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Abstract

In this paper, I examine the effect of innovation on solar module prices in Canada, the USA, France,

Germany, Italy, Japan, and Korea. Using instrumental variables to estimate the demand for solar

modules, I estimate the impact of research and development (R&D) expenditures and induced innovation

on the price of solar modules. My results indicate that both induced innovation and R&D expenses reduce

solar module prices.
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1 Introduction

Macroeconomic models often assume that economic growth is driven through technological

improvements and innovation, though there is still considerable debate with regards to the

impact of innovation. Most models posit that there are important spill-over effects or ex-

ternalities that a firm generates when it develops new knowledge. This results in all firms

improving their productivity, due to the breakthrough created by a pioneering firm. The

pioneering firm, however, does not realize the full economic profits associated with their dis-

covery since they do not benefit from the increased productivity of other firms. Thus, such

models recommend that the government enact policies to stimulate additional research up to

a socially optimal level. From a practical perspective, however, the optimal level of invest-

ment in innovation is incredibly difficult to quantify since it requires economists to determine

the number of ideas in an economy at a given time, and how they ripple throughout society.

This creates enormous challenges for policy makers striving to create the ideal conditions

for long-run prosperity, along with providing accountability for their economic development

programs. Nonetheless, economists have developed various frameworks for measuring the

returns associated with R&D expenditures.

In reality, governments do not always provide R&D funds to areas with direct impacts on

economic growth, but often allocate it towards areas with little commercial application such

as the military, pure science, and climate change. The financial value of these investments is

difficult to assess since their results may not immediately lead to commercial applications.

Proponents of these policies, however, argue that there are still spillover effects associated

with these investments, which will eventually yield considerable benefits to the rest of the

economy in order to justify their associated costs. This introduces a substantial amount
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of uncertainty for policy makers when they are calculating cost-benefit analyses in order to

determine whether to spend on certain R&D areas. To deal with this difficulty, economists

used case studies to understand the rate of return of a specific investment, which can be used

to understand the long-run benefits of these research breakthroughs. Many of these case

studies, however, focus on successful investments which generated large economic returns.

This can mislead researchers into thinking that the estimated rate of return from a case

study is considerably higher than what it truly is. As a result, it is important for policy

makers to understand the likely rate of return when they make an investment in R&D in a

field that does not have an available market.

Renewable energies are an area that may yield insight into these issues, since R&D expen-

ditures were justified in developing technologies that reduce greenhouse gas emissions along

with the goal of creating a sustainable energy market. The bulk of these R&D programs also

go to reducing the cost of products that are are now adopted in different markets such as

windmill turbines, solar panels, and biofuels, indicating that there is price data associated

with these items. As well, R&D plays a significant role in these markets since they are

relatively new technologies that are more likely benefit from the new knowledge produced

by research. Thus, it may be able to quantify a rate of return to R&D expenditures in

an area that also has social benefits. This also provides an opportunity to see if there are

other methods of increasing knowledge other than R&D, since it has been argued that public

policies such as tax credits or subsidies can ”induce innovation” in these areas. In this pa-

per, I analyze the impacts of R&D expenditures in Canada, France, Germany, Italy, Japan,

Korea, and the United States on the price of solar panels in their respective markets while

controlling for induced innovation through instrumental regression. My results indicate that
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reduced solar module prices are due to R&D expenditures and induced innovation.
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2 Literature Review

2.1 Productivity and Research and Development Expenditures

There is a substantial amount of literature on the impact of R&D expenditures on produc-

tivity, along with different empirical estimates at the country, industry, and firm level. The

bulk of the following discussion is from a literature review by Hall et al (2009) on measuring

the rates of return to R&D, unless cited otherwise. R&D returns are measured from the

firm’s production function. Hall et al (2009) describe two different approaches to measuring

the returns from research and development expenditures. The Primal Approach presents an

augmented Cobb-Douglas production function shown below:

Y = CαLβKγ(K0)δeµ

Where Y is the firm’s output, C refers to the firm’s capital, L is the firm’s labour, K

refers to the firm’s level of knowledge, K0 is the knowledge of other firms, and eµ refers to a

disturbance. It is easy to adapt this model to estimate the returns to new knowledge at the

firm or industry level by taking logs of the previous equation:

yi,t = λi,t + ηi,t + αci,t + βli,t + γki,t + δk0
i,t + µi,t

In this equation, the rate of technical progress is decomposed into two variables: λi,t is

the firm or industry-specific effect of technological progress and ηi,t is a time effect. Taking

first differences, we can eliminate ηi,t and measure the growth in productivity as a function

of the growth in the other variables. Ignoring external knowledge, firm-specific knowledge

can be estimated as:

γ∆ki,t = ρ(R&D−τKi,t−1)

Yi,t
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Where R&Di,t is the gross expenditures allocated towards R&D, τKi,t−1 is the depreciation

of knowledge from the previous period, and ρ measures the marginal productivity of R&D

capital. This can be substituted into the previous first-differences equation to measures

the gross rate of return to R&D directly, but this requires information on the depreciation

of knowledge in the economy. Normally, the depreciation rate of knowledge is assumed

to be zero, although subsequent studies have disputed this hypothesis 1. An alternative

specification of the model, assuming constant returns to scale, competitive behaviour, and

profit-maximizing levels of factors of production provides the following equation for total

factor productivity growth:

∆TFPi,t = λt+ ρ(R&D−τKi,t−1)

Yi,t
+ δµi,t

The dual approach assumes firms are cost minimizers and profit maximizers, then uses

the duality theorem to represent technology as a cost function, profit function, or a value

function. This represents a distinct advantage of the dual approach over the primal in terms

of its ability to create a mathematical function for technology. In addition, the dual approach

can be expanded to model financial decisions, multiple choices, and multiple outputs. This

methodology provides a richer set of equations to estimate, but also requires proper model

specification in order for the results to be meaningful.

There are also substantial measurement issues when attempting to understand the rela-

tionship between R&D expenditures and productivity. Normally, productivity is measured

as the ratio of an output index to an input index, but there is no consensus on which in-

dex to use. This creates a number of problems since output can be measured as the gross

output, value-added, or sales of a firm or industry. Any analysis of productivity requires
1Readers are encouraged to read Bernstein and Mamuneas (2006) along with Hall (2005). Please consult the bibliography

for the full reference
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the researcher to determine which variable to measure, and ensure that it is uniform across

the industries that they are researching. As well, output measures normally do not reflect

quality changes in the price deflators. This generates considerable complications since R&D

may lead to the creation of new products or improved products, which may not be captured

by the chosen output index. Thus, it becomes important to incorporate this factor into

industries that are defined through improved quality such as computers, pharmaceuticals,

and semiconductors. Otherwise, the returns to R&D are underestimated.

Measurement of inputs also has considerable problems due to the double-counting of R&D,

correcting labour and capital differences for their capital, and the sensitivity of inputs due

to the use of different forms of capital. Firms that report the expenditures allocated towards

labour and capital do not normally differentiate between those who work in the production

of goods and those who focus on R&D. As a result, R&D is double-counted when placed into

the inputs. As well, many econometric studies report lower R&D elasticities when account-

ing for the educational qualifications of the workforce, which may be due to the high degree

of correlation between R&D activities and an educated workforce. This raises an extremely

important issue in that there are other factors that affect productivity growth other than

new knowledge. These variables are not easily observed since they can refer to sectoral or

firm differences such as management quality or appropriability conditions for R&D. Appro-

priability conditions refer to the suitability of new knowledge for a given industry and help

determine the appropriateness of certain R&D investments for their industry. Typically,

these factors are controlled through dummy variables in panel data.

An additional difficulty that econometricians face in quantifying the return to R&D is the

measurement of the level of knowledge, which also requires the selection of a depreciation
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(or obsolescence) rate for knowledge. This rate is difficult to ascertain since it changes over

time in response to the level of public research and advancements in scientific theory. It also

requires the researcher to determine the lag structure of R&D in generating returns, which

continues to be incredibly complex. Past researchers have experimented with different ap-

proaches to determine how quickly knowledge becomes obsolete. One methodology involves

the use of patent renewal data, which arrived at a rate of obsolescence of 10%. Another

approach was to vary the rate of depreciation in estimating the knowledge stock and its

impact on rate of return to R&D. Different authors found small differences in the estimated

R&D effects when the rate of knowledge depreciation varied from 8% to 25%, which suggests

that the selection of the depreciation rate should be in this range.

A major source of complication with regards to R&D is to determine the lag effects

associated with research breakthroughs and its eventual relationship to productivity growth.

This is especially relevant to my study since solar R&D was initiated in the 1970s, and some

of their original ideas are still adopted with regards to current solar technology. Moreover,

spillover effects are also difficult to measure since they require more time to take effect as

firms capitalize on new production processes and products. Studies have employed different

methodologies to determine an appropriate lag, although there is no consensus on this issue.

Estimates vary from as little as a year to 10 to 30 years for research in pure science.

Econometric issues also emerge when quantifying the benefits of R&D. One particular

problem deals with the simultaneity bias that arises due to the possibility that firms which

observe productivity growth are more likely to invest in R&D. This can be addressed through

instrumental variables or the dual approach. Despite all of these issues, econometric studies

indicate that there is a positive return associated with R&D expenditures and the estimates
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range from 20-30%. The dual and primal approach yield similar rates of return to R&D.

R&D also produces two spillover effects: knowledge and rent. Knowledge spillovers occur

when consumers and firms pay prices that do not reflect the value to them due to informa-

tion asymmetries and imperfect competition. Increasingly competitive markets, then, lead

to reduced prices as firms cannot profit as much as they once did. Knowledge spillovers

refer to firms producing ideas that can improve the productivity of other firms. This has

led economists to estimate the social return to R&D in order to capture externalities in

the marketplace. Social returns to technology have been measured using two methodolo-

gies: case studies and econometric approaches. Case studies involved analyzing a particular

breakthrough that led to considerable spillover effects, such as Grilliches (1958) analysis of

the social rate of return to research on hybrid corn. However, it is difficult to extrapolate the

rates of returns from these studies to the overall social rate of return since many case studies

analyze successful R&D projects. Econometric approaches include an aggregate economy-

wide R&D stock in the TFP equation, although this creates further difficulties since TFP

may be driven by other factors not associated with R&D. Other methods used to measure

international spillovers include measuring the amount of trade between countries and the

number of migrating research personnel (scientists, engineers, educated individuals). Other

studies included spatial effects in order to account for the number of spillovers that may

arise due to R&D.

There is considerable uncertainty surrounding R&D investment due to the low probability

of a payoff, especially if it is research into a field or technology that may not be properly

understood (Popp et al., 2009). Hence, a socially optimal investment may not be undertaken

by the private sector if they perceive the investment as too risky. Moreover, a new, profitable
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and useful technology may not be adopted if an insufficient number of users have not adopted

it previously. This may be due to asymmetric information, where investors and consumers

are unsure of the long-run survival of the technology and delay their purchase of it. As well,

the adoption of new technologies may be hindered due to a principal-agent problem. This

refers to one party receiving the benefit of the new technology, but the investment costs are

borne by the other party. The other party is unable to properly anticipate the intended

benefits and also lacks a proper incentive to introduce or use the new technology.

In recent years, the ”induced innovation hypothesis” has gained considerable popularity

from environmental economists for arguing that environmental regulations provide firms and

consumers with an incentive to find new technologies and methods for minimizing costs. Two

frameworks have emerged to analyze the implications of this hypothesis: the neoclassical

and the evolutionary approach (Jaffe et al., 2010). The neoclassical approach proposes a

production function whose parameters change with R&D investments. The evolutionary

approach, on the other hand, assumes that firms are not necessarily profit-maximizing and

miss technological opportunities until an environmental shock induces new opportunities

for profit. This creates the potential for firms to earn even larger profits than they did

earlier, thus creating a so-called ”win-win”view of environmental regulations. Proponents of

this view argue that a win-win scenario is more common than most people believe because

regulation increases the spread of information, reduces uncertainty about environmental

investments, develops technologies that lead to a long-run competitive advantage, and exerts

pressure on firms to adapt to a new system. It is easy to argue against many of these reasons,

primarily due to the assumption that firms are not profit-maximizing in the evolutionary

approach and require external pressure to change.
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Empirical evidence on induced innovation does not yield a consensus on its supposed

impact. Some studies indicate that the effects of induced innovation are small and are far less

than the costs of regulations. As a result, it is difficult to justify them if their benefits do not

outweigh their cost. However, a significant number of studies give considerable weight to the

induced innovation hypothesis. Newell et al (2000) find that home appliances increased their

energy efficiency in response to energy prices between 1958 and 1993. Popp (2002) shows that

the number of energy-related patents increase in response to higher energy prices. Moreover,

he finds that sulphur and nitrogen emission regulations in the United States, Japan, and

Germany increased the number of patents associated with air pollution. Since a variety of

environmental policies can be implemented, economists have attempted to quantify which

policy is the most effective towards inducing innovation. However, the ranking of different

policies depends considerably on the innovator’s ability to benefit from the externality to

other firms, the costs of innovation, environmental benefits, and the number of firms that

produce the targeted emission.

Economists also adapted the induced innovation framework to understand the market

dynamics occurring in the renewable energy industry. Johnstone et al. (2010) analyze the

impacts of renewable energy policies on renewable energy patents. Patents are considered

a good proxy for the level of technological innovation in an economy since it is a measure

of output, whereas other variables such as R&D expenditures or the number of scientific

personnel are input measures. This can also indicate the effectiveness of R&D expenditures

by quantifying the number of patents that exist based on the prior R&D expenditures.

However, patents are still considered an imperfect indicator of innovative activity since they

do not reflect the financial value of a discovery or research breakthrough. In addition,
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there is still considerable dispute over the classification of patents by different countries,

indicating that there is a substantial amount of subjective error. Thus, the number of

patents for one technology in a country may differ from the number of patents for the same

technology in a different country. Nonetheless, patent counts are a strong indicator of the

underlying innovative activity that occurs in an economy, especially since they represent a

type of discovery. The authors model renewable energy patents as a function of policies,

R&D expenditures, electricity growth consumption, electricity prices, and the total number

of filings at the European Patent Office using a negative binomial regression . The authors

find that policy instruments play a key role in inducing innovation, but that different policies

are helpful for some industries whereas others are shown to have no effect. For example,

they find guaranteed prices and feed-in tariffs to be particular effective for inducing solar

patents, whereas renewable energy certificates favour technologies that are closer to market

distribution such as wind energy. The model proposed by Johnstone et al. (2010) indicates

that policies are effective at inducing innovations in certain markets, but alternative models

have been used to model the prices of specific renewable energy technologies.

There is a considerable literature that uses experience curves in order to model the cost

decreases that have occurred in different renewable energy markets. Experience curves are

also known as learning-by-doing, and refer to firms that reduce their total costs as they

become accustomed to a certain technology that produces their desired product. Normally,

it models the costs of a good as a function of the amount of experience in production that

occurs. This is done by specifying the costs of production as a function of the cumulative

capacity, although this creates significant problems for estimation since there are other factors

that may influence the cost of a good. Nemet (2006) applies the learning-by-doing model
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to solar module prices, and also uses the plant size, yield, module efficiency, poly-cristalline

share, silicon cost, silicon consumption, and the wafer size. Nemet finds that plant size, cell

efficiency, and the cost of silicon were the three most important factors in explaining the

cost declines, although the overall model only explained 60% of the cost reduction in solar

module prices. However, when the model is estimated for the period 1980-2001 rather than

1976-2001, only a small portion of cost reductions are unexplained by the model. Nemet

concludes that there are other factors that need to be considered when analysing module

prices, such as expected future demand, R&D, and knowledge spillovers.

As evidenced by the preceding discussion, there has been considerable work done with

regards to understanding the link between R&D and productivity, along with understanding

the roots of technological innovation in environmental technologies. This paper is able to

contribute to the extensive literautre in this area by applying the R&D productivity frame-

work to solar energy, in order to provide other economic models to explain the decrease in

solar module prices. Before proceeding to the proposed model, it is important to understand

the major policy issues surrounding renewable energies and the operation of solar panels.

2.2 Policies Involved in the Implementation of Renewable Energies

Governments have provided considerable funds for R&D activities in renewable energies

since the 1970s. Research projects can take on a variety of forms, although it is becoming

more common for the solar industry, academics, and the government to pool their resources

for different research projects. Nonetheless, as evidenced by data from the International

Energy Agency’s World Data Service, governments still account for the bulk of research and

development activities in renewable energies and solar panels. As of 2010, the five countries

with the largest public R&D budgets were the United States, Germany, Australia, Japan,
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and Korea (IEA PVPS, 2010). Recently, governments implemented other policies in order

to create a long-term market for renewable and solar energy.

Couture and Gagnon (2010) indicate that feed-in tariffs recently emerged as one of the

most effective policies in increasing the consumption of renewable energies, and as of 2010,

they have been implemented in 63 jurisdictions.They provide guaranteed prices for electricity

from renewable energy sources for a fixed period of time. As well, they can be adapted

to increase the number of participants in the renewable energy market, such as farmers,

landowners, and homeowners. This ensures that a variety of individuals get involved in

power production as they sell electricity to others. It also reduces the uncertainty surrounding

renewable energy investment since firms properly anticipate the price of electricity, although

it shifts the risk to the government. Policy makers will then need to be able to create a feed-in

tariff rate that covers the cost of installation and provides the investor with a proper return.

Feed-in tariffs are implemented without regards to a specific renewable energy technology,

although some jurisdictions tend to favor one energy source over another through differential

tariff rates. Johnstone et al. (2010) found that feed-in tariffs were significant in increasing

the number of solar patents, but are not significant for other technologies.

Other public policies that governments have implemented include general tax credits and

subsidies. Government programs, such as the Residential Renewable Energy Tax Credit in

the United States, target households that install solar photovoltaic panels. Other programs,

such as the New Purchase System for Solar Power-Generated Electricity in Japan, oblige

electric utilities to purchase excess electricity produced by different households at certain

rates. In essence, these programs could be considered traditional tax or subsidy-incentive

programs that differ from the feed-in tariff and R&D policies to foster the renewable energy
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industry. As well, some governments have implemented market mandates, in which they

require electricity companies to produce a certain amount of renewable electricity. Other

policies include Sustainable Building Requirements, in which buildings are mandated to

reduce their carbon footprint through generating their own electricity. It should be evident

that there are a variety of policies that have governments adopted in order to develop their

production of solar and renewable energy. However, there are other aspects of solar modules

that policy makers should be cognizant of, specifically in how they operate.

2.3 Solar Photovoltaic Cells

Photovoltaic (PV) cells convert sunlight into electricity through the use of crystalline silicon

wafers, which remain the dominant material in the industry (Chiras, 2010). They can be

further categorized into three types: monocrystalline, polycrystalline, and multicrystalline

silicone ribbons. For all of these components, the necessary primary input is silicon. PV

cells are then combined with other cells to form a module. Each of the previously described

materials is used to create their respective solar module. Monocrystalline cells boast the

highest electrical efficiency, followed by polycrystalline and multicrystalline ribbons. After

any of the preceeding PV cells are produced, the wafers are exposed to phosphorous gas in a

heated diffusion furnace, which then creates a thin layer on top of the silicon. Metal contacts

are applied in a grid pattern in order to collect the electrons released from the silicon.

Recently, solar panel manufacturers started using thin-film technology to provide less-

costly cells. Silicon is placed on a metal backing glass, which creates a thin film of photo-

reactive material. A laser is then used to draw out cells and create connections similar to

the ones in the previously mentioned PV cells. Thin-film technology’s primary advantage

stems from the fact that it does not require ingot production, which is used in traditional
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PV cell production and is quite expensive. However, thin-film cells are less efficient than

other PV cells, which can lead to larger modules. Thin-film technology accounted for 12%

of module production in 2010. The bulk of R&D activity around the world is devoted to

optimizing solar panel production in order to reduce overall costs, although some companies

are researching high efficiency modules known as the Hetero-Junction with Intrinsic Thin-

Layer. These modules show considerable promise as they demonstrate higher efficiencies

than previously reported solar modules.

PV modules are implemented by consumers in four different ways: off-grid domestic, off-

grid non-domestic, grid-connected distributed, and grid-connected centralized (IEA PVPS,

2010). Off-grid PV systems are not connected to the main electrical grid, but are used for

things like remote communications or water pumping. Centralized PV modules are used by

electricity companies to provide electricity to different users whereas distributed PV modules

are used by households or buildings to generate their own power. The bulk of solar energy

growth in the last 10 years occurred in the grid-connected PV modules, which is likely due

to feed-in tariffs.

The preceding discussion has covered a variety of topics that are especially relevant to solar

modules, R&D, and public policies. With this information, I will present my econometric

model.
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3 Proposed Empirical Model

A model that explains the movement in solar panel prices needs to incorporate R&D expen-

ditures, along with public policies. To start with, we expand the supply framework that was

introduced earlier:

Yi,t = Lαi,tC
β
i,tN

γ
i,tG

η
i,tK

δ
i,t(K

0)ζi,te
µ
i,t

Here Y is the output of solar modules in country i at time t, G is the amount of government

involved in the solar energy industry, L is the amount of labour, C is the amount of capital,

N is the amount of materials, K is the amount of knowledge the solar industry has, and K0 is

the amount of knowledge that other countries have about the solar industry. Assuming cost

minimization and profit maximization, the firm produces solar panels through the following

equation:

Yi,t = f(wt, rt, bt, Ki,t, K
0
t , P

solar
i,t , Gi,t, µ)

Here w is the wage, r is the rental rate of capital, b is the cost of materials, µ is a random

shock, and Psolar,i,t is the price/watt of electricity that is produced from a solar panel. It

is assumed that there is no economic cost associated with acquiring industry and outside

knowledge. It is also assumed that firms are wage, rent, and material cost takers as they

are too small to affect each of those variables. As well, it should be noted that all functions

from here onwards are log-log.

Demand for solar electricity is assumed to be given by:

P solar
i,t = f(Yi,t, P

electricity
i,t , G,M total

i,t )

where Y is solar electricity consumption in a country, Psolar is the price/watt of solar

panels, Pelectricity is the price of electricity substitutes, and Mtotal represents the total income
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accruing to electricity consumers. Government is added to the demand-side since its effects

through policies can affect both supply and demand. Currently, the bulk of electricity

is produced by natural gas, oil, and coal. It is also assumed that consumers are indifferent

towards the environmental effects of alternative electricity producers, and are only concerned

with the amount of electricity they can consume. Thus, we can estimate the supply-side

equation while instrumenting solar energy production with demand side variables. Our

estimated equation is:

P solar
i,t = f(bi,t, wi,t, ri,t, Yi,t, Gi,t, Ki,t, (K

0)i,t, µ)

This model presents econometric problems due to data constraints, but also due to the

non-stationarity of the price of solar modules. By taking first differences, we arrive at:

∆P solar
i,t = f(∆bi,t,∆wi,t,∆ri,t,∆Yi,t,∆Gi,t,∆Ki,t,∆(K0)i,t,∆µ)

And our instrumented equation becomes:

∆Yi,t = f(∆P electricity
i,t ,∆M total

i,t ∆bi,t,∆wi,t,∆ri,t,∆Yi,t,∆Gi,t,∆Ki,t,∆(K0)i,t,∆µ)

In this model, I assume that the real rental rate of capital and the real price of silicon is

constant, thus ∆r = ∆b = 0. The final empirical model is presented below:

∆P solar
i,t = f(∆Ki,t,∆(K0)i,t,∆wi,t,∆Yi,t,∆Gi,t)

This model expands the framework that was presented by Hall et al (2009) in calculat-

ing the effect of knowledge on total factor productivity growth. The primary difference is

through the assumption of constant cost of real materials and the rental rate of capital. This

was done due to data limitations since it is difficult to obtain data on capital productivity

improvements and on the price of silicon.
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To estimate this model, I will use a two-stage regression where the first-stage involves

modelling the change in the solar energy market with the instruments of electricity prices and

household incomes. The second stage then determines the returns to R&D and its spillovers

by modelling solar module prices as a function of the change in knowledge, government

policies, and the results of the first-stage regressions.

The change in knowledge variables refer to a vector of R&D variables that include lagged

solar R&D expenditures, total in-country R&D expenditures, and international R&D ex-

penditures on solar panels. Total in-country R&D expenditures are meant to capture the

effect of knowledge spillovers from other industries. International solar R&D expenditures

are used to examine the role of international knowledge spillovers that occur. It is difficult to

follow the approach by Hall et al. in constructing a knowledge variable based on past R&D

expenditures since it requires a depreciation rate that has not been quantified. Moreover,

knowledge needs to incorporate spillover effects that may result from technological break-

throughs in other industries or markets. This is particularly relevant to solar panels since

improvements may be observed in the production of their materials or components that di-

rect PV research may not touch upon. As well, the change in knowledge is best represented

by R&D expenditures, not the change in R&D expenditures since they are used to discover

new knowledge and thus, represent the change in knowledge, which is what we are interested

in.

For this model, I assume that in-country solar R&D expenditures require seven years to

have an effect on the price of solar modules, whereas international solar R&D expenditures

and other R&D expenditures affect solar module prices after eight years. This is due to the

limited amount of data on solar module prices and R&D expenditures that is available, and
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also to provide structure to the lag effects that may be observed. Solar energy is a relatively

new industry, and so it would be quicker than other sectors in incorporating technological

breakthroughs. Thus, it would be unrealistic to assume that productivity advances require 10

years to have an effect on solar energy producers. However, I do not think that solar module

manufacturers are as nimble as adopting the most recent technological breakthrough into

their production, hence why there are still lags placed on the R&D variables. Also, I assume

that in-country solar R&D expenditures are likely to affect their country’s solar module

prices faster than other R&D expenses since firms need to spend more time to understand

breakthroughs in other markets.

An additional assumption that is made in this model is not to differentiate between private

and public R&D expenditures, but to consider them equally effective in developing produc-

tivity improvements. This has strong implications in that this empirical model is unable to

determine which group is the better researcher. This was done because the bulk of solar

energy research expenditures were, until relatively recently, doled out by the government.

As well, a separate model is needed to compare the effects of public R&D with private.

The policies variable is a vector of different policies that governments adopt to develop

their solar energy industry. In the theoretical model proposed here, they correspond to

continuous variables that quantify the government expenditures associated with each policy.

This becomes difficult to measure, due to the nature of policies such as tax credits and

subsidies. As a result, in the empirical model, these policies are represented as binary

variables. This may cause bias in that it will not capture the differing effectiveness of

government programs due to its relative size. This also creates further problems since we

are taking differenced binary variables, which does not offer that much variation in the
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government vector. To address this, the government policy variables refer to that time frame

and not the differenced variable. Although this is different than what the model suggests,

it can indicate the effect that government policies may have on inducing innovation in PV

cells.

The change in the overall production of solar energy also represents the effect of induced

innovation on solar module prices. Induced innovation, as reviewed earlier, referred to the

impact of government policies other than R&D expenses on innovation. Renewable energy

policies are normally aimed at increasing renewable energy consumption, which in our model

is measured by the change in the overall size of the market.
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4 Data

Data for PV modules price was obtained from the International Energy Agency (IEA) Pho-

tovoltaic Power Systems Program (PVPS). Price data was typically recorded as the cost of

producing a watt of electricity, or the price/W. PVPS is responsible for collecting and dis-

seminating information on PV systems from the 26 reporting countries of the OECD. Each of

the participating countries submits an annual report that details pertinent R&D activities,

market trends, and the average price/W for a PV module. There are, however, differences

between each of the countries in how they obtain the average price/W of a solar module.

For example, the Canada trend report completes a voluntary survey of PV companies in

order to obtain the average price/W of a solar module. The United States, however, uses

information from the Energy Information Administration, US Department of Energy, Solar

Energy Industries Association, the Prometheus Institute, GTM Research, and PV Energy

Systems. In addition, not all countries report solar module prices, creating considerable

data constraints. To address this, I recorded PV module prices from Canada, the United

States, France, Japan, Germany, Italy, and South Korea since they were available. As well,

these countries were among the top ten producers and consumers of solar electricity in 2010

(the other three, which were omitted, were Australia, Spain, and China). The resulting

panel data was also not balanced due to the lack of price data in certain years. Nonethe-

less, the resulting statistics are still useful since it incorporates market information, and can

be considered a reasonable estimate of the average price of PV modules. All prices were

converted to US dollars and adjusted for each countrys inflation using information from the

Organization for Economic Cooperation and Development (OECD).

Data for the change in the size of the overall market was obtained from the Energy
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Information Administration (EIA) of the United States. The EIA compiles information

from a variety of international sources and reports the net generation of solar, tidal, and

wave generation. The latter two energy sources are still in the early stages of development,

so this data is largely representative of solar electrical production.

R&D expenditures were obtained from the IEA World Data Service (WDS). The WDS

collects data from OECD member countries that relate to energy policy. Although the WDS

normally requires a paid subscription, all R&D data related to energy was free. Thus, total

R&D expenditures on solar energy were collected from each of the previously mentioned

countries for their pertinent years. It should be noted, however, that this data is the R&D

budget of each country, so it does not capture the amount of money spent on R&D. As well, it

measures R&D activities combined with demonstration projects. The WDS did contain gaps

in R&D information on certain countries, resulting in those module price data points being

omitted. The data was provided in US 2010 dollars, but has been converted to 2005 dollars

to make meaningful comparisons between module prices and R&D expenditures. Spillover

effects from other industries are measured as the total R&D expenditures in a country, as

reported from the OECD Statistical Database. International spillover effects from other solar

R&D activities were recorded as the sum of other country’s total solar R&D expenditures.

A better proxy would be international trade data on solar modules, but this is currently

unavailable.

Information on international policies was obtained from the Policies Database at the IEA

and the PVPS reports. Policies I included are feed-in tariffs, tax credits, and subsidies. As

mentioned earlier, they were recorded as binary variables based on their presence in a country.

As well, the policies are further categorized based on the implementing jurisdiction in order
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to compare provincial policies with national ones. This created, however, multicollinearity

problems in the estimation, so I categorized the information as though the entire country

adopted that policy. Loan guarantees were classified as subsidies.

I was unable to find data on electricity prices, so I used price data on the three primary

fossil fuels involved in electrical production: oil, natural gas, and coal. All prices were

normalized to 2005 dollars, and I was only able to find information on the international

price of these fuels rather than the domestic price. The price of oil was recorded as dollars

per barrel, the price of natural gas was recorded as dollars per million BTU, and the price

of coal was the dollar per ton. Oil prices were obtained from the Federal Reserve of St.

Louis West Texas Intermediate, whereas natural gas and coal prices were obtained from the

EIA. In the final model, however, only one fuel was used in order to avoid multicollinearity

problems.

Data on labour productivity was obtained from the OECD. This change in labour produc-

tivity comes from the whole economy, since there is no widely available data that measures

labour productivity in the solar market. Data was presented as the percentage change in

labour productivity, and was not altered in the empirical model.
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5 Instrumental Variable Regression Results and Analysis

Table 1: Estimation results : Second Stage Regression with Differenced Modules Prices as the Dependent

Variable

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.269∗ (0.136)

In-Country Solar R&D Expenditures (t-7) -0.151∗ (0.060)

World Solar R&D Expenditures (t-8) -0.008 (0.009)

In-Country Total R&D Expenditures (t-8) -0.386 (0.242)

Feed-in Tariff 0.151† (0.078)

Tax Credits 0.128 (0.132)

Subsidies 0.085 (0.059)

Labour Productivity 0.014 (0.018)

Intercept 4.664† (2.561)

N 88

Log-likelihood .

R2(within) 0.1395

R2(between) 0.8954

R2(overall) 0.018

F (15,73) 3.133

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 2: Estimation results : First Stage Regression with Differenced Solar Energy Production as the

Dependent Variable

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-7) 0.032 (0.107)

World Solar R&D Expenditures (t-8) 0.039∗ (0.017)

In-Country Total R&D Expenditures (t-8) -1.123∗∗ (0.421)

Feed-in Tariff 0.346∗∗ (0.114)

Tax Credits -0.232 (0.232)

Subsidies 0.015 (0.106)

Labour Productivity 0.073† (0.037)

Differenced Log Coal Prices 0.170 (0.729)

Differenced Log GDP -9.363∗∗ (2.249)

Intercept 12.130∗∗ (4.454)

N 88

R2(within) 0.3077

R2(between) 0.1843

R2(overall) 0.0561

F (15,72) 3.555

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The results, presented in Tables 1 and 2 above, confirm the idea that all types of R&D

expenditures negatively impact solar energy prices, with the exception of World Solar R&D

Expenditures, since it does not appear to be significant in the second-stage regression at

the 10% level. However, World Solar R&D Expenditures are significant in the first-stage

regression, which indicates an indirect impact on solar energy prices. This result makes
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intuitive sense, since World Solar R&D leads to better solar modules on the international

market. Households may decide to invest in solar modules produced in other countries as

they may be of better quality than the domestic ones. This eventually leads to negative

pressure on domestic solar module prices because of the competition from outside solar

module manufacturers, and also due to the knowledge spillovers that result from reverse

engineering foreign solar modules.

Another interesting result emerges from this model, in that In-Country Total R&D Ex-

penditures are also significant in the second stage regression (p-value of 0.112 indicates that

the estimate may lack precision) and in the first-stage regression (p-value of 0.009). How-

ever, they exert a negative effect in the first-stage regression on Differenced Log Solar Energy

Production. This may be due to Total R&D Expenditures also incorporating research into

competitive substititutes for solar energy that include fossil fuels, wind, and biofuels. Thus,

Total R&D Expenditures help reduce the price of these alternative fuels and increase uptake

of these other fuels rather than increasing solar energy production. Nonetheless, the advances

made by Total R&D Expenditures also help reduce solar module prices, as indicated by the

second-stage regression results. One improvement to better account for this spillover may

be to consider spillovers from industries with a high chance of spillover such as superconduc-

tors, silicone processing, and information technologies related to production processes. This

ensures we do not incorporate competitive R&D that places downward pressure on solar

module prices and solar energy production.

It may be also important to consider the price/W of other renewable energies as they

are the most direct competitors for solar module manufacturers. Firms involved in wind or

biofuel energy are similar to solar energy with regards to consumer preferences as they emit
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little to no greenhouse gases compared to fossil fuels. Each of these industries are affected

by the market price of electricity, but they are also likely to exert competitive pressure on

each other that differs from fossil fuel prices since they are relatively new forms of energy.

They also compete with each other to demonstrate their relative effectiveness, despite that

there may be other conditions asides from their relative effectiveness that determines their

applicability to a certain location.

Labour Productivity is also found to indirectly affect solar module prices by increasing so-

lar energy production. This likely emerges from the importance of new technologies towards

solar module production processes, which requires highly trained employees to administer.

As well, this may also reflect the importance of spillovers as they make labour generally more

productive, which helps to further reduce solar module prices.

Induced innovation is also shown to have a strong impact on solar module prices as it has

a p-value of 0.048, but this result is clouded by the weak instruments that were meant to

model the Differenced Log Solar Energy Production. The F-value of 3.555 from this model

is small, and indicates that the instruments are not particularly effective towards removing

the endogeneity of Differenced Log Energy Production. However, the Anderson-Rubin Wald

Chi-Square test for weak instruments provided a p-value of 0.0557, which suggests that the

instrumentation results are still significant for modelling solar energy production.

The instrument of Differenced Log Coal Prices was found to be insignificant in the first-

stage regression, and alternative fuels such as natural gas or oil prices yielded similar results.

This may be due to coal prices being a poor proxy for the price of electricity. As well, the coal

price that was used was the international price of coal, and not the domestic price of coal in

each country. Thus, there are likely market conditions in each of the countries, such as taxes
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or environmental regulations, that affect the price of coal and are not incorporated into our

model. The Differenced Log GDP variable, which was the other instrument in our model to

account for household incomes, was found to be significant but also negative. This implies

that solar modules are inferior goods, or that increasing incomes decrease the demand for

solar modules. This is a surprising result, but may also be true as prosperous households

may not be concerned about the possible benefits of adopting solar energy. Other less

prosperous households, especially in countries where policies and technology have combined

to make solar modules a clear net benefit, may adopt solar modules in order to reduce

their long-run costs and create income for themselves if a feed-in tariff is in place. This

appears to contradict the labour productivity result, especially since the two variables are

positively correlated with one another. To confirm this result, it is necessary to gather

further information on the incomes of households that choose to install solar modules.

Feed-in tariffs were the only policy found to be significant at increasing solar energy pro-

duction with a p-value of 0.003 and, indirectly affect solar module prices. Tax credits and

subsidies were ineffective at both stages, indicating that there may be problems with their

construction as dummy variables. Nonetheless, the first-stage regression confirms previous

ideas in that feed-in tariffs are considered the most effective policy towards increasing re-

newable energy consumption. Surprisingly, feed-in tariffs were found to also be significant

in the second-stage regression with a p-value of 0.052, but also increasing the price of solar

modules. This may reflect suppliers not anticipating the increased demand for solar modules

that stems from the introduction of feed-in tariffs.

The difference in log modules prices was found to be stationary at the 10% level according

to the Dickey-Fuller test (chi-square of 21.3568 and p-value of 0.0928) and at the 1% level
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with the Phillips-Perron test (chi-square value of 37.9077 and p-value of 0.0007). Both tests

were conducted with one lag. The regression results are indicated above with Tables 2 and

3. Fixed effects were found to be insignificant with the Hausman test (p-value of 0.7931),

although they were kept in the final model since there are likely differences between each of

the countries that are not accounted for.

This model was chosen based on maximizing the significance of each of the variables, so it

may not represent the true effect of R&D if the model is mis-specified. Other model results

are presented in the appendix which change the years of the lag structure, along with testing

the assumption that In-Country Solar R&D Expenditures affected solar module prices faster

than other types of R&D. Nonetheless, based on the regression output, this model presents

the best results and indicates the likely mechanism which R&D Expenditures affect solar

module prices. As well, this model is not completely unrealistic since Hall et al. (2009)

indicated that R&D lag effects can take between 10-30 years to affect productivity. Thus,

without information from the solar energy industry, it may be that it does take an average

of seven years for in-country R&D expenditures to affect solar module prices by affecting

the production process.
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6 Conclusion

This model has some key results that have strong implications for policy makers. Govern-

ments that are striving to increase their renewable energy production should consider the

ideas and results from this paper into their cost-benefit analysis. Feed-in tariffs are shown to

be the most effective government policy at increasing solar energy consumption. Although

there were issues with the instrumental variables, induced innovation is still shown to reduce

solar module prices. Thus, feed-in tariffs are an effective policy instrument that increase so-

lar energy production while also making the technology more affordable for all participants.

It increases competition in the solar energy market as households increase their demand for

solar modules and, the number of solar energy manufacturers increase due to the new op-

portunities to make economic profit. These new firms will then introduce new technologies

in order to offer the most affordable solar modules. This may also reduce the lag between a

new innovation and its incorporation into the production process as firms are under further

competitive pressures to offer solar modules at reduced prices. Countries that do not adopt

feed-in tariffs are likely to observe their renewable energy production increase slightly, which

depending on their mix of current energy production, can have considerable negative effects

in terms of continued greenhouse gas emissions and other environmental externalities. These

factors will need to be considered in a proper cost-benefit analysis on feed-in tariffs.

The model also indicates that R&D expenditures affect solar module prices, both directly

and indirectly through solar energy production. A major consideration for policy makers will

be to determine what type of renewable energy is most appropriate for their economy and

how they can best support it. Research spillovers from other industries are shown to reduce

solar module prices, but they also reduce solar energy production by making alternative fuels
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more affordable as well. This may influence how provincial and municipal governments, who

are likely to be more attuned to the geographic advantages of their respective areas, target

R&D activities in order to ensure their technology is affordable for the market. National

governments, on the other hand, may need to continue to provide R&D for all forms of

energy in order to ensure equal opportunities for renewable energies inside their borders.

Nonetheless, governments are still encouraged to provide R&D grants to foster the solar

energy industry since it leads to more affordable solar modules. One area that should be

considered is to foster knowledge sharing opportunities between solar industries around the

world and with other industries. This may reduce the lag effects in this model, such that

R&D may have a more immediate effect on solar modules rather than taking seven years.

Another major result from this model stems from the importance of international solar

R&D expenses towards increasing solar energy production. This suggests that countries

should resist creating trade barriers in order to foster international competition amongst solar

energy manufacturuers. To confirm this, it will be necessary to obtain data on trade between

countries regarding solar modules in order to ascertain the correct level of international

knowledge spillovers. This policy proposal, however, is difficult to implement considering

the amount of subsidies and grants that solar energy companies receive from the different

levels of their governments. Governments will need to coordinate with each other to ensure

there is an appropriate amount of support for solar energy while balancing the need for

international competition.

There are other concerns with this model, namely in that it does not indicate which R&D

activites actually reduced solar module prices. This may reflect a general problem with

these types of models, since R&D does not always yield direct results. It will generate new
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knowledge, but that information may not have a direct financial value associated with it.

R&D is, in essence, an input whereas we may be more interested into the outputs of R&D

activity in order to compare different programs across the world. One way to address this

concern is to replace R&D activities with solar energy patents in order to match output

knowledge activities with their associated financial returns. This model may not be able

to indicate which specific patents assisted in reducing solar module prices, but it may be a

more direct measure of the effect of productive knowledge rather than all knowledge.

Another concern with this model is that it does not quantify the economic impact of

induced innovation or targeted solar R&D expenditures. This is of incredible importance to

policy makers as they attempt to help develop the solar energy industry with the hope that

it will lead to long-run economic benefits. This, however, may be too early to estimate since

the solar energy industry is still relatively new. As well, this will need to adopt a different

approach that accounts for the amount of firms and labour that are associated with solar

energy.

Ultimately, this model concludes that feed-in tariffs are the most effective policy towards

increasing solar energy consumption, induced innovation plays a key role in reducing solar

module prices, and R&D expenses help improve the quality of solar modules. However, more

work needs to be completed in order to weigh the costs and benefits of these policies, along

with finding better models to calculate the rate of return to public R&D.
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7 Appendix

7.1 Solar Module Prices from 1990 in Selected Countries
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Figure 1: Solar Module Prices over the years in US Dollars
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7.2 Summary Statistics

Table 3: Summary statistics

Variable Mean Std. Dev. N

Log Solar Module Prices 1.535 0.512 118

Log Solar R&D Expenditures 4.167 2.929 213

Log Total R&D Expenditures 10.672 1.011 191

World Solar R&D Expenditures 8.233 4.75 223

Feed-in Tariff 0.496 0.501 230

Tax Credit 0.513 0.501 230

Subsidy 0.704 0.457 230

Log Oil Prices 3.541 0.536 147

Log Coal Prices 3.248 0.211 143

Log Gas Prices 1.437 0.471 131

Log Solar Energy Production 18.444 2.129 143

Labour Productivity 1.855 1.667 149

40



7.3 Altering the lag length

The following tables are a subset of the regression results from other lags and are meant to

represent results from other tested models. Tables 4 and 5 correspond to regression results

on the second lag of in-country solar R&D and the third lag of world solar and total R&D

expenditures.

Table 4: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.356∗ (0.159)

In-Country Solar R&D Expenditures (t-2) 0.007 (0.030)

World Solar R&D Expenditures (t-3) -0.013† (0.007)

In-Country Total R&D Expenditures (t-3) 0.166 (0.252)

Feed-in Tariff 0.128 (0.087)

Tax Credits 0.032 (0.137)

Subsidies 0.055 (0.064)

Labour Productivity 0.013 (0.019)

Intercept -1.820 (2.708)

N 93

Log-likelihood .

R2(within) .

R2(between) 0.2367

R2(overall) 0.0887

χ2
(15) 26.759

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 5: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-2) 0.044 (0.047)

World Solar R&D Expenditures (t-3) 0.002 (0.013)

In-Country Total R&D Expenditures (t-3) -0.178 (0.424)

Feed-in Tariff 0.274∗ (0.126)

Tax Credits -0.123 (0.222)

Subsidies -0.052 (0.108)

Labour Productivity 0.105∗∗ (0.039)

Differenced Log Coal Prices -0.343 (0.787)

Differenced Log GDP -8.698∗∗ (2.280)

Intercept 1.988 (4.567)

N 93

R2(within) 0.2207

R2(between) 0.6671

R2(overall) 0.3004

F (15,77) 2.424

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Tables 6 and 7 correspond to the regression results on the sixth lag of in-country solar

R&D and the seventh lag of world solar and total R&D expenditures.

Table 6: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.128 (0.152)

In-Country Solar R&D Expenditures (t-6) -0.027 (0.063)

World Solar R&D Expenditures (t-7) -0.020∗∗ (0.008)

In-Country Total R&D Expenditures (t-7) -0.170 (0.277)

Feed-in Tariff 0.083 (0.081)

Tax Credits 0.038 (0.155)

Subsidies 0.091 (0.057)

Labour Productivity 0.008 (0.016)

Intercept 1.940 (2.903)

N 89

Log-likelihood .

R2(within) 0.2234

R2(between) 0.1228

R2(overall) 0.0035

F (15,74) 2.821

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 7: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-6) 0.111 (0.113)

World Solar R&D Expenditures (t-7) 0.009 (0.013)

In-Country Total R&D Expenditures (t-7) -1.133∗ (0.451)

Feed-in Tariff 0.395∗∗ (0.117)

Tax Credits -0.375 (0.274)

Subsidies -0.022 (0.111)

Labour Productivity 0.086∗ (0.040)

Differenced Log Coal Prices 0.792 (0.750)

Differenced Log GDP -7.931∗∗ (2.386)

Intercept 12.126∗ (4.750)

N 89

R2(within) 0.3015

R2(between) 0.4235

R2(overall) 0.1122

F (15,73) 3.5

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Tables 8 and 9 correspond to the regression results on the ninth lag of in-country solar

R&D and the tenth lag of world solar and total R&D expenditures.

Table 8: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.293† (0.172)

In-Country Solar R&D Expenditures (t-9) -0.149∗ (0.066)

World Solar R&D Expenditures (t-10) 0.123 (0.117)

In-Country Total R&D Expenditures (t-10) -0.530∗ (0.227)

Feed-in Tariff 0.086 (0.082)

Tax Credits -0.006 (0.111)

Subsidies 0.155∗ (0.068)

Labour Productivity 0.001 (0.018)

Intercept 5.463∗ (2.391)

N 85

Log-likelihood .

R2(within) 0.1246

R2(between) 0.3675

R2(overall) 0.0131

χ2
(14) 36.101

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 9: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-9) 0.090 (0.097)

World Solar R&D Expenditures (t-10) 0.367∗ (0.152)

In-Country Total R&D Expenditures (t-10) -0.673∗ (0.331)

Feed-in Tariff 0.324∗∗ (0.098)

Tax Credits -0.119 (0.171)

Subsidies 0.104 (0.101)

Labour Productivity 0.093∗∗ (0.034)

Differenced Log Coal Prices -0.295 (0.653)

Differenced Log GDP -7.125∗∗ (1.952)

Intercept 5.053 (3.897)

N 85

R2(within) 0.3593

R2(between) 0.0622

R2(overall) 0.0683

F (14,70) 4.362

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

46



7.4 Altering the Different Year Assumption

The following tables are representative of the results from other regressions that placed all

R&D lags into the same year. Tables 10 and 11 correspond to the third lag of all types of

R&D expenditures.

Table 10: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.373∗ (0.162)

In-Country Solar R&D Expenditures (t-3) 0.039 (0.041)

World Solar R&D Expenditures (t-3) -0.010 (0.007)

In-Country Total R&D Expenditures (t-3) -0.020 (0.269)

Feed-in Tariff 0.128 (0.088)

Tax Credits -0.043 (0.147)

Subsidies 0.076 (0.064)

Labour Productivity 0.017 (0.020)

Intercept 0.063 (2.873)

N 92

Log-likelihood .

R2(within) .

R2(between) 0.4593

R2(overall) 0.0618

χ2
(15) 25.87

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 11: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-3) 0.025 (0.066)

World Solar R&D Expenditures (t-3) 0.003 (0.013)

In-Country Total R&D Expenditures (t-3) -0.362 (0.450)

Feed-in Tariff 0.289∗ (0.126)

Tax Credits -0.115 (0.238)

Subsidies -0.030 (0.109)

Labour Productivity 0.102∗ (0.040)

Differenced Log Coal Prices -0.274 (0.789)

Differenced Log GDP -8.532∗∗ (2.280)

Intercept 4.080 (4.826)

N 92

R2(within) 0.215

R2(between) 0.3623

R2(overall) 0.1711

F (15,76) 2.316

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Tables 12 and 13 correspond to the seventh lag for all R&D expenditures.

Table 12: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.095 (0.164)

In-Country Solar R&D Expenditures (t-7) -0.151∗∗ (0.054)

World Solar R&D Expenditures (t-7) -0.018∗ (0.007)

In-Country Total R&D Expenditures (t-7) -0.093 (0.255)

Feed-in Tariff 0.102 (0.080)

Tax Credits 0.170 (0.119)

Subsidies 0.062 (0.052)

Labour Productivity 0.009 (0.014)

Intercept 1.534 (2.718)

N 88

Log-likelihood .

R2(within) 0.3154

R2(between) 0.7097

R2(overall) 0.0019

χ2
(15) 59.919

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 13: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-7) 0.054 (0.111)

World Solar R&D Expenditures (t-7) 0.011 (0.014)

In-Country Total R&D Expenditures (t-7) -0.904∗ (0.451)

Feed-in Tariff 0.364∗∗ (0.119)

Tax Credits -0.218 (0.239)

Subsidies -0.001 (0.108)

Labour Productivity 0.078† (0.039)

Differenced Log Coal Prices 0.217 (0.777)

Differenced Log GDP -7.180∗∗ (2.429)

Intercept 9.806∗ (4.794)

N 88

R2(within) 0.263

R2(between) 0.2651

R2(overall) 0.0705

F (15,72) 2.856

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Tables 14 and 15 correspond to the ninth lag of all R&D.

Table 14: Estimation results : Second Stage Results on Differenced Log Solar Module Prices

Variable Coefficient (Std. Err.)

Differenced Log Solar Energy Production -0.341 (0.213)

In-Country Solar R&D Expenditures (t-9) -0.131† (0.071)

World Solar R&D Expenditures (t-9) 0.157 (0.151)

In-Country Total R&D Expenditures (t-9) -0.633∗∗ (0.231)

Feed-in Tariff 0.109 (0.087)

Tax Credits -0.021 (0.112)

Subsidies 0.158∗ (0.067)

Labour Productivity 0.000 (0.019)

Intercept 6.366∗∗ (2.277)

N 85

R2(within) 0.1009

R2(between) 0.3193

R2(overall) 0.0117

Log-likelihood .

χ2
(14) 36.972

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 15: Estimation results : First-Stage Regression on Differenced Log Energy Production

Variable Coefficient (Std. Err.)

In-Country Solar R&D Expenditures (t-9) 0.109 (0.097)

World Solar R&D Expenditures (t-9) 0.431∗∗ (0.154)

In-Country Total R&D Expenditures (t-9) -0.593† (0.323)

Feed-in Tariff 0.293∗∗ (0.099)

Tax Credits -0.085 (0.172)

Subsidies 0.088 (0.099)

Labour Productivity 0.080∗ (0.034)

Differenced Log Coal Prices -0.397 (0.641)

Differenced Log GDP -5.941∗∗ (2.049)

Intercept 3.807 (3.753)

N 85

R2(within) 0.36

R2(between) 0.0739

R2(overall) 0.0841

F (14,70) 4.37

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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