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1 Introduction

Western nations including Canada and the United States are in the middle of large

population age structure changes due to the postwar baby boom. In Canada, the

dependency ratio is expected to rise by nearly 50% between 2009 and 2036 (Statis-

tics Canada, 2010) while the dependency ratio in the United States is expected

to rise by nearly 60% over a similar period (United States Census Bureau, 2010).

Given these changes, the effect of population age structure on economic variables

has begun to receive much attention in the empirical literature. Authors have

looked at how age structure affects productivity, international cash flows, and

even financial crises.

However, evidence for or against a relationship between age structure and

technological progress is noticeably absent. This essay attempts to take steps

towards filling that gap. Macroeconomic models are sensitive to changes in the

technological progress parameter, meaning a small change in its magnitude can

result in drastically different forecasts. If older age groups innovate more, the

burden of the higher dependency ratio will be lessened. Conversely, if younger age

groups innovate more, the burden may be even greater than expected (Poterba,

2012).

It is not clear how or even if age structure should affect technological progress.

Take for example two workforces: one young and one old. Can we expect one

workforce to innovate more than the other? Two important inputs to innovation

are investment and human capital, and the older workforce likely leads in both.

If we define human capital as the sum of education and experience, the vast

experience of the older workforce gives them the upper hand. Additionally, savings

generally peak later in life.

Although lacking in experience, the young workforce may possess the most
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“up-to-date” human capital and be more prone to risk taking. This combination

may make them the most suited to innovation. Of course, the final possibility is

that neither workforce will innovate more than the other. Innovation may display

Leontief properties whereby the the rate of innovation is constrained by the scarce

input —be it investment, “up-to-date” human capital, risk taking, or experience.

I look for a relationship between age structure and technological growth using

a panel of countries assembled from a variety of sources. I estimate with two differ-

ent measures of technological growth: patent application counts and a computed

measure. Using the computed measure as the regressand, I find little evidence of

an age structure effect. However, results from the patent applications proxy give

strong evidence of a life cycle hypothesis. Innovation gradually rises, reaching a

peak at the 50–54 age group, before declining rapidly. These results hold after

addressing issues of multicollinearity and endogeneity, and are consistent with the

related studies of Feyrer (2007) and Lindh and Malmberg (1999).

The rest of this essay is organized as follows: section 2 reviews the related

research, section 3 describes the data, section 4 presents the statistical methods

and results, section 5 discusses, and section 6 concludes.

2 Related Research

Empirical research addressing the link between technological progress and age

structure is notably sparse. However, many related studies have been conducted.

Lindh and Malmberg (1999) look for a link between age structure and overall

economic growth. They modify the transitional growth model of Mankiw et al to

allow for workforce experience by interacting an index of age structure with the

stock of educational capital. Measuring age structure in cohorts of fifteen years

in length, they find that an increase in the proportion of workers aged 50–64 has
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a statistically significant positive impact on economic growth while an increase

in the proportion of younger workers affects growth ambiguously. Feyrer (2007)

addresses the link between productivity and age structure. He assumes Cobb-

Douglas production and calculates productivity as the Solow residual. Measuring

age structure as proportional cohorts and estimating in first differences, he finds

that an increase in the share of workers aged 40–60 has a positive impact on

productivity.

In addition to measuring productivity, the Solow residual has been used as a

measure of technological progress. But this interpretation is only valid under the

assumption of efficient use of all resources in all years. In the presence of compet-

itive markets, marginal products will equal prices and resources will be employed

efficiently. In reality, however, imperfections are prevalent and sometimes even

built into the market; pay for seniority is a good example of this (Lindh and

Prskawetz, 2006). As a result, the Solow residual actually contains two compo-

nents: technological progress and efficiency; and a change in the Solow residual

may be attributed to either (Basu and Fernald, 2002).

In light of the strong assumptions on the Solow residual, authors have turned to

proxy variables and deterministic frontier models to measure technological growth

(Growiec, 2012). Frontier models relax the efficiency assumption of growth ac-

counting by using non-parametric, data envelopment analysis (DEA) algorithms

to compute the world technology or world production frontiers. Inefficiency is mea-

sured as the distance to the frontier, technological progress as shifts in the frontier,

and capital accumulation as movement along the frontier. Growiec (2012) imple-

ments DEA algorithms to construct 12 measures of technological progress. The

measures differ in their underlying assumptions (i.e. constant returns to scale vs.

variable returns to scale) and information sets. Kumar and Russell (2002) sim-

3



ilarly employ non-parametric techniques to decompose productivity growth into

technological change, efficiency change, and capital accumulation.

Proxies for technological growth also have been widely used in the literature.

They include patent data, R&D expenditure, and major innovation counts, all

of which have various strengths and weaknesses. Alexopoulos and Cohen (2011)

generate a new proxy variable and provide a survey of many used in the past.

To my knowledge, no studies exist that have used a cross-country panel to in-

vestigate the relationship between age structure and technological progress. The

only study looking for this relationship is that of Nishimura, Minetak, and Shi-

rai (2002). They take the Japanese economy in isolation and find that the share

of workers over the age of 40 had a positive effect on technological progress in

the 1980s. However, the authors measure technological progress using a modified

Solow residual and assume efficiency. For an advanced economy such as Japan, ef-

ficiency may be an appealing assumption. Unfortunately, Fare, Grosskopf, Norris,

and Zhang (1994) present evidence that half of the increase in Japanese produc-

tivity between 1979 and 1988 is actually attributable to efficiency improvements.

3 Data

Technological growth measures for OECD countries are widely available. They in-

clude both computed measures and proxy variables. However, for my application

I must expand my panel beyond OECD countries in order to obtain a sufficient

number of observations to permit empirical analysis. Technological measures for

non-OECD countries are much more scarce; Nevertheless, both proxies and com-

puted measures can still be found.

Of those available, no “best practice” measure exists. For example, there is

not even a consensus as to how computed measures should be generated. Dif-
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ferent underlying assumptions or constructions of the world technology frontier

will produce different results. For example, we may wish to (data permitting) dif-

ferentiate between skilled and unskilled labour, or even disaggregate US data by

state in order to achieve a more precise estimate of the world technology frontier.

However, increasing precision tends to come at the expense of observations since

it requires more data sources. I therefore opt to collect two measures of techno-

logical progress: one computed and one proxy. My computed measure is drawn

from Kumar and Russell (2002, hereafter referred to as KR), while I choose patent

application counts as my proxy. Table 1 presents summary statistics for both.

Table 1: Summary Statistics of Dependent Variables

KR Growth Patent Application Counts
Countries 54 88

Obsv. Per Country 5 6.45
Time Span 1965–1985 1960–2010

In addition to the technological progress measures, I collect population age

distribution data and several additional explanatory variables. These variables

and their sources will be describe in detail in section 3.3

3.1 Technological Progress: Computed Measure

KR develop the best computed variable for my application. They measure techno-

logical progress directly and with minimal underlying assumptions by decomposing

productivity growth into three components: efficiency, capital accumulation, and

technological progress. Just as importantly, they generate the largest number of

observations of any computed measure I was able to find. Their measure is, how-

ever, sensitive to the precision with which they calculate the worldwide production

frontier.

To generate their computed measure, KR begin by constructing the worldwide
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production frontier using a DEA algorithm. Since this approach is non-parametric,

it requires no underlying assumptions on the production function. It assumes only

constant returns to scale. The input variables are aggregate labour and aggregate

capital, while the output variable is aggregate output. From this, the Farrell

efficiency index (see Farrell, 1957) is calculated for each country in each year. It

equals 1 if an observation lies on the frontier, and is less than 1 otherwise. KR

then perform the following decomposition

yc
yb

=
ec × yc(kc)
eb × yb(kb)

(1)

where yb is aggregate output per person in the base period, yc is aggregate output

per person in the current-period, eb and ec are the Farrell efficiency index values

for the two periods, and kb and kc are capital per unit of labour in the two periods.

yb(kb) is potential output in the base-period. It is obtained by dividing aggregate

output in the base-period by the Farrell efficiency index in that period. If a country

is efficient, potential output will equal actual output. For an inefficient country,

potential output will be greater than actual output.

Multiplying the numerator and denominator of (1) by the potential output-

labour ratio at current-period capital intensity using base-period technology will

complete the decomposition. However, the decomposition could also be completed

by multiplying through by the potential output-labour ratio at base-period capital

intensity using current-period technology. Because the choice between these alter-

natives is completely arbitrary and will make a difference unless technology is Hicks

neutral, the authors opt to use the geometric average of the two alternatives. Thus

they multiply the numerator and denominator of (1) by (yb(kc)yc(kb))
1/2, yielding:
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yc
yb

=
ec
eb
×
(
ȳc(kc)

ȳb(kc)
× ȳc(kb)

ȳb(kb)

)1/2

×
(
ȳb(kc)

ȳb(kb)
× ȳc(kc)

ȳb(kb)

)1/2

(2)

= Efficiency × Technological Progress× Capital Accumulation

This gives technological growth for five year intervals from 1965 through 1990.

For my application, I annualise these five year intervals so that observed tech-

nological growth in period t is the geometric annualisation of total technological

growth for the period t to t + 5. This leaves 270 observations, reported every

lustrum from 1965 to 1985, for 54 countries. For the remainder of the essay, this

variable will be referred to as KR Growth.

The sample includes the following countries: Argentina, Australia, Austria,

Belgium, Bolivia, Canada, Chile, Colombia, Denmark, Dominican Republic, Ecuador,

Finland, France, Germany, Greece, Guatemala, Honduras, Hong Kong, Iceland,

India, Ireland, Israel, Italy, Jamaica, Japan, Kenya, Republic of Korea, Lux-

embourg, Madagascar, Malawi, Mauritius, Mexico, Morocco, Netherlands, New

Zealand, Nigeria, Norway, Panama, Paraguay, Peru, Philippines, Portugal, Sierra

Leone, Spain, Sri Lanka, Sweden, Switzerland, Syrian Arab Republic, Thailand,

Turkey, United Kingdom, USA, Zambia, and Zimbabwe.

Figure 1 plots KR Growth across time for countries in my sample. For illustra-

tive purposes, I grouped countries according to the World Bank income classifica-

tion. KR Growth in low income, lower-middle income, and upper-middle income

countries appears to move together. Additionally, KR Growth varies greatly for

those countries. According to this measure, from 1970-1975, these countries expe-

rienced large technological growth before seeing substantial technological regress in

the following lustrum. Conversely, technological growth in high income countries

appears to remain relatively stable over time.
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Figure 1: KR Growth by Income Group
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3.2 Technological Progress: Patent Application Counts

I collected patent application counts from the World Bank as a proxy for techno-

logical progress. Two characteristics make patent application counts particularly

suitable to my application. First, a long time series is available for many countries.

Second, unlike major innovation counts, for example, patent application counts

are an objective measure.

As with any proxy, patent application counts do have their drawbacks. For one,

the establishment of the European Patent Office and World Intellectual Property

Organization in the 1970s may have changed patent application behaviour of many

european nations (Geert Boedt, personal communication, May 11, 2012). Addi-

tionally, a patent application does not necessarily imply that a valid innovation

was made. The application may be denied, and even if accepted, the innovation

may never make it to the market (Alexopoulos and Cohen, 2011).

I expect the number of patent application to increase with the number of
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workers in a population. All else equal, more people innovating should lead to

more innovation. For this reason, I normalize the number of patent applications

by the number of workers in each country for each year. This gives the number of

patent applications per one thousand workers.

Observations are reported every 5-years with gaps from 1960 through 2010.

The sample includes the following countries: Algeria, Argentina, Armenia, Aus-

tralia, Austria, Bangladesh, Belarus, Belgium, Brazil, Bulgaria, Canada, Chile,

China, Hong Kong, Colombia, Costa Rica, Croatia, Cuba, Czech Republic, Den-

mark, Estonia, Finland, France, Georgia, Germany, Greece, Guatemala, Hungary,

Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jor-

dan, Kazakhstan, Kenya, Latvia, Lithuania, Luxembourg, Madagascar, Malaysia,

Malta, Mexico, Mongolia, Morocco, Netherlands, New Zealand, Nigeria, Nor-

way, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Repub-

lic of Korea, Republic of Moldova, Romania, Russian Federation, Saudi Ara-

bia, Serbia, Singapore, Slovakia, Slovenia, South Africa, Spain, Sri Lanka, Swe-

den, Switzerland, Syrian Arab Republic, Tajikistan, Thailand, Tunisia, Turkey,

Ukraine, United Kingdom, USA, Uruguay, Uzbekistan, Venezuela, Viet Nam, and

Zimbabwe.

Figure 2 plots patent applications per one thousand workers (hereafter referred

to simply as “Patent Applications”) against time for countries in my sample.

Again, I grouped countries according to the World Bank income classification.

High income countries file many more patents and experience a slight upward

trend in patent applications not experienced by the other income groups. It is

worth noting that figure 2 and figure 3 look very different despite the fact that

both variables are being used to measure the same thing. This is in part caused by

the fact that KR Growth allows for technological regress while Patent Applications
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does not.

Figure 2: Patent Applications by Income Group
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3.3 Age Distribution and Controls

I collected age structure data from the United Nations (UN). The UN reports

observations every 5 years for population age cohorts 5 years in length. The data

is in count form meaning that for a given year and a given country, I observe

the number of individuals aged 15–19, the number of individuals aged 20–24, the

number of individuals aged 25–29, etc.. I convert this to proportions so that I

observe the proportion of each population in each age cohort.

Life expectancy, total population, and real GDP per worker are also included

in select specifications. Life expectancy is available from the World Bank and

is defined as the number of years a newborn infant is expected to live, holding

current mortality patterns constant. Real GDP per worker (hereafter referred to

as RGDP) is available from PENN World Tables and total population is available

from the UN.
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4 Statistical Method and Results

4.1 Identification

My sample contains substantial time series variation due to the postwar baby

boom. Figure 3 groups countries based on income and plots the proportion of the

population aged 25–34 for each. In low income countries the proportion rises from

11% in 1980 to 15% in 2010 (a 36% increase). Meanwhile, high income countries

experience a 23% increase between 1970 and 1990.

Figure 3: Time Series Variation by Income Group
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The variation is even more pronounced when broken down by country. Figure

4 graphs the proportions of population aged 25–34 across time in Denmark, Ger-

many, and the USA. For the USA, the proportion rises from approximately 12%

in 1965 to 18% in 1985 (a 50% increase), before falling to 14% in 2010 (a 22%

decrease).
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Figure 4: Time Series Variation by Country
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This variation allows me to estimate the following fixed effects model:

hit = βxit + φt + φi + uit (3)

where i is the individual country and t is time. hit is the technological growth vari-

able. Depending on the specification, it will be either KR Growth or Patent Appli-

cations. xit is a vector of explanatory variables that includes a set of age structure

variables along with RGDP, total population, and life expectancy.1 RGDP proxies

for development factors that are not constant over time, while total population

controls for population changes. φi is the set of country fixed effects that control

for unobserved heterogeneity across countries that is constant over time; φt is a

set of time fixed effects controlling for time variant shocks common to all coun-

tries; uit is the error term. Although serial correlation of the error term should be

1Infant mortality rates and dependency ratios were also tried in various specifications. How-
ever, none was statistically significant at conventional levels.
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minimized since observations are in 5 year intervals, I still cluster standard errors

by country in all specifications.

4.2 Estimation

I estimate equation (3) with age structure data implemented as proportional co-

horts. Since the proportions sum to unity, at least one cohort must be dropped to

prevent singularity in (X ′X). I choose to drop age cohorts below 15 and above 64

years of age. The coefficient estimate for any included cohort is then interpreted

as the effect of a shift in age share out of the omitted cohorts and into the included

cohort.

Table 2 presents estimation results with KR Growth as the regressand. Column

1 is estimated with OLS. Only cohort 55–64 is statistically significant (with a

positive coefficient) at the 5% level. The inclusion of country fixed effects (column

2) greatly affects estimates. Cohort 55–64 remains significant, and cohort 34–44

is now also significant (with a positive coefficient) at the 5% level.

Columns 3 adds in year fixed effects (not reported). They are jointly significant

at the 1% level. However, none of the cohort variables in this specification is

significant at conventional levels. Life expectancy is significant in column 2, but

not column 3. This is likely because it is picked up in the year fixed effects.

Strangely, though total population has a positive effect as we might expect in

column 1, its coefficient is negative and significant in columns 2 and 3.
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Table 2: KR Growth Estimation Results

(1) (2) (3)
KR Growth KR Growth KR Growth

total population 0.000∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000)

life expect. 0.001∗∗ 0.002∗∗∗ 0.000
(0.000) (0.000) (0.001)

cohort 15–24 -0.033 -0.005 -0.009
(0.060) (0.067) (0.064)

cohort 25–34 0.071 0.085 0.057
(0.073) (0.075) (0.080)

cohort 35–44 -0.013 0.213∗∗ 0.129
(0.075) (0.092) (0.118)

cohort 45–54 0.033 0.183 0.016
(0.105) (0.121) (0.100)

cohort 55–64 -0.188∗∗ -0.322∗∗ -0.067
(0.080) (0.127) (0.109)

constant -0.027∗∗ -0.121∗∗∗ -0.002
(0.011) (0.026) (0.054)

country f.e.. No Yes Yes
year f.e.. No No Yes

obsv. 269 269 269

Note: Standard errors, reported in parentheses, are clustered at
the country level. ***, **, * Statistically distinct from zero at the
1%, 5%, and 10% level respectively. Dependent variable is the ge-
ometric average annualized growth rate of technology for the pe-
riod t to t+5

Table 3 reports estimation results using the natural log of Patent Applica-

tions as the regressand. Total population does not factor into these specifications

because the dependent variable has already been normalized by the working-age

population. Column 1 is estimated using OLS. The 55–64 age group is statistically

significant (with a positive coefficient) at conventional levels and appears to have

the largest impact on patent applications. Once country fixed effects are added,

the magnitude decreases greatly and statistical significance is lost.
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Table 3: Patent Applications Estimation Results

(1) (2) (3)
Log(Patent Apps) Log(Patent Apps) Log(Patent Apps)

life expect. 0.008 -0.021 0.058∗∗

(0.030) (0.019) (0.027)

RGDP 0.000∗∗∗ -0.000 0.000∗

(0.000) (0.000) (0.000)

cohort 15–24 11.519∗∗ 3.032 3.476
(5.209) (3.509) (3.063)

cohort 25–34 -8.746∗ -0.371 5.009∗

(4.503) (2.568) (2.866)

cohort 35–44 3.187 8.934∗∗ 13.063∗∗∗

(5.335) (4.008) (4.251)

cohort 45–54 11.094∗∗ 14.762∗∗∗ 21.770∗∗∗

(4.559) (4.353) (5.633)

cohort 55–64 35.033∗∗∗ 5.431 9.606
(5.450) (7.907) (6.799)

constant -9.727∗∗∗ -5.158∗∗∗ -13.884∗∗∗

(1.823) (1.586) (2.386)

country f.e. No Yes Yes
year f.e. No No Yes

obsv. 568 568 568

Note: Standard errors, reported in parentheses, are clustered at the country level.
***, **, * Statistically distinct from zero at the 1%, 5%, and 10% level respec-
tively. Dependent variable is the natural log of the number of patent application
per 1000 workers. RGDP is real gross domestic product per worker

Column 3 adds year fixed effects (jointly significant at the 1% level). Cohort

45–54 and cohort 35–44 have the largest impacts and are statistically significant

at the 1% level, suggesting that a shift in population proportion from age groups

younger than 14 and older than 65 to the 35–54 age group causes the largest

increase in technological progress.

Upon closer inspection, column 3 appears to illustrate a life cycle hypothesis.

As a greater proportion of the population is shifted into older cohorts, there is an
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increasing positive effect on technological progress until a peak is reached at the

45–54 cohort. The positive effect is lessened in the 55–64 cohort and is presumably

smaller or even negative in more elderly cohorts. A similar shape is seen in table

2 column 3.

4.3 Multicollinearity

The results in section 4.2 may be imprecise because of multicollinearity. The spec-

ifications include age structure data as proportional cohorts. Even after dropping

three cohorts to avoid perfect collinearity, multicollinearity is likely still rife since

the cohorts move together by definition. Severe levels of multicollinearity cause

difficulty in measuring the individual contribution of each independent regressor,

making it difficult to trust the estimates.

A couple of additional issues arise with the use of proportional cohorts. Firstly,

there is no rule for how cohort lines should be drawn. For example, should 35-year

olds be grouped in a cohort with 40-year olds or in a cohort with 30-year olds?

This arbitrariness cannot be avoided and the problem is further compounded when

behaviour between similar age groups varies significantly (Macunovich, 2009). Ad-

ditionally, interpreting estimates as the effect of a shift in age structure out of some

combination of excluded cohorts and into included cohorts only gives a vague pic-

ture of age structure effects.

For these reasons, I use Almon’s (1965) distributed lag technique to acco-

madate age structure data in my model. This method was first applied to age

structure data by Fair and Dominguez (1991) and is implemented beginning with

the following specification:

hit = βxit + γ1p1it + γ2p2it + ...+ γJpJit + φt + φi + uit (4)

J is the number of population cohorts and p1it is the proportion of the population
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in the first age cohort in country i. Since the UN reports age structure in 5 year

cohorts, there are 17 population cohorts in my sample.

I constrain the age structure coefficients, γj, to lie along a third-order polyno-

mial so that:

γj = η0 + jη1 + j2η2 + j3η3

This allows equation (4) to be re-written as

hit = βxit+η0

17∑
j=1

pjit+η1

17∑
j=1

jpjit+η2

17∑
j=1

j2pjit+η3

17∑
j=1

j3pjit+φt+φi+uit (5)

Next, because pjit sums to 1 across j, I impose
17∑
j=1

γj = 0 to allow estimation.

This restriction yields:

η0 = −(η1/17)
17∑
j=1

j − (η2/17)
17∑
j=1

j2 − (η3/17)
17∑
j=1

j3 (6)

which gives

hit = βxit + η1c1it + η2c2it + η3c3it + φt + φi + ut (7)

where

c1it =
17∑
j=1

jpjit − (1/17)
17∑
j=1

j (8)

c2it =
17∑
j=1

j2pjit − (1/17)
17∑
j=1

j2 (9)

c3it =
17∑
j=1

j3pjit − (1/17)
17∑
j=1

j3 (10)

Estimation now involves only three parameters, η1, η2, and η3, rather than seven-

teen. From the estimates of η1, η2, and η3, I can back out η0 using equation (6).

I can then recover the implied γj coefficients.
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Table 4: KR Growth Estimation Results

(1) (2) (3)
KR Growth KR Growth KR Growth

total population 0.000 0.000∗ -0.000∗∗∗

(0.000) (0.000) (0.000)

life expect. 0.000 0.000 0.001∗

(0.000) (0.000) (0.001)

c1 0.167∗∗∗ 0.090∗∗ 0.167∗∗

(0.059) (0.040) (0.069)

c2 -0.027∗∗∗ -0.015∗∗ -0.029∗∗

(0.009) (0.006) (0.011)

c3 0.001∗∗∗ 0.001∗∗ 0.001∗∗∗

(0.000) (0.000) (0.001)

constant 0.009 0.012 0.018
(0.022) (0.020) (0.035)

country f.e. No Yes Yes
year f.e. No No Yes

obsv. 269 269 269

Note: Standard errors, reported in parentheses, are clustered at
the country level. ***, **, * Statistically distinct from zero at the
1%, 5%, and 10% level respectively. Dependent variable is the ge-
ometric average annualized growth rate of technology for the pe-
riod t to t+5

Table 4 presents results implementing Almon’s method using KR Growth as

the regressand. c1, c2, and c3 are jointly significant at the 1% level in columns

1 and 3 and are significant at the 10% level in column 2. c1 and c3 are always

estimated with positive signs while c2 has a negative sign in all columns. 2 Again,

year fixed effects (not reported) in column 3 are jointly significant at the 1% level.

Using estimates from column 3, I back out the implied γ̂j coefficients along

with the associated 95% confidence bands and plot them in figure 5. We see a

small hump towards the beginning of the age groups, peaking at 15-19. However,

2I initially began estimating with a ninth-order polynomial and worked my way down, testing
for joint significance. A second-order polynomial is not significant at conventional levels while a
fourth-order polynomial is only marginally significant and not robust to changes in specification.
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the coefficient estimate on this age group is not statistically significant. Strangely,

the age cohort coefficients begin to rise again at the 50–54 age cohort.

Figure 5: KR Growth Estimation:
Implied Age Structure Coefficients
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Note: The figure shows the implied γ̂j coefficients and the 95%
confidence interval generated from the results in table 4 column 3.

Table 5 reports estimates implementing Almon’s method using the natural

log of Patent Applications as the regressand. Column 1 is estimated with OLS.

Adding country fixed effects in column 2 causes the magnitude of the estimates to

fall. c1, c2, and c3 are jointly significant at the 1% level in columns 1 and 2, and

jointly significant at the 5% level in column 3.

Figure 6 plots the implied γ̂j coefficients and 95% confidence bands from col-

umn 3. The graph shows a clear life cycle story and reaffirms the estimates in

table 3 column 3. The peak age group for innovation is the 50–54 group, and its

coefficient is significant at the 1% level. In fact, all γ̂j coefficients estimated for

cohorts falling between 35 years and 65 years are statistically significant at the

1% level.
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The shape of the life cycle pattern is also of interest. We see only a gradual

rise in innovation with age up to the 50–54 age group. That is, there is a 25

year age gap between the first positive coefficient at the 25–30 age cohort and

the innovation peak at the 50–54 cohort. However, once this peak is reached,

innovation drops off drastically; within the next 15 years, the age shares become

negatively associated with technological growth. These results are robust to the

use of a time trend rather than year dummies and the inclusion of other (though

not statistically significant) explanatory variables.

Table 5: Patent Applications Estimation Results

(1) (2) (3)
Log(Patent Apps) Log(Patent Apps) Log(Patent Apps)

RGDP 0.000∗∗∗ 0.000 0.000∗∗

(0.000) (0.000) (0.000)

c1 -10.876∗∗∗ -9.500∗∗∗ -4.740
(3.421) (3.185) (3.504)

c2 1.827∗∗∗ 1.798∗∗∗ 1.209∗∗

(0.551) (0.502) (0.542)

c3 -0.076∗∗∗ -0.083∗∗∗ -0.061∗∗∗

(0.025) (0.021) (0.022)

constant -3.197∗∗∗ -5.430∗∗∗ -3.751∗∗∗

(1.170) (1.008) (0.654)

country f.e. No Yes Yes
year f.e. No No Yes

obsv. 568 568 568

Note: Standard errors, reported in parentheses, are clustered at the country level.
***, **, * Statistically distinct from zero at the 1%, 5%, and 10% level respec-
tively. Dependent variable is the natural log of the number of patent application
per 1000 workers. RGDP is real gross domestic product per worker.
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Figure 6: Patent Applications:
Implied Age Structure Coefficients
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Note: The figure shows the implied γ̂j coefficients and the 95%
confidence interval generated from the results in table 5 column 3

4.4 Instrumental Variables

Since populations are mobile, not only might age structure affect technological

growth, but it is likely that technological growth can impact age structure. For

example, a country with high technological growth may see an influx of immi-

gration while a country with low technological growth experiences a high rate of

emigration. Additionally, technological growth may decrease infant mortality rates

and increase life expectancy, both of which directly affect age structure. If present,

this simultaneity will cause correlation between the age structure regressors and

error term, leading to biased and inconsistent estimates. Since I cannot possibly

control for all paths of this feedback, I choose to instrument for age structure.

For an instrument zit to be valid, I require that (a) Cov(zit, cpit) 6= 0, p =

1, 2, 3, and (b) Cov(zit, uit) = 0. That is, an instrument must be correlated with

my age structure variables and uncorrelated with omitted determinants of tech-
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nological growth (Angrist and Pischke, 2009). I therefore instrument as follows:

I take cohort proportions at year t-5 and shift them forward by five years. For

example, if 5% of the population is in cohort 25–30 at t-5, I shift this proportion

so that 5% of the population is in cohort 30–35 at time t. I then calculate each of

z1it, z2it, and z3it in identical fashion to c1it, c2it, and c3it respectively. 3.

My instruments and the cpit variables are highly correlated since age struc-

ture does not tend to follow a random walk. Instead, it trends in one direction

or another for many years as generations make their way through successive age

cohorts. My instruments also satisfy the second requirement: uncorrelated with

the error term. The correlation between uit and cpit is generated by the simultane-

ity operating through mortality, immigration, and emigration rates. By shifting

the cohorts as described above, I am essentially generating the age distribution

that would result in the absence of immigration, emigration, and mortality; thus

eliminating the source of simultaneity.

Table 6 presents instrumental variable estimation results. Both specifications

are estimated using two stage least squares. Column 1 estimates with KR Growth

as the dependent variable. c1, c2, and c3 are jointly significant at the 5% level. The

graph of implied coefficients (figure 7) closely resembles the implied coefficients in

figure 5. The Cragg-Donald F-Statistic for strength of instruments has a value of

165.91, allowing me to reject the null of weak instruments at the 1% level.

Column 2 present results using the natural log of Patent Applications as the

dependent variable. c1, c2, and c3 are jointly significant at the 5% level and the

graph of implied coefficients (figure 8) closely resembles figure 6. The magnitude

of the coefficients, however, is reduced by approximately 20% from figure 6. Nev-

ertheless, the peak is again at the 50–54 age cohort and the shape is consistent.

3 The zpit instruments are calculated using only 16 age cohorts since the 0–5 cohort is lost
during of the shift
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We see a gradual run-up to the peak, followed by a sharp decline. Once again I re-

ject the null of weak instruments at the 1% level with a Cragg-Donald F-Statistic

equal to 289.43.

Table 6: IV Estimation Results

(1) (2)
KR Growth Log(Patent Apps)

total population -0.000∗∗∗

(0.000)

life expect. 0.001 0.049∗∗

(0.001) (0.023)

RGDP 0.000∗∗

(0.000)

c1 0.146∗∗ -3.636
(0.071) (2.997)

c2 -0.024∗∗ 0.975∗∗

(0.012) (0.462)

c3 0.001∗∗ -0.049∗∗

(0.001) (0.019)

constant 0.024 -6.835∗∗∗

(0.035) (1.732)

country f.e. Yes Yes
year f.e. Yes Yes

obsv. 269 568

Note: Standard errors, reported in parentheses, are clus-
tered at the country level. ***, **, * Statistically distinct
from zero at the 1%, 5%, and 10% level respectively. Col-
umn 1 instruments are z1it, z2it, z3it, total population,
and life expectancy. Column 2 instruments are z1it, z2it,
z3it, RGDP, and life expectancy.
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Figure 7: KR Growth:
IV Implied Age Structure Coefficients
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Note: The figure shows the implied γ̂j coefficients and the 95%
confidence interval generated from the results in table 6 column 1.

Figure 8: Patent Applications:
IV Implied Age Structure Coefficients
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Note: The figure shows the implied γ̂j coefficients and the 95%
confidence interval generated from the results in table 6 column 2.
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5 Discussion

To summarize, my different regressands provide conflicting results. When Patent

Applications is regressed on age structure, a clear life cycle hypothesis emerges.

Innovation gradually rises until it reaches a peak at the 50–54 age group, then

rapidly declines after that. This result remains even after addressing endogeneity

concerns by instrumenting for age structure. Conversely, when KR Growth is

regressed on age structure, a clear life cycle hypothesis does not emerge. This

result (or lack thereof) is also robust to instrumenting and changes in specification.

The question arises of which result we should trust. Both dependent variables

are imperfect measures so there is no clear answer. The KR Growth measure

is sensitive to the constant returns to scale assumption; variable returns could

have been assumed in its place. Additionally, the precision of the estimated world

technology frontier used to measure technological growth could be increased by

differentiating between skilled and unskilled labour. A more precise construction

may lead to different results (Growiec, 2012).

The Patent Applications measure is also subject to valid criticisms. Patent

filing behaviour can be affected by government policy changes. This means, it is

possible for my results to be driven by changes in government R&D policy that

are correlated with movements in age structure. This problem is likely mitigated

by the size and heterogeneity of the cross sectional dimension of my panel, though

it is still a concern. An additional criticism is that a patent application does

not necessarily lead to a patent (a valid innovation). And even if a patent is

granted, there is still no certainty that the innovation will ever make it to market

or be implemented. Therefore, I am implicitly assuming that a constant fraction

of patent applications each year for each country is granted into patents and

implemented. The merits of this assumption are open to debate.
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Despite these concerns, the Patent Applications results are particularly ap-

pealing, especially because they are consistent with results of the related studies

of Feyrer (2007) and Lindh and Malmberg (1999). Feyrer finds that an increase in

the share of workers aged 40–60 has a positive impact on productivity. Similarly,

Lindh and Malmberg find that economic growth increases with the proportion of

the population between the ages of 50 and 64. My results suggest that one of

the driving forces behind the higher productivity and economic growth for these

groups is an associated increase in innovation.

I have shown my results to be statistically significant. The obvious question

then becomes: are they economically relevant? That is, does age structure have

a large effect on technological progress? To answer this question, I follow Higgins

(1998) and calculate the change in Patent Applications attributable to changes in

age distribution for periods in my sample. To do this, I begin by calculating the

age structure effect as

Ait =
17∑
j=1

|(pjit − p̄ji)|γj (11)

where γj is the implied coefficient for cohort j from figure 8, pjit is the population

share in cohort j for country i at time t, and p̄ji is the mean population share in

cohort j for country i over the entire sample period. Thus, Ait is the age structure

effect for country i in period t, and represents the deviation from country i’s mean

Patent Applications that is attributable to age structure.4 On its own, the age

structure effect is not terribly informative; However, taking the exponential of the

difference in age structure effects for any two years gives the percentage change

in Patent Applications induced by age structure. This is the age structure swing.

Since I estimated in logs and am converting to levels, the formula for the age

4The age structure effect is measured relative only to the individual country means. This is
done because the γj coefficients are estimated with a fixed effects model. Another valid approach
would be to estimate without fixed effects then measure the age structure effect relative to the
sample means.
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structure swing is as follows:

Si,T = e(Ai,t2
+σ̂2

2/2)−(Ai,t1
+σ̂2

1/2) (12)

where Si,T is the age structure swing for country i over period T , t1 is the first

year of period T , and t2 is the last year of period T . σ̂2
2 and σ̂2

1 are the estimated

residual variances of Ai,t2 and Ai,t1 respectively. σ̂2
2 and σ̂2

1 are likely very close

in magnitude. For this reason and because of difficulty calculating their values, I

instead calculate the age structure swing with the following approximation:

Si,T = eAi,t2
−Ai,t1 (13)

The Age structure swings are quite large. Table 7 presents the swings for

Canada, USA, and UK for 1975–2000. For Canada, 13.9% of the increase in

Patent Applications over that period is induced by changes in age structure. From

1975–2000 the young portion of the population fell by 32% while the middle and

old portions rose by 8.6% and 36% respectively. For shorter time periods with

relatively large changes in age distribution, the age structure swings for many

countries (not reported) suggest that up to 50% of the change in Patent Applica-

tions is induced by age structure. These large age structure swings are consistent

with the findings of Higgins for savings rates. For example, in Canada for the

period 1960–1990, Higgins finds that age structure induced an increase in savings

equal to 4.2% of GDP.

Table 7: Age Structure Swings for 1975–2000

Age Structure Swing Young Middle Old
Canada 13.9 -32.3 8.6 36.3

USA 10.7 -22.7 7.1 9.5
U.K. 13.8 -19.2 19.3 0.9

Note: Young: ages 0–19; Middle: ages 20–65; Old: ages 65+.
Table reports percentage changes between 1975 and 2000.
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6 Conclusion

Though there are several candidate hypotheses, this essay is silent as to exactly

what is driving the Patent Applications results. One possibility is an experience-

based human-capital explanation suggested by Lindh and Malmberg (1999). It

may be that it takes until middle-age for individuals to accrue the experience

necessary to effectively innovate. Another possibility is a savings behaviour ex-

planation. Aggregate savings are high when a large portion of the population is

middle-aged, meaning that more money is available for investment in innovation.

However, given the openness of economies, and the fact that most innovation is

generated by large enterprises, I am not sure how much traction this explanation

has.

A final possibility is that when a large portion of the population is middle-

aged, a relatively smaller portion of the population falls in dependent age groups.

Funds that would usually be used to care for infants and the elderly can instead be

directed to other activities such as R&D. However, I estimate several specifications

experimenting with dependency ratios (not reported), and the results indicate that

this is not the case. It is likely that a combination of the above explanations — a

joint optimization of human capital and savings — drives the peak of innovation

to the 50–54 age group.

The shape of the life cycle results has important implications. It suggests that

as the baby boom population moved through age cohorts, economies experienced

an increasing rate of technological progress (as opposed to the counterfactual in

which there is no baby boom population). Throughout the last two decades,

as the baby boom was near the peak innovation age, there was an innovation

dividend. Unfortunately, this generation has now begun to retire. The steep

decline in technological progress associated with cohorts greater that 50–54 years,
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and the size of the population now entering these cohorts, suggests we may soon

see a decrease in technological growth. This will make the burden of the rising

dependency ratio that much more difficult to bear for younger generations.

Finally, further research is required to reconcile the results of the computed

growth measure with the results of the patent applications proxy. A first step may

be to experiment with different constructions of the world technology frontier.

Growiec’s twelve different computed measures based on changes in assumptions

and information sets is clear evidence that experimentation is warranted.
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