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Abstract

In this essay, we investigate the S&P 500 index daily intra-market linkages

in volatility and liquidity. We document and analyse patterns in spillover

for both variables in the time and cross-sectional dimensions. We carry our

investigation using a generalized vector autoregressive framework, in which

forecast-error variance decompositions are invariant to variable ordering, and

the novel spillover index developed by Diebold and Yilmaz in 2012. Their

spillover index, recently coined connectedness index gives an aggregated esti-

mation of the market resilience to shocks. Measuring the level of interdepen-

dence among stocks enables researchers and practitioners to identify periods

during which markets are more vulnerable in terms of risk transmission. In

parallel, it provides a quick graphical tool to identify systemic risk variation

and monitor risk spreading across the market. We contribute to the exist-

ing literature with the addition of two major aspects. First, we introduce a

methodology allowing researchers to handle larger sets of variables, inspired

by the network theory literature and recent developments in statistics. Also,

we are the first to analyse liquidity spillover. Our results highlight that the

choice of variables under investigation can lead to bias in the spillover results,

especially in the crisis build-up detection. Also, propagation mechanisms of

liquidity and volatility can evolve in a substantial different fashion illustrating

that liquidity dry-out are not necessarily linked to market risk increase.
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1 Introduction

A sound understanding of market linkages is of crucial interest with regard to

financial activities such as risk management, asset allocation and regulatory

framework implementation. Recently, researchers provided evidence support-

ing the fact that crises share common patterns (e.g., Reinhart & Rogoff 2008,

Corsetti et al. 2001). The natural next step is to investigate such relationships

in order to improve our understanding of crisis dynamics and develop tools en-

abling market participants to detect the symptoms and evolution of crises.

Bolstered by the recent financial events, a large body of literature was

published in order to deepen our understanding of connectedness patterns in

returns and volatility. Research on the topic can be broken down into two

broad categories: the analysis of financial contagion (e.g., Forbes & Rigobon

1999, 2002), which assesses whether a crisis in a given market can contaminate

other markets, and the analysis of market spillovers and their evolution through

time (e.g., Engle et al. 1990; Diebold & Yilmaz 2009, 2012, 2014). The latter

category does not discriminate between contagion and interdependence, but

investigates the magnitude of the spillovers among the studied variables. The

interest for spillover analysis was largely nurtured by the dynamics of the 2008

crisis, specifically because the crisis, which broke out in a single market, finally

spread to the entire financial system. From a risk management perspective,

spillover monitoring enables the tracking of crises evolutions and ultimately

search for pattern similarities in the process. Studies in this area previously

shed light on comovements in the mean and volatility of equity returns and
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were thus extended to all classes of assets and regions (e.g., Barunik et Al.

2013).

The spillover index of Diebold and Yilmaz (2009) can also be adapted to

the emerging literature on market connectedness and network modelling. Al-

though it does not specify the spillover determinants, it gives an aggregate

measure of the interdependence level among the studied variables. In this

sense, it provides researchers with insightful information about the stability of

the propagation channel through time, as well as the ability to distinguish be-

tween variables that are more likely to transmit disturbances and those more

likely to receive disturbances. Finally, their spillover index is in line with

other systematic measures such as the CoVaR tools of Adrian and Brunner-

meier (2011) and the marginal expected shortfall developed by Acharya et al.

(2010).

Furthermore, research on topics related to market microstructures (e.g.,

liquidity) attracted a considerable amount of attention over the last decade.

We are now better able to characterize liquidity linkages with other market

indicators, such as the risk level. Broadly defined, the liquidity level of a

stock may be considered as a proxy to characterize the informative quality

level conveyed by the stock price. In other words, the more liquid a stock is,

the better its price reflects the market participants expectations about future

events. These assertions have been under careful scrutiny in many studies

(e.g. Vayamos 2004, Cespa & Foucault 2014), where the researchers found a
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significant negative relationship between the level of risk in the market and its

inherent liquidity level. These researches pointed out that liquidity provides

insightful information on the risk level in the market.

Following the lead of Diebold and Yilmaz (2012), we investigate the evo-

lution of intra-market spillovers in the S&P 500 focusing on two measures

related to risk, volatility and liquidity in the ten sectors of the Global In-

dustry Classification Standard (GICS): Consumer Discretionary, Consumer

Staples, Energy, Financials, Health Care, Industrials, Information Technology,

Materials, Telecommunication Services and Utilities. First, we adapt Diebold

and Yilmazs spillover index to measure the intra-market spillovers of volatility

and liquidity. Second, using the adapted index, we measure the intra-market

liquidity and volatility spillovers among stocks listed on the S&P 500 index.

Such methodology enables us to quantify the joint evolution of volatility and

liquidity across time. To the best of our knowledge, this is the first attempt

to model spillover over such a large set of data. Lastly, the topic of liquidity

spillover has received much less attention than volatility in the current litera-

ture. Our paper fills this gap by providing a first investigation of the dynamics

of liquidity spillover patterns as well as a comparative analysis between volatil-

ity and liquidity spillovers.

The ability to conduct spillover analysis in a data rich environment (i.e.,

large dataset) is the most crucial contribution of this essay. Selecting a small

subsample of a studied population brings about biases that have mostly been
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ignored from the current literature. Diebold and Yilmaz (2014) briefly dis-

cuss the population selection bias, stating that the results obtained with their

methodology were highly sensitive to the selected variables under investiga-

tion. In this regard, we provide a way to handle large and high dimensional

systems while performing a spillover analysis.

The rest of the paper will be structured as follows. Section 2 reviews the

literature on spillover. In Section 3 describes the proxy used in this study

and provides summary statistics of the measures. Section 4 introduces the

methodology we applied to work with an high dimensional data set. In section

5, we explain the methodology used for the variance decomposition. Section

6 and 7 discuss the spillover results. Finally, section 8 is the conclusion with

recommendations for further researches.

2 Literature Review

2.1 Volatility Spillover

The analysis of volatility gained considerable attention during the last decade,

mostly since it became clear that a throughout understanding of its dynamics

was of prime necessity for most economic agents. In this regard, a rich body of

literature was created on various topics pertaining to volatility and its linkages

in financial markets and asset classes.
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Masson (1998) characterized three distinct types of shocks based on their

propagation mechanisms: (1) aggregate shocks, (2) country-specific shocks,

and (3) shocks which cannot be explained by economic fundamentals. Aggre-

gate shocks may be caused by a common set of factors, such as a change in

the economic fundamentals affecting uniformly several economies. Country-

specific shocks concerns shocks in a set of countries that may affect the eco-

nomic fundamentals of other countries. The intuition here is that there exists

some sort of directionality in the transmission mechanism. For example, a

change in trade agreement and policy coordination among countries may be

view as country-specific as they will potentially cause repercussions on compet-

itiveness in other countries. Finally, he defined the pure contagion propagation

mechanism (the third type of shock) as an increase in co-movement which can-

not be explained by the first two economics channels.

Most of the early studies on spillover analysis address the identification

of the transmission mechanism at play in various situations. Engle et al.

(1990) carried an analysis on volatility spillover and examined if country-

specific and world-wide (aggregate) news arrival had distinguishable effects

on volatility. More specifically, they conducted their analysis on intra-daily

volatility in foreign exchange markets in order to explain the causes of cluster-

ing in exchange rate. They carried their analysis using a GARCH model on

the intra-daily yen/dollar exchange rate to test whether the impact of news

were country-specific. Furthermore, many researchers have investigated mar-

ket comovements with the objective to distinguish between market interde-
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pendence, attributable to Masson’s first two propagation mechanisms, and

contagion shocks, the third propagation channel. Forbes and Rigobon (1999;

2002) looked at cross-country correlations of asset returns in tranquil and cri-

sis periods, defining contagion as a structural break in the parameters of the

underlying data-generating process.

More recently, Diebold and Yilmaz (2009) introduced a spillover index

based on the forecast error variance decomposition of a N-variable vector au-

toregression. Their spillover methodology enabled researchers to measure the

contribution of each variables exogenous shocks to the other variables. Their

suggested approach distinguishes itself from the core literature as it does not

directly aim at differentiating contagion from interdependence, but grants the

ability to assess the proportion of spillover specific to each study variable.

Their methodology does not require a formal contagion test in order to pro-

duce results, empowering researchers with information on systemic risk in the

market at every observation. Their work relates to systemic risk researches,

as it produces information on the market interdependence level and its trans-

mission channels. It enriches the systemic risk measurement literature and

brings a new dimension to risk management techniques, such as the value-at-

risk (VaR), by allowing the identification of patterns in the time and cross-

sectional dimensions. Their methodology recently gained significant attention

and was adapted to a broader set of analyses. Nevertheless, the examination of

intra-market spillover received less coverage and is still limited to a restrained

subset of the studied population.
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In their first version, Diebold and Yilmaz (2009) applied the Cholesky vari-

ance decomposition to obtain the forecast error variance decomposition used

in their index. Rapidly, the method faced a large amount of criticism from

the academic community with respect to the lack of theoretical background

regarding the ordering of the variables in the vector autoregression. Given

that the variable ordering could not be anchored in the economic theory, two

avenues were proposed. First, Löbner and Wagner (2012) suggested that the

cholesky decomposition be performed over the N! possible combinations. Their

methodology has the benefit of producing orthogonalized errors; however, it

no longer produces a single version of the spillover measure. Rather, they

choose a median version of the index, selected among all the N! potential out-

comes. The package FastSom, developed for the Cran project in R, efficiently

computes N! potential orders. Second, Diebold and Yilmaz (2012) revisited

the work of Pesaran and Shin (1998) on generalized variance decomposition to

solve the ordering issue. The generalized variance decomposition is robust to

variable order in the VAR, under the hypothesis that variables are normally

distributed. Under Wolds theorem, it is possible to invert a covariant station-

ary process into an infinite moving average, yielding the empirical covariance

of the errors. Then, the error decomposition is achieved through the filtration

of the shocks, in our case the standard deviation of the errors (σii), using their

empirical distribution. This approach has the advantage of producing an exact

measure of the spillovers.
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2.2 Liquidity measure

Concurrently with the increased interest for volatility analysis and its implica-

tions for risk assessment, the analysis of market microstructures gained consid-

erable momentum during the last decade. Market liquidity is closely related

to stock price informativeness; liquid assets potentially convey more precise

information on market participants expectations. In this sense, liquidity is de-

terminant to the price discovery process as it allows stocks to incorporate new

information at a minimal cost, frictionlessly. Many theoretical studies (e.g.

Vayamos 2004; Brunnermeier & Perdersen 2009) revealed that liquidity fluc-

tuations are intrinsically related to surges in market risk level. In this sense,

we expect liquidity levels to covary with volatility.

Of the first researchers to investigate spillover patterns of liquidity, Vayamos

(2004) found that large fund managers are among the potential causes of this

spillover phenomenon. These fund managers impact the liquidity channels

through the composition of their investment portfolio. Under the assumption

that the liquidity premium is a convex function of the volatility he stated

that managers are less willing to hold illiquid assets during period of high

volatility. Intuitively, when volatility is low, managers are not concerned with

withdrawals because a movement of several standard deviations is required for

their fund performance to fall below a targeted return threshold. Thus, the

perceived value of liquidity, the liquidity premium, is very small and almost

insensitive to volatility. However, when volatility increases, the probability of

investors withdrawals grows rapidly, since the funds are more likely to under-
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perform, and so does liquidity premium. The dynamics between the level of

risk in the market and the need for liquidity of fund managers, embodied by

the liquidity premium, shed evidence of potential comovements between liq-

uidity spillover and changes in the market risk regime.

Cespa and Foucault (2012; 2014), among others, suggested potential mech-

anisms to explain the liquidity spillover phenomenon across assets of the same

class. Researchers carrying out empirical studies on liquidity spillover linked

its dynamics to market volatility. Cespa and Foucault (2014) emphasized the

implication of cross-asset learning, a spillover transmission mechanism for liq-

uidity dry-ups and comovements. The cross-asset learning implies that as the

liquidity of one asset decreases, its price becomes less informative to liquidity

providers in other assets. Therefore, the liquidity of the other assets drops as

liquidity providers withdraw from these assets. They investigated the conse-

quences of volatility shocks on the concentration of liquidity across assets in

one arbitrary market constituted by cross-market arbitrageurs. Such liquidity

spillover mechanism highlights dependence patterns in liquidity linkages and

can be understood as a risk propagation mechanism as well as a source of

fragility in the market. This feedback loop provides a new explanation for

comovements in liquidity and liquidity dry-ups.

Although these researches findings showed a strong relationship between

volatility and liquidity, there is evidence suggesting that these variable fluctua-

tions are potentially linked to differing sets of observable phenomena (Dionne &
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Chun 2013). Additionally, researchers have long acknowledged that the liquid-

ity risk provides complementary information on volatility in the risk manage-

ment business, which is attested by the importance of the liquidity-adjusted

value-at-risk of Bangia et al. (1998) and the liquidity beta of Amihud and

Mendelson (1991). However, the literature on liquidity spillover has received

far less attention and there has been no attempt at modelling its evolution

through time.

3 Data

We studied the volatility and liquidity spillovers of stocks listed on the S&P

500 index for the period ranging from 12/30/2002 to 06/20/2014, for a total of

2889 daily observations. We removed from our data sample all stocks that did

not span the entire time range. By doing so, we missed the new entries, among

which are found potentially large new players such as Facebook, Alibaba and

Netflix. However, this is common practice in all the studies that we surveyed

in our literature review.

For the construction of the realized volatility measure and the Amihud”s

illiquidity measure, we obtained our data from PiTrading 1, a high-frequency

data provider. Prior to computing the realized volatility measure, we used the

data cleaning methodology suggested by Barndorff-Nielsen (2008), whenever

applicable. The cleaning routine related to the order book was conducted by

1http://pitrading.com/, Historical Stock Data Package
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our data provider, as we only received the trade data. As part of our cleaning

routine, we deleted all entries occurring before 9h30 and after 16h00. In the

rare situation where we had an entry with a missing or zero value, we replaced

it by the previous observation in that given day. If the first value of the day

was missing, we used the following observation to avoid overnight price varia-

tion.

Our analysis necessitated the transformation of the raw data into two prox-

ies: one for volatility, named realized volatility, and another one for liquidity,

named Amihud’s illiquidity measure. The next two subsections provide a brief

overview of these measures and their fundamentals.

3.1 Volatility Measurement

Volatility modelling has been one of the most active fields of research in fi-

nancial time series econometrics during the last decade. Academics made

considerable progress in understanding stochastic volatility and, subsequently,

a wide variety of models emerged to capture the process dynamics.

With the increased availability of intraday high-frequency data on financial

assets, the econometrics researchers considered applying novel techniques from

the stochastic process theory to volatility modelling. These opportunities led

to the development of a measure coined realized volatility, derived from the

quadratic variation process. In contrast with the well-known ARCH/GARCH
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estimation methodology, which essentially treats volatility as a latent variable,

the realized volatility (RV) treats it as an observed variable based on past

observations, yielding an ex-post measure.

3.1.1 Truncated Realized Volatility

It is widely recognized that modern financial markets operate in an approxi-

mated continuous fashion throughout the trading time. It is then reasonable

to consider a continuous-time process as the underlying data generating pro-

cess of these discrete observations. Andersen and Associates (2003) developed

a formal argument to support the link between the realized volatility process

and the quadratic variation process. To set forth the notation, let pi,t, the

logarithmic price, denote the time 0 ≤ i at day [0 ≤ t ≤ T ] defined on a

complete probability space (Ω,F , P ). Ω is the fundamental set, Ft is the in-

formation set, and P is a probability measure defined over Ω. The process can

be expressed in its simplified form as a Brownian semimartingale with a pure

jump process:

Pt =

∫ t

0

αsds+

∫ t

0

σsdWs + Jt (1)

- Pt denotes the logarithmic price

- α is a continuous locally bounded variation process

- σ is a strictly positive and cadlag (right-continuous with left limits)

stochastic volatility process
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- Wt ∼ (0,dt) is a standard Weiner process

- Jt is a pure jump process

Then the Quadratic Variation process (QV) can be expressed as:

[Pt, Pt] =

∫ t

0

σ2
sds+

∑
s≤t

(∆Js)
2 (2)

And the stochastic differential equation becomes:

d[Pt] = σ2
t dt+ (∆Jt)

2 (3)

Based on equation (3), it is clear that the stochastic differential equation

estimates the spot volatility plus the jump component of the stock diffusion

process. The realized volatility measure can be generally understood as a

discrete time approximation of the stochastic differential equation presented

in (3). Capitalizing on high frequency data, the realized volatility allows re-

searchers to approximate the spot volatility through the summation of the

returns computed at a small interval (i.e. ∆t → 0).

Since the first measure of realized volatility introduced in Andersen and

Bollerslev (1998a), hundreds of competing methodologies have been advanced

to improve the initial RV and cope with financial data stylized facts. Most

of the recent development aimed at better capturing the jump component

in the stock process and solving market microstructure limitations. Market

microstructures, such as the liquidity risk, create distortions in the return

observations. These effects tend to generate spurious correlations, rendering
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inconsistent the estimation via the conventional realized volatility measures.

We based our volatility measure choice on a recommendation from Liu,

Patton and Sheppard (2012), who published a survey conducted over 400 re-

alized measures at various time aggregations. They tested the effectiveness of

measures for different applications in time series econometrics. Since our re-

search involves the implementation of forecasting techniques and the treatment

of stocks ranging from more to less liquid, we were concerned about finding

the preferred measure specific to our data. Based on these considerations,

we chose the best realized volatility estimator in forecasting individual equity,

namely the 15-minute truncated realized volatility.

The 15-minute truncated realized volatility measure was first introduced

by Mancini (2009) in order to provide researchers with a nonparametric jump-

robust estimator of the volatility. The justification for the use of jump-robust

estimators was found in Andersen et al. (2007): disentangling the continuous

path component from the jump component in the stock return process enables

a more reliable volatility forecasting, since jumps are directly associated with

specific macroeconomic news announcements. Consequently, most of the pre-

dictability in return volatility results from the non-jump component (Andersen

et al. 2007). The truncated realized volatility separates the two processes in

the following fashion:

TR-RVt =
n∑
i=1

(yt,i)
2I{y2

t,i ≤ r(∆i)} (4)
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For yt,i = Pt,i−Pt,i−1 being the stock return on day “t” at time “i”={15,30,...,375,390},

since we sum the returns at every 15 minutes during a given trading day.

In the original article, Mancini (2009) defined r(∆i) as being the nonpara-

metric threshold at which we potentially discard the time “i” squared return

from the truncated realized volatility daily summation. She explained that the

absolute value of the increment in the Brownian motion path tends asymptot-

ically to zero at the same speed as the deterministic function
√

2 ·∆i ln( 1
∆i

).

Therefore, for small ∆i, the instant squared returns (y2
t,i) should not be larger.

In a case where r(∆i) ≥ 2 · ∆i ln( 1
∆i

), it is likely that a jump occurred. We

defined r(∆i)t based on the methodology used by Liu, Patton and Sheppard

(2012).

Then r(∆i)t = 4

√
BV Pt−1

n
; n =26 (5)

Where “n” is the number of sampled intraday returns at a 15-minute sam-

pling frequency (26), and BPVt−1 is the previous day’s Bipower estimator

using a one-minute sampling frequency. We computed the Bipower estimator

using one-minute frequency since Liu, Patton and Sheppard specified that it

performed better at this sampling frequency.

Such that BV Pt−1 =
n∑
i=2

|yt,i−1||yt,i| ; n =390 (6)
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For i={2, 3, ..., 388, 289, 390}, since we sum the returns at every 1 minute dur-

ing a given trading day. The use of the Bipower estimator as a threshold is

motivated by the fact that it is robust to jumps. Thus, when we divide it by

the number of sampled daily observations, we obtain an intuitive jump-robust

nonparametric threshold.

3.2 Liquidity Measure

In the theory of market microstructure, it is generally accepted that the liq-

uidity cannot be represented as a single variable. A thorough definition of

market liquidity encompasses the four axes identified in Harris (2003): tight-

ness, depth, resilience and immediacy. From these four aspects have emerged

two broad classes of liquidity proxies: trade-based and order book-based mea-

sures. The two classes of proxies show a limited level of correlation, suggesting

that the choice of classes decisively impacts the quality of any empirical anal-

ysis. Furthermore, Goyenko et al. (2009) showed that both classes capture

different aspects of liquidity. Thus, researchers should base their choice on the

research focus and the underlying assumption of the study. Irvine and Kandel

(2000) provided a framework for choosing which type of measure best suits

a research goal. They provided an intuitive model based on the investment

horizon of financial agents. Broadly defined, we can segment investors into two

groups: patient or impatient. Impatient investors, such as arbitrageurs, trade

at relatively high frequency and require immediate execution of their orders.
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Conversely, patient investors, such as institutional investors, face less pressure

to immediately execute their trades allowing them to look for occasional liq-

uidity pools in order to execute their orders inexpensively. For the latter group

of investors the lower the uncertainty around the execution price is, the more

liquid is the market.

3.2.1 Amihud’s Illiquidity Measure

We investigated the relationship between volatility and liquidity from the point

of view of these patient investors. In this sense, Goyenko et al. (2009) advised

the use of Amihuds illiquidity measure (IL) as the preferred proxy in the trade-

based category. The measure can be defined as:

ILt,n ≡
|rt,n|

Pt,nV Ot,n

106 (7)

For the stock “n” on day “t”:

Pt,n = price of stock

V Ot,n= Daily share trading volume (in one share unit)

It is important to understand that the smaller this ratio is for a given ob-

servation, the more liquid the stock is considered for that specific day. Like

any proxy, this measure is not a panacea and it is important to bear in mind

that Amihuds illiquidity measure fails to capture the immediacy dimension of

liquidity. However, it captures the most relevant aspects of the assessment of

the execution price uncertainty level, namely uncommitted liquidity and mar-
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ket resilience (see Moyaert 2012).

3.3 Data treatment and stylized fact

The distribution of realized volatility is serially correlated, strongly right skewed

and clearly leptokurtic. The serial correlation issue is handled using the vec-

tor autoregression model. However, the other stylized facts on our variable

distribution raise concerns for the variance decomposition process, illustrated

in section 4.1, as it relies on normality assumptions. Andersen and associates

(2003) advocate that the distribution of the realized logarithmic volatility, in

our case ln(TR-RV15), was approximately normal. Thus, we used the natu-

ral logarithm of our volatility measure to perform the variance decomposition

process. Concurrently, we applied the same transformation to our liquidity

measures as they exhibit major similarities with the volatility.

4 Vector Autoregression in Data Rich envi-

ronment

When modelling spillover in a given market, there is no theoretical guidance

for selecting the stocks. Most of the earlier studies handpicked 10 to 20 stocks

based on the largest capitalization at a given date in the studied time interval.

However, there is no theoretical ground to justify such selection, which poten-

tially leads to biased results, especially in spillover analysis as pointed out by



25

Diebold and Yilmaz (2014).

To mitigate the difficulties linked to the selection bias, we relied on recent

developments in high dimensional data analysis, which encompasses the least

absolute shrinkage and selection operator (LASSO) family. More precisely, we

used an extension called the adaptive elastic net regression. These types of

regression were developed to manage systems characterized by matrices with

large numbers of coefficients or high dimensional systems, which are doomed

by the curse of dimensionality. High dimensional analysis is applied in situa-

tions where the number of coefficients to estimate is larger than the number

of observations, which renders traditional estimation methods inadequate or

simply impossible to use. The literature on the topic evolved in two ma-

jor directions: data/coefficient shrinkage techniques and principal component

analysis. Given the nature of our work, we decided to keep our data in level.

The coefficient shrinkage technique thus seemed to provide a natural extension

to handle the challenges associated with large dataset analysis. Elastic net re-

gression represents an effective way to control the trade-off between bias and

variance in the estimated coefficient matrix. This type of regression is valid

under the hypothesis that the coefficient matrix has a sparse representation

(i.e., only a subset of the matrix coefficients are nonzero). Another motivation

for introducing coefficient shrinkage techniques to our analysis comes from the

inherent biased nature of the population selection. As Diebold and Yilmaz

(2014) briefly discussed, handpicking a subset of data from the market is likely

to bias the results of the spillover analysis. On the other hand, coefficient
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shrinkage techniques may induce bias in the estimation of the coefficients by

wrongly assigning a zero value to nonzero coefficients. In spite of this, our

strategy determines the most relevant relationship among the variables in a

statistical fashion, whereas the former strategy has no theoretical justification

little empirical validity.

We based the choice of our shrinkage technique on data properties high-

lighted in the network analysis literature. Indeed, we know from financial net-

work analysis (Barigozzi & Brownlees 2014) that the stock market has central

stocks, also called star nodes, which are linked to a large number of additional

stocks. These central stocks indirectly connect with other stocks creating a

neighbourhood (i.e., companies sharing common characteristic with a tendency

to move together) (Chudik & Pesaran 2013). In this sense, the adaptive elastic

net is well suited for financial data analysis and allows the estimation of larger

VAR models containing several correlated variables. In these VAR models

where many of the variables move jointly, our selected estimation procedure

leaves out irrelevant variables but does not exclude correlated variables that

may be relevant as part of a group (Furman 2014). The adaptive elastic net

benefits from the properties attributed to the adaptive LASSO, namely the

selection and asymptotic oracle properties, as well as from the finite sample

grouping effect inherited from the ridge penalty. In this branch of literature,

the oracle effect is understood as the ability to correctly select the sparsity pat-

tern in the VAR coefficient matrix. In a situation where there are groups of

variables among which the correlations are very high, the lasso tends to select
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only one variable from the group and set the other coefficients to zero (Zou &

Hastie 2005; Kock & Callot 2012). We used the package GcdNet produced by

Hui Zou and associates (2014). The technique we used can be defined in the

following way:

βAnet = (1 +
λ

NT
)argminβ{‖y−Xβ‖2

2 +λ[α
K∑
k−1

β2
k + (1−α)

K∑
k−1

ωk|βk|]} (8)

α: Trade-off between the adaptive LASSO and the ridge regression, for α=1

represents the ridge regression and α=0 represents the adaptive LASSO.

λ: the shrinkage, or penalizing, parameter.

N : Number of variables.

T : Number of daily observations.

K: Number of subintervals in which our sample is partitioned to perform the

cross-validation procedure.

We chose λ and α by minimizing the cross-validated mean-square-error,

using 10 folds (k=10). Cross-validation estimates the expected level of fit for

a model independently from the data used. In other words, it attempts to

optimize the predictive power of the regression using the tuning parameters,

λ and α, as the model selection criteria. The original sample is randomly par-

titioned into K equal-sized subsamples. Then, from the K subsamples, one is

randomly selected as the validation data segment for testing the model. We

then used the remaining K-1 subsamples to estimate the model.
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Finally, it has been demonstrated that the adaptive elastic net produces

excellent impulse response results and sometimes even outperforms the oracle

estimates (Furman 2014).

5 Methodology - intra-market Spillover in the

S&P 500

Once we estimated the vector autoregression process using the adaptive elastic

net methodology, our estimated results can simply be expressed as a vector

autoregression with “P” lag coefficient:

Yt = Φ1Yt−1 + ...+ ΦpYt−p + εt (9)

where Yt = [rvt,1, rvt,2, ..., rvt,k] or [ilt,1, ilt,2, ..., ilt,k], rvt,i are the truncated re-

alized volatility variables, ilt,i are the Amihud’s illiquidity measures, Φ1, ...,Φp

are matrices of coefficients of the lagged values of Yt, and εt ∼ (0,
∑

) is a

vector of identically and independently distributed disturbances. In order to

produce the forecast error variance decomposition, we are require to work with

the infinite moving average of our estimated system. Under the Wold theo-

rem, it is possible to invert our process and represent it as an infinite moving

average using the following methodology

[Im − Φ1L− ...− ΦpL
p]Yt = εt (10)
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Yt = [Im − Φ1L− ...− ΦpL
p]−1εt (11)

Yt = Φ(L)−1εt =
∞∑
i=0

ψiεt−i (12)

where L is the lagged operator and ψi can be identified using the recursive

substitution ψi = Φ1ψi−1 +Φ1ψi−1 +Φ2ψi−2 + ...+Φpψi−p, ψ0 = Im and ψi = 0

for any i < 0.

5.1 Pesaran & Shin Variance decomposition

Variance decomposition is the key of Diebold and Yilmazs methodology, which

allows us to discern the fraction of each shock attributable to a variable xj on

each of the xi forecast. However, the residuals of the infinite moving average

process are often correlated, which renders any direct analysis of the errors

meaningless since it is necessary to work with uncorrelated residuals to per-

form the Diebold and Yilmazs spillover index. As a replacement technique

to the well-known Cholesky decomposition, the authors used the generalized

forecast variance decomposition developed by Pesaran and Shin (1998). This

technique also produces uncorrelated impulse responses and has the additional

advantage of being order-invariant. For an invertible process, we can derive

the generalized impulse response function at horizon h with a shock on the jth

element in the following way:

GI
Y

(h, δj,Ωt−1) = E(Yt+h|εj,t= δj,Ωt−1)− E(Yt+h|Ωt−1) (13)
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where Ωt−1 is the information set in the economy at time “t-1” and δ is a m

x 1 vector of shocks hitting our system. Equation (13) can be understood as

an shock impulse on the jth only. The contribution of this shock to the other

variables is obtained using the historical distribution of the errors. Hence,

under the hypothesis that the errors follow a multivariate normal distribution,

the conditional effect on the errors is defined given a shock on the jth equation

at time “t” for the forecast horizon “h” while setting δj =
√
σjj the standard

deviation of εjt as:

E(εt|εj,t= δj) = (σ1j, σ2j, ..., σKj)
′
σ−1
jj δj =

∑
ejσ
−1
jj (14)

where ej is an m by 1 selection vector with unity as its jth element with zeros

elsewhere and
∑

is the covariance matrix.

Borrowing this methodology, Diebold and Yilmaz (2009) defined the own

variance shares of every stock as fractions of the H-step-ahead error variances

in forecasting the variable xi given a shock to xi, for i = 1, 2, ..., N . Intuitively,

spillovers represent the contribution attributable to shocks xj, for j =1,2,...,N

such that i 6= j, to the error variance forecast of xi.

Henceforth, Diebold and Yilmazs H-step-ahead forecast error variance de-

compositions (θij(H)) can be expressed as:
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θij(H) =

σ−1
ii

H−1∑
h=0

(e′iAh
∑
ej)

2

H−1∑
h=0

(e′iAh
∑
A′hei)

; For H = 1, ..., 10 (15)

The sum of each row of the generalized method is not equal to one. The

authors normalized each entry of the matrix by the row sum2 :

θ̃ij(H) =
θij(H)∑

j=1

θij(H)
(16)

Note that
∑
j

θ̃ij(H) =
θij(H)∑

j=1
θij(H)

= 1 and that
∑
j,i

θ̃ij(H) =
θij(H)∑

j=1
θij(H)

= N

Depending on the sign, positive or negative, and the magnitude of
∑

of

Ah, it is possible that θ̃ij(H) be positive of negative. However, our identifi-

cation technique does not grant us the ability to distinguish between positive

and negative spillover shocks.

In order to identify spillovers between sectors, we ordered the variables by

sector in the VAR. An illustration of the forecast error variance decompositions

with two sectors, utilities (U) and finance (F ) can be represented in the matrix

Γ:

2Conversely, it is possible to normalize with respect to the columns
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Γ(H) =



θ̃U1,U1 θ̃U1,U2 · · · θ̃F1,UK

θ̃U2,U1 θ̃U2,U2 · · · θ̃F2,UK

...
...

. . .
...

θ̃FK ,U1 θ̃FK ,U2 · · · θ̃FK ,FK


sectioned into four quadrants:

Utilities Spillover U ←→ F

F ←→ U Finance Spillover

From this matrix, we were interested in obtaining four distinct measures: total

spillover, directional spillover, net directional spillover and pairwise spillover.

5.1.1 Total Spillover

We adapted the spillover measure from Diebold and Yilmaz (2012) to aggre-

gate the θ̃ij(H) of every stock listed in the S&P500 into their respective GICS

sectors.

The total spillover index measures the contribution of shock spillovers to

the forecast error variance across the selected stocks (Diebold & Yilmaz 2012).

It can be expressed as follows:

S(H) =

Su∑
i,j=Sl
i 6=j

θ̃ij(H)

Su∑
i,j=Sl

θ̃ij(H)

• 100 (17)
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where Sl and Su define the initial and ending index of each sector stacked in

the VAR. For example, the first 10 stocks stacked in the VAR are from the

Consumer Discretionary sector. Their initial and ending index are 1 and 10.

Then, by operating within these indexes, we include the spillover effect specific

to this sector only.

5.1.2 Directional Spillover

The directional spillover provides general information on the strength of the

propagation channel between one sector and the other sectors of the market.

We defined sectors transmitted spillover as:

S•S(H) =

Su∑
i=Sl

N∑
j=1

θ̃ij(H)−
Su∑

i,j=Sl

θ̃ij(H)

Su∑
i=Sl

N∑
j=1

θ̃ij(H)

• 100 (18)

And sectors received spillover as:

SS•(H) =

N∑
i=1

Su∑
j=Sl

θ̃ij(H)−
Su∑

i,j=Sl

θ̃ij(H)

N∑
i=1

Su∑
j=Sl

θ̃ij(H)

• 100 (19)

Then, each sectors net transmitted spillover is defined as: Snet = S•S(H)−

SS•(H)
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5.1.3 Pairwise Spillover

The pairwise spillover allows us to determine the specific direction of the

spillover between each sector, which enables us to identify specific contrib-

utors to the market disturbance and quantify the strength of linkages between

sectors. The pairwise spillover from sectors A to B can be defined as:

SAB(H) =


Su∑

i,j=Sl

θ̃ij(H)

Su∑
i=Sl

N∑
k=1

θ̃ik(H)

−

Su∑
i,j=Sl

θ̃ji(H)

Su∑
j=Sl

N∑
k=1

θ̃jk(H)

 • 100 (20)

This measure can be understood as the difference between the gross transmis-

sion from sectors A to B , and sectors B to A.

5.2 Identification of the Vector Autoregression

Spillover analysis is highly dependent on the variable set under which the in-

vestigation is carried. Recent researches on intra-market (e.g., Barunik et al.

2012) investigated solely a subset of the market. Under this consideration and

to depict the most relevant view of the intra-market linkages, we decided to

conduct our analysis over all stocks listed on the S&P 500.

To produce our results, we performed a rolling forecast using a window size

of 10% of the total 2889 daily observations, included between 12/30/2002 and

06/20/2014, for our 30 (or 93) variables. In this sense, the results at time “t”

are obtained by estimating the system for the period ranging from [t - 10% •
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2889, t]. For every iteration, we estimate the model.

However, working with such a large set of variables poses an important

challenge: the consistent identification of the VAR(P) coefficients. In order

to mitigate the curse of dimensionally related to vector autoregression, we de-

cided to follow the literature procedure and fix the number of lags in our VAR

to one, VAR(1) (e.g., Diebold & Yilmaz 2009; Barunik et al. 2012; Urbina

Calero 2013). Fixing the number of lags in the VAR is not generally accepted

as a good practice. However, endogenizing the lag length in VARs is done at

the expense of our degree of freedom and, in our largely dimensional experi-

ment, this technique can potentially result in a greater number of estimated

variables than observations. Thus, under this consideration and the fact that

every author in the field used a fixed number of lags, we maintained our deci-

sion to fix it at one, VAR(1).

5.3 Confidence Interval for the Spillover Index

We constructed a bootstrap confidence interval to estimate to robustness of

our spillover results. We used the methodology for the variance decomposi-

tion confidence interval detailed by Lütkepohl (2004). Given our methodology,

two issues needed to be addressed for the construction of the confidence in-

terval. First, since our vector autoregression does not contain an intercept,

the mean of our residuals was potentially not equal to zero. To be consis-

tent with the methodology of Lütkepohl (2004) we subtracted the mean of the
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residual matrix. Second, although we tested the robustness of our results for

different lag specifications and obtained similar results for 1 and 2 lags, our

model may exhibit serially correlated residuals. We spot checked different seg-

ments of our experiment and tested for the presence of serial correlation in our

residuals. Most segments tested positive and, after examination of the partial

autocorrelalogram, we observed that the persistence pattern was weak and

quickly converge to zero for the section observed. These results indicate that

our residuals were potentially serially correlated, thus we decided to use block

bootstrap to account for their dependence dynamics. The block bootstrap is a

simple fully nonparametric methodology that accounts for dependence in the

bootstrapped variables (see Mackinnon 2002).

We proceeded according to the following steps to construct our set of boot-

strapped variance decomposition forecast.

1- Estimate the VAR(1)

2- Collect the residuals and center them (Lütkepohl 2004) by substracting

their mean. Then, resample the residuals using blocks size of 10 observations

in order to construct the bootstrapped vector of residuals (ε∗t ).

3- Generate a set of bootstrapped variables y∗t using the bootstrapped vec-

tor of residuals in a recursive fashion to conserve the time dependence of the

yt such that:
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y∗1 = Φ1y0 + ε∗1

y∗2 = Φ1y
∗
1 + ε∗2

...

y∗t = Φ1y
∗
t−1 + ε∗t

4- Using the set of bootstrapped observations y∗t , reestimate the VAR(1),

compute the spillover index, store the values obtained from the bootstrap ex-

periment and repeat steps 1 to 4, 999 times (B = 999).

5- Finally, select the 2,5% and 97,5% quantiles from our results to construct

the 95% confidence interval.

For every iteration of our rolling spillover index, we followed the method-

ology stated above. The construction of the bootstrap confidence interval is

a computationally intensive approach. Since our work already involved 2546

iterations in our rolling process to estimate a VAR(1) of 30 or 93 financial

stocks, we faced definitive technical limitations in term of computing power.

Under these considerations, we decided to limit the number of bootstrap trials

to 999. The total computational time required to run the entire code was ap-

proximatively 91 hours. We used R version 3.1.1. for the entire analysis and

the vector autoregression was estimated using the adaptive elastic net package

gcdnet and the parallelism package FOREACH. We ran the experiment using

8 processors on an Intel Core i7-3630QM with 2.40GHz.



38

6 Results

6.1 Robustness Analysis of the Results

Since there is no theoretical ground for the construction of our spillover index,

we tested the sensitivity of our results for various specification of the model

against a benchmark result. We set the benchmark result based on the VAR(1)

including the 30 stocks listed on the S&P 500 with the largest market capital-

ization as of 06/20/2014.

The first aspect that we stressed in our analysis refers to the size of the

rolling window. We considered three potential scenarios with window sizes of

5%, 7.5% and 10%, respectively equivalent to 145, 216 and 289 daily observa-

tions of each stocks (appendix 9.4.3). Most of the studies on the topic were

conducted using a window size varying between 200 and 300 daily observations

per selected stock. On one hand, having more observations for estimating the

system at every iteration should produce more efficient coefficient results. On

the other hand, one may argue that having a smaller window size allows re-

searchers to put more weight on more recent data and thus better capture

upcoming changes in the spillover patterns. We found that the size of the

rolling window influenced our result in the most striking fashion. Specifically,

the 5% rolling window size produced more erratic results than the 7.5% and

10% ones. However, all three sizes captured the same specific surge events in

spillover. The main difference resulting from the choice of the rolling size was

the persistence of the specific surge in the spillover index. As the window size
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increased, the spillover index took longer to subside to pre-crisis levels. Since

most of the literature on spillover analysis was created using a window size

between 200 and 300 daily observations, we decided to maintain our rolling

forecast window at 10%. Moreover, this approach offered more degrees of free-

dom in the estimation of our regression.

Secondly, we investigated the effects of using multiple lags for our VAR

equation (appendix 9.4.3). Our benchmark model was fixed at one lag, fol-

lowing the methodology used by most researchers. However, in order to assess

the potential information content provided by more persistent models, we also

considered two potential lags. Our robustness test indicated that there were

few differences between the VAR(1) and the VAR(2).

Finally, we tested the sensitivity of the forecast horizon length. From a

theoretical perspective, the choice of our forecast horizon is intrinsically linked

with the investigation objective; it serves the same purpose as the studied

horizon in value-at-risk. However, this study focused on the phenomenal anal-

ysis of spillover patterns among stocks; therefore there is no direct guidance

for selecting the optimal number of steps with respect to the forecast horizon.

Thus, we performed the analysis at different time horizons, and more precisely

two, six and ten steps ahead in order to assess the robustness of our results.

This approach allowed us to control for the VAR stability and simultaneously

account for the time persistence of the spillovers in our analysis. It is impor-

tant to clarify one aspect relative to the horizon forecast size. By construction,
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the spillover index is a cumulative sum of the forecast error variance decom-

position. Thus, we are likely to observe an increase in the spillover results as

the forecast horizon under investigation increases. By looking at the spillover

index in figure (2), we noticed that there was an important discrepancy be-

tween the two- and six-day ahead spillover results. However, the gap between

six- and ten-day ahead results was negligible. In this perspective, our results

showed that for forecast horizons of ten days and more, the spillover results

were not likely to exhibit important differences with the six-day ahead horizon

forecast results.

The 95% confidence interval (Appendix 9.4.1) was constructed for the

volatility and liquidity spillover at the two-, six-, and ten-day ahead forecast

horizons. First, for both sets of variables, the confidence interval results were

narrowed indicating that spillover distribution density was relatively tight.

This suggests that the reported results were reliable, all things equal. The

confidence interval of the volatility spillover attracted our attention, as it was

not symmetrical and was skewed toward larger values of the spillover. This

result raised potential concerns on the distribution of the errors. Indeed, the

generalized error forecast decomposition requires to have normally distributed

data in order to be consistent. We acknowledge the limitation that this find-

ing put of the validity of our error forecast decomposition. However, Urbina

Calero (2013) compared the results obtained from the N! reordering technique

using the Cholesky decomposition and the generalized forecast decomposition;

both set of results were within the same confidence interval.
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Additionally, our work investigated the spillover patterns between the 30

largest corporations (3 per sector) listed on the S&P 500. We tested the ro-

bustness of the results with a different dataset size. Therefore, we subsequently

increased our selection to the 93 largest companies (10 per sector and 3 for

telecommunication services) (Appendix 9.3). Our results indicated that the

selection of the sample leads to major differences in the spillover magnitude.

In appendix 9.4.4, it is clear that both sample sizes captured the market dy-

namics, but the results for the larger sample reached a higher level of spillover,

up to 20% higher (Appendix 9.4.4). Based on financial network studies, these

different results clearly corroborate our initial intuition. By performing the

spillover analysis on a subset of hand-picked stocks, researchers do not ac-

count for the dynamics of existing linkages in the market. Then, the ability to

correctly identify and measure linkages are subject to the researchers sample

selection. Our argument in favour of working with larger datasets when the re-

search objective is to detect crises in the entire market could be strengthened

by the investigation of the inter-market spillovers, such as the link between

the fix income, the foreign exchange, commodities and stock market. How-

ever, this new research avenue is beyond the scope of this essay.
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6.2 Static analysis

Total Spillover

The total liquidity spillover measure obtained for the entire studied period,

that is from 12/30/2002 to 06/20/2014, was 18% (Appendix 9.5.1). The own

share of variance of each sector, the table diagonal, was relatively homogeneous

among all sectors, ranging from 77.5 to 87.3. The financial and industrial sector

stood apart in term of spillover transmission, with 33.5 and 35.7 respectively,

which were 10 points over the third largest transmitter. The total volatility

spillover measure was 39.8%, and the own share of variance of every sector was

again quite homogeneous. Here also, the financial and industrial sectors were

the major volatility spillover transmitters. Interestingly, the telecommunica-

tion services and utility sectors were the biggest shock total receivers.

6.2.1 Pairwise Spillover

For the pairwise spillover examination, both volatility and liquidity analyses

identified the telecommunication services, materials, and utilities sectors as

being the most prominent net pairwise transmitters. The pairwise spillover

between these three sectors and both the financial and industrial sectors par-

ticularly stood out in term of magnitude. Finally, the major net pairwise

receivers were the financial and materials sectors.
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Figure 1: Liquidity: Static Full Sample Pairwise Spillover

Figure 2: Volatility: Static Full Sample Pairwise Spillover

The list of abbreviations can be read as follows: Telco = Telecommunication services, Mat = Materials, Uti = Utilities, C.S. =

Consumer Staples, Ener = Energy, H.C. = Health Care, Info = Information services, C.D. = Consumer Discretionary, Ind = Industrial

and Fin = Financial.

In the above table, the blue tiles represent negative pairwise spillover be-

tween two sections and the red ones are positive pairwise spillover. The pair-

wise spillover can be understood as the gross spillover transmission of the

sector on the horizontal axis minus the gross spillover transmission of its cor-

responding sector on the vertical axis. The numbers presented in the tables



44

are normalized on a scale of 100 (-100) and large absolute value of pairwise

spillover coefficients imply that one sector contributed substantially to the

level of risk of the other sector. From a cross-sectional perspective, the static

analysis revealed that both studied variables had the same dominant sectors

in terms of spillover. However, volatility spillover was significantly higher than

liquidity spillover. It was interesting to note that, based on the full sample

static analysis, both volatility and liquidity linkages shared similarities with

respect to their dominant sectors.

6.3 Dynamic Spillover

A visual inspection of the total liquidity and volatility spillovers revealed six

interesting segments in the series, identified in the graphics presented hereun-

der with Roman numerals I to VI. For the purpose of our analysis, we included

the S&P 500 VIX index, a general benchmark of risk for market participants

3.

3The VIX index is an aggregated measure of risk averaged from in-the-money call and
put options on the S&P 500
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Figure 3: Total Market Spillover

(a) Total Liquidity Spillover (b) Total Volatility Spillover

(c) S&P 500: VIX Index (d) S&P 500 in level

In figure (a) and (b), the 2-, 6- and 10-day ahead forecast horizons are respectively repre-

sented by the blue zone, the grey line and the pink zone.

Liquidity and volatility total spillovers exhibited approximately the same

regime changes in the first four segments. In section II, which coincided with

the beginning of the subprime crisis in mid-2007, we observed an increase in

volatility (indicated by VIX). In segment III, the market crash of September

2008 plummeted the S&P 500. Conversely, the market risk level measured by

VIX increased to an all-time high accompanied by increases in liquidity and

volatility total spillovers. We recorded the most pronounced market spillover

increase in both variables during this period. To confirm our visual inspection

of the results, we ran a bai-perron break test using the methodology introduce

in Appendix 9.2 on the total volatility spillover results. We then identified

the different regime periods found for the total volatility spillover on the four
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graphics presented. Interestingly, we observed that the volatility and liquid-

ity spillover with the VIX tends to experience breaks at the same periods.

All three rose sharply during the crash of September 2008, but the liquidity

spillover barely reacts when the crisis first declared at the end of 2007. Also,

total liquidity spillover did not revert to its pre-crisis level while total volatility

spillover subsided to its pre-crisis level in two marked drops concomitant with

the two most important purchase of US securities by the United States federal

reserve (Appendix 9.7.5).

As we mentioned before, spillovers are an aggregate measure of connected-

ness and encompass without distinction all the potential transmission mech-

anisms for a given type of variables: liquidity or volatility. They can be un-

derstood as a measure of systemic risk, in comparison to an absolute measure

of risk represented by the VIX. It is interesting to observe that most spillover

surges coincided with spikes in the VIX, although total spillovers evolved in

plateaus without revolving to their initial level as quickly as the VIX.

6.3.1 Total Spillover by Sector

Liquidity

We observed a homogeneous response for all total liquidity spillovers by sec-

tor, which match that obtained for the total market spillover (Appendix 9.6.1).

From a general perspective, the spillover in each sector was not reduced to its

pre-crisis level and was significantly more volatile than it was before the events

of 2008. Moreover, two salient facts attracted our attention. The financial,
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energy and industrial sectors suffered the most significant surges in spillover,

reaching in the worst of the crisis 12%, 20% and 12% of intra-sector interde-

pendence, respectively. From a liquidity risk management perspective, sector

diversification did not seem to pose a significant challenge as the intra-market

connectedness did not reach dramatic levels. Furthermore, it was interesting

to note that significant variation in liquidity spillover was only observed in

the worst of the crisis. This observation supports the intuition developed in

Vayamos (2004), on the convexity of the liquidity spillover as a function of

the risk level in the market. Finally, the telecommunication sectors spillover

regime was less persistent and substantially lower than any other sector.

Volatility

Sectorial volatility spillover patterns (Appendix 9.6.1) presented more diverse

patterns of change throughout the studied interval. The energy, information

technologies and industrial sectors suffered the most marked and long-lasting

increase in volatility spillover of all the studied sectors, reaching 80% of sector

connectedness. However, the most interesting change of regimes was recorded

in the consumer staples, information technology, health care, and consumer

discretionary sectors. The 2007 and 2008 market events marginally impacted

the spillover level in these sectors, with a minor increase of 10 to 15 points,

but during the period of 2010 to 2012, all these sectors experienced a sudden

rise of up to 60 points to rapidly abate at the end of that same segment.
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6.4 Directional, Net Pairwise and Net Spillover

Liquidity

The examination of directional spillover (Appendix 9.6.2) revealed that all

sectors were almost equally receiver and transmitter of directional spillover.

Acknowledged by the net spillover, we observed that all sectors were null net

liquidity spillover transmitters for most of the studied period, with the only

exception of the period encompassed by the 2008 crisis. However, the magni-

tude of transmission and reception channels intensified after the events that

declared in 2007. The financial and energy sectors experienced the highest in-

crease in both transmitted and received spillover from the rest of the market.

The telecommunication services and utilities sectors exhibited the lowest level

of connectedness with the other sectors over the whole period. The consumer

staples, consumer discretionary, health care, information technologies and ma-

terial sectors experienced marginal variation in terms of directional spillover,

potentially indicating that the propagation mechanisms of these sectors were

more robust to changes in market conditions.

Moreover, we observed that net pairwise spillover (Appendix 9.6.3) in-

creased in 2007, and based on our results, there was no clear indication that

the situation will revert to pre-crisis levels for any of the sectors. This was

the most pronounced result of the liquidity spillover section, which indicated

that the gross transmission of liquidity among sectors reached a new paradigm,

stronger and more intricate. It was interesting to note that the net pairwise
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spillover between all sectors and the financial and energy sectors was negative

during almost the entire sample. At the same time, the telecommunication ser-

vices sector displayed the highest level of net pairwise spillover. The remaining

sectors did not exhibit clear patterns in net pairwise spillover, although the

sign of the relationship (i.e., positive/negative net pairwise spillover) appeared

to remain constant during the studied interval.

Volatility

First, the size of the directional and net spillovers for the volatility was gener-

ally larger than that observed for the liquidity. In concert with liquidity direc-

tional spillover, volatility directional spillover (Appendix 9.7.2) revealed that

sectors were likely to remain net transmitters or net receivers during most of

the studied period. The magnitude of the transmission and reception channels

intensified after the events that declared in 2007. The financial and energy sec-

tors distinguished themselves from other sectors by reaching the highest level

of directional spillover. Interestingly, the directional spillover surge observed

in the energy sector occurred before the event of 2007 and slowly reverted to

its initial level throughout the studied period. Again, the telecommunication

services sector exhibited the lowest level of connectedness with the other sec-

tors over the entire period. Moreover, during period IV of our sample, the

financial, consumer staples, information technologies and material sectors suf-

fered a sudden shift in their net directional spillover, which coincided with the

surge recorded in the sector-level total spillover. This drastic change of regime

corresponded with two marked increases of VIX. Aside from this drastic event,
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the other sectors did not display any significant variation during the studied

period. Again, this potentially indicates that the connection of these sectors

within the market was more robust to market conditions.

We observed a sharp increase in the net pairwise spillover (Appendix 9.7.3)

of the financial sector toward all sectors, starting in 2007 and lasting until mid-

2009, which was consistent with the financial crisis. The consequential breaks

that we noticed earlier in most of the sector-level total spillover were evident.

No clear pattern emerged from our results, which prevented us from deter-

mining unequivocally which sectors were central to the net pairwise spillover

during that period. Finally, we found particularly interesting the fact that,

aside from the large break of 2010, most of the net pairwise spillover remained

stable across the studied horizon.

7 Discussion

The liquidity and volatility total spillovers evolved in a similar fashion: the sig-

nificant rises of the VIX index correspond to major increases in both variables.

However, the spillover index for the volatility was substantially stronger, sug-

gesting that volatility propagation mechanisms are predominant. The exami-

nation of total spillovers at the sector level revealed that spillover significantly

differs among sectors and studied variables. The phenomena are generally

more erratic and sector-level discrepancies more noticeable in the volatility

results.
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The major drops in the S&P 500 level occur simultaneously with increases

in the total market spillover index. As we explained before, the spillover index

can be understood as the systematic risk level in the market.In this sense,

we expect the market price level to drop in reaction to a sudden surge in the

volatility spillover index as market participants now require a larger return for

the risk associated with their market positions. Additionally, our index does

not differentiate between good and bad shocks of volatility, limiting our ability

to infer on the impact of these two different types of volatility shocks. The

most simplistic model such as the CAPM can help derive this intuition. How-

ever, once the market prices the new level of systemic risk, we observe that

the S&P 500 has a tendency to recover, although the spillover level remains

substantially high. A potential explanation comes from the risk habituation of

the major market participants (Weber et al. 2012). In time of great turmoil,

Weber and associates found that market participants become less sensitive to

the stream of negative news in the market. Even if the level of systematic risk

remains high, market participants required returns adjust to the new paradigm

(appendix 9.7.4). The patterns we find in our research are in line with their

findings.

Liquidity

The dynamic section of our experiment reveals that the total market spillover

reached its highest level (80%) during the 2008 crisis. This result indicates
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that a generally high level of dependence among stocks is exacerbated in cri-

sis period. At the disaggregated level, although sector-specific total spillovers

experience simultaneous surges, the increased magnitude in spillover differs

considerably among sectors. The financial, energy and industrial sectors expe-

rience a significantly higher rise in total spillover during the worst part of the

crisis while the rest of the studied sectors increased moderately, barely reach-

ing 40-50%. These dynamics can be attributed to the fact that expectations

of increased liquidity risk are transferred to the most interdependent sectors

in the index. Additionally, the dynamic and static analyses of the directional

and net pairwise spillovers suggest that spillover among sectors represents a

limited part on the shock transmission within the market.

Strikingly, the transmitted and received spillovers for all sectors evolve in

a similar fashion to the total market liquidity spillover. We have two potential

hypotheses to reconcile the joint evolution of all sectors. First, the system-

atic directional spillover evolution potentially defines liquidity spillover as a

market-wide phenomenon rather than a sectorial one. Second, it is possible

that liquidity spillover in the stock market are influenced by external factors

that not included in our study.

Finally, total and net pairwise liquidity spillovers for every sector do not

subside to their pre-crisis level. This new paradigm indicates that, all things

equal, liquidity shocks are more likely to propagate inside the market. Thus,

the risk of liquidity crunch in the stock market is considerably higher than it
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was before the crisis. At this point, we can only suggest potential causes for

this persistent increase in liquidity interdependence among our stocks. First,

the increased use of algorithmic trading for cross-asset learning is a potential

explanation for this new liquidity spillover regime. At the same time, liquidity

risk has gained considerable attention since the last crisis and it is possible that

market participants then started to be increasingly concerned with liquidity-

induced risks.

Volatility

In terms of volatility spillover, our analysis clearly identified the energy and fi-

nancial sectors as predominant players in the transmission of shocks. One may

argue that these sectors presumably act as the prominent transmission mech-

anisms of shocks coming from financial/economics and energy news, through

portfolio rebalancing mechanisms. Until the major break in 2008, the sector-

level total and net pairwise spillovers remained stable in most of the sectors,

except in the financial and energy sectors. To some extent, these dynamics sug-

gest that market systemic risk is mostly dictated by financial and energy news,

unsurprisingly. Finally, most sectors do not subside to their pre-crisis level in

terms of net pairwise total market and sector-level spillovers. These findings,

despite the all-time low level of the VIX, underscore the market feverishness

toward potential news. We highlight that the perceived level of risk is low, but

risk transmission is likely to propagate among stocks with more velocity than

before the events of 2007. Also, the telecommunication services and utilities
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sectors exhibit the lowest level of directional and pairwise spillovers. These

two industries are commonly referred to as anti-cyclical. They offer a hedge

over the market fluctuations. In this sense, it is natural for the directional

spillover received and transmitted by and from these two sectors to be low.

We interpret the high level of intra-sector interdependence combined with

a low net pairwise and directional spillover among sectors as an indication that

sector-specific shocks are more likely to be contained within themselves. This

points out that some sectors are more likely to suffer from risk propagation

from within. Then, a sector-specific liquidity shock in one these sectors is likely

to be contained within the sector, which increases the risk of experiencing a

vicious feed-back loop in subsets of the market that have limited propagation

potential with other sectors. This high level of intra-sector interdependence

coupled with low transmission channels among sectors may be explained by

portfolio managers allocation restriction between sectors, which forces man-

agers to keep positions in risky sectors.

8 Conclusion

We applied Diebold and Yilmazs spillover framework, covering a large set of

variables listed on the S&P 500, and extended our analysis to liquidity vari-

ables. Our empirical experiment on daily stock data, divided based on the

Global Industry Classification Standard (GICS), provides ample evidence in
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support of the market interdependence at the disaggregate sectorial level. We

confirmed with the general patterns observed for both liquidity and volatility

that the theoretical framework arguing that liquidity spillovers are dependent

upon the market risk level. However, our results demonstrate that sector-level

total and directional spillovers differed dramatically between volatility and liq-

uidity, which suggests that tracking both variables for risk monitoring would

provide additional information in terms of risk management. Also, we no-

tice that both variables experience a substantial increase in their net pairwise

spillover level, an argument in favour of a more interdependent market within

and among sectors. Finally, we introduce a new technique enabling researchers

to handle large sets of data in the analysis of the market spillover. This new

methodology could be extended to an even more diversified set of data. We

believe that research including data on the fix income, commodity and foreign

exchange market would benefit from that approach.

For future research, we have two potential developments. First, it might

be meaningful to distinguish between liquidity positive (inflows) and negative

(outflows) shocks between the stock market and the fix income market to cap-

ture the effect of the central bank action on stock market liquidity. During

the last financial crisis, a major part of the problem was caused by liquid-

ity dry-ups in specific subsets of the market that ultimately spread. While

this research demonstrates that transmission channels among sectors show no

clear patterns, it is of major interest to investigate the asymmetry of liquidity

spillover in term of inflows/outflows. Including other types of assets in the
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analysis, especially the debt market, may allow researchers to target the liq-

uidity transmission effect of central bank action of the stock market. These

findings can improve our understanding of liquidity propagation mechanisms

and help fund managers to better track risky assets.

Finally, potential research developments may enable researchers to simulta-

neously examine inter-market and intra-market spillover. In this sense, study-

ing the macro and micro relationship between the stocks market with the

commodities, the fix income market and the foreign exchange market could be

of great interest. Our work highlights that sectors share similarities in their

general evolution, although there also exist key divergences in regime changes.

Investigating these relationships in a richer context may help depict a better

portray of the spillover dynamics.
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9 Appendix

9.1 Data Cleaning

A diligent cleaning routine is of prime necessity for volatility estimators using

high frequency data. When applicable, we used the procedure developed by

Barndorff-Nielsen et al. (2008) to clean the high frequency data.

9.2 Break Identification

We used Bai-Perrons break test to segment our total volatility spillover results

of the S&P 500 into different periods. Bai-Perron performed an endogenous

break detection to identify an unknown number of breaks in the studied series.

We tested for changes in the mean of the index over the entire sample assuming

a naive model with only one constant: a regressor. At the 1%, 5% and 10%

confidence level, using the sequential optimization method, we found that both

liquidity and volatility total market spillover series experienced breaks concor-

dant with the events of September 2008. We performed robustness checks

using window sizes of 5%, 10% and 15%.

The following section provides the intuition behind the test. We can con-

sider m endogenous structural breaks in the return series, which can be written

as the following set of equations:

rt = α1 + εt, t = 1, ..., T1

rt = α2 + εt, t = T1, ..., T2
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...

rt = αm + εt, t = Tm−1, ..., Tm

where α1, α2,..., αm are the means of the index for each regime. Bai-Perron

(2003) returned the estimated break dates resulting from the minimization

process of the sum of squared residuals by choosing the optimal number of

breaks,“m”. For the return series, it can be expressed as:

(T̂1, T̂2, ..., T̂m) = argminT1,...,TmSSRT (T1, T2, ..., Tm) (21)

Where SSRT (T1, T2, ..., Tm) =
m∑
i=1

Ti∑
t=Ti−1+1

(rt − αi)2 (22)
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9.3 10 largest market capitalization of each GICS Sec-

tors in the S&P 500

Stock Ticker GICS Sectors Stock Ticker GICS Sectors Stock Ticker GICS Sectors

AMZN Consumer Discretionary JPM Financials IBM Information Technology

CMCSA Consumer Discretionary C Financials INTC Information Technology

MCD Consumer Discretionary BAC Financials QCOM Information Technology

DIS Consumer Discretionary AXP Financials CSCO Information Technology

HD Consumer Discretionary USB Financials EBAY Information Technology

NKE Consumer Discretionary AIG Financials EMC Information Technology

TGT Consumer Discretionary GS Financials ACN Information Technology

TWX Consumer Discretionary SPG Financials HPQ Information Technology

F Consumer Discretionary MET Financials DD Materials

SBUX Consumer Discretionary JNJ Health Care MON Materials

WMT Consumer Staples PFE Health Care DOW Materials

PG Consumer Staples MRK Health Care FCX Materials

KO Consumer Staples ABT Health Care PX Materials

PEP Consumer Staples AMGN Health Care ECL Materials

MO Consumer Staples UNH Health Care APD Materials

CVS Consumer Staples BMY Health Care PPG Materials

CL Consumer Staples LLY Health Care IP Materials

KMB Consumer Staples MDT Health Care NUE Materials

WAG Consumer Staples BAX Health Care T Telecommunications Services

RAI Consumer Staples GE Industrials VZ Telecommunications Services

XOM Energy UPS Industrials CTL Telecommunications Services

CVX Energy UTX Industrials SO Utilities

SLB Energy MMM Industrials EXC Utilities

OXY Energy CAT Industrials D Utilities

COP Energy UNP Industrials DUK Utilities

APC Energy BA Industrials NEE Utilities

APA Energy HON Industrials AEP Utilities

NOV Energy EMR Industrials FE Utilities

HAL Energy DHR Industrials PCG Utilities

EOG Energy AAPL Information Technology ED Utilities

WFC Financials MSFT Information Technology PPL Utilities

Table 1: Stocks included in the small Spillover experiment (30 largest S&P
500 companies) are in bold.
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9.4 Robustness Test Results

9.4.1 95% Confidence Interval of the Total Market Volatility Spillover,

for VAR(1) and 10% rolling window size

Figure 4: 2 days ahead forecast

Figure 5: 6 days ahead forecast

Figure 6: 10 days ahead forecast
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9.4.2 95% Confidence Interval of the Total Market Liquidity Spillover,

for VAR(1) and 10% rolling window size

Figure 7: 2 days ahead forecast

Figure 8: 6 days ahead forecast

Figure 9: 10 days ahead forecast
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9.4.3 Rolling Window Size and Lag sensitivity

Figure 10: VAR(1) and VAR(2) with 5% rolling window size

Figure 11: VAR(1) and VAR(2) with 7.5% rolling window size

Figure 12: VAR(1) and VAR(2) with 10% rolling window size

Figure 13: Blue = VAR(1), Black = VAR(2)
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9.4.4 Sample Size sensitivity

Figure 14: Total Market Volatility Spillover

Figure 15: Total Market Liquidity Spillover

Figure 16: Blue = large sample (93 stocks), Black = small sample (30 stocks)
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9.5 Result figures

9.5.1 Full Sample, static Spillover

Table 2: Liquidity Spillover Table (%), Full Sample

GICS sector Cons. Disc. Cons. Stap. Energy Fin. Health Indus. Info. Tech. Mat. Teleco. Uti. Received

Cons. Disc. 79.8 1.3 2.4 4.6 1.7 4.7 2.5 1.6 0.1 1.2 20.1
Cons. Stap. 2.0 85.3 1.5 2.7 1.4 3.0 1.6 1.0 0.1 1.4 14.7

Energy 2.8 1.1 79.8 4.4 1.6 4.8 2.5 1.6 0.1 1.2 20.1
Fin. 3.2 1.2 2.4 81.8 1.7 4.3 2.3 1.6 0.1 1.4 18.2

Health 2.3 1.1 1.7 3.2 83.7 3.6 2.0 1.1 0.1 1.2 16.3
Indus. 3.6 1.3 2.7 4.6 1.9 79.9 2.8 1.7 0.1 1.4 20.1

Info. Tech. 2.6 1.2 2.2 3.7 1.6 4.6 81.6 1.3 0.1 1.0 18.3
Mat. 3.2 1.2 2.7 4.7 1.8 4.9 2.5 77.5 0.2 1.3 22.5

Teleco. 2.3 1.3 2.0 3.2 1.4 3.1 1.6 1.0 82.8 1.4 17.3
Uti. 1.5 1.1 1.5 2.4 1.2 2.7 1.3 0.8 0.1 87.3 12.6

Transmitted 23.5 10.8 19.1 33.5 14.3 35.7 19.1 11.7 1.0 11.5 Total: 18%

Table 3: Volatility Spillover Table (%), Full Sample

GICS sector Cons. Disc. Cons. Stap. Energy Fin. Health Indus. Info. Tech. Mat. Teleco. Uti. Received

Cons. Disc. 59.3 3.0 4.3 9.1 2.6 8.3 5.5 2.0 0.3 5.7 40.8
Cons. Stap. 3.6 68.5 4.0 4.2 1.8 6.1 4.6 1.5 0.3 5.4 31.5

Energy 5.4 2.9 60.9 8.1 2.4 8.1 5.1 2.1 0.4 4.6 39.1
Fin. 3.8 2.4 4.0 66.1 3.7 7.1 4.3 1.9 0.3 6.5 34.0

Health 3.7 5.4 4.5 4.2 64.8 6.1 4.8 1.4 0.3 4.9 35.3
Indus. 5.8 5.0 6.2 8.9 3.3 53.3 7.2 2.6 0.5 7.3 46.8

Info. Tech. 4.9 4.6 5.0 6.8 2.7 9.6 57.1 2.3 0.3 6.6 42.8
Mat. 5.0 3.3 5.2 8.8 2.9 9.4 5.5 54.3 0.2 5.3 45.6

Teleco. 5.0 4.7 5.8 10.4 2.1 8.8 6.2 2.1 47.3 7.5 52.6
Uti. 6.4 8.5 8.4 6.5 2.7 10.0 6.9 2.2 0.8 47.7 52.4

Transmitted 43.6 39.8 47.4 67.0 24.2 73.5 50.1 18.1 3.4 53.8 Total: 39.8%
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9.6 Liquidity Spillover

9.6.1 Total Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities



66

9.6.2 Directional and Net Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities
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9.6.3 Pairwise Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities

Figure 19: Each graphic, lettered (a) to (j), represent the net pairwise spillover between all the sectors and the sector in the subtitle.
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9.7 Volatility Spillover

9.7.1 Total Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities
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9.7.2 Directional and Net Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities
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9.7.3 Pairwise Spillover

(a) Financial (b) Energy

(c) Consumer Staples (d) Consumer Discretionary

(e) Information Technologies (f) Industrial

(g) Health Care (h) Material

(i) Telecommunication (j) Utilities

Figure 22: Each graphic, lettered (a) to (j), represent the net pairwise spillover between all the sectors and the sector in the subtitle.
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9.7.4 S&P 500 Index returns

(a) S&P 500 returns
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9.7.5 Quantitative Easing
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