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Abstract 

Value at Risk has become one of the most popular measures used by financial 
institutions to quantify market risk. The goal of this paper is to determine which 
volatility models are able to accurately estimate VaR during periods of high volatility 
such as the recent financial crisis. Specifically, we apply three parametric approaches 
(RiskMetrics, GARCH, EGARCH) under two distributional assumptions (normal, 
standardized ݐ), and one nonparametric approach (historical simulation) to estimate 
VaR at 95% and 99% confidence levels. We evaluate the performance of each 
methodology based on the results of both unconditional and conditional backtesting 
for the periods before and during the financial crisis. Our results indicate that 
GARCH and EGARCH with standardized ݐ-distributed residuals are the best models 
for estimating VaR during the crisis from those tested in this paper. 

Keywords: Value at Risk, risk management, financial crisis, volatility models 
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1    Introduction: 
 
The past five to seven years have been characterized by significant instabilities in global financial 

markets. What first began as a subprime mortgage crisis in the United States developed into a global 

problem affecting numerous countries and financial institutions. The effects of the crisis were seen in 

equity markets, characterized by dramatic declines in asset and stock prices worldwide; this started in 

the United States where the S&P 500 dropped 45% between 2007 and 2008 (Bartram & Bodnar, 

2009). Amid the widespread effects of the credit crisis, risk management systems in financial 

institutions came under intense scrutiny, resulting in demands for improvements to their systems. 

 
A widely used risk measure amongst financial institutions is Value at Risk (VaR). VaR has emerged 

as the industry standard in measuring market risks as well as being used for credit risk, operational 

risk and liquidity risk (Jorion, 2002).  Specifically, VaR is defined as the maximum loss that will be 

incurred on the portfolio at a given confidence level over a specified period. The measure has gained 

widespread popularity since 1994 when JP Morgan published RiskMetrics: a system which allows 

market participants to estimate their exposure to market risk using the “Value-at-Risk framework” 

through a publically available database online (RiskMetrics technical document, 1994). In 1996, the 

Basel Committee on Banking Supervision formally introduced a Market Risk Amendment to the 

Basel Capital Accord which forced banks to use VaR measurements to determine capital 

requirements (Basel Committee, 1996). Since then, Value at Risk has become an important tool for 

regulators and has been used to implement policies aimed at preventing severe systemic crises. The 

popularity of this method is in part due to its simplicity, whereby the risk associated with any 

portfolio is reduced to just one number that indicates the loss associated to a given probability. 

 
The rise of Value at Risk as the leading market risk measure has led to numerous methodologies 

being created by academics and practitioners in regards to estimating the measure. These approaches 

can be summarized into three categories: parametric, nonparametric, and semiparametric.  The goal 

of this paper is to determine which parametric and nonparametric models are able to accurately 

estimate VaR during periods of high volatility such as the recent financial crisis. Specifically, we 
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apply three parametric approaches (RiskMetrics, GARCH, EGARCH) and one non parametric 

approach (historical simulation) to estimate VaR at VaR at 95% and 99% confidence levels for six 

assets: three diversified index portfolios (S&P 500, FTSE 100, Nikkei 225), the spot price of gold, 

10-year US Treasury Bills, and a diversified portfolio measuring the performance of the US real 

estate sector. We subsequently backtest each model using both conditional and unconditional 

coverage tests to evaluate the accuracy of VaR estimates for the period before and during the 

financial crisis.  

 
This paper is organized in the following manner. Section 2 provides a thorough introduction to VaR. 

Sections 3 and 4 present the parametric and nonparametric methodologies used. Section 4 describes the 

backtesting methodologies employed. Section 5 introduces the data provides summary statistics. Section 6 

involves model selection for GARCH and EGARCH volatility models. Section 7 reports backtesting 

results. Section 8 outlines criticisms of VaR. Section 9 is the conclusion.  

 
 

2    Value at Risk 
 
We previously state that VaR is defined as the maximum loss that will be incurred on the portfolio at a 

given confidence level over a specified period. In other words, for a given time horizon ݐ, and confidence 

level ߙ, the VaR is the loss in market value over the time ݐ that is exceeded with probability 1 െ  For .ߙ

example, a one day 99% VaR of $1,000,000 means that we expect on 99% of trading days, portfolio 

losses will not exceed $1,000,000. 

 
While Value at Risk can be used by any entity to measure its risk exposure, commercial and investment 

banks often use it to capture the potential loss in value of their traded portfolios from adverse market 

movements. The obtained VaR estimate can then be compared to the banks available capital and cash 

reserves to ensure that the losses can be covered without putting the firm at risk.  

 
The selection of the confidence level and time horizon plays an essential role in determining VaR and 

depends on the objectives of the firm. From a regulatory standpoint the Basel Accord requires firms to 

compute a 99% VaR each trading day.  However, depending on the management’s risk aversion level, a 
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firm may choose to compute VaR at a different confidence level when setting capital reserves (Jorion, 

2001).  More risk averse firms set aside a larger capital buffer, which parallels choosing a higher 

confidence interval. The time horizon that is chosen is dependent on the type of firm being analyzed and 

the time it takes for this firm to liquidate its portfolio holdings (Jorion, 2001). Banks, for example, have 

actively traded liquid portfolios and therefore compute VaR daily.  Non-financial firms and institutional 

investors have a longer investment horizon and therefore trade less liquid assets that require long-term 

loss estimates. From a statistical point of view, VaR can be defined as: 

 
  ܸܴܽఈ ൌ ߤ ൅ ሻߙଵሺିܨ ൈ  ,௧ߪ

 

(1)

where Prሺݎ௧ ൏ െܸܴܽఈሻ ൌ 1 െ  ߙ
 

where ܨሺ∗ሻ denotes the cumulative density function (CDF) which describes the profit and loss 

distribution of the financial position, ߤ is the mean return, ݎ௧ is the observed return on day ݐ, and ߪ௧  is the 

standard deviation or volatility. For a ܶ-day VaR, the calculation above is multiplied by the square root of 

the time horizon ܶ; however, we compute daily VaR and therefore, the time factor is excluded. In order to 

quantify market risk in terms of monetary amount, VaR is multiplied by the current price of the asset or 

portfolio.  

 
Since the inception of RiskMetrics, an increasing number of approaches to estimate VaR have been 

created. Engle and Mangelli (2001) classify the approaches into three categories: 

 
          Table 1: Value at Risk Classification 

Parametric Nonparametric Semiparametric 

 RiskMetrics/EWMA 
 ARCH/GARCH Models 

 Historical Simulation 
 Hybrid Model 

 Extreme Value Theory 
 CAViaR 
 Quasi-Maximum Likelihood

 

Parametric approaches, such as RiskMetrics and GARCH, fit a probability distribution (normal or non-

normal) to the data in order to estimate the conditional standard deviation. The standard deviation is then 

substituted into equation (1) in order to calculate VaR. In comparison, nonparametric approaches directly 
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use the empirical distribution of returns and compute VaR by finding the quantile at a desired confidence 

level. Section three will discuss both approaches in detail. 

 
Each methodology mentioned above attempts to capture some or all of the characteristics commonly 

observed in financial data. These empirical regularities of financial data can be summarized as follows 

(Engle, 2001):  

 
1. Financial return distributions are leptokurtotic, which means they have heavier tails and a higher 

peak than the normal distribution.  

2. Volatilities of market factors tends to cluster, meaning that a period of high price volatility is 

typically followed by another period of high volatility; while a period of low price volatility is 

followed by a period of low volatility.1  

3. Equity returns are typically negatively skewed, implying that observations occur more frequently 

below the mean than above.  

Although there is no industry consensus on the best method for calculating VaR (Engle and Gizycki, 

1999), Perignon and Smith (2006) surveyed VaR estimation methods of 60 large banks worldwide over 

1996-2006 in order to find which approaches were popular among financial institutions. They found that 

73% of banks used the historical simulation methodology while 14% used the Monte Carlo simulation 

approach. Beder (1995) stated that the results from VaR estimations on a portfolio may vary dramatically 

depending on the method chosen after applying eight VaR approaches to three portfolios. A strong 

understanding of the statistical models being employed and their underlying assumptions is therefore 

required when selecting an appropriate methodology. We compare and contrast various approaches to 

estimating Value at Risk in the following section. 

 
 

 
 
 
 

                                                            
1 This phenomenon was first noted by Mandelbrot (1963). 
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3    Parametric Models 
 
As mentioned earlier, financial market data such as the returns of share prices, stock indices and foreign 

exchange rates have all often been observed to exhibit volatility clustering. In such circumstances, the 

assumption of constant variance, homoskedasticity, is inappropriate. Moreover, financial time series data 

often exhibit leptokurtosis, which means that the distribution of their returns is fat-tailed (i.e. relative high 

probability for extreme values). In this section, we introduce parametric approaches that can be utilized to 

estimate Value at Risk and deal with the aforementioned phenomena. Each model has its own set of 

assumptions, along with strengths and weaknesses that affect its ability to estimate VaR. Note that every 

parametric approach in this paper specifies the following representation of the return series: 

 
  ௧ݎ ൌ ߤ ൅ ߳௧ (2)

 
where ߤ is the mean return observed and ߳௧ is an unpredictable component which is defined below.  

 
 
3.1    ARCH Model 
 
Engle (1982) proposed the Autoregressive Conditional Heteroskedasticity (ARCH) model which attempts 

to capture the volatility clustering feature of financial returns by modeling the dynamics of volatility. 

ARCH models assume that the current value of the variance depends upon past squared error terms. The 

model defines an error term or residual, ߳௧, which can be expressed as an arch process of the following 

form: 

 
  ߳௧ ൌ .݅~௧ݖ ௧, whereݖ௧ߪ	 ݅. ݀. ሺ0,1ሻ  (3)

 

where ሼݖ௧ሽ, known as the standardized residual, is a white noise process. The conditional variance of ߳௧ is 

ݐ  a time-varying function of the information set at time	௧,ߪ െ 1 (Becketti, 2013). As mentioned earlier, 

the conditional variance is expressed as a linear function of past squared error terms: 

 

  ௧ଶߪ ൌ ଴ߙ ൅ ∑ ௜߳ߙ ௧ି௜
ଶ௤

௜ୀଵ   (4)
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Above is an ARCH (q) process where ߪ௧ଶ, the conditional variance, depends on q lags of the squared error 

term ߳௧. The unconditional variance, ߙ଴, is a stochastic process and hence remains independent of time. In 

order to satisfy the non-negativity constraints for the conditional variance, ߙ଴ ൐ 0 and ߙ௜ ൒ 0 for 

݅ ൌ 1,… ,  .ݍ

 

 
3.2    GARCH Model 
 
The creation of Engle’s model inspired numerous academics and practitioners to construct innovative 

variations of the original modelling approach. A drawback of the ARCH methodology is that a high 

order parameterization is usually required in order to capture the dynamics of the conditional 

variance (Bollerslev, 1986).  Many parameters have to be estimated which in addition to being 

burdensome, presents the possibility of the non-negativity constraint being violated. Bollerslev’s 

(1986) Generalised ARCH (GARCH) model is a natural solution to the problem of high ARCH order 

parameterizations. The model is based on an infinite ARCH specification and can reduce the number 

of estimated parameters from an infinite number to just a few to obtain greater parsimony (Becketti, 

2013). A GARCH process models conditional variance as a linear function of past squared error 

terms and lagged conditional variances. The GARCH model can be characterized by the following 

equation: 

 
  ∑ + ߱ =	௧ଶߪ ௜߳ߙ ௧ି௜

ଶ௤
௜ୀଵ  + ∑ ߪ௝ߚ ௧ି௝

ଶ௣
௝ୀଵ  (5)

 
where ߱ ൐ 0, ௜ߙ ൒ 0 for ݅ ൌ 1,… , ௝ߚ and ,ݍ ൒ 0 for ݆ ൌ 1,… ,  Described above is a GARCH (p,q) .݌

process where ߪ௧ଶ, the conditional variance, in addition to depending on q lags of the squared error term 

߳௧, depends on p lags of the conditional variance. To ensure the unpredictable component, ߳௧, is stationary 

and conditional variance is positive, the restriction ∑ ௜ߙ ൅ ∑ ௝ߚ ൏ 1௣
௝ୀଵ

௤
௜ୀଵ  must hold. The sum of 

parameters ߙ and ߚ measures the persistence in conditional volatility. For instance, a relatively large 

value implies that volatility takes a long time to die out following a large shock and revert back towards 

߱, the long run variance (Jorion, 2001). 
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3.3    RiskMetrics 
 
The RiskMetrics approach measures the volatility by using an exponentially weighted moving average 

(EWMA).  EWMA assigns a decay factor to volatility in order to place greater emphasis on more recent 

observations in the time series. Thus, weights for each past return diminish exponentially over time. 

Exponentially weighted models are able to immediately capture the effects of large fluctuations in the 

markets. The RiskMetrics model is a special case of an Integrated GARCH (IGARCH), a model which 

takes into account the existence of a unit root in the variance (non-stationary variance). The 

IGARCH(1,1) is defined as follows:  

 
  ௧ଶߪ ൌ ௧ିଵߪߣ

ଶ ൅ ሺ1 െ ሻ߳௧ିଵߣ
ଶ  (6)

 
JP Morgan’s RiskMetrics methodology sets the exponential decay factor as  ߣ ൌ 0.94 or ߣ ൌ 0.97 

for daily and monthly holding periods respectively. Lastly, note that this approach assumes that 

residuals are normally distributed.  

 
 
3.4    EGARCH Model 
 
Although GARCH models successfully capture thick tail returns and volatility clustering, they are poor 

models if we want to capture the leverage effect. The conditional variance is a function of only the 

magnitudes and not the sign of ߳௧. The leverage effect refers to the tendency for market declines to 

forecast higher volatility than equivalent market increases (Black, 1976). Many new models attempt to 

capture asymmetries in volatility forecasts. These models allow for an asymmetric effect on innovations 

or unanticipated changes. A popular model used to capture these effects is the EGARCH model proposed 

by Nelson (1991). As opposed to GARCH models, no restrictions need to be imposed on model 

estimation since the EGARCH model applies a logarithmic transformation to the variance thereby 

guaranteeing non-negative forecasts.  

 
  ௧ଶߪ ൌ ଴ߙ ൅ ∑ ቀߙ௜ ቚ

ఌ೟ష೔
ఙ೟ష೔

ቚ ൅ ௜ߛ
ఌ೟ష೔
ఙ೟ష೔

ቁ௤
௜ୀଵ ൅ ∑ ሺߚ௝lnሺߪ ௧ି௝

ଶ௣
௝ୀଵ ሻሻ  (7)
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This is an EGARCH (p,q) process  where the parameter ߛ allows for the asymmetric effect. If ߛଵ ൌ 0, the 

model is symmetric and good news, ߳௧ ൐ 0, generates the same effect on volatility as bad news, ߳௧ ൏ 0. 

The presence of the leverage effect can then be explored by testing the hypothesis that ߛଵ ൏ 0.  This is 

representative of a situation where positive shocks affect volatility less than negative shocks. Thus, 

ଵߛ ൐ 0 refers to an opposite scenario where positive shocks affect volatility more than negative shocks. 

 
 
3.5    Distributional Assumptions 
 
The choice of probability distribution used to model the residuals can have a significant impact on 

parameter estimation for the models above. In this paper, we apply two distributional assumptions - 

The standard normal distribution and the standardized ݐ-distribution.  

 
Much of the empirical literature applies the assumption of normally distributed residuals due to its 

ease of implementation. Although GARCH-type models with normally distributed errors take 

volatility clustering into account, they do not adequately account for the other stylized facts observed 

in financial data such as leptokurtosis and negative skewness (Wang and Fawson, 2001).  When we 

calculate VaR, the normal probability density function at the specified confidence level is substituted 

into equation (1): 

 
  ݂ሺݖ௧ሻ ൌ

ଵ

ఙ೟√ଶగ
exp ቀെ ଵ

ଶఙ೟
మ ௧ݖ

ଶቁ  (8)

 
Bollerslev (1987) deviated from the traditional approach of normally distributed ARCH residuals, 

and proposed the use of the standardized ݐ-distribution. Under the standardized ݐ-distribution, the 

probability density function used to compute VaR is described by the equation: 

 
 

݂ሺݖ௧, ሻݒ ൌ
୻ቀೡశభ

మ
ቁ

୻ቀೡ
మ
ቁඥగሺ௩ିଶሻ

ቀ1 ൅ ௭೟
మ

௩ିଶ
ቁ
ିೡశభ

మ
  (9)

 
where ݒ refers to the degrees of freedom parameter. Unlike the normal distribution, the ݐ-distribution 

allows us to model thicker tails in the distribution and therefore better represents the actual 
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distribution of returns.2 The degrees of freedom parameter, ݒ, explains the kurtosis of the distribution 

and is estimated as a parameter when conditional variance is estimated. If ݒ ൐ 4, the distribution is 

considered leptokurtotic; however as 1 ⁄ݒ → 0, the standardized ݐ-distribution converges to a 

standard normal distribution. Note that the ݐ-distribution assumption is not without weakness: The 

distribution is symmetric and therefore unable to model skewness of observed returns. 

 
Although we only look at two distributional assumptions, far more are used in academic literature. 

Lambert and Laurent (2001) use a skewed ݐ-distribution that takes into account the asymmetry of 

financial returns unlike the standardized ݐ-distribution. Hull and White (1998) propose a model for 

computing Value at Risk where the user is permitted to choose any probability distribution for daily 

returns as long as transformations of the probability density function are multivariate normal. The 

problem in applying complex distributional assumptions is that estimating inputs is extremely 

difficult. Furthermore, evaluating the distribution at a given quantile becomes much harder. 

 
 
4    Nonparametric Models 
 
4.1    Historical Simulation 
 
Unlike parametric volatility models, nonparametric approaches do not assume that asset returns 

follow a specific probability distribution function. The historical simulation (HS) procedure assumes 

that the empirical distribution of the past m observations (ሼܴ௧ାଵିఌሽఢୀଵ
௠ ) approximates the distribution 

of tomorrow’s returns. The ߙ% Value at Risk is then the ߙth percentile of the sequence of previous m 

days’ returns. The formula for historical simulation VaR is described by the equation below: 

 
  ܸܴܽ௧ାଵ

ఈ ൌ െ݈ܲ݁݁݅ݐ݊݁ܿݎሼሼܴ௧ାଵିఢሽఢୀଵ
௠ , ሽ (10)ߙ

 
Equivalently, if the returns are sorted in ascending order, ܸܴܽ௧ାଵ

ఈ  is simply the number such that ߙ% 

of the returns are smaller than	ܸܴܽ௧ାଵ
ఈ . If VaR falls in between two returns, a form of interpolation is 

applied. We specifically apply linear interpolation to determine the precise value of the empirical 

                                                            
2 This is due to taking ݖ௧ to a power versus an exponential (Bollerslev, 1987). 
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distribution at the desired quantile. In order to estimate VaR for the following day, the m period 

window is moved forward by one observation and the procedure is repeated.  

 
The main advantage and reason for the approach’s popularity is due to its simplicity and ease of 

implementation (Dowd, 1998). Unlike GARCH-type models, no parameters need to be estimated and 

therefore no numerical optimization (such as maximum likelihood estimation) is necessary. This is 

advantageous as the technique does not suffer from the flaw of parametric models where relying on 

modeling assumptions can be misleading if the model is poorly specified. Although historical 

simulation does not make an explicit assumption on the distribution of asset returns, the approach 

makes the implicit assumption that the distribution of returns is the same within the window, and thus 

remains the same in the future as it has been in the past (Engle, 2001). However, Dowd (1998) argues 

that this feature makes the approach less restrictive since we don’t have to assume that returns are 

independent. Therefore, the approach is able to accommodate the fat tails inherent in financial data.  

 
The critical limitation of historical simulations lies in its failure to account for the lag effect of 

volatility by implicitly giving equal weight to each observation in the sample. Another drawback is 

the choice of m, the length of the observation window (Jorion, 2001). If m is too large, then recent 

observations (which are presumably more relevant for tomorrow’s distribution) will carry little 

weight. This is especially dangerous in a crisis period. When the market moves from a period of low 

volatility to one with high volatility, VaR estimates will be underestimated since it will take some 

time before the observations from the low volatility period exit the window. On the other hand, if m 

is too small, there may not be enough observations in the left tail to precisely calculate VaR at a high 

confidence level. Therefore, the selection of m plays a major role in the magnitude of VaR when 

implementing historical simulation. Lastly, keep in mind that for a newly issued asset, the lack of 

historical data available will restrict the possible window size, possibly rendering the approach 

useless. 
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4.2    Hybrid Approach 
 
In the previous section, a major drawback mentioned in regards to the historical simulation approach 

was that each observation in the window was equally weighted. The hybrid approach proposed by 

Boudoukh et al. (1998) is a variation of historical simulation which assigns exponentially declining 

weights to each observation in the window.  This is also seen in the RiskMetrics methodology. Once 

weights have been applied to each observation, they are sorted in ascending order. The ߙ% VaR is 

estimated by summing the weights of the ascending returns until the ߙ% level is reached. Similar to 

historical simulation, if VaR falls in between two returns, interpolation is utilized. The hybrid 

approach doesn’t require any parameters to be estimated and has the added advantage of capturing 

the conditional volatility by applying more weight to recent returns. 

 
 

5    Backtesting 
 
The models described in the previous section each had their own shortcomings. In order to determine 

the efficiency and accuracy of Value at Risk forecasts we employ backtesting: A method that 

compares VaR estimated by a model with the actual profit and loss of an asset or portfolio across the 

sample of interest. The goal of unconditional backtesting is to check whether the proportion of times 

VaR is exceeded corresponds to the confidence level. For instance, we would expect a 95% VaR to 

be exceeded approximately 5% of the time. The issue is that since the number of exceptions or 

violations (the number of times VaR is exceeded by returns) will not exactly be in line with the 

confidence level, we must determine a range of exceptions over which we would accept or reject the 

model. The decision is assessed by weighing the costs between rejecting a correct model (type 1 

error) or accepting an incorrect model (type 2 error) (Jorion, 2001).3 A good model not only provides 

the correct number of exceptions but also ensures that exceptions do not cluster and are evenly 

spread out (Christoffersen, 1998). This is checked using conditional coverage tests that examine the 

conditionality of exceptions. In this paper, we employ three backtesting methodologies: Kupiec’s test 

                                                            
3 Ideally, we prefer a test that has high power, or low probability of accepting an incorrect model (type 2 error). 
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for unconditional coverage, Christoffersen’s test for independence, and Christoffersen’s joint test for 

conditional coverage. We also outline the Basel backtesting framework that banks must adhere to. 

 
 
5.1    Unconditional Coverage 
 
Kupiec (1995) proposed a test which inspects whether the observed frequency of exceptions is 

statistically equal to the expected frequency of violations. In order to set up the test, we first define ܫ௧ 

as an indicator function for whether a violation took place as follows: 

 
  ௧ܫ ൌ ൜

1, if ܴ௧ ൏ ܸܴܽ௧
0, if ܴ௧ ൒ ܸܴܽ௧

 (11)

 
where ܫ௧ is distributed as an ݅. ݅. ݀.	Bernoulli random variable. Letting ሼܫ௧ሽ௧ୀଵ

்  be the sequence of 

violations across the T day sample being backtested, we can define ܰ ൌ ∑ ௧்ܫ
௧ୀଵ  as the number of 

violations over a T day period. Thus N follows a binomial distribution with parameters T and ݌, 

where ݌ ൌ ܰ/ܶ is the expected frequency of violations. A proper model should be unbiased and 

hence the number of violations should converge to ݌ as ܶ → ∞ (Kupiec, 1995). 

  
Mathematically, the Kupiec test describes unconditional coverage by testing the null hypothesis 

௧ሿܫሾܧ ൌ ௧ሿܫሾܧ against the alternative hypothesis ݌ ്  using the likelihood ratio test below ݌

(Christoffersen, 1998):  

 
  ௎஼ܴܮ ൌ 	െ2 lnሾሺ1 െ ேሿ݌ሻ்ିே݌ ൅ 2lnሾሺ1 െ ܰ ܶሻ⁄ ் െ ሺܰ ܶሻ⁄ ே 	~	߯ଶሺ1ሻ  (12)

 
The p-value is then equal to 1 െ  ௎஼ሻ. A risk model is considered inadequate if the p-value isܴܮሺܨ

below the desired level of significance.  

 
 
5.2    Conditional Coverage 
 
The main critique of the Kupiec test is that it fails to take into account the conditionality of 

exceptions. Observed exceptions may cluster which is a major source of concern; for example, if 

most of the violations occurred in the previous two weeks, current risk levels would be much higher 
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than if the violations were randomly scattered throughout the sample. An unconditional test would be 

unable to capture the increased volatility and consequently fail to accurately describe the risks being 

faced. A risk manager should realize that in this situation, the probability of a violation tomorrow is 

greater than ߙ%. Therefore, models that show the violations are clustered should be rejected. 

 
Christoffersen (1998) developed a joint test for conditional coverage which simultaneously tests for 

unconditional coverage and whether the violations are serially independent. In order to evaluate 

conditional coverage, we first describe Christoffersen’s test for independence among exceptions 

below: 

 
ூே஽ܴܮ       ൌ െ2 lnሾሺ1 െ ሻߨ బ்బା బ்భߨ బ்భା భ்భሿ ൅ 2lnሾሺ1 െ ଴ሻߨ బ்బߨ଴

బ்భሺ1 െ ଵሻߨ భ்బߨଵ
భ்భ	~	߯ଶሺ1ሻ (13)

 
where ௜ܶ௝ represents the number of days where state ݆ was observed one day while state ݅ was 

observed the previous day, and ߨ௜ characterizes the probability of observing an exception conditional 

on state ݅. The likelihood ratio rejects models that create too many or too few clustered VaR 

violations. Keep in mind that Christoffersen’s test only assesses independence on the basis of 

whether exceptions occur on consecutive days. A superior test for independence would incorporate 

checking for a certain number of exceptions in a short interval. Therefore if the model is adequately 

specified, the probability of an violation today should not depend on whether a violation took place 

the previous trading day; i.e. ߨଵ should be equal to ߨ଴.  

 
 Finally, the conditional coverage test can be computed as the sum of the test statistics for the 

unconditional coverage and independence tests: 

 
  ஼஼ܴܮ ൌ ௎஼ܴܮ ൅ ூே஽ܴܮ ~ ߯ଶሺ2ሻ (14)

 
In this paper we apply both conditional and unconditional backtesting methodologies; however, 

several other methodologies exist. They include the mixed Kupiec test that measures the time 
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between exceptions, and Lopez’s test that utilizes a loss function to inspect the magnitude of the 

violation compared to VaR (Campbell, 2005).4  

 
 
5.3    Regulatory Backtesting 
 
This section discusses the Basel Committee’s rules for backtesting.5 The Internal Models Approach 

(IMA) highlighted in the Basel Accord computes the Value at Risk of a financial institution by 

imposing a 99% confidence level over a 10 day trading horizon. The market risk charge for day ݐ is 

calculated using the following formula (Philippe, 2011): 

 
  ௧ூெ஺ܥܴܯ ൌ ݔܽܯ ቀ݇ ଵ

଺଴
∑ ܸܴܽ௧ିଵ଺଴
௧ୀଵ , ܸܴܽ௧ିଵቁ ൅ ௧  (15)ܥܴܵ

 
where k is a multiplicative factor which effectively increases the level of confidence to account for 

model misspecifications. Due to the multiplicative factor, the market risk charge will usually be a 60 

day average over the previous trading day’s VaR. ܴܵܥ௧ denotes the specific risk charge, which 

provides insurance in the form of a capital buffer against idiosyncratic risks, including financial 

crises.  

 
The Basel Committee’s backtesting framework for the Internal Models Approach uses daily 

backtesting of VaR at the 99% level over the previous year. According to the backtesting outcome, 

the Basel Committee sorts financial institutions into three zones: green, yellow, and red. The number 

of exceptions, as stated in the table below, directly determines the multiplicative factor applied and 

zone a financial institution will be categorized under (Basel Committee, 1996).Therefore, a bank’s 

capital requirement is directly related to the outcome of the backtest. Similar to the unconditional 

coverage methodology, the backtesting methodology outlined by the Basel Committee fails to 

account for conditionality of exceptions. In response to the most recent financial crisis, the Basel 

Committee added a Stressed VaR (SVaR) to the Market Risk Charge which takes into account recent 

portfolio losses (Basel Committee, 2011). SVaR is defined as the current portfolio loss that 

                                                            
4 See Campbell (2005) for a thorough review of other backtesting methodologies. 
5 Any commercial bank with trading activity greater than $1 billion or with trading activity greater than 10% of its total assets 
must hold regulatory capital against their exposures (Basel Committee on Banking Supervision, 1996). 
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corresponds to a 99% confidence level over a 10 trading day horizon which encompasses a historical 

12 month period of unstable financial markets. 

 

௧ܥܴܯ
ூெ஺ ൌ ݔܽܯ ቀ݇

ଵ

଺଴
∑ ܸܴܽ௧ିଵ
଺଴
௧ୀଵ , ܸܴܽ௧ିଵቁ ൅ ݔܽܯ ቀ݇௦

ଵ

଺଴
∑ ܸܴܵܽ௧ି௜, ܸܴܵܽ௧ିଵ	
଺଴
௜ୀଵ ቁ ൅ ௧ܥܴܵ   (16)

 
 Table 2: Basel Penalty Zones 

Zone Number of Exceptions k 

Green 0 to 4 3 
Yellow 5 3.4 

6 3.5 
7 3.65 
8 3.75 
9 3.85 

Red 10+ 4 

Notes:	Number	of	Exceptions	are	counted	over	a	250	day	period.	

 
 
6    Data Description	
 
The analysis in this paper is based on three diversified stock market indices (S&P 500, FTSE 100, 

NIKKEI 225), the spot price of gold, 10 Year US Treasury Bills, and the Dow Jones US Real Estate 

ETF.6 These assets were chosen based on their relevance to the financial crisis. Their fundamental 

differences should provide robustness to the evaluation of each model to avoid results dependent on a 

specific market. US Treasury Bills and gold are considered to be relatively safer assets for investors 

than equities in times of market uncertainty (Baur & McDermott, 2010). On the other end, the real 

estate ETF is directly tied to assets that were affected in the subprime crisis.  

 
Each data series was acquired from Yahoo! Finance or Thomson Reuters DataStream for the period 1 

January 1990 to 31 December 2008. We conduct empirical investigations for two periods - A pre-

crisis period from 1 January 2004 to 31 December 2007 and a crisis period from 1 January 2008 to 

31 December 2008 in order to analyze which models accurately estimate Value at Risk during crisis 

                                                            
6 Dow Jones US Real Estate ETF is a diversified index portfolio which measures the performance of the real estate sector of the 
US equity market.  
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periods. Data prior to 2004 is not considered to avoid the effects of the 'dot.com' bubble in the United 

States.  

 
In order to conduct meaningful analysis on the asset data, we must first make it stationary. The data 

in Figure 1 is clearly trending over time, implying that the asset price series’ are non-stationary. Not 

only can this be seen from the data itself, it is also apparent in the sample autocorrelation function 

(ACF). The autocorrelation function slowly decays, which is a characteristic of a long memory 

process and is very common among many types of financial data (Engle et. al., 1993). In order to 

formally check if the data is stationary, we use the Augmented Dickey Fuller (ADF) test for unit 

roots. Our results indicate that the ADF test fails to reject the null hypothesis of a unit root for prices, 

which indicates that the data is non-stationary. 

 
Converting the asset price series into an asset returns series removes the trend and results in a 

stationary time series, verified by the ADF test in Table 3. If ܲ௧ denotes the price of an asset at time 

  :asset returns are defined as follows ,ݐ

 
  ܴ௧ ൌ lnሺ ௧ܲ ௧ܲିଵ⁄ ሻ (17)

 
Figure 2 shows the histogram of daily asset returns with an overlying normal distribution. Note that 

the histogram has fatter and longer tails, especially on the left side of the distribution. This suggests 

that larger losses occur more frequently than the normal distribution indicates. Table 3 also shows 

results from the Jacques-Bera and Shapiro-Wilks tests for normality. Both tests reject the null 

hypothesis of normally distributed returns. 

 
Descriptive statistics are reported for each asset in Table 3 for both pre-crisis and crisis periods. 

Negative mean returns were realized in the crisis period as all assets lost value except for gold which 

had an approximate return of zero. This is likely due to its reputation as a secure asset in turbulent 

times. Additionally, assets were far riskier in 2008 during the financial crisis as standard deviations 

for all six assets at the very least doubled. This is verified by Figure 1 where standard deviation or 

volatility of each returns series substantially increased in the crisis period. 
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Table 2: Summary Statistics 

 
Notes:	ADF	refers	to	the	Augmented	Dickey	Fuller	Test	for	stationarity.	Normal	refers	to	the	period	between	01/01/2004	to	31/12/2007	while	Crisis	refers	to	
01/01/2008	to	31/12/2008.	

 

 

 

  S&P 500 FTSE 100 NIKKEI 225 TREASURY HOUSING GOLD 

  Normal Crisis Normal Crisis Normal Crisis Normal Crisis Normal Crisis Normal Crisis 

Summary Stats                       

Observations 1005 252 1010 252 982 244 1004 252 1006 252 1043 262 

Min -0.0353 -0.0947 -0.0419 -0.0926 -0.0557 -0.1211 -0.0509 -0.0846 -0.0589 -0.2307 -0.0554 -0.0714 

Max 0.0288 0.1096 0.0344 0.0938 0.0360 0.1323 0.0597 0.0916 0.0458 0.1511 0.0399 0.0680 

Mean 0.0003 -0.0019 0.0004 -0.0015 0.0004 -0.0022 -0.0001 -0.0022 0.0004 -0.0020 0.0007 0.0000 

Median 0.0008 0.0000 0.0008 -0.0014 0.0004 -0.0009 0.0000 -0.0025 0.0011 -0.0027 0.0008 0.0001 

Std. Dev. 0.0076 0.0259 0.0080 0.0237 0.0111 0.0294 0.0110 0.0254 0.0121 0.0451 0.0107 0.0201 

Skewness -0.3104 -0.0391 -0.4269 0.1265 -0.3619 -0.2320 -0.0466 -0.0898 -0.5268 -0.4699 -0.6114 -0.1411 

Kurtosis 4.7961 6.6618 5.7802 6.3230 4.4159 6.6924 4.8435 4.4119 4.6822 6.8079 5.5942 4.3735 

                          

Unit root test                       

ADF -75.03 -34.737 -72.686 -35.767 -31.581 -16.632 -30.638 -15.019 -30.111 -19.192 -32.19 -15.839 

(p-value) 0 0 0 0 0 0 0 0 0 0 0 0 

                          

Normality tests                       

Jacques Bera 48.95 22.27 - 21.05 43.63 23.48 38.09 9.45 66.67 29.44 - 9.84 

(p-value) 0 0 0 0 0 0 0 0.0089 0 0 0 0.0073 

Shapiro-Wilk 6.56 5.981 13.713 7.658 5.589 5.516 5.817 3.205 6.713 5.698 7.952 3.18 

(p-value) 0 0 0 0 0 0 0 0 0 0 0 0.00074 
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Skewness indicates whether the data is symmetric or not. Except for the FTSE 100 during the crisis 

period, each asset is negatively skewed in both subsamples which implies that observations occur 

more frequently below the mean than above it. These results are consistent with the vast empirical 

evidence that return distributions of financial assets are asymmetric. Therefore, the normal 

distribution, which is symmetrically distributed around its mean, is not a realistic assumption for a 

volatility model and can lead to the underestimation of VaR.  

 
Kurtosis is a measure of the “peakedness” of a distribution and the heaviness of its tails (Wang & 

Fawson, 2001). As stated previously, financial return distributions generally have high kurtosis and 

therefore exhibit leptokurtosis. This means that they have fatter tails and a higher peak than the 

normal distribution. All assets have kurtosis greater than three (kurtosis of normal distribution) in 

both periods, and therefore, display excess kurtosis. It is worth noting that kurtosis in the crisis period 

is higher for all assets except for gold and US Treasuries. This implies that larger shifts in asset 

prices occurred more frequently throughout the crisis than in previous years. We attempt to model 

some of the leptokurtosis by applying standardized ݐ-distributed residuals when modeling asset 

returns. 

 
 

7    Model Specification for GARCH and EGARCH 
 
Before attempting to fit a GARCH or EGARCH model to the data, we first formally test for the 

presence of ARCH effects using the Lagrange Multiplier test. Whenever the Lagrange Multiplier test 

gives evidence of ARCH effects for ݍ ൐ 4 lags, as it did for each asset, a GARCH model is more 

appropriate than an ARCH model (Becketti, 2013). Therefore, we skip the fitting of ARCH models 

entirely. Next, we model the conditional variance as a GARCH(݌, ,݌ሻ or EGARCHሺݍ  ሻ processݍ

where ݌ ൌ 1, 2 and ݍ ൌ 1, 2 and residuals follow either a normal or standardized ݐ-distribution. In 

total, we estimate 96 models. Model parameters are estimated using the maximum likelihood 

estimation (MLE) method which maximizes the log-likelihood function. Once the models have been 

fitted to the data, we select the optimal lag length using Akaike’s information criterion (AIC) and 

Bayesian information criterion (BIC). Davidson and McKinnon (2004) state that whenever two or 
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models are nested, the AIC may fail to choose the most parsimonious one. Thus, the BIC that favours 

parsimonious specifications may lead to a better fit. We then discard any model with either 

statistically insignificant coefficients at the 5% level or for which the log-likelihood function failed to 

converge.  

 
According to these criteria, the  ݌ ൌ 1, ݍ ൌ 1 specification is optimal for each returns series. Table 4 

reports that models with ݐ-distributed residuals return a lower AIC and BIC than the normally 

distributed alternative. Overall, the remaining models were ranked in terms of their ability to model 

conditional volatility as follows: EGARCH(1,1) with ݐ-distribution, GARCH(1,1) with ݐ-

distribution, EGARCH(1,1) with normal distribution, and GARCH(1,1) with normal distribution. 

The superiority of the EGARCH model is explained by the asymmetry in the volatility. The leverage 

effects ߛ are negative and significant; therefore, negative shocks produced greater volatility than a 

positive shock of equivalent magnitude. 

 
Next, we evaluate the adequacy of the model using the standardized residuals.7 If the volatility 

equation is correctly specified, the squared standardized residuals should not display serial 

correlation or conditional heteroskedasticity (Becketti, 2013). One method used to test this was the 

portmanteau test for white noise. The test shows no evidence that the standardized residuals deviate 

from white noise for each case as we are unable to reject the null hypothesis of no serial correlation. 

The second test executed for model adequacy was the Lagrange Multiplier test that was run earlier to 

test for ARCH effects.8 The results indicate that we are unable to reject the null hypothesis of no 

ARCH effects, which leads us to conclude that all models adequately model volatility. Note that the 

aim of this paper is not to select models that best describe conditional volatility of assets, but which 

accurately estimate VaR following previously described backtesting criteria. Results from 

backtesting are analyzed in the next section. 

  

                                                            
7 Residuals divided by standard deviation. 
8 Test was executed after running a regression on the standardized residuals. 
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Table 3: GARCH(1,1) and EGARCH(1,1) parameter estimates assuming normal or ݐ-distributed residuals 

 S&P 500 FTSE 100 NIKKEI 225 US TREASURY HOUSING GOLD 

GARCH(1,1): Normally Distributed Residuals

 0.0000 0.0009 0.0002- 0.0004 0.0004 0.0005 ߤ
 (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 
 ଵ 0.0571 0.0893 0.1063 0.0447 0.1502 0.0484ߙ

 (0.0038) (0.0069) (0.0061) (0.0033) (0.0138) (0.0021) 
 ଵ 0.9371 0.8995 0.8881 0.9511 0.8450 0.9532ߚ

 (0.0043) (0.0079) (0.0061) (0.0037) (0.0131) (0.0019) 
AIC -33448 -33439 -28962 -32047 -13290 -27284 
BIC -33422 -33413 -28935 -32021 -13267 -27259 

GARCH(1,1): t-Distributed Residuals 
 0.0000 0.0010 0.0003- 0.0003 0.0005 0.0006 ߤ

 (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 
 ଵ 0.0556 0.0832 0.0931 0.0442 0.1494 0.0669ߙ

 (0.0060) (0.0083) (0.0086) (0.0053) (0.0187) (0.0084) 
 ଵ 0.9431 0.9067 0.9060 0.9548 0.8462 0.9423ߚ

 (0.0060) (0.0092) (0.0083) (0.0054) (0.0176) (0.0059) 
 3.8156 9.4238 6.3445 7.7040 12.9472 6.5940 ݒ

 (0.5229) (1.7695) (0.7261) (0.5984) (1.7174) (0.2729) 
AIC -33730 -33503 -29138 -32260 -13333 -27789 
BIC -33698 -33470 -29105 -32227 -13305 -27757 

EGARCH(1,1): Normally Distributed Residuals 
 0.0001 0.0007 0.0004- 0.0000 0.0001 0.0002 ߤ
 (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0001) 
 ଵ 0.1108 0.0445 0.1735 0.0921 0.2579 0.1107ߙ

 (0.0085) (0.0025) (0.0106) (0.0066) (0.0188) (0.0052) 
 ଵ 0.9826 -0.9321 0.9763 0.9945 0.9833 0.9916ߚ
 (0.0017) (0.0036) (0.0025) (0.0011) (0.0030) (0.0009) 
 0.0523 0.0589- 0.0290- 0.0970- 0.0066- 0.0909- ߛ
 (0.0060) (0.0008) (0.0059) (0.0034) (0.0125) (0.0035) 

AIC -33592 -31571 -29133 -32066 -13294 -27311 
BIC -33560 -31538 -29101 -32033 -13266 -27279 

EGARCH(1,1): t-Distributed Residuals 
 0.0001 0.0008 0.0004- 0.0000 0.0003 0.0004 ߤ
 (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 
 ଵ 0.1092 0.1300 0.1617 0.0881 0.2659 0.1306ߙ

 (0.0119) (0.0133) (0.0145) (0.0100) (0.0271) (0.0138) 
 ଵ 0.9883 0.9870 0.9802 0.9971 0.9836 0.9955ߚ
 (0.0021) (0.0024) (0.0031) (0.0014) (0.0045) (0.0017) 
 0.0429 0.0566- 0.0319- 0.0956- 0.0721- 0.0884- ߛ
 (0.0085) (0.0075) (0.0087) (0.0057) (0.0170) (0.0091) 
 3.8911 9.7652 6.4509 9.0254 13.8852 7.3224 ݒ
 (0.6031) (1.9381) (0.9696) (0.6014) (1.8944) (0.2798) 

AIC -33830 -33580 -29258 -32281 -13332 -27801 
BIC -33791 -33541 -29219 -32242 -13298 -27764 

 
Notes: ߤ is the constant mean return. ߙଵ is the ARCH coefficient. ߚଵ is the GARCH coefficient. ݒ refers to the degrees of 
freedom parameter for the t-distribution. ߛ refers to the asymmetric effect of returns. AIC refers to the Akaike Information 
Criterion and BIC refers to the Bayesian Information Criterion. Standard errors are in parentheses. 
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8    Backtesting Results 
 
8.1    RiskMetrics 
 
Backtesting results for 95% and 99% VaR computed using the RiskMetrics model are displayed in 

Table 5. Our results indicate that during the pre-crisis period, we fail to reject the Kupiec test for 

95% VaR for all assets. With respect to 99% VaR, we fail to reject the Kupiec test for 4 out of the 6 

assets. One explanation for weak results at the 99% confidence level is that the EWMA model 

assumes normally distributed residuals. As explained previously in the paper, there exists substantial 

evidence that the returns are not normally distributed. If returns are not normally distributed, the 

assumption of normal returns will be unable to capture the outliers in the actual return distribution; 

VaR estimates will be too conservative and understate the actual risk of the asset. As expected, the 

RiskMetrics model produces worse results during the financial crisis due to the substantial increases 

in volatility during this period. Across both confidence levels, we reject the Kupiec test for 33% of 

estimates. Note that the choice of decay factor plays a vital role in the speed at which VaR estimates 

react to significant changes in volatility. We previously stated that RiskMetrics sets the decay factor, 

 equal to 0.94; but a lower decay factor would incorporate recent volatility faster and may possibly ,ߣ

provide better results in the crisis period. The disadvantage, however, is that when a low decay factor 

is applied, fewer observations carry significant weight. This could result in missing crucial data 

points that should be included. 

 
In order to examine whether the violations are independent or if they cluster, we apply a likelihood 

ratio test developed by Christoffersen (1998). For both periods, we fail to reject the null hypothesis 

of independence between exceptions for 80% of estimates. Although the independence test provides 

good results, it is important to remember that it only tests for dependence by checking if exceptions 

occur on consecutive days. A superior test for independence would incorporate checking for a certain 

number of breaks in a short interval. While violations do not occur on consecutive days, we noticed 

clustered VaR breaks when manually checking the data, confirming the weakness. Subsequently, we 

apply Christoffersen’s joint test for conditional coverage, which not only examines the exception 

rate, but the independence of exceptions as well. Moreover, Campbell (2005) states that it is good 
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practice to run the Kupiec and the independence test separately since it is possible that in some cases 

the model will pass the joint test while failing the others. For the 95% confidence level VaR, we 

reject conditional coverage for 25% of estimates; while for the 99% confidence level VaR, we reject 

it for 42% of estimates. Since the conditional coverage is a joint test that sums the likelihood ratios 

from unconditional coverage and independence tests, the poor results are driven by the weak 

unconditional coverage during the crisis as found by the Kupiec test. 

 
Table 5: RiskMetrics backtesting results during normal and crisis periods 

 Percentage of Violations Kupiec Test Independence Test Christoffersen’s Test 

 Normal Crisis Normal Crisis Normal Crisis Normal Crisis 

95% Confidence Level 

S&P 500 5.67% 7.94% 0.74 0.05 0.64 0.06 0.85 0.03* 

FTSE 100 5.35% 9.92% 0.61 0.08 0.58 0.21 0.76 0.10 

NIKKEI 225 4.89% 8.20% 0.13 0.04* 0.72 0.56 0.29 0.09 

US TBILL 5.27% 5.95% 0.86 0.34 0.02* 0.08 0.08 0.14 

HOUSING 5.57% 7.94% 0.80 0.05* 0.84 0.06 0.95 0.03* 

GOLD 5.37% 6.35% 0.80 0.34 0.04* 0.00** 0.12 0.00** 

99% Confidence Level 

S&P 500 2.19% 3.57% 0.37 0.00** 0.56 0.36 0.57 0.00** 

FTSE 100 1.29% 3.17% 0.09 0.01** 0.02* 0.47 0.02* 0.02* 

NIKKEI 225 1.63% 2.87% 0.50 0.15 0.59 0.65 0.69 0.32 

US TBILL 1.89% 1.59% 0.08 0.06 0.47 0.59 0.17 0.15 

HOUSING 1.89% 2.38% 0.04* 0.06 0.44 0.59 0.10 0.15 

GOLD 2.29% 1.98% 0.01** 0.17 0.06 0.01** 0.00** 0.02* 

 
Notes:	Percentage	of	violations	refers	to	the	percentage	of	observations	where	losses	exceeded	VaR.	Christoffersen’s	Test	
refers	to	the	joint	test	for	conditional	coverage.	Normal	refers	to	the	period	between	01/01/2004	to	31/12/2007	while	
Crisis	refers	to	01/01/2008	to	31/12/2008.	Results	from	the	three	tests	are	expressed	as	p‐values.		*p<0.05,	**p<0.01.	
 

 
8.2    GARCH Model 
 
Table 6 reports backtesting results for the GARCH(1,1) model with both normally and ݐ-distributed 

residuals. The assumption of normality produces good 95% VaR estimates prior to the financial 

crisis; however, exception rates during the crisis are greater than 5% for every asset, with the Nikkei 

225 providing violations for 8.20% of observations. Weak results are once again given due to the 

normality assumption being unable to capture the degree of leptokurtosis in asset returns witnessed 

during the crisis. The model’s greatest shortcoming is in its inability to accurately estimate VaR at 
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the 99% confidence level. In the crisis period specifically, gold produces the best unconditional 

coverage at 1.98% - almost double the percentage of exceptions expected under the Kupiec test. One 

feasible explanation for why the model produces adequate 95% VaR estimates but inaccurate 99% 

VaR is that there is a hump in the tail of the distribution of actual returns. This suggests that although 

a normal distribution produces better results at the 95% confidence level, it underestimates risk at a 

high confidence level of 99%. 

 
We now turn our attention to the model with standardized ݐ-distributed residuals. For both pre-crisis 

and crisis subsamples, VaR estimates based on the assumption of ݐ-distributed residuals outperform 

those derived from the normal distribution at both the 95% and 99% confidence level. This result is 

not surprising since the ݐ-distribution is better equipped to model tail thickness of the observed 

returns. Our results indicate that the percentage of violations decreases in all cases, while the Kupiec 

test returns higher p-values. The 95% VaR estimate for the Nikkei 225 during the pre-crisis 

subsample is the only instance where unconditional coverage is rejected. However, the reason for 

unconditional coverage being rejected is not due to the excess number of VaR exceptions, but 

because there are too few (percentage of exceptions was 3.56%). This implies that either our model 

simply returns an abnormally small number of violations or that our model is too conservative and 

overestimating risk. If it’s the latter and our model systematically overestimates risk, a less biased 

model should be favoured. The problem is that detecting systematic biases is extremely difficult at 

high confidence levels since exceptions are rare events. (Jorion, 2001). Keep in mind that although 

overstating risk is not nearly as dangerous as understating risk, it means that the financial 

institution’s Market Risk Charges are unnecessarily high, which can be seen as an inefficient 

allocation of capital. However, some financial institutions may prefer to report high VaR in order to 

avoid a large multiplier when regulators compute Market Risk Charges. 

 
Similar to RiskMetrics, we observe strong results for Christoffersen’s independence test and joint test 

for conditional coverage. We find that when residuals are normally distributed, 79% of estimates fail 

to reject the null hypothesis of independence; while 71% do the same for conditional coverage across 

both pre-crisis and crisis periods. Under the ݐ-distribution, we fail to reject the null hypothesis for 
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either test in both periods for every asset aside from gold. This is a positive sign that the model 

adequately accounts for volatility clustering inherent in the data.  

 
 Table 7: GARCH(1,1) backtesting results during normal and crisis periods 

  Percentage of Violations Kupiec Test Independence Test Christoffersen’s Test 

  Normal Crisis Normal Crisis Normal Crisis Normal Crisis 

95% Confidence Level 

S&P 500 N 4.78% 7.94% 0.74 0.05* 0.64 0.06 0.85 0.03* 

T 3.98% 7.54% 0.12 0.08 0.30 0.08 0.18 0.05* 

FTSE 100 N 4.65% 7.54% 0.61 0.08 0.58 0.21 0.76 0.10 

T 4.06% 7.14% 0.16 0.14 0.79 0.53 0.35 0.28 

NIKKEI 225 N 3.97% 8.20% 0.13 0.04* 0.72 0.56 0.29 0.09 

T 3.56% 6.15% 0.03* 0.43 0.52 0.93 0.08 0.73 

US TBILL N 4.88% 6.35% 0.86 0.34 0.02* 0.08 0.08 0.14 

T 3.98% 5.56% 0.12 0.69 0.07 0.80 0.06 0.89 

HOUSING N 5.17% 7.94% 0.80 0.05* 0.84 0.06 0.95 0.03* 

T 4.08% 5.56% 0.17 0.69 0.80 0.20 0.37 0.41 

GOLD N 5.17% 6.35% 0.80 0.34 0.04* 0.00** 0.12 0.00** 

  T 4.28% 4.37% 0.28 0.64 0.00** 0.00** 0.00** 0.00** 

99% Confidence Level 

S&P 500 N 1.29% 3.97% 0.37 0.00** 0.56 0.36 0.57 0.00** 

T 0.70% 1.59% 0.31 0.39 0.75 0.72 0.56 0.65 

FTSE 100 N 1.58% 3.17% 0.09 0.01** 0.02* 0.47 0.02* 0.02* 

T 0.99% 2.38% 0.97 0.06 0.65 0.59 0.90 0.15 

NIKKEI 225 N 1.22% 2.05% 0.50 0.15 0.59 0.65 0.69 0.32 

T 0.61% 2.05% 0.19 0.15 0.79 0.65 0.40 0.32 

US TBILL N 1.59% 2.38% 0.08 0.06 0.47 0.59 0.17 0.15 

T 0.70% 1.19% 0.31 0.77 0.75 0.79 0.56 0.92 

HOUSING N 1.69% 2.38% 0.04* 0.06 0.44 0.59 0.10* 0.15 

T 1.00% 1.59% 0.99 0.39 0.65 0.72 0.90 0.65 

GOLD N 1.99% 1.98% 0.01** 0.17 0.06 0.01** 0.00* 0.02* 

  T 1.29% 1.98% 0.37 0.17 0.56 0.01** 0.56 0.02* 

	
Notes:	N	refers	to	normally	distributed	residuals.	T	refers	to	t‐distributed	residuals.	Percentage	of	violations	refers	to	the	
percentage	of	observations	where	losses	exceeded	VaR.	Christoffersen’s	Test	refers	to	the	joint	test	for	conditional	
coverage.	Results	from	the	three	tests	are	expressed	as	p‐values.	Normal	refers	to	the	period	between	01/01/2004	to	
31/12/2007	while	Crisis	refers	to	01/01/2008	to	31/12/2008.	
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8.3    EGARCH Model 
 
The backtesting results for the EGARCH(1,1) are reported in Table 7. In the model specification 

section, we found that the EGARCH(1,1) returned a negative value for ߛ that was statistically 

significant. This means that positive shocks generate less volatility than negative shocks of equal 

magnitude. Thus, it is astonishing that although our model is able to capture the leverage effect, it 

performs poorly during the crisis period at both levels of confidence in comparison to the 

GARCH(1,1) - Normal. During the crisis subsample, we reject 4 out of 6 assets when examining the 

Kupiec test for 95% VaR. With respect to 99% VaR, we reject the Kupiec test for all assets. The 

S&P 500 provides horrendous results as we find exception percentages of 10.71% and 3.57% for 

95% and 99% VaR respectively. After applying the EGARCH model with ݐ-distributed residuals, our 

results indicate that the model produces far superior estimates of Value at Risk. The only 2 instances 

where we reject the Kupiec test are witnessed prior to the financial crisis for 95% VaR - these are due 

to the overestimation of risk. Overall, EGARCH(1,1) with ݐ-distributed residuals provides slightly 

better p-values and hence performs marginally better than its ݐ-distributed GARCH(1,1) counterpart.  

 
When testing for independence between violations, we find that the EGARCH returns results similar 

to the GARCH model. However, results for the joint test for conditional coverage are not 

encouraging in cases where residuals are normally distributed. Throughout the crisis period, we find 

low p-values for both confidence levels - the highest of which is 0.14. As previously explained, this 

is clearly driven by the weak unconditional coverage during the crisis as found by the Kupiec test. 

Conversely, under the ݐ-distribution, the results from Christoffersen’s conditional test imply that we 

are able to jointly accept unconditional coverage and independent exceptions in most instances. 

Outside of gold, the only other 2 occurrences where conditional coverage is not attained are when our 

model rejects the Kupiec test due to overestimating risk. Therefore, those particular failures of the 

Christoffersen test are not reasons for serious concern. 

 
After comparing and contrasting across all three parametric models discussed above, the key 

takeaway message to focus on is that the distributional assumption for returns plays a much larger 
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role than the type of volatility model being implemented. Therefore, we suggest the use of GARCH 

or EGARCH models with ݐ-distributed residuals over RiskMetrics. 

 
 Table 8: EGARCH(1,1) backtesting results during normal and crisis periods 

  Percentage of Violations Kupiec Test Independence Test Christoffersen’s Test 

  Normal Crisis Normal Crisis Normal Crisis Normal Crisis 

95% Confidence Level 

S&P 500 N 4.88% 10.71% 0.86 0.00** 0.69 0.16 0.91 0.00 

T 4.28% 7.14% 0.28 0.14 0.90 0.10 0.56 0.08 

FTSE 100 N 5.45% 8.33% 0.52 0.03* 0.00** 0.34 0.00** 0.05 

T 4.16% 7.54% 0.21 0.08 0.84 0.63 0.44 0.20 

NIKKEI 225 N 3.77% 8.61% 0.06 0.02* 0.62 0.48 0.16 0.05 

T 3.05% 6.56% 0.00** 0.29 0.31 0.96 0.01** 0.56 

US TBILL N 4.78% 6.35% 0.74 0.34 0.03* 0.08 0.09 0.14 

T 3.68% 5.56% 0.04* 0.69 0.09 0.21 0.03* 0.42 

HOUSING N 5.27% 7.54% 0.69 0.08 0.47 0.08 0.71 0.05 

T 3.98% 5.95% 0.12 0.50 0.75 0.17 0.29 0.31 

GOLD N 4.48% 7.94% 0.44 0.05* 0.00** 0.02* 0.01** 0.01 

  T 4.18% 4.76% 0.22 0.86 0.00** 0.00** 0.00** 0.00 

99% Confidence Level 

S&P 500 N 1.09% 3.57% 0.77 0.00** 0.62 0.41 0.85 0.00** 

T 0.80% 1.19% 0.28 0.14 0.90 0.10 0.56 0.08 

FTSE 100 N 2.48% 3.17% 0.00** 0.01** 0.00** 0.47 0.00** 0.02* 

T 0.89% 1.98% 0.72 0.17 0.69 0.65 0.87 0.35 

NIKKEI 225 N 1.12% 2.46% 0.71 0.05* 0.62 0.58 0.82 0.13 

T 0.61% 1.23% 0.19 0.73 0.79 0.78 0.40 0.91 

US TBILL N 1.39% 2.78% 0.24 0.02* 0.53 0.53 0.41 0.05* 

T 0.70% 0.79% 0.31 0.73 0.75 0.86 0.56 0.93 

HOUSING N 1.69% 3.57% 0.04* 0.00** 0.44 0.41 0.10 0.00** 

T 0.90% 1.98% 0.73 0.17 0.69 0.65 0.87 0.35 

GOLD N 1.89% 3.17% 0.01** 0.01** 0.10 0.12 0.01** 0.01** 

  T 1.19% 1.98% 0.55 0.17 0.50 0.01** 0.67 0.02* 

 
Notes:	N	refers	to	normally	distributed	residuals.	T	refers	to	t‐distributed	residuals.	Percentage	of	violations	refers	to	the	
percentage	of	observations	where	losses	exceeded	VaR.	Christoffersen’s	Test	refers	to	the	joint	test	for	conditional	
coverage.	Results	from	the	three	tests	are	expressed	as	p‐values.	Normal	refers	to	the	period	between	01/01/2004	to	
31/12/2007	while	Crisis	refers	to	01/01/2008	to	31/12/2008.	
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8.4    Historical Simulation 
 
Table 8 reports backtesting results for the historical simulation approach with a 250 day trading 

window. We previously explained that the historical simulation methodology does not assume that 

asset returns follow a specific probability distribution. Instead, it uses the nonparametric empirical 

distribution function of the previous 250 trading days to determine VaR for a specified confidence 

level. The danger is that this method implicitly assumes that the distribution of past returns provides 

a complete representation of expected future returns. Historical simulation also equally weighs each 

observation in the rolling window. This can be especially dangerous during crisis times when there is 

a trend of increasing volatility that could possibly lead to a downward biased VaR.  For the 

subsample prior to the financial crisis, both 95% and 99% VaR estimates calculated by the historical 

simulation produce an accurate number of exceptions according to the Kupiec test. Unsurprisingly, 

during the crisis period we reject the null hypothesis of the Kupiec test for every asset in nearly every 

instance. In fact, not only do we reject the test, but we encounter extremely low p-values (mostly 

below 1%) suggesting that we strongly reject unconditional coverage in the crisis. 

 
As found with the parametric VaR approaches, historical simulation provides good results for 

Christoffersen’s test of independence. Across both periods and confidence intervals, 20 out of 24 

estimates fail to reject independent VaR violations. Nonetheless, just as we noticed in other 

approaches, when unconditional coverage is not satisfied, outcomes from the conditional coverage 

test tend to be poor. In the crisis period, we reject conditional coverage for both 95% and 99% VaR 

across all assets except 99% VaR FTSE 100. In conclusion, for times where markets are volatile and 

extremely risky, historical simulation is a poor approach which fails to adequately capture the 

importance of recent observations. The methodology’s largest flaw is not incorporating the lag effect 

of volatility. 

 

 

 

 



 

  28

Table 6: Historical Simulation backtesting results during normal and crisis periods 
 Percentage of Violations Kupiec Test Independence Test Christoffersen’s Test 

 Normal Crisis Normal Crisis Normal Crisis Normal Crisis 

95% Confidence Level 

S&P 500 5.77% 11.51% 0.27 0.00** 0.06 0.69 0.09 0.00** 

FTSE 100 5.35% 9.92% 0.62 0.00** 0.23 0.73 0.43 0.01** 

NIKKEI 225 4.48% 11.48% 0.45 0.00** 0.00** 0.42 0.01** 0.00** 

US TBILL 5.17% 12.70% 0.80 0.00** 0.22 0.29 0.45 0.00** 

HOUSING 6.47% 11.90% 0.04* 0.00** 0.00** 0.80 0.00** 0.00** 

GOLD 5.77% 11.90% 0.27 0.00** 0.02* 0.33 0.04* 0.00** 

99% Confidence Level 

S&P 500 1.39% 3.97% 0.24 0.00** 0.53 0.36 0.41 0.00** 

FTSE 100 1.29% 2.38% 0.38 0.06 0.56 0.59 0.57 0.15 

NIKKEI 225 0.81% 3.69% 0.55 0.00** 0.05* 0.32 0.12 0.00** 

US TBILL 1.19% 3.17% 0.55 0.01** 0.59 0.47 0.72 0.02* 

HOUSING 1.29% 4.76% 0.37 0.00** 0.56 0.11 0.57 0.00** 

GOLD 1.29% 1.98% 0.37 0.17 0.15 0.01** 0.24 0.02* 

 
Notes:	Percentage	of	violations	refers	to	the	percentage	of	observations	where	losses	exceeded	VaR.	Christoffersen’s	Test	
refers	to	the	joint	test	for	conditional	coverage.	Results	from	the	three	tests	are	expressed	as	p‐values.	Normal	refers	to	
the	period	between	01/01/2004	to	31/12/2007	while	Crisis	refers	to	01/01/2008	to	31/12/2008.	
 
 

7.5    Graphical Results 

We state in Section 7.3 that we suggest GARCH or EGARCH models with ݐ-distributed residuals over 

RiskMetrics. Due to historical simulations ineffectiveness during the crisis, we recommend GARCH or 

EGARCH models with ݐ-distributed residuals as the best models for estimating VaR from those tested in 

this paper. Figure 1 shows the profit and loss of each asset along with 95% and 99% Value at Risk using 

the GARCH(1,1) with ݐ-distributed residuals. Notice the steep rise in volatility at the end of 2007 and 

throughout 2008 caused by the financial crisis. Not only is the number of VaR exceptions substantially 

higher in 2008, so too is the presence of clustered violations.  
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Figure	3:	Loss	of	each	asset,	along	with	95%	and	99%	VaR	
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9    Criticisms of VaR: 
 
Although VaR has solidified its place as the industry standard for measuring market risk, it is extremely 

dangerous to solely rely on this metric when evaluating exposures. We stated earlier that an advantage of 

Value at Risk is that it aggregates risks across a financial institution into a single number which can be 

simply understood by those less technically inclined. However, the simplicity of VaR is also one of its 

biggest weaknesses. A 99% VaR is the monetary amount such that for 1% of observations, loss is 

expected to exceed VaR. The problem with this statement is that there is no mention about the potential 

magnitude of losses when VaR is breeched or what the maximum possible loss due to an adverse event 

could be. For instance, one possible scenario is that the loss is only slightly greater than VaR, while 

another is that it could wipe out the equity of a company and force it into bankruptcy.   There are a 

number of documented cases of financial institutions being subject to catastrophic events. Famous 

examples include Barings Bank, and more recently, Lehman Brothers.  

 
One proposed metric to deal with this shortcoming is Expected Shortfall (also known as conditional VaR 

or CVaR), which is defined as the expected loss given that VaR has been exceeded (Artzner et al., 1997).9 

It focuses on evaluating risk in the left tail of the return distribution and computes the measure in the form 

of a conditional probability: ܧሾݏݏ݋ܮ|ݏݏ݋ܮ ൏ ܸܴܽఈሿ. For example, suppose that in the sample of returns, 

the average loss of the worst 1% of outcomes is $1,000,000; then our Expected Shortfall or CVaR at the 

99% confidence level is $1,000,000. This again relates to a common theme throughout this paper: 

accurately modelling the distribution of returns; specifically the left tail. Extreme values are important in 

risk-management as they are associated with catastrophic events such as market crashes. Another popular 

approach is Extreme Value Theory, a branch of statistics which focuses on modelling the extreme 

quantiles of a probability distribution. Simply put, this is achieved by modeling the probability 

distribution of standardized returns in excess of a pre-defined threshold. The main result of EVT is that 

the extreme tail of a number of distributions can be characterized by the Generalized Pareto distribution 

(Engle, 2001).10 Take note that these statistical methodologies utilize historical data, and similar to VaR, 

cannot predict major shocks.  

                                                            
9 Basel Committee suggested the possibility of replacing VaR with Expected Shortfall (Basel Committee, 2012). 
10 See Diebold, Schuermann, Stroughair for a thorough review on extreme value theory used in financial risk management. 
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The recent financial crisis brought much scrutiny over the entire field of risk management, and VaR 

specifically became the subject of intense criticism due to its widespread use when setting regulatory 

capital.11 With numerous financial institutions using similar internal risk management models, it is 

possible that the constraint of VaR as the determinant of regulatory capital deepened the crisis. It is well 

known that during crisis periods, asset correlations can rise considerably, rendering portfolio 

diversification ineffective and causing numerous assets to decline in unison. As portfolio losses rise, the 

increase in VaR results in greater regulatory capital requirements, forcing financial institutions to sell 

asset positions in illiquid markets at fire sale prices. This has the potential to trigger a feedback effect 

where losses lead to further asset sales for the purpose of satisfying regulatory capital. This downward 

spiral can eventually lead to insolvency (Milne, 2008).  

 
Another weakness is that different VaR methodologies can result in extremely different estimates for 

identical portfolios. Beder’s (1995) study, which we introduced earlier, is a prime example. Beder applied 

eight different VaR methodologies and found that estimates could vary by more than 14 times for the 

same portfolio. Each approach has its own strengths and weaknesses, thereby making certain approaches 

superior depending on the situation. We earlier cited a study which found that 73% of banks use historical 

simulation and found that during periods of increased volatility, the approach produces downward biased 

estimates. One possible reason for the popularity of historical simulation among financial institutions is 

that it produces understated VaR estimates, especially during crisis periods. This in turn leads to banks 

having to post less regulatory capital. Banks may therefore have incentive to implement models which do 

not necessarily do the best job at describing firm-wide risks.  

Some of the criticisms against the usefulness of Value at Risk in turbulent markets however, can be 

deemed to be unfair. VaR models use historical data in order to model potential future loss. It would be 

impossible (and not within the scope of the model) for a statistical measure which relies on historical data 

to accurately account for radical changes in volatility and asset correlations, or predict a major 

macroeconomic event such as a financial crisis. Therefore instead of over relying on VaR, prudent risk 

                                                            
11 Nassim Taleb suggested to congress that they ban VaR due to its scientific uncertainty and because it gives traders a false 
sense of security. 
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management should supplement VaR with other risk management methodologies and more importantly, 

careful judgement.   

 
 

10    Conclusion 
 
The global financial crisis has led to increased scrutiny over risk management systems in financial 

institutions. This has called into question both the accuracy of Value at Risk estimates during periods of 

high volatility, and the merits of VaR as the determinant for regulatory capital. Although regulators have 

implemented the Stressed VaR to increase the Market Risk Charge when financial markets are unstable, 

the current regulatory framework is far from perfect due to the feedback effect along with other reasons 

highlighted in Section 8.   

 
In this paper, we have analyzed four popular volatility models used to compute VaR in order to gauge 

whether their estimates can be relied upon in both stable and crisis periods. The theoretical section of this 

paper discussed these methodologies, identifying their underlying assumptions and shortcomings. Our 

results indicate that nonparametric approaches, particularly historical simulation, are inferior to 

parametric approaches as they tend to highly underestimate risks in crisis periods. This can be attributed 

to their inability to account for volatility clustering. Moreover, we conclude that models which assume ݐ-

distributed residuals outperform the normally distributed alternative as they are able to capture a greater 

degree of leptokurtosis and thus better model the observed return distribution. Although we find that the 

EGARCH model provides marginally stronger backtesting results compared to the ordinary GARCH 

model, we cannot conclude that one volatility model is clearly superior to the other. The key takeaway 

message to focus on is that the distributional assumption for returns plays a much larger role than the type 

of model being implemented. Therefore, of those models tested in this paper, we recommend GARCH or 

EGARCH models with ݐ-distributed residuals as the best models for estimating VaR during the pre-crisis, 

and more importantly, crisis period. Lastly, we emphasize that Value at Risk is a useful risk management 

tool, primarily during normal market conditions, but should never be over relied upon. It is imperative 

that VaR be supplemented with other risk management methodologies and more importantly, careful 

judgement to mitigate future crises.  
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12    Appendix 
 
Figure	1:	Asset	prices	for	pre‐crisis	and	crisis	periods.	

 
Notes:	The	vertical	black	line	represents	the	split	between	pre‐crisis	and	crisis	periods.	
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Figure	2:	Histogram	of	empirical	asset	returns	with	an	overlying	normal	distribution	
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