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Abstract

A good estimate for the state-price density has important applications both
practically, to derivatives valuation, and in terms of theoretical economics, to
our understanding of preferences and risk tendencies. I estimate the state-price
density using transaction level data on S&P500 call and put options from 1993
using a nonparametric estimation technique. By using transaction-level data,
I am able to obtain estimates for the state-price density for individual days.
The estimates are compared to the Black-Scholes lognormal state-price density
and are seen to be negatively skewed, have higher kurtosis, and a higher center,
particularly for high times to maturity.
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1 Introduction

At the core of financial theory is the problem of how to optimally allocate capital over
time. Since what will happen in the future is not known for sure, agents must invest
in the presence of uncertainty. The time-state preference model was developed by
Arrow (1964) and Debreu (1959) in order to formalize the problem of agents investing
under uncertainty. In this model, there is a set of possible states of nature that could
unfold in the future and an associated price that a consumer today would pay to
be guaranteed $1 of consumption in each particular state. This is termed the state-
price, or the price of an elementary security. Consumption in a state that has a
high probability of occurring would have a higher value today than consumption in
a state with a low probability of occurring, all else equal. A portfolio consisting of
all elementary securities guarantees $1 of consumption at time T, no matter what
state is realized. Then the price of such a portfolio must equal the price of a bond
that pays $1 at time T, or B(0, T ) = 1/(1 + r).

A well-known way of interpreting state-prices is as a measure of probability. That is,
the future value of the state prices sum to one, like the traditional measure of prob-
ability and the “probability” of any individual event must be greater than zero and
less than unity. This alternate measure of probability is known as the risk-neutral
probability (RNP). The name comes from the interpretation that, for a risk-neutral
representative agent, the RNP would be equivalent to the objective probability. The
objective probability, traditional probability, and physical probability are all syn-
onymous. The degree of risk aversion of the market plays an important role in the
formation of state prices. Investors who seek to hedge downside risk may more
highly value states associated with unfavourable outcomes. The associated risk neu-
tral probability, or state price, of such events would tend be higher than the objective
probability.

Extending the discrete time model of Arrow and Debreu is the continuous time
counterpart, the state-price density (SPD). 1 The interpretation of the state price
density is that the area under the curve between x and x + dx is the cost today of
$1 of consumption in all states between x and x + dx. Since the concept of “state”
is somewhat abstract, we may think of states as the possible prices a stock could
take at some future time, T, conditional on today’s information set. Then the SPD
signifies the value that the market places on consumption conditional on each possible

1The state-price density is also referred to as the stochastic discount factor, the pricing kernel,
and the risk neutral density. These are all equivalent.
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realization of the stock price at time T, ST .

Being able to model the state price density is useful both for theoretical and practical
purposes. In terms of economic theory, the state price density characterizes the
preferences of the market. Under certain restrictions, namely complete markets and
homothetic preferences, there is a representative agent whose preferences are the
sum of all individual investor’s preferences. Given a model of the state price density,
that is, the market implied or risk neutral density, in addition to a model of the
objective probabilities, the degree of risk aversion of the representative agent may
be surmised. The market would be considered risk averse if the market-implied
probabilities of extreme events were lower than the actual probabilities. On a more
practical level, a good model of the SPD would be invaluable in pricing derivatives.
Derivatives are just portfolios of elementary securities. Since the SPD prices the
continuum of elementary securities, it may also be used to price any derivative, since
derivatives are just portfolios of elementary securities.

In Section 1.1 I introduce the state price density and show how it may be derived
from a call option pricing function, estimated from an observed set of option prices.
I derive the state price density in the Black-Scholes case to provide a reference for
my nonparametric estimates. In Section 1.3 I discuss how the Black-Scholes im-
plied volatility may be calculated. I explore filtering techniques in the context of
implied volatility to improve upon the Newton-Raphson algorithm for calculating
the minimum of a function. In Section 1.4 I give a mathematical background of non-
parametric estimation techniques, particularly on the Nadaraya Watson estimator.
Given the tools to estimate the state price density, I simulate a set of option prices in
Section 2 according to the Black-Scholes formula and show how the nonparametric
estimator may be used to recover the SPD. In Section 3.1 I turn to estimating the
SPD using transaction level options data for puts and calls traded on the S&P500
index in 1993. In particular, I estimate the SPD for individual trading days, avoiding
the common assumption that the SPD does not change over the year. I argue why
transaction level data provides a more realistic measure of value than the bid-ask
midpoint. I conclude in Section 4 and derive the semiparametric estimator I use for
estimation in the Appendix.

1.1 The State-Price Density

Modeling the state-price density is simply the continuous-time equivalent of modeling
the prices of all individual Arrow-Debreu (A-D) securities. Such a model can be used
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to infer the prices of A-D securities implied by the prices of options observed in the
marketplace. Pricing securities based on taking combinations of other securities,
a cornerstone of financial theory, is known as no arbitrage pricing. For example,
consider a world in which there are only two possible future states of the world: up
and down. Suppose there are three securities in the market place, with respective
payoffs of [up,down] for the three securities of [1,1], [1,2], and [2,3]. In order for
there to not be an arbitrage opportunity and because the third security has a payoff
equivalent to the sum of the first and second, the price of the third must equal the
sum of the prices of the first and second. Moreover, since there are two securities with
linearly independent payoffs and only two states of the world, the no-arbitrage prices
of A-D securities may be inferred through simple linear algebra. Consider a portfolio
long in security two and short in security one. Then the payoff is [2, 1] − [1, 1] =
[1, 0]. This is the Arrow-Debreu security corresponding to the up state and must be
priced the same as the corresponding portfolio in order for there to be no arbitrage
opportunity. Finally, the price of the A-D security corresponding to the down state
is just the price of the first security less the price of the AD1. That is, [1,1] - [1,0]
= [0,1]. Thus, by observing the market prices of a set of securities with payoffs that
span all states of nature, the complete set of AD prices may also be priced.

However, the real world is more complicated than the two-state example just dis-
cussed. When considering the random path of the price of a stock, there is a con-
tinuum of possible prices that the stock could take for some future date2. However,
there are only a finite number of traded securities. Not only is the number of traded
securities finite, but it is small relative to the infinity of states of nature. That is, the
market is not complete. For example, options traded on the Chicago Board Options
Exchange have strike prices quoted in intervals of $5 near the money, with far fewer
options traded deep out of the money. Thus, a model is needed in order to “complete
the market” by interpolating the theoretical prices of all possible options. Only after
such an option pricing function is modeled can the associated state-price density be
recovered.

The idea of recovering the SPD from a set of option prices was first introduced by
Ross (1976) in which he presents the idea of building up derivatives from a set of
“primitives”, or Arrow Debreu securities. Banz and Miller (1978) expand on this by
discussing how the primitive securities implied by a market portfolio may be used to
value projects. However, the SPD was not formally characterized until 1978, when

2In practice, there is not actually a continuum of possible prices that the stock could take, since
there is the real world constraint that options are quoted in 1/16ths of a dollar and may thus only
take values in multiples of 1/16 of a dollar (CBOE conventions in 1993).
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Breeden and Litzenberger derived the analytical solution for the SPD, given a call
option pricing function. First, the price of a call option is expressed in terms of the
risk neutral measure Q, or “equivalent martingale measure”:

C(St, K, T, rt,T , δt,T ) = e−rt,T (T−t)EQ[max(ST −K, 0)]

= e−rt,T (T−t)

∫ +∞

K

(ST −K)f ∗(ST )dST

The result from Breeden and Litzenberger is that the second derivative of the call
option pricing function (C) with respect to the strike price (K) is the state price
density.

∂2C

∂K2
= e−rt,T (T−t)f ∗(K) (1)

= πST=K

That is, ∂2C/∂K2 is the state price of the event that the terminal stock price exactly
equals the strike price (πST=K). Notably, the statement makes no assumptions on
the functional form of the call option pricing function.3 In particular, the call is not
assumed to be priced according to the Black-Scholes formula.

1.2 The Black-Scholes Case

In the most basic case, where the stock price follows a geometric Brownian motion
with constant volatility and interest rates held constant, the SPD may be derived
algebraically. The parameters may then be estimated from data. First, the call
option pricing function must be derived. When the Black-Scholes assumptions are
satisfied, the call option price is described by Equation (3), Black and Scholes (1973).
The equation is derived through a no-arbitrage argument. The payoff of a call option
is replicated through a portfolio of the stock and risk free bond, implying the price
of the call option must equal the price of the portfolio. The assumptions are that the
stock price follows a geometric Brownian Motion with constant drift and volatility,
there are no market frictions, markets are complete, and there are no arbitrage
opportunities. The Black-Scholes formula for the price of a call option is:

3A trivial assumption is that the call price is a function of the strike price - but this is obvious.
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CBS(St, K, T, rt,T , δt,T ; σ) = Ste
−δt,TTΦ(d1)−Ke−rt,TTΦ(d2) (2)

where

d1 =
ln(St/K) + (rt,T − δt,T + 1

2
σ2)T

σ
√
T

, d2 = d1− σ
√
T

or all together, with δ = 0

CBS = StΦ(
ln(St/K) + (rt,T + 1

2
σ2)T

σ
√
T

)−Ke−rt,TTΦ(
ln(St/K) + (rt,T − 1

2
σ2)T

σ
√
T

)

(3)
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(b) Varying K

Figure 1: Notice that in (a), we see call option price increasing in S0 and in (b) we see call option
price decreasing in K. Both of these make sense. A call option is the right to buy the underlying
asset at price K. Clearly this is more valuable for either higher S0 (given fixed K) or lower K
(given fixed S0). These figures represent neither real data nor simulated data, but are simply the
geometric representations of Equation (3)

Now the state price density is derived, here denoted f ∗, by plugging CBS from Equa-
tion (3) into the general form of the SPD derived by Breeden and Litzenberger,
Equation (1).
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f ∗
BS,t(ST ) = ert,TT ∂2C

∂K2
|ST=K (4)

=
1

ST

√
2πσ2T

exp[− [ln(ST/St)− (rt,T − δt,T − σ2/2)T ]2

2σ2T
]

Figure 2: Black-Scholes State-Price Density
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Figure 2 is the geometric representation of Equation (4), where St = 450, r = 3%, and σ = 10%.
This may be thought of loosely as the market-implied likelihood of the index price falling in a
particular range for a contract with a particular number of days to maturity.

However, it is well known that the assumption that stock prices follow a geometric
Brownian motion with constant variance is misspecified. This may be observed as
follows. First, suppose that the stock price does follow a geometric Brownian motion.
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Then, by no arbitrage, and assuming constant volatility, the price of a call option
must be as described.

Then from observations of option price data in the market, we observe each variable
in Equation (3) apart from σ. The implied volatility is simply the unique value of σ
such that Equation (3) holds. Since we observe data on a cross section of options,
the implied volatility may be calculated from each individual transaction. Given
that Equation (3) is true, the implied volatility should be the same across time to
maturity and strike price. However, in practice, we observe all sorts of shapes when
graphing the implied volatility against strike price: volatility “smiles”, “smirks”, and
“sneers”.

Figure 3: Volatility “smile” for different days to maturity and strike price
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Notice that for options traded on both Aug 18 and Sep 3, there is an apparent smile for the options
with the closest maturity date, which flattens and becomes more of a “sneer” for longer times to
maturity. These two dates were chosen randomly as illustrative examples.

1.3 Computation of Implied Volatility

A well known way to numerically solve an equation in one unknown is by using the
Newton-Raphson Method. In general, an initial guess is first made for the value of
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the variable being solved for, x0. The algorithm proceeds by making a subsequent
guess x1, which is the intersection between the tangent line from a first guess and
the x axis. That is:

x1 = x0 −
f(x0)

f ′(x0)
(5)

The algorithm proceeds through subsequent guesses of x until the difference between
subsequent guesses is sufficiently small, or abs(xn+1 − xn) < a, for some threshold
value a.

Before initiating the computation of implied volatility, the data must be filtered of
observations for which the implied volatility cannot be calculated or for which the
calculation may be wrong. First, the actual option price must be less than the Black-
Scholes price of an option with the same strike price, time to maturity, and interest
rate, with a volatility that approaches zero. That is:

CBS(St, K, T, rt,T ; σ0+) ≥ C(St, K, T, rt,T ; σ) (6)

This is clear from the fact that volatility must always be greater than or equal to zero
and the realization that an increase in volatility decreases the Black-Scholes value of
the option, CBS. The filter uses a positive number close to zero rather than zero,
since the Black-Scholes formula for the price of a call option includes the d1 and d2
terms, which both require dividing by the volatility (Equation (3)).

To assess how well the method for calculating implied volatility performs, I run a
simulation. A sample dataset of 20,160 options is simulated, corresponding to 80
options per day, with various strike prices and times to maturity, over a 252 day year
(see section 2.2 for details on the data creation process). I then price the simulated
options according to the Black-Scholes formula, all with σ = 0.10. Now that there is
a dataset of options with strike price, time to maturity, stock price, option price, and
a constant interest rate of 3%, the implied volatility may be calculated. Since the
option prices were generated according the Black-Scholes assumptions, the implied
volatility should just be 0.10, given that the method for calculating implied volatility
is valid. It is useful to test the method first using simualted data, rather than actual
data, since the true value of σ is known with simulated data. For the actual SP500
options data, the true value of σ is unkown (given that the stock process follows a
Brownian Motion with constant volatility) or does not exist (given that the stock
process does not follow a Brownian Motion with constant volatility).

With any gradient method of optimization, such as Newton-Raphson, one must
always start with an initial guess for x0. There is no obvious value to start at,
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although a guess between 0% and 70% is reasonable (as discussed, all options with
implied volatility of greater than 70% are filtered out due to the noisiness of such
data). For my computations, I repeat the optimization over initial values σ0 of 0.1%,
1%, 2%, 3%, and 5%. If the algorithm fails to converge for a given initial guess, I
move to the next one.

Implied volatility is then calculated with a threshold set to 10−6 (Table 1). At the
start, 131 observations are filtered which violate Equation (6). After calculating
the implied volatility, of 20,029 remaining options, 19,526 were calculated correctly
(within 1% of the true value), while 634 had errors of greater than 1%. Of the 634
bad options, 131 had been filtered out already, leaving 503 remaining bad estimates.
All 131 options that were filtered out, would have given an incorrect volatility es-
timate had they been left in. The mean error of the unfiltered options with errors
greater than 1% is 2.6%. After repeating the experiment for a number of different
threshholds, the optimal threshhold is found to be 10−12 (Table 2). Only 107 options
are estimated incorrectly, or 0.5% of the filtered population, with a mean error of
1.6%.

Table 1: Accuracy of Implied Volatility Calculations, Threshold= 10−6

Filtered? σ ∼= 0.10 |0.10− σ| > .001 Total

No 19526 503 20029
Yes 0 131 131
Total 19526 634 20160

Table 2: Accuracy of Implied Volatility Calculations, Threshold= 10−12

Filtered? σ ∼= 0.10 |0.10− σ| > .001 Total

No 19922 107 20029
Yes 0 131 131
Total 19922 238 20160

Looking to explain the implied volatilities estimated with error, I examine the re-
lationship between moneyness and probability of having an incorrect estimate for
implied volatility. All poor estimates have moneyness, K/S, such that K/S < 0.94
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or K/S > 1.06. The filter from Equation (6) eliminates 131 of these poor estimates,
and those that it eliminates are all deep in the money options. This relationship
between distance from the money and probability of having implied volatility esti-
mated incorrectly may be explained by an understanding of how implied volatility
is calculated. In a dataset of option characteristics and prices, implied volatility is
calculated by taking the characteristics of an option, excluding the price, and plug-
ging in these characteristics along with guesses for σ into the Black-Scholes formula
for the price of a call option. For at the money options, a small change in volatility
may make a big difference to the probability that an option will be exercised and the
expected profit given that it is exercised. However, for far from the money options,
along with low volatility of the underlying stock, the option will almost certainly
be called in the case of in the money options (ie.; the option is like cash), and the
option will almost certainly never be called in the case of out of the money options.
When volatility is low, small changes in the volatility will have only minor impact on
the Black-Scholes implied price of these options. For example, the impact of a one
percentage point change in volatility may only have a $10−100 impact on the Black
Scholes implied price of the option. Then the limit of the largest generally available
numeric storage type, “double”, begins to bind. That is, the precision of double is
1.4x10−16, with a closest to 0 without being 0 value of 10−323.

The derivative of the Black Scholes option price with respect to σ, known in finance
as vega, is:

vega =
∂C

∂σ
= StN

′(
ln(St/K) + (rt,T − δt,T + 1

2
σ2)T

σ
√
T

)
√
T − t (7)
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Vega is highest for at the money options and declines sharply with distance from the money. For
options with moneyness outside [0.95,1.05] when T=2, vega is very tiny, which becomes an issue for
the Newton-Raphson algorithm of calculating implied volatility. Recall that the algorithm updates

with: x1 = x0 − f(x0)
f ′(x0)

. In the case of the Black-Scholes price of a call option f ′(x0) is defined as

vega. The reciprocal of a very tiny number is very large and at some point, becomes too large for
modern computer programs to store. Vega increases with time to maturity, so the problem arises
with options that are both far from the money and have a short time to maturity.
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Figure 4: Error in Implied Volatility Estimates, by Moneyness
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Of the 20,160 implied volatility estimates, 238 were greater than 1% away from the true value. All
of these poor estimates correspond to deep in the money or deep out of the money options, with
moneyness, K/S, such that K/S < 0.94 or K/S > 1.06. The filter from Equation (6) elimates 131
of these poor estimates, and those that it eliminates are all deep in the money



1.4 Nonparametric Methods

1.4.1 Kernel Regression

One method to estimate the state-price density is to estimate it non-parametrically,
without making any parametric restrictions on the underlying stock-price dynamics.
This method was first proposed by Aı̈t-Sahalia and Lo (1998). In contrast to para-
metric estimation, which makes certain assumptions on the functional form of the
option pricing function, and then estimates those parameters, nonparametric esti-
mation essentially involves taking local weighted averages across the observed data.
Parametric models are relatively rigid, in that they specify the same functional form
across all data. In contrast, a nonparametric model allows greater flexibility, by
using only data in the neighborhood of the point being estimated to perform the es-
timate. Thus, the shape of the estimated function in one neighborhood may be vastly
different from the shape of the estimated function in another neighborhood.

The primary method of nonparametric estimation is kernel regression. This estima-
tion technique estimates the value of a dependent variable Y given a set of regressors,
X. More precisely, if Y and X are jointly distributed, then the desired object is the
conditional expectation, µ(x) = E(Y |x) given a set of data. This may be generally
modeled as:

Y = g(X) + ǫ

Then the conditional expectation of Y is 4:

E(Y |X = x) =

∫

yfY |X(y|X = x)dy

=

∫

y
fY,X(y, x)

fX(x)
dy

=

∫

yfY,X(y, x)dy

fX(x)

where fY,X is the joint density of Y and X and fX(x) is the marginal density of X.
Since only a finite sample of x is observed, the integral is estimated by summation

4Bierens, Herman J. 1987, Kernel Estimators of Regression Functions, Advances in Economet-

rics: Fifth World Congress 1, 99-144.
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over the observed x. This is the Nadaraya-Watson nonparametric estimator, which
simplifies to:

E(Y |X = x) =

∑n
i=1 yiki

∑n
i=1 ki

, ki = k(
x− xi

h
) (8)

where h is the bandwidth parameter and k is the kernel function.

Like in ordinary least squares estimation (OLS) and maximum likelihood estimation
(MLE), the estimator is characterized by an objective function. The estimator brings
the estimated function as close to the true data as possible, in the sense of mean-
squared-error. That is, it solves the estimating equation: 5

n
∑

i=1

ki(yi − µ̂h(x)) = 0, µ(x) = E(Y |x)

An alternative, more intuitive, interpretation of Equation (8) is as follows. Consider
some value, x, of the explanatory variable, X. If this were linear regression, for
example E(Y |X = x) = 2x, then for a value x of 5, the predicted value of Y would
be 2 ∗ 5 = 10. With the Nadaraya-Watson estimator, the predicted value of Y is
calculated by taking a weighted average of the yi’s, with weights greater for the
associated xi’s that are close to x = 5. The kernel function k(.) is applied to each
datapoint in the sample, with the resulting weight for the i’th (xi, yi) pair being
ki.

It is by no means obvious how to choose a particular kernel function. A kernel
function must integrate to one and must be symmetric about x = 0. They generally
give more weight to the center than to points far away, although this is not required.
The normal probability density function is often used, since it has nice properties
(it is smooth, continuous, differentiable, etc). Alternatives are the uniform kernel,
triangular kernel, and Epanechnikov kernel, as seen in Figure 6. The uniform kernel
equally weights observations near xi and gives no weight to observations far from
xi (with closeness determined by the bandwidth parameter), which is undesirable.
The triangular kernel is not differentiable at 0, which is undesirable. While the
Epanechnikov kernel has nice mathematical properties strictly within the domain,
it is not differentiable at the endpoints. The Gaussian kernel is chosen due to its
nice properties, it is differentiable everywhere, and also because it performs better

5Davidson, Russell, and James G. MacKinnon, 2003. Econometric Theory and Methods (Oxford
University Press, USA).
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in situations where there are relatively large gaps between datapoints. That is, an
estimate may still be made for a value of x that is between two datapoints that are
far away, while the Epanechnikov kernel would not be able to compute an estimate
for a value of x that is not within the bandwidth of an actual datapoint.
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16Figure 5: Comparison of Parametric Estimation and Nonparametric Estimation
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(b) Quadratic Regression
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(c) Nonparametric Kernel Regression
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Data is simulated in order to illustrate the effect of model mis-specification and how nonparametric
estimation overcomes this. The linear regression model of panel (a) is clearly mis-specified. In panel
(b), a quadratic specification may fit the data well for options with moneyness between 0.95 and
1.15, however it cannot accommodate the change in behavior for options with moneyness between
0.85 and 0.95. In panel (c), the fit is very good and accommodates the change in behaviour.



Figure 6: Different Kernel Functions

0
.5

1
1.

5
2

k(
x)

−2 −1 0 1 2
x

uniform kernel

0
.5

1
1.

5
2

k(
x)

−2 −1 0 1 2
x

triangular kernel
0

.5
1

1.
5

2
k(

x)

−2 −1 0 1 2
x

epanechnikov kernel

0
.5

1
1.

5
2

k(
x)

−2 −1 0 1 2
x

gaussian kernel

These are all examples of kernel functions. They integrate to one and define how to weight obser-
vations of x. The respective equations are as follows, with I() being the indicator function, equal
to one if the statement is true and zero otherwise. The definitions of the kernels are:
uniform kernel: k(x) = 1

2I(|x| ≤ 1)
triangular kernel: k(x) = (1− |x|)I(|x| ≤ 1)
Epanechnikov kernel: k(x) = 3

4 (1− x2)I(|x| ≤ 1)

Gaussian kernel: k(x) = 1√
2π

e
−x

2

2

In order to be useful for nonparametrically estimating the state-price density, the
estimator must be multidimensional, since the SPD is a function of five variables:
St, K,Rt,T , δt,T , and T . The framework is the same as in the one dimensional case,
but the objective is now to estimate the conditional expectation of Y, conditioned
on a set of regressors, rather than just one. Then the multivariate kernel considers
the joint probability distribution of Y along with the vector of regressors, X. The
result is the multidimensional Nadaraya-Watson estimator:

E(Y |X = x) =

∑n
i=1 yiKi

∑n
i=1 Ki

, Ki = K(
x-xi

h
) (9)

where the multivariate kernel is generally chosen to be the product of the univariate
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kernels.6

K(x) = k(x1) · k(x1) · · · k(xq)

1.4.2 Nonparametric Estimation of the State Price Density

Now armed with the estimator of Equation (9), it may be applied to the call option
pricing function. Once the call option pricing function has been modeled, the SPD
may be recovered. The fully nonparametric call option pricing function outputs the
price of a call option given the set of inputs {St, K, T, rt,T , δt,T} and returns the price
of the associated option. Plugging the five explanatory variables into Equation (9)
yields:

E(C|St, K, T, rt,T , δt,T ) = Ĉ(St, K, T, rt,T , δt,T ) (10)

=

∑n
i=1 Ci · kS(St−Sti

hS
)kK(

K−Ki

hK
)kT (

T−Ti

hT
)kr(

rt,T−rti,Ti
hr

)kδ(
δt,T−δti,Ti

hδ
)

∑n
i=1 kS(

St−Sti

hS
)kK(

K−Ki

hK
)kT (

T−Ti

hT
)kr(

rt,T−rti,Ti
hr

)kδ(
δt,T−δti,Ti

hδ
)

While it is theoretically possible to run this estimation, it is computationally highly
expensive. It is also unnecessary. The computational expense is due to the mechanics
of kernel regression. In contrast to linear regression, for example, in which the whole
function is estimated during the estimation process; the Nadaraya-Watson estimator
is a pointwise estimator, in which each point is estimated separately. Consider the
example of data along the line y = x. Linear regression involves estimating β̂ from
ŷ = β̂x. The result is a function. In contrast, kernel regression involves estimating
a point, ŷi, given the set of data. In the linear regression case, the line ŷ = β̂x is
recovered. In the case of kernel regression, a set of estimated values is recovered,
only as fine as the mesh over which the kernel regression was run over.

Figure 7 illustrates two distinctions. First, comparing the linear estimation from
panel b with the nonparametric estimation from the lower panels, the difference be-
tween a functional estimator and pointwise estimator is seen. A functional estimator
estimates the entire function, while a pointwise estimator only estimates individual
points. Second, the grid of points to be estimated may be any set within the domain
of the data. It may be coarse, it may have holes, it may be regular or irregular and

6Note that here the subscript on x denotes the particular regressor x, while in Equation (9), the
i subscript denotes the i’th observation
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it may or may not include actual data points. For example, there is an estimate of
y for x=0.3, even though there is no actual data point that takes this value.

Figure 7: Functional vs Pointwise Estimation
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It is also unnecessary to estimate Equation (10). Instead of estimating the fully
nonparametric estimator, methods to reduce the dimensionality may be employed.
Aı̈t-Sahalia and Lo (1998) show how the results from a fully nonparametric estima-
tor are virtually indistinguishable from the results of a semiparametric estimator,
in which the Black-Scholes option pricing function is used, and is a function of a
nonparametrically estimated volatility surface. Local differences in shape are then
captured through the estimated implied volatility function.

This semiparametric estimator is much faster, since only three dimensions need be
estimated. The implied volatility surface is estimated nonparametrically as a func-
tion of the current stock price, strike price, and time to maturity. This results
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in a significant reduction in estimation time. To understand this, recall that the
Kadaraya-Watson estimator is a pointwise estimator. That is, values are estimated
over a grid. With one explanatory dimension (ie: explanatory variable x and esti-
mated y), a grid with ten intervals would require ten estimations. For example, if
the range of x is [1,10] the estimated points may be {1, 2, ..., 10}. In two dimensions
(ie: y, x1, and x2), a grid with ten intervals would require 100 estimations. Eg:
{x1 = 1, x2 = 1}, {x1 = 1, x2 = 2}, ..., {x1 = 1, x2 = 9}, {x1 = 1, x2 = 10}, {x1 =
2, x2 = 1}, {x1 = 2, x2 = 2}, ...{x1 = 10, x2 = 9}, {x1 = 10, x2 = 10}. Thus, the
difference in speed between a three-dimensional semiparametric estimator and five-
dimensional fully nonparametric estimator is 103 vs 105 for a 10x10x10... grid. In
practice, this may be far too coarse. If instead a grid of 100 intervals is estimated,
this is the difference between 1003 vs 1005. That is, the fully nonparametric would
be 1000 times slower.

An important component of the Nadaraya-Watson estimator is the choice of band-
width. That is, the estimation technique is never truly nonparametric, since the
bandwidth parameter must be chosen. There have been many propositions as to the
optimal choice of bandwidth, but there is no singular best method. For example,
the method of Hall, Sheather, Jones, and Marron (1991) has been shown to be op-
timal, but only in large samples. Others have better finite sample properties, but
may be biased. Since the focus of this paper is not on the intricacies of bandwidth
selection, I use an accepted optimal bandwidth selector of sdx ∗N−1/5, where sdx is
the standard deviation of variable x.7 This is derived by minimizing the asymptotic
mean squared error of the Nadaraya-Watson estimator with respect to the choice of
bandwidth.

7Li, Qi, and Jeffrey S. Racine, 2006 Nonparametric Econometrics: Theory and Practice (Prince-
ton University Press)
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2 Simulation

Before applying the estimation methodology to observed market data, I first use
simulated data, following the outline of A-S&L (1998). While actual market data
contains noise and irregularities that must be dealt with through filtering, simulated
data is generated exactly according to the specifications of the data generating pro-
cess (DGP) developed for it. By starting with simulated data, the nonparametrically
estimated option pricing function may be compared to the true option pricing func-
tion, since the data has been generated according to a known function. Given that
the estimation technique satisfactorily recovers the option pricing function when it
is known, it may then be tested against actual market data, where the existence of
a true function is less obvious.

2.1 Calibration of the Stock Price Process

The stock price is simulated according to the Black-Scholes assumptions, with mo-
ments matching those of the observed market data. Given the set of historical data,
moments are estimated as follows. Begin with the assumption that the stock price
follows a Brownian Motion with constant drift µ and volatility σ. Then:

ln(St) = ln(St−1) + (µ− 1

2
σ2)dt+ σǫ

√
dt, ǫ ∼ N(0, 1) (11)

The volatility, σ, and drift, µ, of the Brownian Motion are then calculated from:

1. Generate ut = ln( St

St−1
) as the continuously compounded daily return between

day t and t− 1

2. Mean return is then calculated as ū = 1
n

∑n
i=1 ui = 0.00030, or 0.00030 ∗ 252 =

7.5% annualized with a 252 day year

3. The standard deviation of the daily return is then σ =
√

1
n−1

∑n
i=1(ui − ū)2 =

0.0050, or 0.0050 ∗
√
252 = 7.9% annualized

4. Then from Equation (11), the drift term is µ = ū+ 1
2
σ2 = 0.00031

Given µ = 0.00031 and σ = 0.0050 as calculated above, the stock price process is
simulated. The initial index level is set to 435, and the interest rate is held constant
at 3%.
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Figure 8: S&P500 Historical and Simulated Index Levels (1993)

(a) S&P500 Historical Index Level (1993)
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(b) S&P500 Simulated Index Level (1993)
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2.2 Options Data

Call option data is simulated according to the CBOE conventions for introducing
options to the market. In the actual data, there is an average of 80 unique con-
tracts per day, which includes puts and calls with the same terms. This yields 58
unique call prices including both actual call prices and call prices implied by put
prices. While the actual data has holes, ie: there may have been bid and ask prices
for a particular contract, but no completed transactions, the simulation process is
simplified by assigning a price to each contract available to be traded. There are 80
contracts available per day, with new contracts becoming available and old contracts
that stop being traded depending on how the stock price changes.

1. Options expire on the third Saturday of the month of expiration

2. For every strike price, options are available for the next 4 maturity dates (these
must be at least two days from the current date)

3. On every day, for each maturity date, there are 20 contracts available with
strike prices in multiples of 5, nearest the current strike price. Of these, 10 are
out of the money and 10 are in the money.

This yields a dataset of 20,160 contracts. The set of available contracts is seen in
Figure 9.
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Given the assigned characteristics of each contract, namely: the strike price, time to
maturity, interest rate, stock price, and the true volatility of the underlying index
price; the options are priced according to the Black Scholes formula. Indeed, since
the data is constructed according to a Black-Scholes world, the BS assumptions are
satisfied and the option prices are valid.

Figure 9: Simulated Set of Option Contracts Available over Time
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20,160 contract prices are simulated according to the specification described in Section 2.2. There
are 10 in-the-money and 10 out-of-the-money call options available each business day of 1993. A
business calendar was used to exclude weekends and holidays to ensure that the characteristics of
the simulated data match those of the actual data.

2.3 Estimation of Simulated Option Prices

Once the simulated dataset is generated, the semiparametric estimation technique
of Section 1.4.2 may be employed. First, implied volatility is calculated according to
the Newton-Raphson method and filtering technique discussed in Section 1.3. This
brings the dataset from 20,160 to 20,029 contracts. Second, the volatility surface is
estimated nonparametrically, as seen in Figure 11. Third, the estimated volatility
surface is plugged back in to the Black Scholes option pricing function, completing
the estimation of the simulated option prices.

While the true volatility surface should be flat at 10%, volatility is over-estimated
for a small subset of options that are far out of the money with a short time to
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maturity (and to a lesser extent, for options far in the money with short time to
maturity). This is a result of the calculation of implied volatility and not of the
nonparametric estimation technique. Clearly the estimation technique performs very
well, recovering 99.5% of the volatility parameters within 1% accuracy. Moreover,
the parameters with error correspond to options whose prices are very insensitive to
changes in volatility. Thus, although the volatility is estimated with error, the option
price is still estimated correctly for all options. For example the estimated price of
a deep-in-the-money option may be the same (to an accuracy of 10−100) whether
the volatility is 10% or 13%. Thus, although the true implied volatility is 10%, the
price of the option is still correctly estimated using the wrong implied volatility of
13%.

Table 3: Summary Statistics for Simulated S&P 500 Index Options Data

Variable Mean Std. Dev. Min 5% 10% 50% 90% 95% Max

Call Price 17.99 17.10 0.00 0.04 0.38 12.17 45.63 50.61 62.52
Implied σ (%) 10.01 0.16 10.00 10.00 10.00 10.00 10.00 10.00 16.53
Days to Maturity 63.10 36.35 2.00 8.00 15.00 64.00 110.00 117.00 183.00
Simulated SPX Index 463.95 23.16 422.35 430.87 433.33 461.92 501.89 505.82 516.12
Strike Price 461.80 36.84 370.00 405.00 415.00 460.00 510.00 525.00 560.00
3 Month T-Bill Rate 3.00 0.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Observations 20029
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25Figure 10: Nonparametric Estimation of Simulated Black-Scholes Implied Volatiliy
Surface
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Figure 11: Error in Estimation of Simulated Option Prices
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3 S&P 500 Data and Estimation

3.1 Data and Summary Statistics

Table 4: Summary Statistics for S&P 500 Index Options Data

Variable Mean Std. Dev. Min 5% 10% 50% 90% 95% Max

Call Price 5.62 8.54 0.06 0.19 0.38 3.25 12.38 18.25 121.25
Put Price 4.39 4.54 0.06 0.25 0.50 3.25 9.25 12.13 109.50
Implied σ (%) 12.31 3.99 0.85 8.56 9.13 11.46 16.16 18.63 69.82
Days to Maturity 39.18 46.93 2.00 3.00 4.00 26.00 82.00 124.00 362.00
SPX Index 451.71 10.02 426.88 434.33 438.04 450.19 464.80 466.46 471.28
Strike Price 447.00 19.12 330.00 415.00 425.00 450.00 465.00 475.00 550.00
3 Month T-Bill Rate 3.05 0.08 2.84 2.92 2.95 3.05 3.17 3.18 3.20

Observations 215993

When Breeden and Litzenberger first derived the formula for the state-price density,
Equation (1), in 1978, markets were much less complete than they are now. With
the automation of the stock market, the greater range of options traded on the
same stock, and the sheer volume of trades that occur every day, there is now a
huge amount of data that may be exploited to recover information about investor
preferences.

One year of transaction level data has been obtained from the Berkeley Options
Database, including all completed trades and quotes for S&P 500 index call and
put options between January 4, 1993 and December 31, 1993. The data includes all
variables needed to estimate the option pricing function, and thus, the state-price
density. Summary statistics are shown in Table 4

As is expected with a dataset of this size, it must be cleaned and filtered to remove
errors. This is an intensive task in itself. Due to the sheer amount of data, it
would be infeasible to inspect all data manually and filter out observations manually.
Instead, a set of rules is applied on what constitutes a valid and reliable entry and
all observations not meeting these rules are dropped.8

8Dacorogna, Michel, Ramazan Gencay, Ulrich A. Müller, Richard B. Olsen and Olivier V. Pictet,
2001. An Introduction to High-Frequency Finance (Elsevier Science)
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1. Observations with implied volatility of greater than 70% are deemed to be
outliers and are dropped.

2. Observations with price less than 2 ticks ($1/8) are dropped, since these cor-
respond to far out of the money options, for which prices are very noisy.

3. Prices of far in the money options are replaced with the prices implied by
put-call parity, since the market for far in the money options is also illiquid.
Actors in an illiquid market may be more sensitive to liquidity pressures, so
the influence of whether a trade is buyer or seller initiated would tend to have
a greater impact on price than in a liquid market.

4. Any remaining far in the money or far out of the money options are dropped:
those with moneyness, K/S, such that K/S < 0.94 or K/S > 1.06.

A feature that distinguishes the actual data from the simulation is dividend payments
from individual stocks within the index. The Black Scholes formula requires that if
dividend payments are made, they must be known in advance. That is, either a
constant dividend yield or a series of lump sum dividends are acceptable so long as
there is no uncertainty as to the timing and value of the payments. To correct for
this, data on cumulative dividends paid on the S&P500 Index to date is obtained.
A dividend payout has the effect of decreasing the value of a call option. This is due
to the expectation that the underlying stock decreases by the value of the dividend
payout. To compensate for this, I adjust the stock price corresponding to each option
by the total amount of dividends that are paid out over the option’s lifetime. That
is:

St,effective = St −
T
∑

t=t0

δt (12)

where δt is the total dividend payout on date t. While investors do not know the
future dividend stream with certainty, the ex-post stream serves as a strong proxy
for ex-ante beliefs. That is, investors are assumed to get it right on average. An ad-
ditional practical benefit of correcting for dividends in this manner is that it reduces
the fully nonparametric estimation method from five to four dimensions.
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3.2 Estimation of the Implied Volatility Surface

Now with all data necessary to estimate the state price density cleaned, the SPD may
be estimated. As with the simulated data, the semiparametric estimation technique
of Section 1.4.2 is used to recover the call option pricing function. The semipara-
metric option pricing function is derived in Appendix A as:

Ĉ(St, K, T, rt,T ) = (13)

StΦ(
ln(St/K) + (rt,T + 1
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Once Ĉ is estimated, the state price density is simply ∂2Ĉ/∂K2. The estimation of
the volatility over the full year of 1993 yields a surface, Figure 12, that is as expected.
That is, there is the characteristic volatility “smile” for short maturity dates, and
the smile flattens as time to maturity increases.

Figures 13 to 16 are shown to highlight the power of intraday data. It is much
more common to estimate a volatility surface like Figure 12, where the surface is
assumed to be non-stochastic and a time series of data is used to construct one
surface. Using intraday data, there are enough options traded that an entire surface
may be estimated limiting oneself to only trades that occurred that day. While the
volatility surface may still change throughout the day, the magnitude of variation is
expected to be much lower than the variation of the surface over an entire year.

The next four figures, referring to maturity dates of March 20th and December 18th,
1993 do make the assumption of a non-stochastic volatility surface, but only during
the 40 days preceding each respective maturity date. This is still a more reasonable
assumption than assuming that the volatility surface does not change throughout the
entire year. There is more detail available in these samples for two reasons. First,
there is regularity in the time to maturity variable. That is, the sample includes
options with T = 2, 3, 4, ..., 40, rather than the limited set of times to maturity
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available from the November 5th data, for example, of T = 15, 43, 78, .... Second,
there is clearly a much higher number of trades that occur over any 40 days relative
to one single day. This leads to a much finer estimated surface.
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Figure 12: Estimated Implied Volatility Surface
1993 S&P500 Options Data
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The surface is estimated based upon all out of the money calls and the implied call prices of all
out of the money puts for all options traded in 1993. Data is filtered according to the conditions
described in Section 3.1.



Figure 13: Implied Volatility from Data
Options Traded Nov 5, 1993 and T < 100
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Figure 14: Estimated Implied Volatility Surface
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The surface from November 5th is shown since it is the day with the most observations after filtering
in a single day, with 722 observations (relative to a mean of 253 observations per day). It is difficult
to estimate the volatility surface using one day of data due to the lack of regularity of data. That
is, since options are only available with maturities on the third Saturday of the month, there is not
very much information in the time-to-maturity dimension.



Figure 15: Implied Volatility from Data
Options Traded Apr 2, 1993 and T < 100
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Figure 16: Estimated Implied Volatility Surface
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April 2nd was the second highest trading day of 1993 (of filtered options), with a total number
of observations of 703. The surface exhibits the same general characteristics as the surface much
later in the year on November 5 over the area in common. (There were few far out of the money
trades on April 2 relative to Nov 5, but more in the money trades on April 2 relative to November
5. This gives the surfaces different domains, but does not mean that the surfaces are different over
the domain in common.) This may support the hypothesis that the state price density is stable
over time, though a formal test would be be more conclusive.



Figure 17: Implied Volatility from Data
Options with Maturity March 20, 1993 and T < 40
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Figure 18: Estimated Implied Volatility Surface
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The surface with maturity of March 20th is shown since it is the maturity date with the most
observations after filtering, with 5,157 observations (relative to a mean of 3,537 observations per
maturity date). With great variation over the time to maturity dimension, notice how the
volatility “smile” fades to a “smirk” as T increases.



Figure 19: Implied Volatility from Data
Options with Maturity December 18, 1993 and T < 40
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Figure 20: Estimated Implied Volatility Surface
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There were a total of 4,186 observations included with a December 18th maturity date.



3.3 Estimation of the State Price Density

To illustrate how the state price density may be estimated in practice, Equation
(13) is estimated, holding fixed a subset of the dependent variables. Rather than
analytically solve for the second derivative, a simplified approach is to numerically
differentiate Ĉ in order to recover the SPD. By definition, the derivative of a function
f(x), with respect to variable x is:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

This is then applied twice to the call option pricing, Ĉ(St, K, T, rt,T ; σ), in order to
get the second derivative. First, the variables T and rt,T are fixed at constant values.

σ(St, K) is then estimated nonparametrically. Finally, Ĉ is estimated over a grid as
a function of K, holding St fixed. The grid must be fine enough so as to avoid “the
curse of differentiation”, in which any noise or wrinkles in the original function are
exacerbated when the derivative is taken.

Figure 21 illustrates the consequences associated with taking the derivative of an
insufficiently smoothed, nonparametrically estimated function. The second deriva-
tive associated with the under-smoothed function does not have meaning.9 Similarly,
an over-smoothed function would miss potentially important local characteristics of
the function. Figure 22 illustrates an optimally smoothed function, in which the
bandwidth is set to sd ·N−1/5 (where sd is the standard deviation of the variable to
which the bandwidth corresponds.) It is difficult to distinguish between the under-
smoothed and optimally-smoothed call pricing functions, however, the differences
become apparent in the first derivative. By the second derivative, most of the re-
semblance between the two functions is lost.

Bandwidth selection is thus a very important aspect of nonparametric estimation
and should not be overlooked. A small bandwidth parameter picks up small, local
characteristics of the function being estimated, but is also more prone to being noisy.
A relatively high bandwidth parameter does not suffer as much from outliers and
noise in the data and it provides smoother estimates, but can miss important features
of the function by smoothing them out. The motivation for using nonparametric
estimation in the first place is to identify these local features. At the extreme, for

9This mathematical phenomenon was compared rather succinctly to a phenomenon of the animal
kingdom by Professor Ted Neave. “In any event, a flea crawling over a warty elephant would find
its skin much rougher than would, say, the mahout stroking the elephant.”
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the nonparametrically estimated implied volatility surface, a very high bandwidth
parameter would lead to a flat estimated surface, completely smooth. This is just
the same as the Black Scholes case, which assumes a constant implied volatility.
Thus, the optimal bandwidth parameter is characterized by balancing the competing
objectives of minimizing the impact of noise while also capturing important local
characteristics of the observed data.

For SPDs derived using only data from transactions that occurred on a particular
day, the SPD is often incomplete. That is, the SPD is estimated only over the range
of terminal stock prices for which contracts with that strike price are available. So
far example, on November 23, 1993 and for contracts with 25 days to maturity,
contracts were only traded with strike prices between $410 and $490. As seen in
Figure 22, the upper tail of the SPD is not estimated. This enforces the point that
nonparametric estimation may not be used to estimate a model beyond the range of
observed data. A potential solution would be to use bid-ask midpoints to estimate
the density beyond the range of actual transactions. However, the midpoint between
a bid and ask price may be a bad proxy for the value of a contract, particularly when
the bid-ask spread is high. Moreover, it is for those contracts that are not traded
that the bid-ask spread tends to be higher.

An alternative to using bid-ask midpoints to estimate the SPD beyond the range
of traded contracts for a particular day is to make the assumption that the SPD is
non-stochastic. This is the case with much of the literature, including Aı̈t-Sahalia
and Lo (1998) in which data over a whole year is pooled as a cross section in order to
estimate SPDs. This assumption has been made to generate the estimates of Figure
23, in which the nonparametric SPDs are compared to the Black Scholes SPDs for
different times to maturity. The cross sections are then stacked side-by-side in Figure
24 to generate the full SPD estimate across both the index price at expiration and
time to maturity. The nonparametrically estimated SPD is quite similar to the Black
Scholes SPD, as derived in Figure 4. This is expected and supports the idea that
the Black Scholes SPD is a reasonable approximation, at least in the case of S&P500
index options traded in 1993.

However, looking at individual cross sections of the state price density compared
to the Black-Scholes SPD, the differences are more apparent. In Figure 23, the
nonparametric and Black-Scholes SPD estimates are overlaid for four different times
to maturity. The differences are minor for the shorter times to maturity, T = 2 and
T = 10. The nonparametric density is slightly more peaked in both and is slightly
shifted to the the right for T = 10. However, for the longer times to maturity,
the nonparametric density exhibits important differences from the Black-Scholes.
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First, the center of the distribution is shifted to the right, implying that the Black
Scholes density slightly understates the expected return on the S&P500. Second,
the nonparametric distribution is slightly skewed left, implying that slight downside
events occur with less (risk-neutral) probability, but deep downside events occur
with a greater probability than predicted by the Black Scholes SPD. Third, the risk
neutral SPD appears to have higher kurtosis, meaning it is more “peaked”, and
assigns relatively higher weight in the tails.

It should be kept in mind that these differences between the Black Scholes and
nonparametrically estimated SPDs are expected, but are of relatively low magnitude.
This would be supported by arguing that 1993 was a relatively stable year, in which
there was not significant market turmoil or disruption. At least in terms of interest
rates, 1993 was stable, with interest rates being very close to 3% without significant
variation over the year. The Black Scholes and nonparametrically estimated SPDs
would be expected to be farther apart during turbulent times, when investors are
more risk averse or there is more downside risk.
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Figure 21: Suboptimal Bandwidth: Estimation of the State Price Density
S&P500 on Nov 23, 1993 for T = 25 days
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Bandwidth = sd ·N−1/5. St = 459.27. These figures illustrate the high sensitivity of derivatives
to the smoothness of the original function. In this case, the bandwidth is too small and the call
option pricing function is under-smoothed. Minor noise in the original function gets picked up in
the first derivative and is even more pronounced in the second derivative. In this particular case,
the problem is pronounced due to the approximate linearity of Ĉ at low strike prices.



Figure 22: Optimal Bandwidth: Estimation of the State Price Density
S&P500 on Nov 23, 1993 for T = 25 days

(a) Estimated Call Pricing Function: Ĉ
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Bandwidth = 5 ·sd ·N−1/5. St = 459.27. By increasing the smoothness of the call option pricing
function, through an increase in the bandwidth parameter, the SPD estimate improves.



Figure 23: Nonparametric SPD Estimates: Cross Sections Compared to
Black-Scholes SPD
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The State Price Density is estimated using all contracts traded in 1993 with maturity specified in
each panel. St is fixed at 450 for each time to maturity so that the estimates are comparable. The
Black-Scholes SPD is evaluated with implied volatility held at the average implied volatility of the
options included in the estimation.



Figure 24: SPD Estimates over Maturity
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The SPD corresponding to each time to maturity between T = 2 and T = 130 are estimated
individually. These “cross sections” are then placed side-by-side to generate the full SPD estimate
across both the index price at expiration and time to maturity.



Figure 25: SPD Estimate over Maturity (smoothed)
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The SPD estimate from Figure 24 is smoothed (through nonparametric regression of course) to
generate the figure seen here.



In the previous figures of Section 3.3, the state price density estimates are displayed
with strike price on the x-axis. This is shown so that the figures may be compared to
the estimates of other authors. However, a more meaningful alternative is to display
the SPD with moneyness on the x-axis. This ensures that SPD estimates for different
time periods are comparable, even when the stock price has changed over the period.
There is no change in shape, since by defining moneyness at expiration as ST/St, the
axis is just a linear transformation of ST .

In Figure 26 the results of this transformation are seen. Since the data includes all
options traded over the year with maturity = 64 days, the SPD is “thick”, implying
that the stock price moved around over the period. However, when the SPD is
plotted against moneyness, the shape is completely intuitive, having corrected for
changes in stock price. The interpretation of this is that the risk neutral probability
of the stock price being over 475 after 64 days, for example, has changed within the
data. However, the risk neutral probability of the stock increasing in price by over
5% after 64 days has remained constant.

Figure 26: Comparison of SPD by ST vs SPD by Moneyness
Options Traded in 1993 with Maturity = 64 Days

(a) SPD vs Cash Price at Expiration
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(b) SPD vs Moneyness
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While the SPD with respect to stock price has changed within the data, the SPD with respect to
moneyness, for maturity = 64 days, has remained relatively constant.
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4 Conclusion

In this paper, I nonparametrically estimate the state price density implied by the
prices of S&P500 call and put options traded in 1993. Nonparametric estimation
is chosen in order to avoid making restrictive assumptions on the functional form
of the SPD, as is the case with parametric alternatives. In order to make the
procedure computationally feasible, the dimensionality of the problem is reduced
by using the semiparametric approach proposed by Aı̈t-Sahalia and Lo (1998). In
comparison to a fully nonparametric call option pricing function, C(St, K, T, rt,T ),
which is estimated nonparametrically over five variables, the semiparametric estima-
tor, C(St, K, T, rt,T ; σ(St, K, T )), requires nonparametric estimation over only three
dimensions. With this approach, the implied volatility surface is estimated nonpara-
metrically and is then plugged in to the Black-Scholes formula for the price of a call
option. In this way, any local shape changes observed in call-price data are captured
through the estimated implied volatility surface. Aı̈t-Sahalia and Lo demonstrate
how this semiparametric method is not significantly different from a fully nonpara-
metric estimation.

While other authors assume that the SPD is constant over the whole period of data
being used (typically one year), I avoid making this assumption by using high fre-
quency transaction level data. With this large amount of data I am able to estimate
the state price density for individual days. The advantage of less frequent, daily data,
is that the data is regular, or evenly spaced over time. This facilitates nonparametric
regression. However, I argue that this benefit of regularity is outweighed by the cost
of being required to assume that the SPD is nonstochastic for an entire year.

Additionally, the SPD is typically estimated using bid-ask midpoints, rather than
actual prices of completed transactions. A bid price represents a willingness to pay
and an ask price represents a willingness to sell. However, using the bid-ask midpoint
assumes that the average of the bid and ask prices is the “price” of the option for
that day. That is, by nature of using bid-ask pairs instead of completed transactions,
an exact value of the option is unknown. All that is known for sure is that the true
value lies within the interval formed by the bid-ask pair. This may be the only route
possible if transaction level data is not available.

However, with the availability of the transaction level Berkeley Options Data, anal-
ysis is now possible using the prices of trades that actually occurred. Thus, instead
of using bid-ask pairs, I use completed transactions in my analysis. Moreover, the
set of all transactions occurring within the year is much larger than just the set of
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closing prices. Therefore, the SPD may be estimated taking into account all intra-
day variation, and is not subject to the limitation that a single closing bid-ask pair
may be randomly high or low due to fluctuations in the market.

The SPD estimates seen in Figure 23 show important differences in comparison to
the Black-Scholes SPD. The differences are small for short times to maturity, but
increase as time to maturity increases. In particular, the nonparametric estimates
exhibit higher kurtosis (implying a higher probability of extreme events) and are
skewed downwards, which supports the idea that investors are risk averse. This may
be interpreted in that investors are willing to pay more to avoid adverse outcomes.
Alternatively it may represent that adverse outcomes occur with higher objective
probability than suggested by the Black-Scholes lognormal SPD.
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A Deriving the Semiparametric SPD Estimator

The semiparametric SPD involves first nonparametrically estimating the implied
volatility and then plugging the volatility estimates into the Black Scholes call option
pricing function. Second, the second derivative of the estimated call option pricing
function is taken with respect to the strike price, K in order to recover the state price
density (Breeden and Litzenberger).

The estimated Black Scholes formula for the price of a call option is:

E(C|St,K, T, rt,T , δt,T ) = Ĉ(St, K, T, rt,T ) (14)

= StΦ(
ln(St/K) + (rt,T + 1

2
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√
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)

where σ̂ is estimated nonparametrically. The multivariate kernel used is the product
of univariate Guassian kernels, with σ estimated as a function of St, K, and T .
Importantly, the Gaussian kernel is twice differentiable.
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Plugging in σ̂ into (14) yields:

Ĉ(St, K, T, rt,T ) =
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Now the state-price density is simply the second derivative of Ĉ with respect to K,
or ∂2Ĉ/∂K2
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