMC al-

gorithm is generally able to explore more complex posterior distributions by

simply increasing the number of draws, whereas even the most sophisticated

47This claim is not universally accepted though, and researchers have found examples
where numerical integration is superior to Monte Carlo integration (see Judd et al. (2011)).
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maximization algorithms have trouble exploring complex spaces periled with

flat surfaces and local maximas.48

Large-scale DSGE models were generally the best forecasters in the litera-

ture, suggesting more data series may be required to improve performance. A

larger number of time series used to estimate the DSGE model would mean

fewer fixed parameters. Removing some of the fixed parameters may also ame-

liorate the faulty relationship discovered between interest rates, inflation, and

money-balances in the DSGE model. Including a vector of measurement errors

that followed a first-order autoregressive process, as in Ireland (2004), would

allow five more observables while only adding 10 parameters to the DSGE

model.49 In contrast, the number of VAR parameters would increase by 150!

Such a change would presumably tilt the forecasting balance in favour of the

more parsimonious model.

An existing weakness with Canadian macroeconomic time series is that

there is neither a consistent survey (such as the Survey of Professional Fore-

casters in the US) nor a real-time database accessible to public researchers.

Many data series, such as unemployment and output, are subject to ex-post

revisions. If model forecasts of Canadian time series are ever to be contrasted

to historic forecasts, a real-time database would be necessary so that the mod-

els can use the data available to forecasters at the time they were historically

made.

A final area of improvement would be to specify the model in a detrended

rather than a detrended and a log-linearized form.50 This would have the

advantage that the forecasted data series could be mapped directly to their

48As an example, the attempt to use Canadian time series for the exact model specifica-
tion of Ireland (2003) yielded indeterminate results.

49Put another way, the ratio of DSGE parameters to observables would change from 10:2
to 7:2.

50Dib et al. (2008) was one of the few papers in the forecasting literature to use a non-
linear form.
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level form. The use of HP filters to extract the cyclical component does not

allow a reverse mapping. It seems reasonable to believe that policy makers

would prefer forecasts in level form rather than in deviations from the ‘steady-

state.’ Log-linearized systems are often used as they are easier to estimate.

However, this only reinforces the advantage of Bayesian techniques which are

more conducive to complicated dynamic systems.

The opportunities for future research are abundant and the development of

a NK model which can accurately and robustly forecast key Canadian macroe-

conomic time series should be an important objective for researchers. The

emphasis on DSGE modeling stems from its advantages: a solid theoretical

foundation, an internally consistent structure, and the ability to provide policy

analysis.
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9 Appendix

The appendix is organized into five subsections. The first, Subsection 9.1,

presents a summary of the model, cited equations, and the system of differen-

tial equations. The second, Subsection 9.2, details the state-space representa-

tion of the model and includes information on the algorithms and techniques

used to estimate the ML and Bayesian DSGE models. The third, Subsection

9.3, explains the statistics behind the Diebold-Mariano test. The fourth, Sub-

section 9.4, discuses the data sources. The fifth, Subsection 9.5, shows the full

range of figures.

9.1 New Keynesian Model

In this section, a general overview of the model is found below followed by

six further subsections which contain the first-order conditions of the agents

and several systems of equations. The first two subsections, 9.1.1 and 9.1.2,

detail the first-order conditions from the household and intermediate goods-

producing firm, respectively. Subsections 9.1.3 and 9.1.4 show the system of

equations for the model in its nonstationary and intensive form, respectively.

In the penultimate subsection, 9.1.5, the time subscripts are dropped and the

intensive form model’s steady-state is solved. Lastly, Subsection 9.1.6 derives

the log-linearized system of equations.

The economy was comprised of four economic agents: (i) a representative

household, (ii) a representative finished goods-producing firm, (iii) a contin-

uum of intermediate goods-producing firms, and (iv) a central bank. The

continuum of symmetric intermediate goods-producing firms were indexed by

i ∈ [0, 1]. These intermediate firms produced an intermediate good i with

labour and capital supplied by the household. The households were paid an

65



economy-wide wage rate Wt and a rental rate of capital Qt for their labour and

capital, respectively. Households had a utility function which valued consump-

tion of the finished good (purchased from the representative finished goods-

producing firm), leisure, and real cash balances.

The representative finished goods-producing firm purchased an intermedi-

ate good from each intermediate goods-producing firm. Due to intermediate

goods being imperfect substitutes, there existed a downward sloping demand

curve for each intermediate good i. Firm i was therefore able to set its price in

a monopolistically competitive environment.51 There were two frictions within

this economy. First, the representative household faced a cost of changing the

capital stock at a rate different than the deterministic growth rate g. Second,

the intermediate goods-producing firms faced a cost of adjusting their prices

at a rate different from the steady-state of inflation.

The order of economic activity was as follows. Households entered period

t with Mt−1 units of money, Bt−1 bonds, and Kt−1 units of capital. Kt−1

denotes the capital stock used in period t and Kt denotes the capital stock

chosen through the consumption and investment decisions of that period.52

The household received a lump-sum transfer of Tt from the monetary authority

and the Bt−1 units of bonds matured into the equivalent amount of currency.

9.1.1 Household’s First-Order Conditions

By rewriting capital’s law of motion as a function of Kt and Kt−1, It could be

substituted out of the constraint and thus the representative household needed

to optimize five variables: Ct, Ht, Bt,Mt, Kt. Equations (19) to (24) present

the first-order conditions for these five variables and the Lagrange multiplier

(Λt).

51As there were no fixed costs these monopoly rents did not dissipate over time.
52This was why the capital stock was a predetermined endogenous variable.
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∂L
∂Ct

: at = [C
(γ−1)/γ
t + e

1/γ
t (Mt/Pt)

(γ−1)/γ]C
1/γ
t Λt (19)

∂L
∂Ht

: η = Λt(Wt/Pt)(1−Ht) (20)

∂L
∂Bt

: Λt = βRtEt

{
Λt+1

(
Pt+1

Pt

)−1}
(21)

∂L
∂Mt

: ate
1/γ
t = [C

(γ−1)/γ
t + e

1/γ
t (Mt/Pt)

(γ−1)/γ](Mt/Pt)
1/γ

(
Λt − βEt

{
Λt+1

[
Pt+1

Pt

]−1})
(22)

∂L
∂Kt

: Λt

(
1

χt
+
∂Φ(Kt, Kt−1)

∂Kt

)
= βEtΛt+1

{
Qt+1

Pt+1

+
1− δ
χt+1

− ∂Φ(Kt+1, Kt)

∂Kt

}
(23)

∂Φ(Kt, Kt−1)

∂Kt

=
φK
g

(
Kt

gKt−1

− 1

)
Kt−1

∂Φ(Kt+1, Kt)

∂Kt

=
φK
2

(
Kt+1

gKt

)2

− φK
g

(
Kt+1

gKt

− 1

)
Kt+1

Kt

∂L
∂Λt

: (Mt−1 + Tt +Bt−1 +WtHt +QtKt−1 +Dt)P
−1
t = (24)

Ct + (Kt − (1− δ)Kt−1)(χt)
−1 + Φ(Kt, Kt−1) + (BtR

−1
t +Mt)P

−1
t

Substituting equations (19) and (21) into (22) yielded the money demand

equation shown in equation (8). A first-order Taylor approximation of (1 −

R−1
t ) could show that γ represented the interest elasticity of money demand.

First, defining rt = Rt−1 as the net interest rate. Second, expanding (1−R−1
t )

about the point 1, which yielded: (1 − R−1
t ) ' Rt − 1. Third, taking the log

of the money demand equation resulted in equation (25).

log(Mt/Pt) = log(Ct) + log(et)− γlog(rt) (25)
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9.1.2 Firm’s First-Order Conditions

The four first-order conditions yielded equation (26) to (29), where Ξt was the

Lagrange multiplier.

∂L
∂Ht(i)

: ΛtHt(i)

(
Wt

Pt

)
= Ξt(1− α)AtKt−1(i)α[gtHt(i)]

1−α (26)

∂L
∂Kt−1(i)

: ΛtKt(i)

(
Qt

Pt

)
= ΞtαAtKt−1(i)α[gtHt(i)]

1−α (27)

∂L
∂Pt(i)

: φpΛt

(
Pt(i)

ΠPt−1(i)
− 1

)(
Pt(i)

ΠPt−1(i)

)
= θΞt

(
Pt(i)

Pt

)−θ
+

(1− θ)Λt

(
Pt
Pt(i)

)1−θ

+ (βφp)Et

{
Λt+1

(
Pt+1

ΠPt
− 1

)(
Pt+1

ΠPt

)(
Yt+1

Yt

)}
(28)

∂L
∂Ξt(i)

: AtKt−1(i)α[gtHt(i)]
1−α =

(
Pt(i)

Pt

)
Yt (29)

9.1.3 Dynamic System

The combined equations of the model in trending form are presented below.

Many of the equations from the FOCs simplify. First, symmetry of interme-

diate goods-producing firms meant that the prices of firm i simplified to the

economy-wide price level: Pt(i) = Pt. Second, the symmetry of households

meant there was a zero net bond condition: Bt = 0.53 The model had 18 vari-

ables: wt = Wt

Pt
,mt = Mt

Pt
, qt = Qt

Pt
, dt = Dt

Pt
,Πt = Pt

Pt−1
, Yt, It, Kt, Ct, Ht, Rt,Ξt,

Λt, at, vt, χt, et, At and 18 equations. With the following additional notation:

ϕt,t−1 = ∂Φ(Kt,Kt−1)
∂Kt

, ϕt+1,t = ∂Φ(Kt+1,Kt)
∂Kt

.

53Whilst consumers did not end up holding bonds, the FOC had to still be taken with
respect to bond purchases as this established the gross nominal interest rate (Rt) needed to
ensure the zero net bond condition.
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Consumer’s FOCs

at = [C
(γ−1)/γ
t + e

1/γ
t (Mt/Pt)

(γ−1)/γ]C
1/γ
t Λt (30)

η = Λtwt(1−Ht) (31)

Ctet = mt(1−R−1
t )γ (32)

Λt = βRtEt(Λt+1Π−1
t+1) (33)

ϕt,t−1 =
φK
g

(
Kt

gKt−1

− 1

)
ϕt+1,t =

φK
2

(
Kt+1

gKt

− 1

)2

− φK
g

(
Kt+1

gKt

− 1

)
Kt+1

Kt

Λt

(
1

χt
+ ϕt,t−1

)
= βEtΛt+1

{
qt+1 +

1− δ
χt+1

− ϕt+1,t

}
(34)

Firm’s FOCs

ΛtHtwt = (1− α)ΞtYt (35)

ΛtKt−1qt = αΞtYt (36)

φpΛt

(
Πt

Π
− 1

)(
Πt

Π

)
= (1− θ)Λt + θΞt + (βφp)Et

{
Λt+1

(
Πt+1

Π
− 1

)(
Πt+1

Π

)(
Yt+1

Yt

)}
(37)

Technological Constraints and Laws of Motion

Yt = AtK
α
t−1[gtHt]

1−α (38)

Kt = (1− δ)Kt−1 + χtIt (39)

dt = Yt − wtHt − qtKt−1 −
φp
2

(
Πt

Π
− 1

)2

Yt (40)

Yt = Ct + It + Φ(Kt, Kt−1) +
φp
2

(
Πt

Π
− 1

)2

Yt (41)

ωRR̃t = ωπΠ̃t + ωyỹt + ln(vt) (42)
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Stochastic Processes

ln(at) = ρaln(at−1) + εat (43)

ln(χt) = ρχln(χt−1) + εχt (44)

ln(vt) = ρvln(vt−1) + εvt (45)

ln(et) = ρeln(et−1) + (1− ρe)ln(e) + εet (46)

ln(At) = ρAln(At−1) + (1− ρA)ln(A) + εAt (47)

9.1.4 Detrended Dynamic System

In order to find a steady-state, the model needed to be written in its intensive

(detrended) form. Each variable which grew along the balanced growth path

could be decomposed into its intensive form component and the deterministic

growth rate. The following variables were rewritten as: wdt = wt/g
t,md

t =

mt/g
t, ddt = dt/g

t, yt = Yt/g
t, it = It/g

t, kt−1 = Kt−1/g
t, ct = Ct/g

t, ξt =

Ξt × gt, λt = Λt × gt.

Consumer’s FOCs

at = [c
(γ−1)/γ
t + e

1/γ
t (md

t )
(γ−1)/γ]c

1/γ
t λt (48)

η = λtw
d
t (1−Ht) (49)

ctet = md
t (1−R−1

t )γ (50)

gλt = βRtEt(λt+1Π−1
t+1) (51)

ϕt,t−1 =
φK
g

(
kt
kt−1

− 1

)
ϕt+1,t =

φK
2

(
kt+1

kt
− 1

)2

− φK
(
kt+1

kt
− 1

)
kt+1

kt

gλt

(
1

χt
+ ϕt,t−1

)
= βEtλt+1

{
qt+1 +

1− δ
χt+1

− ϕt+1,t

}
(52)
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Firm’s FOCs

λtHtw
d
t = (1− α)ξtyt (53)

λtkt−1qt = αξtyt (54)

φpλt

(
Πt

Π
− 1

)(
Πt

Π

)
= (1− θ)λt + θξt + (βφp)Et

{
λt+1

(
Πt+1

Π
− 1

)(
Πt+1

Π

)(
yt+1

yt

)}
(55)

Technological Constraints and Laws of Motion

yt = Atk
α
t−1H

1−α
t (56)

gkt = (1− δ)kt−1 + χtit (57)

ddt = yt − wdtHt − qtkt−1 −
φp
2

(
Πt

Π
− 1

)2

yt (58)

Φ(Kt, Kt−1)

gt
=
φK
2

(
kt
kt−1

− 1

)2

kt−1

yt = ct + it +
Φ(Kt, Kt−1)

gt
+
φp
2

(
Πt

Π
− 1

)2

yt (59)

ωRR̃t = ωπΠ̃t + ωyỹt + ln(vt) (60)

9.1.5 Steady-State

The steady-state of the intensive form variables of the model could be found

by dropping the time subscripts and solving the system of equations.

at = a = 1 (61)

χt = χ = 1 (62)

vt = v = 1 (63)

et = e (64)
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At = A (65)

Πt = Π (66)

Rt = R = Πg/β (67)

qt = q = β/g − 1 + δ (68)

ξt = ξ =

(
θ − 1

θ

)
λ (69)

md
t = md = e

(
R

R− 1

)γ
c (70)

ct = c =

[
1 + e

(
R

R− 1

)γ−1]−1
1

λ
(71)

y = c+ i (72)

kt = k =

(
θ − 1

θ

)(
αy

q

)
(73)

it = i = (g − 1 + δ)k (74)

yt = y = c

[
1− (g − 1 + δ)

(
θ − 1

θ

)(
α

q

)]−1

(75)

ddt = d = y − wdH − qk (76)

Ht = H =

(
y

Akα

) 1
1−α

(77)

wdt = wd = (1− α)

(
θ − 1

θ

)(
y

h

)
(78)

wdt = wd = (1− α)

[
A

(
α

q
· θ − 1

θ

)α] 1
1−α

(79)

wdH = c · (1− α)

[
θ

θ − 1
− α

q
· (g − 1 + δ)

]−1

(80)

λt = λ =

η + (1− α)

[
1 + e

(
R
R−1

)γ−1
]−1[(

θ
θ−1

)
− α

q
(g − 1 + δ)

]−1

(1− α)
(
θ−1
θ

) 1
1−α
(
αA
q

) α
1−α

(81)

9.1.6 Log-Linearized System

Lastly, a first-order Taylor expansion of the log of each equation about the

steady-state of the variables was performed on the system of equations detailed
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in Subsection 9.1.4. Steady-state variables are denoted without time subscripts

and tildes denote percentage deviations (z̃t = %∆zt = (zt−z)/z). In equation

(82) the term (a − cλ) was replaced by λm(R − 1)R−1 which was derived

by substituting the money demand equation into the first-order condition for

consumption.

aRγãt = aRγλ̃t + (R− 1)(γ − 1)λmm̃t + (R− 1)λmẽt +R[cλ(γ − 1) + a]c̃t

(82)

0 = ηλ̃t + ηw̃dt − λwHH̃t (83)

0 = (R− 1)m̃d
t + γR̃t − (R− 1)c̃t − (R− 1)ẽt (84)

λ̃t = R̃t + Etλ̃t+1 − EtΠ̃t+1 (85)

gλ̃t = φkk̃t−1 + gχ̃t + gEtλ̃t+1 + (βq)Etq̃t+1 − β(1− δ)χ̃t+1 + (βφk)Etk̃t+1 − φk(1 + β)k̃t

(86)

ỹt = λ̃t + H̃t + w̃dt − ξ̃t (87)

ỹt = λ̃t + k̃t−1 + q̃t − ξ̃t (88)

φpΠ̃t = (1− θ)λ̃t + (θ − 1)ξ̃t + (φpβ)EtΠ̃t+1 (89)

ỹt = Ãt + αk̃t−1 + (1− α)H̃t (90)

gkk̃t = (1− δ)kk̃t−1 + iχ̃t + ĩit (91)

dd̃dt = yỹt − wHH̃t − wHw̃dt − qkq̃t − qkk̃t−1 (92)

yỹt = cc̃t + ĩit (93)

ωRR̃t = ωπΠ̃t + ωyỹt + ṽt (94)

ãt = ρaãt−1 + εat (95)

χ̃t = ρχχ̃t−1 + εχt (96)

ṽt = ρvṽt−1 + εvt (97)
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ẽt = ρeẽt−1 + εet (98)

Ãt = ρAÃt−1 + εAt (99)

9.2 Structural Econometrics

In this section, the details of how DSGE models are written in a state-space

representation and estimated are presented in four further subsections. In

Subsection 9.2.1, the equations of the state-space model are detailed. In Sub-

section 9.2.2, the state-space observer form of the model is displayed. Lastly,

Subsections 9.2.3 and 9.2.4 discuss the estimation of the ML and Bayesian

state-space systems with the relevant algorithms and computational details.

9.2.1 State-Space Representation

The variables of the model were organized into three categories: (i) state

variables - st, (ii) idiosyncratic error terms - εt, and (iii) all other variables -

ft.

st =

[
k̃t ãt χ̃t ṽt ẽt Ãt

]
εt =

[
εat εχt εvt εet εAt

]
ft =

[
c̃t m̃t w̃dt d̃dt H̃t R̃t Π̃t q̃t ỹt λ̃t ξ̃t ĩt

]

In order to estimate the parameters of the model, the log-linearized system

was written in state-space notation as shown in equations (100) and (101).

The vector st contained the capital stock and exogenous variables. The vector

εt contained the idiosyncratic error terms. Lastly, the vector ft contained all

the other variables of the model.
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st = Ast−1 +Bεt (100)

ft = Cst (101)

The matrices A(Ω),B(Ω),C(Ω) were of the appropriate dimensions and

had elements that were non-linear combinations of the 25 deep parameters of

the model.

Ω = [Π, g, γ, β, θ, α, δ, η, φk, φΠ, ρa, σa, ρA, σA, A, ρχ, σχ, ρv, σv, ρe, σe, e, ωR, ωΠ, ωy]
′

9.2.2 Observation Equation

The 5 × 1 vector of the observation data, Jdatt , contained the log of the five

Canadian data series. After applying the one-sided HP filter, the vector could

be directly linked to the observation equation from (101).

Jdatt =

[
lnCdat

t lnIdatt ln
Mdat
t

P datt
lnRdat

t lnΠdat
t

]′
J̃
dat

t =

[
c̃datt ĩdatt m̃dat

t R̃dat
t Π̃dat

t

]′
J̃
dat

t = Df t
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Where,

D =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0


This yielded a new state-space observer system shown in equations (102)

and (103) which only differed qualitatively from equations (100) and (101) as

the observation equation contained a vector of real data as opposed to the flow

variables of the model.

st = Ast−1 +Bεt (102)

J̃
dat

t = Fst (103)

F = DC

9.2.3 Maximum Likelihood Estimation

Define the likelihood function as: L(Ω|J̃datt ,M) = p(J̃
dat

t |Ω,M). Where M

and p(·) denote the structure and probability distribution of the model, which

comes from the state-space observer system described in equations (102) and

(103). As the shocks which drove this system (εt) were assumed to be i.i.d

then the likelihood function could be written in the following recursive form.

p(J̃
dat

T |Ω,M) =
N∏
t=1

p(J̃
dat

t |J̃
dat

t−1,Ω,M)
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Where J̃
dat

T is the T × 5 matrix of actual data observations. The ML

estimate was a point estimate (Ω̂) which maximized the objective function.

argmax
Ω̂

L(Ω̂|J̃datt ,M)

While this function was not trivial to optimize, Dynare provided a suite

of algorithms (implemented through Matlab) to do so. Two algorithms were

used and confirmed the same result.54 The Nelder-Mead Simplex algorithm

(see Lagarias et al. (1998)) was initially used to estimate the parameters.

A function tolerance of 1.0 × 10−8 was set and the algorithm achieved con-

vergence after 12,625 iterations. The model was run a second time using a

modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm developed by

Chris Sims and achieved convergence to the same point.55

9.2.4 Bayesian Estimation

Denote the prior of the model as: p(Ω|M). The probability density function

p(·) was a combination of the multivariate prior distributions (normal, gamma,

inverse gamma, and beta) found in Table 3. By Bayes rule, the posterior

distribution could be written as,

p(Ω|J̃datT ,M) =
L(Ω|J̃datt ,M)× p(Ω|M)

p(J̃
dat

T |M)
(104)

Where the numerator was the likelihood function times the prior and the

denominator was the marginal density of the data conditional on the model

54Estimation time was about ten minutes.
55For more information see http://sims.princeton.edu/yftp/optimize/.
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structure. The marginal density ensured that the posterior density integrated

to one. However, it did not need to be considered when finding the vector

of parameters which maximized the median (or any moment) of the posterior

probability distribution. Only the kernel of the posterior distribution needed

to be simulated.56

p(Ω|J̃datT ,M) ∝ L(Ω|J̃datt ,M)× p(Ω|M)

∝ K(Ω|J̃datt ,M)

The posterior density function K(·) was not estimable by either the sim-

plex or BFGS algorithm that yielded convergence in the ML-DSGE model. In-

stead, a Monte-Carlo based optimization routine was used.57 The Metropolis-

Hastings algorithm was designed to simulate the (initially) unknown and highly

complex posterior distribution. The four steps of the algorithm are qualita-

tively described below.

1. A starting point Ωt−1 (the vector of parameters of the model) was cho-

sen.

2. A nearby point was randomly sampled from a ‘jumping distribution’:

Ω∗ ∼ N (Ωt−1, jΣ).

3. The ratio of the likelihoods (the ‘acceptance ratio’) was calculated: R =

K(Ω∗,Y t)/K(Ωt−1,Y t).

4. The sampled Ω∗ either became the new starting point or the process was

56In the equation below, ∝ means ‘proportional to’.
57See http://www.dynare.org/DynareWiki/MonteCarloOptimization for the details.
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repeated based on the following rule:

Ωt =

 Ω∗ with probability min{R,1}

Ωt−1 otherwise.

The goal of this algorithm was to sample as much of the probability space

domain as possible while developing a simulated density. The parameter j,

seen in step 2, scaled the covariance matrix (Σ) from the jumping distribution

used to draw a sample for the next candidate point. If j was too large then

the acceptance rate (R) would be too low and the model would not converge

quickly enough to the regions of heavier density. If j was too small, the

acceptance rate would be too high, and the algorithm may have converged to

a local maxima. The consensus was that the average acceptance rate should

be between 25-33%.58

The algorithm was specified for 20,000 draws, two parallel chains, a 50%

burn-in rate, and a j = 0.2. The two chains averaged a 22% acceptance rate.

The process was then repeated 44 times for each period in the forecasting

exercise.59

9.3 Diebold-Mariano Test

Consider two series of k-step-ahead forecasting errors {e1t}nt=1 and {e2t}nt=1.

Define dt = e2
1t − e2

2t. Therefore dt is simply the difference in MSEs between

the two series. The original Diebold and Mariano (DM) test (see Diebold and

Mariano (1995)) was based on the null hypothesis that the expected difference

in forecast errors was zero: E[dt] = 0. Assuming this null hypothesis, it can

58See the Dynare Reference Manual: www.dynare.org/wp-repo/dynarewp001.pdf.
59The computational process was not trivial and took about 275 hours of computing

time. However, the algorithm may take substantially less time to implement depending on
the computing facilities available.
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be shown that,

SDM = [V̂ (d̄)]−1/2d̄ ∼ N (0, 1) (105)

Where d̄ is the sample mean of the series dt, V̂ (d̄) is the estimate of the

variance of the sample mean, and SDM is the DM test statistic. A slightly

modified version of the DM test can be found in Harvey et al. (1997). The

authors proposed two adjustments. First, they changed the test statistic by

using the exact error term, rather than its approximation. Second, they used

the Student-t, rather than a normal, distribution to best approximate their

test statistic. This paper used the modified test statistic developed by Harvey,

Leybourne, and Newbold.

SHLN =

[
n+ 1− 2k + k(k − 1)/n

n

]1/2

SDM ∼ t(n− 1) (106)

9.4 Data Sources

The following is a list of data sources used and the relevant CANSIM table

and series numbers. A description of how the data was imported, handled,

and transformed is in the R code found in the Dropbox link.

(1) Output (Yt): Gross domestic product at 2007 constant prices, expenditure-

based, quarterly, seasonally adjusted at annual rates (CANSIM Table

3800084)

(a) Household final consumption expenditure (V62306859)

(b) Business gross fixed capital formation (V62306871)
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(c) Investment in inventories (V62306882)

(2) Consumption (Ct): Household final consumption expenditure at 2007 con-

stant prices (CANSIM Table 3800084 - Series V62306859)

(3) Money supply (Mt): M2 (gross) (CANSIM Table 1760025 - Series V41552796)

(4) Interest rates (Rt): 3 Month Treasury bills (V122531)

(5) Price index (Pt): Implicit price indexes (CANSIM Table 3800066)

(a) Implicit price indexes (2007=100); Household final consumption ex-

penditure (V62307259)

(b) Implicit price indexes (2007=100); Business gross fixed capital for-

mation (V62307259)

(6) Population: Quarterly Canadian population estimates (CANSIM Table

051-0005)
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9.5 Figures

Figure 15: One-step-ahead forecasts

(a) Consumption (b) Investment

(c) Money-balances (d) Legend
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Figure 15: One-step-ahead forecasts cont’d

(e) Inflation (f) Interest rates

(g) Legend
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Figure 16: Two-step-ahead forecasts

(a) Consumption (b) Investment

(c) Money-balances (d) Inflation

(e) Interest rates (f) Legend
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Figure 17: Three-step-ahead forecasts

(a) Consumption (b) Investment

(c) Money-balances (d) Inflation

(e) Interest rates (f) Legend
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Figure 18: Four step-ahead forecasts

(a) Consumption (b) Investment

(c) Money-balances (d) Inflation

(e) Interest rates (f) Legend
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Figure 19: ML-DSGE versus VAR - Dynamic DM test results

(a) One-step-ahead (b) Two-step-ahead

(c) Three-step-ahead (d) Four-step-ahead

(e) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the ML-DSGE (VAR) model.
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Figure 20: ML-DSGE versus BVAR - Dynamic DM test results

(a) One-step-ahead (b) Two-step-ahead

(c) Three-step-ahead (d) Four-step-ahead

(e) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the ML-DSGE (BVAR) model.
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Figure 21: Bayesian DSGE versus VAR - Dynamic DM test results

(a) One-step-ahead (b) Two-step-ahead

(c) Three-step-ahead (d) Four-step-ahead

(e) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the Bayesian DSGE (VAR) model.
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Figure 22: Bayesian DSGE versus BVAR - Dynamic DM test results

(a) One-step-ahead (b) Two-step-ahead

(c) Three-step-ahead (d) Four-step-ahead

(e) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the Bayesian DSGE (BVAR) model.
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Figure 23: Bayesian DSGE versus ML-DSGE - Dynamic DM test results

(a) One-step-ahead (b) Two-step-ahead

(c) Three-step-ahead (d) Four-step-ahead

(e) Legend

P-values below (above) 0.05 (0.95) denote a statistically significant result
for the Bayesian DSGE (ML-DSGE) model.
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Figure 24: Consumption - Dynamic (log) MSE results (k denotes the forecast
horizon)

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) Legend
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Figure 25: Investment - Dynamic (log) MSE results (k denotes the forecast
horizon)

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) Legend
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Figure 26: Money-balances - Dynamic (log) MSE results (k denotes the fore-
cast horizon)

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) Legend

94



Figure 27: Interest rates - Dynamic (log) MSE results (k denotes the forecast
horizon)

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) Legend

95



Figure 28: Inflation - Dynamic (log) MSE results (k denotes the forecast
horizon)

(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) Legend
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