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1 Introduction

White (1980) developed the first heteroskedasticity-consistent covariance ma-

trix estimator (HCCME) to deal with linear regression models with independent

but heteroskedastic error terms. One of the major drawbacks of White’s original

estimator—now referred to as HC0 in the literature—is that t tests based on it will

tend to overreject when the null is true in finite samples.

There have been two major approaches to resolving this problem. The first is to use

better HCCMEs that inflate the residuals by adjusting for degrees of freedom or by

adjusting for the leverage of the observations. Many authors have found, however,

that these estimators do not always work particularly well in finite samples; see

MacKinnon (2011) for a comprehensive discussion. The second approach is to use

a heteroskedasticity-robust bootstrap method. MacKinnon (2011) advocates a wild

bootstrap approach that works better in terms of size and power than using HCCMEs

directly in finite samples. Following the experimental design of MacKinnon (2011),

Hausman and Palmer (2012) find that the variance bootstrap used along with the

second-order Edgeworth expansion of the distribution of the robust t statistic—which

the authors call the second-order bootstrap (SOB)—works comparably well to

the wild bootstrap in terms of size and better in terms of power.

It is important to note that the experimental design used by both of these papers

employs normal error terms to generate the data used for the simulations. However,

practitioners will often encounter data-generating processes (DGPs) with error

terms that deviate greatly from normality. Such deviations might have a substantial

impact on the findings of both MacKinnon (2011) and Hausman and Palmer (2012).
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The former paper advocates a particular version of the wild bootstrap that takes

the symmetry of the error terms for granted. The latter paper implicitly makes the

much stronger assumption of normality in the error terms. The goal of this paper

is therefore to test the sensitivity of the wild bootstrap variations and the SOB to

deviations from normality in the error terms by varying the skewness and kurtosis of

those error terms. To the best of my knowledge, this topic has not been previously

studied.

This study finds that both methods perform poorly in the presence of severe kurtosis,

but that the SOB is considerably more sensitive. These results suggest that attempts

to account for one type of misspecification—namely, heteroskedasticity—by using

additional information about the DGP may leave the estimator vulnerable to other

forms of misspecification, of which kurtosis is but one example.

2 Background

2.1 Heteroskedasticity-Consistent Covariance Matrix Estimators

White (1980) developed the first HCCME to deal with linear regression models with

independent but heteroskedastic error terms,

y = Xβ + u, E(u) = 0, E(uu>) = Ω, (1)

where y is an n-vector of observations with typical element yi, u is an n-vector

of error terms with typical element ui, X is an n × k matrix of regressors, β is a

k-vector of parameter coefficients, and Ω is the n × n error covariance matrix with
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unknown diagonal elements and all off-diagonal elements equal to 0. The ordinary

least squares (OLS) estimator and its corresponding variance are given by

β̂ = (X>X)−1X>y, Var(β̂) = (X>X)−1X>ΩX(X>X)−1. (2)

In the case of homoskedasticity, E(uu>) = Ω would simply equal σ2In×n, where

σ2 denotes the error variance, and the second expression in (2) would reduce to

σ2(X>X)−1. We could then compute an unbiased and consistent estimate of σ2

with an appropriate method-of-moments estimator (see Davidson and MacKinnon

2004).

In the case of heteroskedasticity, however, we do not have the luxury of estimating Ω

so straightforwardly. Since Ω is an n×n matrix, its dimensions grow as the number

of observations, n, grows. Thus, Ω cannot be estimated consistently without making

further assumptions about the DGP in (1).

This seeming impasse is where the ingenuity of White (1980) comes into play. White

realised that although the n × n matrix Ω cannot be estimated consistently, the

k× k matrix 1
n
X>ΩX can be using what he termed an HCCME. White’s proposed

HCCME is now referred to as HC0 in the literature, as it inspired later generations

of HCCMEs, collectively referred to here as the HCj series.
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2.2 HCCMEs in Finite Samples

The HC0 estimator is important in part because it allows one to compute heteroskedasticity-

robust t statistics of the form:

τ̂ =
c>β̂ − c>β0√

c>[(X>X)−1X>Ω̂X(X>X)−1]c
, (3)

where c> is a vector of weights used to compute linear combinations of the parameter

vector β. One of the major drawbacks of White’s original HC0 estimator is that t

tests based on it will tend to overreject when the null is true in finite samples.

Cribari-Neto and Zarkos (2001) identify cases when the rejection frequency is over

four times the nominal level of 0.05.

There have been two major approaches to correcting this problem. The first is to

adjust the way X>ΩX—the “meat” of the sandwich matrix—is estimated by using

the later editions of the HCj estimators outlined below.

1. HC0: White’s (1980) formulation; the first of the HCCMEs.

Ω̂ = diag{û2i },

where ûi ≡ yi −X iβ̂ is the residual element from estimating (1) by OLS.

2. HC1: MacKinnon and White (1985) realised OLS residuals are on average too

small, and therefore compensated for this by adjusting for the degrees of freedom

Ω̂ = n
n−kdiag{û2i },

where n is the number of observations and k is the number of regressors in the

matrix X.

3. HC2: MacKinnon and White (1985) also proposed an estimator that could
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compensate for small residuals by adjusting for the leverage

Ω̂ = diag
{

û2i
1−hi

}
,

where hi = X i(X
>X)−1X>i .

4. HCJ: MacKinnon and White (1985) introduced an HCCME with similar prop-

erties to a statistical technique called the jackknife. It is especially useful when

large variances correspond to large hi

Ω̂ = n−1
n

(
diag {ü2i } − 1

n
üü>

)
,

where üi ≡ ûi/(1− hi).

5. HC3: Introduced by Davidson and MacKinnon (1993) as a very close approxi-

mation to the HCJ estimator

Ω̂ = diag
{

( ûi
1−hi )

2
}

.

This brief list of HCj estimators is by no means exhaustive. Cribari-Neto (2004)

proposes an HC4 estimator, and Cribari-Neto et al. (2007) propose an HC5 estimator,

both of which are based on the idea of inflating ûi more (less) when hi is large

(small) relative to the average hi, which is always k/n by construction. However,

under MacKinnon’s (2011) experimental design, tests based on HC4 are found to

underreject the most severely. Since this paper follows a slightly modified version of

MacKinnon’s (2011) experimental design, and since HC4 and HC5 are very similar,

neither of these estimators are discussed in this paper.

It is important to note that although the HCj estimators are improvements on

White’s (1980) HC0 estimator, tests based on these estimators do not always work

particularly well in terms of size and power in finite samples. MacKinnon (2011)

finds that tests based on HC1 overreject quite severely in finite samples, as do tests
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based on HC2, albeit less so, and tests based on HC3 or HCJ may overreject in some

cases and underreject in others.

2.3 The Wild Bootstrap

The second approach to dealing with the poor finite-sample properties of HCCME-

based tests is to bootstrap the t tests. One common way of doing this is to use

the wild bootstrap introduced by Liu (1988). MacKinnon (2011) advocates a wild

bootstrap variation that works better in terms of size and power than using the

HCj estimators in finite samples. Let x1 denote the rightmost regressor of X in

(1) so that X ≡ [X1 x1]. Without loss of generality, to test the hypothesis that

the coefficient of x1 is significantly different from zero (or to test any single linear

coefficient restriction) using the wild bootstrap, one would proceed as follows:

1. Compute τ̂ as in (3) from the original sample y using either HC1, HC2 or HC3

to estimate X>ΩX. One could use HCJ as well, but results would resemble

those of HC3.

2. Compute either the restricted OLS residuals, denoted ũi, or unrestricted OLS

residuals, denoted ûi, from (1).

3. Rescale the residuals by using any of the transformations from the HCj series.

For example, we could rescale the restricted residuals as in HC3 to form a new

vector of transformed residuals f(ũi) = ( ũi
1−h1i ) for i ∈ {1, ..., n}, where h1i =

X1i(X
>
1X1)

−1X>1i. This transformation is referred to as w3 in MacKinnon

(2011), while the transformations that correspond to HC1 and HC2 are referred

to as w1 and w2, respectively.
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4. For each of the B bootstrap samples, generate

y∗i = X1iβ̃ + f(ũi)v
∗
i , (4)

where β̃ denotes the restricted parameter estimates, and v∗i is a random variable

with mean 0 and variance 1. If using unrestricted residuals ûi, the B bootstrap

samples are generated as

y∗i = X iβ̂ + f(ûi)v
∗
i . (4a)

MacKinnon (2011) looks at two choices for the distribution of v∗i , both of which

are two-point distributions. The first distribution, which MacKinnon (2011)

refers to as F1, was proposed by Mammen (1993):

F1 : v∗i =

 −(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5),

(
√

5 + 1)/2 with probability (
√

5− 1)/(2
√

5).

One of the attractive features of this two-point distribution is that the skewness

of the bootstrap error terms f(ũi)v
∗
i is the same as the skewness of the residuals.

The second two-point distribution, which MacKinnon (2011) refers to as F2, is

F2 : v∗i =

 −1/2 with probability 1/2,

1/2 with probability 1/2.

This distribution is called the Rademacher distribution and was proposed

by Davidson and Flachaire (2008). An important feature of this distribution is

that it imposes symmetry on the bootstrap error terms. For either distribution,
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since there are only n residuals, and each bootstrap error term can only take on

two values, there exists 2n possible bootstrap error vectors.

5. If using the restricted DGP in (4), then for each of the bootstrap samples y∗j , a

statistic τ ∗j is computed as

τ ∗j =
c>β̂

∗
j − c>β0√

c>[(X>X)−1X>Ω̂
∗
jX(X>X)−1]c

, (5)

where β̂
∗
j ≡ (X>X)−1X>y∗j , andX>Ω̂

∗
jX is estimated with the same HCCME

used in step 1, but using unrestricted bootstrap residuals û∗ij ≡ y∗ij −X iβ̂
∗
j . If

using the unrestricted DGP in (4a), then τ ∗j is instead computed as

τ ∗j =
c>β̂

∗
j − c>β̂√

c>[(X>X)−1X>Ω̂
∗
jX(X>X)−1]c

. (5a)

The key difference between (5) and (5a) is that β̂ replaces β0 in the numerator

of (5) in order to impose the null.

6. The equal-tail bootstrap P value is then computed as

p̂∗(τ̂) = 2 ·min

(
1

B

B∑
j=1

I(τ ∗j ≤ τ̂),
1

B

B∑
j=1

I(τ ∗j > τ̂)

)
, (6)

which is then compared to the nominal significance level of 0.05 for hypothesis

testing. Here I(·) denotes the indicator function.

In sum, there are two ways of computing the residuals and fitted values (restricted

or unrestricted, denoted r and u), three ways of transforming the residuals (w1, w2

and w3) and two distributions from which to draw the v∗i (F1 and F2, or simply “1”
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and “2”), giving a total of twelve variations of the wild bootstrap which MacKinnon

(2011) considers. Each of these variations can be used along with any of the HCj

estimators. MacKinnon (2011) finds that the w3r2 variation (i.e. w3 transformation,

restricted residuals, F2 Rademacher distribution) used along with the HC1 estimator

works best in the following Monte Carlo experiment:

yi = β1 +
5∑

k=2

βkXik + ui, ui = σiεi, εi ∼ N (0, 1), (7)

where βk = 1 for k ≤ 4, βk = 0 for k = 5, and

σi = z(γ)(β1 +
5∑

k=2

βkXik)
γ. (8)

All the Xik regressors are drawn from a lognormal distribution. The z(γ) term is a

scaling factor that mechanically satisfies the requirement that the average variance of

ui equals 1. One can vary the severity of the heteroskedasticity by varying 0 ≤ γ ≤ 2,

where γ = 0 corresponds to homoskedasticity and γ = 2 corresponds to severe

heteroskedasticity.

2.4 The Second-Order Bootstrap

Following the experimental design of MacKinnon (2011), Hausman and Palmer (2012)

find that the variance bootstrap (see Equation (11) below) used along with the

second-order Edgeworth expansion of the distribution of the robust t statistic—which

the authors call the second-order bootstrap (SOB)—works comparably well to

the wild bootstrap in terms of size and better in terms of power. The SOB is based

on Rothenberg’s (1988) derivation of the Edgeworth expansion for distributions of
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test statistics of the form (3). The SOB method scales the traditional normal critical

values zα/2 as follows:

t = ±zα/2

1− 1

12

(
1 + z2α/2

)
V +

a
(
z2α/2 − 1

)
+ b

2n

 , (9)

where n is the sample size and the remaining terms are defined as

V =

∑n
i=1 f

4
i û

4
i

(
∑n

i=1 f
2
i û

2
i )

2
,

a =

∑n
i=1 f

2
i g

2
i∑n

i=1 f
2
i û

2
i

,

b =

∑n
i=1 f

2
i Qii∑n

i=1 f
2
i û

2
i

,

f = nX(X>X)−1c,

g =
(In×n − PX)Ωf√

f>Ωf/n
,

Q = nPXΩ(PX − 2In×n),

and PX = X(X>X)−1X> is a projection matrix that projects orthogonally onto the

column span of the matrix X, Ω is estimated with HC0 and, as in (3), c> is a vector

of weights of the parameter vector β. An important feature of the SOB approach

is that instead of computing test statistics in (3) using an HCCME, Hausman and

Palmer (2012) compute the test statistic using the bootstrap covariance matrix,

which is defined as:

V̂ar
∗
(β̂) =

1

B − 1

B∑
j=1

(β̂
∗
j − β̄

∗
)(β̂

∗
j − β̄

∗
)>, (10)
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where β̂
∗
j is computed for each of the B bootstrap samples, and β̄

∗
is their mean.

Each of the B bootstrap sample pairs, [y∗j X
∗
j ], is generated via the pairs boot-

strap by making n draws with replacement from the rows of the matrix [y X].

In contrast to the β̂
∗
j in (5) and (5a), which condition on X, here we have β̂

∗
j ≡

(X∗>j X
∗
j)
−1X∗>j y

∗
j . The estimated bootstrap covariance matrix in (10) is then used

to compute test statistics identical to (3), except that the HCCME is replaced with

V̂ar
∗
(β̂)

τ̂ =
c>β̂ − c>β0√
c>
[
V̂ar

∗
(β̂)
]
c
. (11)

For hypothesis testing, then, the SOB proposed by Hausman and Palmer (2012)

simply compares the test statistic in (11) with the scaled critical values in (9).

2.5 Assumptions in Bootstrap Methods

It is important to note that the experimental design used by both of these papers

employs normal error terms to generate the data used for the simulations. However,

practitioners will often encounter DGPs with error terms that deviate greatly from

normality. Such deviations might have a substantial impact on the findings of both

MacKinnon (2011) and Hausman and Palmer (2012). The former paper advocates a

particular version of the wild bootstrap that takes the symmetry of the error terms for

granted. The latter, which makes the much stronger assumption of normality in the

error terms, relies on an Edgeworth expansion of the distribution of test statistics of

the form (3), first worked out in Rothenberg (1988). As Rothenberg explains, “In the

present paper we examine the properties of a family of tests in the normal [emphasis
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added] regression model when the error covariance matrix is unknown”. The goal of

this paper is therefore to test the sensitivity of the wild bootstrap variations and the

SOB to deviations from normality in the error terms by varying the skewness and

kurtosis of those error terms. To the best of my knowledge, such analysis has not

been previously included in studies on this topic.

3 Experimental Design

This study extends the experimental design developed in MacKinnon (2011) and

used by Hausman and Palmer (2012) by examining the size and power performance

of the wild bootstrap variations as well as the SOB when the error terms deviate

from normality. The key difference is that here the εi terms in (7) are generated from

a skew-normal distribution:

yi = β1 +
5∑

k=2

βkXik + ui, ui = σiεi, εi ∼ SN (0, 1, α), (12)

where βk = 1 for k ≤ 4, βk = 0 for k = 5, and

σi = z(γ)(β1 +
5∑

k=2

βkXik)
γ. (13)

The skew-normal distribution was first described by Azzalini (1985), and the mathe-

matical details have been relegated to Appendix I. Notice the presence of the extra α

argument in the distribution from (12). This α is a shape parameter whereby one

can vary the skewness of the distribution. The role of the shape parameter is imme-

diately apparent from Figure 1. Evidently, the skewness of the distribution is fairly
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extreme for |α| ≥ 5. Thus, in this study the values of α ∈ {−5,−3,−1, 0, 1, 3, 5} are

used, where α = 0 corresponds to the normal distribution used in MacKinnon (2011)

and Hausman and Palmer (2012).

For each replication, the statistic in (3) is calculated if using the wild bootstrap,

or the statistic in (11) if using the SOB. Since MacKinnon (2011) finds the wild

bootstrap to work best with HC1, our attention is limited to this pairing when testing

the wild bootstrap. Both MacKinnon (2011) and Hausman and Palmer (2012) use

k = 5 regressors, including a constant. We thus have a parameter vector β> =

[β1 β2 β3 β4 β5]. To test H0: β5 = 0, then, one must use the vector c> = [0 0 0 0 1].

In addition to studying the effects of skewness on the size and power of the bootstrap

methods, this paper studies the effect of kurtosis. Arellano-Valle and Azzalini (2011)

describe a skew-t distribution that allows one to vary the kurtosis of the error

terms. The Monte Carlo experimental design is analogous to the skew-normal:

yi = β1 +
5∑

k=2

βkXik + ui, ui = σiεi, εi ∼ ST (0, 1, α, ν), (14)

where βk = 1 for k ≤ 4, βk = 0 for k = 5, and

σi = z(γ)(β1 +
5∑

k=2

βkXik)
γ. (15)

Notice the presence of the extra ν argument in the skew-t distribution from (14).

This ν is the degrees of freedom of the skew-t distribution whereby one can vary the

kurtosis of the error terms. The mathematical details of the skew-t distribution are

relegated to Appendix II. That said, the role of the parameter ν is clear from Figure
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2. As one might expect, the skew-t converges to the skew-normal as ν →∞. Again,

for each replication the test statistic in (3) or (11) is computed depending on the

bootstrap method used.

4 Results

4.1 Size with Normal Errors

To illustrate the relative size performance of the different heteroskedasticity-robust

bootstrap methods when the error terms are normal, Figure 3 presents rejection

frequencies for eight of the wild bootstrap variations based on HC1 and for the

SOB when testing H0: β5 = 0. The four w1 transformations are omitted because

MacKinnon (2011) finds them to usually perform worse than w2 and w3. For this and

the remaining size figures, the rejection frequencies are plotted against γ ∈ {0.0, 0.1,

..., 2.0}, with M = 400,000 Monte Carlo replications, B = 399 bootstrap samples,

and a sample size of n = 40. In terms of size, we see that with normal errors the

w3r2 variation and the SOB work comparably well to each other and outperform the

remaining bootstrap variations. All of the unrestricted variations overreject at γ =

0 and decline monotonically as γ increases. The w2r1 and w3r1 variations—which

make use of the Mammen distribution—consistently overreject for all values of γ.

4.2 Size with Skew-Normal Errors

Having identified w3r2 and SOB as the best bootstrap methods in terms of size, the

effect of skewness on rejection frequencies for these methods is examined in Figures 4

and 5, respectively. Perhaps surprisingly, even with the extreme skewness exhibited

14



when |α| = 5, the rejection frequencies are fairly steady. It does appear in Figure 5,

however, that |α| = 5 has the most deleterious effect on rejection frequencies.

4.3 Size with Skew-t Errors

To study the effects of kurtosis, α = −5 is chosen along with values of ν ∈ {∞,

8, 5, 3, 2}, where ν = ∞ corresponds to the skew-normal. As with the standard t

distribution, the skew-t has no moments for ν = 1, a mean but no higher moments

for ν = 2, and so forth. We now see in Figures 6 and 7 that increasing kurtosis

increases the downward bias of t tests based on either w3r2 or SOB. At ν = 2 the

SOB underrejects more severely than does w3r2 for low to mid values of γ, and less

severely for high values of γ. Figure 8 presents the results for w3r1, which was found

to perform the least poorly out of the Mammen variations of the wild bootstrap in

terms of size. Here it is apparent that kurtosis increases the upward bias of tests

based on w3r1. Interestingly, for γ >> 0 these tests appear markedly less sensitive

to kurtosis than the two leading bootstrap candidates, w3r2 and SOB.

4.4 Power with Normal Errors

All of the remaining figures deal with statistical power and were generated using

M = 50, 000 replications, B = 399 bootstraps, and n = 40 observations. Using

normal error terms, Figure 9 compares the power functions of w3r2 and SOB for H0:

β5 = 0 against the 71 true values of β5 ∈ {−0.70,−0.68, ..., 0.70}. Here we see the

key result in Hausman and Palmer (2012) that the SOB outperforms w3r2 in terms

of power against true values of β5 ∈ {−0.70, ...,−0.14} ∪ {0.04, ..., 0.70}—or about

89% of the domain of β5. Moreover, SOB only performs modestly less well than
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w3r2 against the true values of β5 ∈ {−0.12, ..., 0.02}. One of the notable features

of Figure 9 is that the power function for w3r2—and to a lesser extent SOB—are

asymmetrical, exhibiting more power against β5 < 0 than against β5 > 0. This is

due to the way heteroskedasticity is generated in the experimental setup. Recall

from (8) that σi is dependent on a weighted sum of the columns of X. For γ > 0,

this sum is typically greater for β5 > 0 than for β5 < 0. As such, there is more

heteroskedasticity when β5 is positive than when β5 is negative, which explains the

asymmetry observed in the power functions.

4.5 Power with Skew-Normal Errors

To examine the effects of skewness on power, the errors in Figure 10 are generated

from the skew-normal distribution and a zoomed-in view is provided in Figure 11.

Here we see that power actually increases for α > 0. These results make sense

when we again consider how the data are generated. With a skew corresponding to

α > 0, the error terms are drawn from a distribution where the mode is less than

the mean, as is clear in Figure 1. The error terms therefore tend to take on negative

values, which decreases the heteroskedasticity produced in equation (13) and in turn

yields greater power. As α becomes negative, the errors become increasingly positive,

which increases the heteroskedasticity in (13) and in turn reduces power. Figure 12

shows the effect of skewness on the power function of the SOB, which is noticeably

less sensitive than w3r2. Thus far we see that skewness alone does not have a very

sizable effect on power in our experimental design, which one might have expected

based on the near-negligible effect skewness was shown to have on size in Figures 4

and 5.
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4.6 Power with Skew-t Errors

Figures 13 – 15 present the effects of kurtosis on the power functions of the different

bootstrap methods. The kurtosis is defined by ν ∈ {∞, 8, 5, 3, 2} and skewness is

held constant at α = 0. Now we see a reduction in power for all the bootstrap

tests as kurtosis increases. For comparison, Figure 16 plots w3r1, w3r2 and SOB

on the same graph for ν = 2. One of the striking features of Figure 16 is that the

power function for the SOB can no longer be said to outperform that of w3r2. SOB

performs better in the domain β5 ∈ {−0.70, ...,−0.46} ∪ {0.26, ..., 0.70}—or about

51% of the domain of β5—which suggests that it is more sensitive to kurtosis than

w3r2.

It is difficult to make meaningful comparisons between w3r1 and the other two boot-

strap methods in Figure 16 since all have disparate and distorted sizes. The former

always overrejects against β5 = 0 and the latter two slightly underreject. David-

son and MacKinnon (2006) examine ways to compare power functions with different

sizes, but one of their findings is that it is difficult to do so in an unambiguous way.

Up to this point we have looked at the effects of kurtosis on power in isolation, but we

are also interested in the effects of kurtosis coupled with skewness. Figures 17 – 19

allow us to examine these combined effects by fixing the kurtosis to an extreme level

of ν = 2 and varying the shape parameter α. Recall from Figures 10 – 12 that when

we introduced skewness into the error terms but not kurtosis, the power actually

increased for α > 0. In Figure 17, by contrast, we now see a substantial reduction in

power for the SOB as the skewness increases in either direction. It seems that with

sufficiently severe kurtosis, greater skewness leads to a greater reduction in power.
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However, as one might expect based on the asymmetry of the experimental design

in (15), more power is lost when the skew is negative. To avoid clutter, Figures

18 and 19 only show results for α < 0. One unexpected feature of Figure 19 is

that the reduction in power for w3r1 appears to be just as severe as with w3r2 in

Figure 18. This is surprising since the Mammen two-point distribution in w3r1 is

designed to deal precisely with the kind of asymmetry introduced here. This result

echoes that of Davidson and Flachaire (2008), who find that when the error terms

are asymmetrically distributed, Mammen-based wild bootstrap variations offer no

advantage in terms of size over bootstrap methods that do not take explicit account

of skewness.

Figure 20 compares the power functions of the main bootstrap methods discussed

under the most stressed conditions considered in this paper: ν = 2, α = −5 and γ =

1. Remarkably, the SOB actually performs worse than w3r2 in most of the domain

of β5. In particular, SOB only outperforms w3r2 for β5 ∈ {0.36, ..., 0.70}—or 25%

of the domain of β5—and underperforms everywhere else. This is a dramatic drop

from the case of normal errors in Figure 9, where SOB was found to outperform

w3r2 in 89% of the domain of β5. From these results, it appears that the more the

error terms deviate from normality, the worse SOB performs relative to w3r2. These

findings make sense considering that the Edgeworth expansion on which the SOB is

based is derived in Rothenberg (1988) under the assumption that the error terms are

normal.

Figure 20 also features two of the “runner-up” bootstrap variations, w2r1 and w2r2.

Just as with normal errors, w3r2 outperforms w2r2 when the errors are skew-t dis-
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tributed. There also appears to be little to choose from between the two Mammen

distributions, w2r1 and w3r1, and surprisingly neither seems to handle skewness any

better than the bootstrap variations based on the symmetric Rademacher distribu-

tion.

5 Conclusion

White’s (1980) HCCME filled a substantial gap in the econometric literature as

for the first time practitioners could make asymptotically valid inferences for lin-

ear regression models with independent but heteroskedastic error terms. The main

drawback of White’s proposed HCCME is that t tests based on it tend to over-

reject in finite samples since the corresponding residuals are typically too small.

There have been two major approaches to correcting this problem. The first is to

use better HCCMEs that inflate the residuals by adjusting for degrees of freedom

or leverage. There is a large body of evidence, however, that suggests a better ap-

proach is to use one of several heteroskedasticity-robust bootstrap methods, of which

the Rademacher-based wild bootstrap and the SOB are the two leading candidates.

These methods come with a set of assumptions. The former takes the symmetry of

the distribution of the error terms for granted; the latter implicitly makes the much

stronger assumption of normality in the error terms.

In the presence of normal error terms, this study shows that the SOB performs com-

parably well to the wild bootstrap in terms of size and considerably better in terms of

power. However, it seems that this superior performance may be due to making use

of information about the DGP that practitioners seldom have in practice. Indeed,

19



this study finds that the more the distribution of the error terms deviates from nor-

mality, the less well the SOB performs relative to the wild bootstrap. Moreover, this

paper identifies cases where the SOB even performs worse. It therefore appears that

attempts to correct for one type of misspecification—namely, heteroskedasticity—by

using a priori information about the DGP can leave the estimator vulnerable to

other forms of misspecification.

This study also shows that the choice of two-point distribution used in the wild

bootstrap DGP has an enormous effect on both size and power. Quite unexpectedly,

tests based on the Mammen distribution—which take explicit account of skewness—

actually perform substantially worse than those based on the symmetric Rademacher

distribution, even in the presence of severe skewness and kurtosis. These results

corroborate earlier findings that the Mammen distribution has little to recommend

it, and that the Rademacher-based variation of the wild bootstrap is to be preferred

in practice.
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7 Appendix I: The Skew-Normal Distribution

7.1 Mathematical Properties of the Skew-Normal

The setup for the skew-normal distribution is as follows:

xi ∼ f(x), f(x) = 2φ(x)Φ(αx), (A1)

where α is the shape parameter that allows one to vary the skewness of the dis-

tribution, and

φ(x) =
1√
2π
e−

x2

2 , Φ(αx) =

∫ αx

−∞
φ(t) dt. (A2)

The density f (x ) exhibits various interesting properties, described by Azzalini (1985):

1. when α = 0, the skewness vanishes and we are left with a normal distribution

2. skewness increases as α increases in magnitude

3. as α→∞, f (x ) converges to a half-normal density

4. as the sign of α changes, the skewness is reflected on the opposite side of the

vertical axis

We can construct εi from xi as follows:

εi = ξ + ωxi, (A3)

which is said to be skew-normally distributed with location parameter ξ and scale

parameter ω2. It is important to note that ξ and ω2 are not the moments of this
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distribution. In fact, for the first four non-central moments we have

E(εi) = ξ + ω

√
2

π
δ, (A4)

Var(εi) = ω2(1− 2δ2/π), (A5)

γ1 =
4− π

2

(
√

2/πδ)3

(1− 2δ2/π)3/2
, (A6)

γ2 = 2(π − 3)
(
√

2/πδ)4

(1− 2δ2/π)2
, (A7)

where δ is defined as

δ =
α√

1 + α2
.

In order to ensure E(εi) = 0 and Var(εi) = 1, the random variables are standardised

as follows:

ω =
1√

1− (2δ2/π)
; ξ = −ω

√
2

π
δ.

Now we indeed have εi ∼ SN (0, 1, α).

7.2 Generating Skew-Normal Random Variables

To actually generate skew-normal random variables with a pseudo-random number

generator, the algorithm used in this study is similar to an acceptance-rejection

algorithm. However, one need not draw new random variables when the algorithm

rejects. First, draw two independent random variables from the standard normal
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distribution.

zi1 ∼ N (0, 1), zi2 ∼ N (0, 1).

Second, produce xi as follows:

xi =

 zi1 if zi2 ≤ αzi1,

−zi1 if zi2 > αzi1,

where α is the shape parameter. The resulting xi is distributed as in (A1).
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8 Appendix II: The Skew-t Distribution

8.1 Mathematical Properties of the Skew-t

Azzalini (2011) also describes a skew-t distribution that allows for kurtosis. The

setup is given below:

xi ∼ f(x), f(x) =
2

ω
t(x; ν)T

(
αx

√
ν + 1

ν + x2
; ν + 1

)
, (A8)

where α is the shape parameter, ν is the degrees of freedom that allows one to vary

kurtosis, and

t(x; ν) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)

(
1 +

x2

ν

)− ν+1
2
, T (αx; ν) =

∫ αx

−∞
t(s; ν) ds. (A9)

Analogous to the skew-normal distribution, we can construct εi with the following

transformation:

εi = ξ + ωxi, (A10)

which is said to follow a skew-t distribution with location parameter ξ and scale

parameter ω2. The moments of the skew-t distribution are generalisations of those

of the skew-normal. In order to describe these moments, it is easiest to first state the

cumulants for xi with location parameter ξ = 0 and scale parameter ω2 = 1, and

then derive the non-central moments of εi from those cumulants (see Arellano-Valle
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and Azzalini 2011):

µ1(δ, ν) = bνδ,

µ2(δ, ν) =
ν

ν − 2
− b2νδ2,

µ3(δ, ν) = E
(
[ui − µ1(δ, ν)]3

)
,

= bνδ

[
3ν

(ν − 3)(ν − 2)
− δ2

( ν

ν − 3
− 2b2ν

)]
,

µ4(δ, ν) = E
(
[ui − µ1(δ, ν)]4

)
,

=
3ν2

(ν − 2)(ν − 4)
− 6δ2b2ν

ν(ν − 1)

(ν − 2)(ν − 3)
+ δ4b2ν

( 4ν

ν − 3
− 3b2ν

)
,

where ν must be larger than the cumulant µi(δ, ν) considered, and

bν =
(ν
π

)1/2Γ
(
ν−1
2

)
Γ
(
ν
2

) , (ν > 1).

Now that we have the cumulants for xi, we can state the moments for εi = ξ + ωxi:

E (εi) = ξ + ωµ1(δ, ν), (A11)

Var (εi) = ω2µ2(δ, ν), (A12)

γ1(δ, ν) =
µ3(δ, ν)

µ2(δ, ν)3/2
, (A13)

γ2(δ, ν) =
µ4(δ, ν)

µ2(δ, ν)2
− 3. (A14)

The first two moments can be used to centre and standardise the skew-t distribution.
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8.2 Generating Skew-t Random Variables

To generate a skew-t random variable, one could proceed by first generating a skew-

normal random variable xi in a similar manner to that described in Appendix I, but

with location parameter ξ = 0 and the scale parameter ω2 = 1. Next, one would

draw qi ∼ χ2(ν), where ν is the degrees of freedom. Most modern statistical software

packages have built-in pseudo-random number generators capable of simulating the

chi-square distribution. One then simply computes εi as

εi = ξ′ + ω′
xi√
qi/ν

,

where ξ′ and ω′ are chosen in such a way that (A11) equals 0 and (A12) equals 1.

We now indeed have εi ∼ ST (0, 1, α, ν).
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9 Figures
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Figure 1: Skew-normal distributions for various values of shape parameter α
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Figure 2: Skew-t distributions for shape parameter α = 5 and various degrees of freedom ν
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Figure 3: Rejection frequencies for SOB–VB and various WB-HC1 t tests with normal errors
(M = 400, 000;B = 399;n = 40)
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Figure 4: Rejection frequencies for w3r2–HC1 bootstrap t tests for various values of α
(M = 400, 000;B = 399;n = 40)
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Figure 5: Rejection frequencies for SOB–VB bootstrap t tests for various values of α
(M = 400, 000;B = 399;n = 40)
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Figure 6: Rejection frequencies for w3r2–HC1 bootstrap t tests for various values of ν and α = −5
(M = 400, 000;B = 399;n = 40)
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Figure 7: Rejection frequencies for SOB–VB t tests for various values of ν and α = −5
(M = 400, 000;B = 399;n = 40)
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Figure 8: Rejection frequencies for w3r1–HC1 t tests for various values of ν and α = −5
(M = 400, 000;B = 399;n = 40)
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Figure 9: Power of SOB–VB and w3r2–HC1 bootstrap t tests for α = 0, ν =∞ and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 10: Power for w3r2–HC1 bootstrap t tests for various values of α, ν =∞ and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 11: Zoomed-in view of Figure 10
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Figure 12: Power of SOB–VB bootstrap t tests for various values of α, ν =∞ and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 13: Power of SOB–VB bootstrap t tests for various values of ν, α = 0, and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 14: Power of w3r2–HC1 bootstrap t tests for various values of ν, α = 0, and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 15: Power of w3r1–HC1 bootstrap t tests for various values of ν, α = 0, and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 16: Power of SOB–VB, w3r1 and w3r2 HC1 bootstrap t tests for ν = 2, α = 0, γ = 1
(M = 400, 000;B = 399;n = 40)
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Figure 17: Power of SOB–VB bootstrap t tests for various values of α, ν = 2 and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 18: Power of w3r2–HC1 bootstrap t tests for various values of α, ν = 2 and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 19: Power of w3r1–HC1 bootstrap t tests for various values of α, ν = 2 and γ = 1
(M = 50, 000;B = 399;n = 40)
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Figure 20: Power of SOB–VB and various WB-HC1 bootstrap t tests for α = -5, ν = 2 and γ = 1
(M = 50, 000;B = 399;n = 40)
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