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Abstract 

This paper applies multivariate factor copula modeling methods in order to study the 

dependence relationships of daily returns of four exchange rates: the Canadian Dollar, the 

British Pound, the Japanese Yen, and the Euro. Conditional on the principal components 

or common factors identified, we estimated the dependence parameters and their 

corresponding rank correlations for the Clayton, Gumbel, and Gaussian copulas. We 

found that the dependence among the chosen currencies is strongly asymmetric, and the 

unconditional Gumbel copula is preferable. In contrast, conditional on the common 

factors, the dependence among the chosen currencies is weakly asymmetric, and the 

two-factor Gaussian copula modeling hypothesis is more appropriate. 
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1 Introduction

The global financial crisis that began in 2007 has led to extreme volatility in fi-

nancial markets. Uncertainty and panic have flooded the world’s financial markets during

the global recession. As a result, the foreign exchange market experienced a very volatile

period. Regardless of whether the Canadian dollar rises or falls during this crisis period,

its movement has a great impact on the Canadian people’s living standards and domestic

economy. The Canadian government needs to predict the position of the Canadian dollar

in global markets quickly in order to stabilize the economy and minimize the risk of hold-

ing foreign exchange reserves. Corporations need to know the same information in order

to minimize the risk of holding certain currencies when they are conducting international

business. Individual investors also increasingly need to know the same information to plan

household budgets and change consumption habits to accommodate the rising and falling

currency. It is therefore necessary, and important, to investigate the relationships among the

Canadian dollar and other currencies, especially during volatile periods. This research will

examine these relationships during economic booms and recessions.

Currently, many researchers are concerned with the causes and potential damages of

this past financial crisis. Most investment decisions are based on the trade-off between risk

and returns. Generally speaking, in asset allocation and risk management, the more inde-

pendent the selected assets are, the more diversification the portfolio has, and therefore, less

risk is involved. As a result, it is very important for people, especially risk practitioners,

policy makers, and regulators to identify and model dependent relationships among curren-

cies, which are important to consider for a diversified portfolio and a good risk management
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strategy.

One of the simplest and most commonly used approaches to study dependence

among the exchange rates is to calculate the linear correlation coefficients between the

values of their returns with the modelling assumption that they have normal or Gaussian

distributions. The smaller the correlation coefficients, the less these markets depend on

each other. Unfortunately, this approach is problematic. First, it is a widely recognized

that the return data usually exhibit typical asymmetric distributions instead of a symmetric

normal distribution (i.e., the data does not exhibit equally likelihood of falling and rising),

which is an underlying assumption of the linear correlation calculation. In addition, a corre-

lation of zero does not indicate independence of the data series. For example, let us assume

that y and x have a dependence relationship where y = x2. The linear correlation between

x and y is zero. Therefore, the linear correlation may not provide an accurate measure of

the dependence degree (i.e., how much the markets depend on each other). Second, the

linear correlation cannot measure the dependence structure (i.e., how the markets depend

on each other). The exchange rate returns’ correlations may increase more when the econ-

omy is in recession than when the economy is booming. The linear correlation coefficient

may underestimate the dependence of the financial exchange markets during the crisis since

it does not capture the excess co-movements when the markets move downwards (Patton,

2006). Consequently, the linear correlation coefficients are inappropriate. Fortunately, an

alternative approach, copula modelling, can overcome the limitations of the linear corre-

lation coefficients technique. This paper applies copulas to study both dependence degree

and dependence structure among the exchange rate returns.

A copula is a cumulative distribution function connecting multivariate marginal dis-
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tributions in a specified form. Usually, researchers can obtain information about the distri-

butions of the marginal functions easily, but it is difficult to accurately specify joint distri-

bution. Copula modelling offers an important improvement in this respect: for example, in

a bivariate case, when both marginals are Gaussian (i.e., normally distributed) and the cop-

ula has a Gaussian distribution, the joint distribution generated will be Gaussian as well.

However, even if the marginals are not Gaussian, a copula approach can still be used to

generate a joint distribution (Rockinger & Jondeau, 2001).

Besides modelling the joint distribution with copulas, this paper applies factor anal-

ysis to identify the common factors and construct two-factor copula models to study the

dependence among the exchange rate returns. The common factors play an important role

in determining the joint dependence among the returns. The common factors can be oil

price, global consumer confidence index, or the combination of these factors. When the

values on these factors change, all exchange rate returns will be affected to different de-

grees depending on how much their representative economies are tied with these factors,

and this contributes to the asymmetric joint distributions of the chosen returns. To focus

solely on the interactions of the dependence among the currencies themselves, the copula

models conditional on the common factors (also named as factor copula models in this pa-

per) are more preferable. The common factors, also known as principal components in this

study, can be found by using a principal component analysis technique, further details of

which will be in the methodology section.

The dataset in this study consists of four exchange rates. We chose the daily ex-

change rates of the Canadian Dollar, the British Pound, the Japanese Yen, and the Euro

expressed in the US dollar. The sample period starts right after the Euro was introduced on
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January 2nd, 2002 and ends on October 29th, 2010. In contrast to the existing literature that

focuses mainly on bivariate studies, this paper focuses on Gaussian, Clayton, and Gumbel

copula modelling in the multivariate case. The aim of this paper is to apply factor copula

models to study dependence relationships among daily returns of these chosen exchange

rates. In addition, this paper confirms if there is asymmetric dependence among the chosen

exchange rate returns or not (i.e., this paper confirms if these returns tend more likely to go

up or down together), and provides suggestions on identifying the appropriate copula for

the chosen exchange rates.

Despite the fact that the copula approach has flourished in the statistical and actuarial

literature, this approach is a newly introduced concept in the social science fields of finance

and economics, but since 1998, a few studies have utilized copula modelling. Yet, to the

best of our knowledge, the existing literature on international financial exchange markets

has not paid much attention to directly investigating the tail dependencies among currencies

and using factor copulas on the exchange rate returns. Therefore, one of the important

contributions of this paper is to formally introduce the factor copulas and their applications

on studying the dependence among the currencies.

The structure of the remainder of this paper is organized as follows: Section 2

presents a review of relevant literature; Section 3 reviews the history, basic concepts, spe-

cial forms and properties of copulas selected for this study, and includes a brief introduction

to principal component analysis; Section 4 describes the data and the estimation procedures

used for empirical investigation; and finally, the last section contains suggestions for future

research and concludes the study.
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2 Literature Review

Abandoning traditional tools such as extreme value theory and using copula tools

to study the extreme fluctuations in the exchange rate returns are not new concepts. The

actuaries and statisticians were among the first to apply copula techniques in the finance

field. Many of these scholars enjoyed the challenges of being the first few to be exposed

to such tools. Genest and MacKay (1986) even published a paper with a name ”The Joy

of Copulas: Bivariate Distributions with Uniform Marginals” to express their enjoyment of

this tool to model non-Gaussian financial series. Researchers with actuarial or statistical

backgrounds focused more on applying the tool to the insurance world, and their technical

training allow them to explore further the innovative ways of applying this tool to better

assist risk management. Their research can be easily extended to the finance world.

Building on the research of the first few scholars such as Frey, McNeil and Nyfeler

(2001) who combined factor and copula tools, Laurent and Gregory (2003) thoroughly in-

troduced one-factor Gaussian copulas, one-factor mean variance Gaussian mixtures, and

one-factor Archimedean copulas. The factor approach helped achieve the goal of data re-

duction by locating the common factor variables affecting the selected data series. Con-

ditional on these factors, the copulas can better assist in identifying the dependence rela-

tionships and model the chosen financial data. Furthermore, Anderson and Sidenius (2004)

extended the standard Gaussian copula model to two new models to study the portfolio de-

fault loss. In one of their extended models, they randomized the systematic factor loadings,

which allow default correlations to be higher in bear markets than in bull markets. They

said that this model can induce a strong correlation skew similar to that observed in the
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credit market, making it easy to parameterize and efficient for obtaining numerical results.

The existing studies focus mainly on the one-factor copulas. In contrast, this research fo-

cuses on using two-factor copulas, and the selected copula models are Gaussian, Gumbel,

and Clayton copulas.

Many papers have been published on the topic of exchange rates. The attention on

exchange rates has gradually shifted towards using copula tools to verify if the distribu-

tions of these exchange rates are asymmetric and to model their dependence. These studies

will in turn assist the risk management of the international investment portfolio that can

be significantly affected by the fluctuations in currencies. For example, Hurd, Salmon, and

Schleicher (2007) applied copulas to construct bivariate foreign exchange distributions with

a focus on the application of the Sterling Exchange Rate Index. Built on their study, Patton

(2006) extended the copulas conditional on variables or common factors found through the

factor approach, and constructed flexible models of the conditional dependence structure

of the mark/U.S. dollar and yen/U.S. dollar exchange rates. Notably, the research that has

been done focuses on applying bivariate copulas only for the dependence between two ex-

change rates. This research contributes to the existing literature by focusing on multivariate

factor copula models to study four exchange rates: CAN/U.S., pound/U.S., yen/U.S., and

euro/U.S. dollar.

3 Methodology

This section is organized as follows: First, subsection 3.1 formally introduces the ba-

sic definitions and properties of copula functions. Subsection 3.2 presents some important

examples of copula functions, and their main characteristics; more specifically, it covers the
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three types of multivariate copula functions applied in my empirical studies. In subsection

3.3, the characteristics and measure of dependence of copulas are described. The estima-

tion methods are introduced in subsection 3.4. Subsection 3.5 introduces factor structure

in copula modeling and depicts how the factors play roles in the chosen types of copula

functions. Finally, the subsection 3.6 describes the chosen data.

3.1 Definitions and Properties of Copula Functions

In this subsection, we first concentrate on using copulas to restore the joint distribu-

tion for two marginal variables (i.e., cumulative distribution functions or CDFs). We then

extend to a multi-dimensional framework. Before we proceed to the foundational theorem

for copulas according to Sklar (1959), we begin with the formal definition of ”copula” given

by Rockinger and Jondeau (2001):

Definition 1 : A two-dimensional copula is a function C : [0, 1]2 → [0, 1] which has

the following properties:

(1) C(u, v) is increasing in u and v;

(2) C(0, v) = C(u, 0) = 0, C(1, v) = v, C(u, 1) = u;

(3) For every u1, u2, v1, v2 ∈ [0, 1] such that u1 < u2 and v1 < v2, we have

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The first property indicates that the joint distribution function increases when allow-

ing one variable to increase while keeping the other one constant. The second property

ensures that the copula function is zero when the probability of one variable is zero. Addi-

tionally, the joint probability is determined by the marginal probability that is not equal to
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one. The third property is equivalent to saying that

∫ v2

v1

∫ u2

u1

∂2c

∂u∂v
dudv ≥ 0

for all u1 < u2 and v1 < v2 in the range. This implies that if both u and v increase, the joint

probability increases.

To further introduce the formal definition of copulas and show how copulas are used

to restore joint distributions for marginals, now we state Sklars Theorem.

Sklar’s Theorem in n-dimensions (1959). Let H be an n-dimensional distribution

function with marginals Fi(·) with i = 1, . . . , n. Then, there exists a copula C such that for

random variables Xi, such that

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

If Fi(·) are continuous for all i = 1, . . . , n, then C is unique. Conversely, if Fi(·)

are marginals or CDFs and C is a copula with a range of [0, 1]n, then the function H is

a joint distribution function with one-dimensional marginals Fi(·). Notably, when H is

continuous, the unique C will be

C(u1, u2, . . . , un) = H(F1
−1(u1), F2

−1(u2), . . . , Fn
−1(un)).

Note that, even though in our study the exchange rates are discrete; we can apply the kernel

method to approximately smooth the data and obtain continuous CDFs for the exchange

rate returns.
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Applying a copula function to restore the multivariate distribution has several advan-

tages. First, it provides flexibility in the model specification by separating the specifications

of the marginals from those of the copula. In this way, it is possible to construct a com-

plex non-Gaussian joint distribution. Second, a copula is a powerful technique because it

directly models the dependence between the marginal distribution functions.

3.2 Some Common Copulas

After giving a general definition for copulas, in this section, we present several im-

portant copulas and their properties. We first define the product copula, which is the sim-

plest copula function. Then we define the Gaussian copula, which is the basic and most

commonly used copula. After this, we present an important class of copula functions:

Archimedean copulas. The copulas that fall in this class can be stated directly and usually

have a simple closed form expression. In addition, these copulas are popular because they

can be easily derived and can capture a wide range of dependence structures.

3.2.1 Product Copula

If we set u1 = F (x1) and u2 = G(x2), then C(F (x1), G(x2)) describes the joint

distribution of X1 and X2. If u and v are independent, then the product copula has the form

C(u1, u2) = u1u2.
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3.2.2 Gaussian Copula

As Schmidt (2006) outlined in his work, Gaussian copulas are an extension from the

multivariate normal distribution. Let us assume that X1 and X2 are normally distributed

and they are also jointly normal. Then we can use a linear correlation to fully describe their

dependence structure and their correlation is

Corr(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

.

The two-dimensional Gaussian copula is

CG(u1, u2; θ) = ΦG(Φ−1(u1),Φ−1(u2); θ)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1√
2π(1− θ2)

e
−x21−2θx1x2+x

2
2

2(1−θ2) dx1dx2.

Instead of applying the straightforward bivariate Gaussian copula, this paper presents

a multivariate Gaussian copula to study dependence among more than two variables. The

multivariate Gaussian copula for a correlation matrix Σ is given by

CG
Σ (u) = ΦΣ(Φ−1(u1),Φ−1(u2); Σ). (1)

Note that the correlation matrix is the covariance matrix that scales each component

of the variable to have a variance of one. The multivariate Gaussian copula is one spe-

cial case of the elliptical copula family. Linear correlation is a good and efficient measure

of the dependence relationships in this case. The equivalent way of expressing Gaussian
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(i.e., normal) and elliptical distributions’ independence is zero correlation. For example,

in the bivariate Gaussian copula, if θ=0, the bivariate Gaussian copula is a Product copula.

The positive (or negative) sign of θ reveals a positive (or negative) linear dependence re-

lationship among the variables. In other words, the bivariate Gaussian copula allows us to

use one simple parameter, the correlation coefficient (θ) to capture the three fundamental

dependence structures: independent, positive, and negative dependence structures. In the

multivariate Gaussian copula, the correlation matrix is used to capture these dependence

structures.

3.2.3 Clayton Copula

As mentioned by Trivedi and Zimmer (2005), with θ ∈ [−1,∞) \ {0}, the Clayton

Copula takes the form:

C(u1, u2; θ) = max[(u−θ1 + u−θ2 − 1)−1/θ, θ].

When θ > 0, we simplify the above equation as follows:

C(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−1/θ.

Applying similar idea, we can have a family of n dimensions Clayton copulas for θ > 0

and n ≥ 2:

Cn(u; θ) = (u−θ1 + u−θ2 − 1 + · · ·+ u−θn − n+ 1)−1/θ. (2)
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3.2.4 Gumbel Copula

As mentioned by Trivedi and Zimmer (2005), with θ ≥ 1, the Gumbel copula takes

the form:

C(u1, u2; θ) = exp{−[(− lnu1)θ + (− lnu2)θ]1/θ}.

To generalize the Gumbel family of bivariate copulas to a family of n dimensions

copulas for θ ≥ 1 and any n ≥ 2, we have

Cθ
n(u) = exp{−[(− lnu1)θ + (− lnu2)θ + · · ·+ (− lnun)θ]1/θ}. (3)

3.3 Measuring Dependence

In a financial context, the measures of dependence among random variables have

drawn a lot of attention recently. In this section, we introduce three important measures of

dependence: linear correlation, rank correlation and tail dependence using bivariate exam-

ples, which can be easily extended to multivariate ones.

3.3.1 Linear Correlation

In statistics and economics literature, the most familiar concept in studying depen-

dence is the correlation coefficient between two random variables. The linear correla-

tion coefficient is a traditional dependence measure. The correlation coefficient between

two random variables x and y is defined as follows: Corr(X1, X2) = Cov(X1,X2)√
Var(X1)Var(X2)

or

ρX1,X2 = Cov(X1,X2)
σX1

σX2
. Note that σX1 and σX2 represent the standard deviations of X1 and

X2, Cov(X1, X2) = E[X1X2]− E[X1]E[X2], σX1σX2 > 0.
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Several properties of the correlation coefficient are worth mentioning here. First,

the correlation coefficient, ρX1,X2 , is a well studied measure of linear dependence and it is

symmetric. Second, −1 ≤ ρX1,X2 ≤ 1 and its lower and upper bounds measure perfect

negative and positive linear dependence. Third, the correlation measure is invariant under

linear transformations of the variables, but it does not hold for general transformations. For

example, if G(·) is a strictly increasing nonlinear transformation of the random variables,

then we have the formula ρG(X1),G(X2) 6= ρX1,X2 . Finally, ρX1,X2 = 0 implies independence

for bivariate normal distributed random variables, but it does not hold in general.

3.3.2 Rank Correlation

The limitations of the measure of linear dependence provide us the motivation to

consider rank correlation, which is an alternative measure of nonlinear dependence rela-

tionships among variables with non-Gaussian marginals. As implied by its name, rank

correlation concentrates on modeling the rankings of given observed data rather than on the

actual values of the data themselves. Given by Trivedi and Zimmer (2005), there are two

well-established measures of rank correlation, Spearman’s rho and Kendall’s tau, which

provide a way to fit copulas to data.

Both Spearman’s rho, ρs(x, y), and Kendall’s tau, ρτ (x, y), have the following four

properties: first, they are symmetric; second, they are bounded by (-1, 1), and their lower

and upper bounds on this inequality measure perfect negative and positive linear depen-

dence; third, they are equal to zero when the random variables are independent from each

other; finally, they are co- and counter- monotonic. The expressions in terms of copulas for

the Rank correlations are as follows:
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ρs(x, y) = 12

∫ 1

0

∫ 1

0

(C(u1, u2)− u1u2) du1du2

and

ρτ (x, y) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1.

According to Nelson (1999), Kendall’s tau and Spearman’s rho are equivalent with the same

underlying assumptions, but they usually have similar but different magnitudes. These two

methods can verify the changes in the dependence relationships in different subsamples

since the directions of the changes are usually the same under both methods. In this paper,

our results include the estimates of the Kendall’s tau, the Spearman’s rho, as well as the tail

indices (i.e., tail dependence), which is introduced in the following section.

3.3.3 Tail Dependence

In this subsection, we introduce the concept of tail dependence, which is applied

to measure the dependence between the extreme values of random variables, for copula

models. We refer to extreme co-movement relationships as concepts of concordance and

discordance. Basically, according to Trivedi and Zimmer (2005), concordance means that

there is a dependent relationship between large values of two random variables, and dis-

cordance means that there is a dependent relationship between large values of one random

variable with small values of another.

Consider two continuous uniform random variables X1 and X2 with marginal dis-

tribution functions F1 and F2. Tail dependence measures the conditional probability that

X1 exceeds a given value k given that X2 exceeds the same value. Intuitively, upper tail
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dependence means that large values of X2 are expected with large values of X1 (Schmidt,

2006). If this is the case, we say that the random variables do not exhibit tail dependence.

Specifically, given the limits λU ∈ [0, 1] and λL ∈ [0, 1], we can define λU and λL while

the measures of upper tail dependence and that of lower tail dependence are given in the

following equations, respectively:

λU = lim
m→1−

P (X2 > F−1
2 (m)|X1 > F−1

1 (m))

and

λL = lim
m→0+

P (X2 ≤ F−1
2 (m)|X1 ≤ F−1

1 (m)).

If λU ∈ (0, 1], then X1 and X2 are said to have upper tail dependence. If λU = 0,

then X1 and X2 are said to be asymptotically independent in the upper tail. Similarly, if

λL ∈ (0, 1], then X1 and X2 are said to have lower tail dependence. If λL = 0, then X1 and

X2 are said to be asymptotically independent in the lower tail.

To find a relationship between the above tail dependence equations with our copula

functions, the following calculations give the relationship:

λU = lim
m→1−

P (X2 > F−1
2 (m)|X1 > F−1

1 (m)) = lim
m→1−

Cs(m,m)

1−m
(4)

and

λL = lim
m→0+

P (X2 ≤ F−1
2 (m)|X1 ≤ F−1

1 (m)) = lim
m→0+

Cs(m,m)

m
. (5)

Then, by substituting the Clayton Copula and Gumbel Copula formulas into the
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measurement function of tail dependence, we can obtain the coefficients of tail dependence

for these copulas.

In particular, the relationship between the dependence parameter (θ) and Kedall’s

tau (τ ) of the Clayton copula in (2) is τ = θ/(θ + 2). Using the formulas in (4) and (5), we

can show that a Clayton copula has positive lower tail dependence and we have λL = 21/θ

and λU = 0. The relationship between the dependence parameter (θ) and Kedall’s tau of the

Gumbel copula in (3) is 1/θ = 1− τ . Using the formulas in (4) and (5), we can show that a

Gumbel copula has positive upper tail dependence and we have λL = 0 and λU = 2− 21/θ.

Similar relationship can be identified between the dependence parameter and Spearman’s

rho.

The left and right tail dependence of the Gaussian Copula is equally likely to happen

(i.e., the number of values that are less than a mean is the same as the number of values

greater than the mean). The Gaussian Copula is a good choice for modeling between two

variables when there is no strong tail dependence. Or, in the context of exchange rate

returns, when two rates are not strongly correlated at low (or high) values but less correlated

at high (or low) values, the Gaussian copula is an appropriate modeling choice.

In formula (2), θ is the dependence parameter that has a restricted region of (0,∞).

As θ approaches zero, the marginals will be independent of each other. The Clayton Copula

has strong positive left tail dependence and relatively weak right tail dependence. In other

words, it models extreme negative co-movements. The Clayton Copula is a good choice

for modeling between two variables when their left tail dependence is strong. Or, in the

context of exchange rate returns, when two returns are strongly correlated at low values but

less correlated at high values, the Clayton copula is an appropriate modeling choice.
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The Gumbel copula has strong positive right tail dependence and relatively weak

left tail dependence. In other words, it does not tolerate extreme negative co-movements.

In the context of exchange rate returns, when correlation between two returns is strong in

the right tail of the joint distribution, the Gumbel copula is an appropriate choice.

Therefore, if we can estimate the dependence parameter in each copula function, we

can easily calculate out the values of rank correlations, which include both the Kendall’s

tau and the Spearman’s rho, and the tail dependence structure for that copula.

3.4 Estimation Methods

This paper’s main interest is to estimate the dependence parameters in copula func-

tions. Usually, according to Trivedi and Zimmer (2005), there are three approaches to esti-

mate the parameters in a copula function. The first and most direct estimation method is a

maximum likelihood approach, which is used to estimate the copula and the marginal distri-

butions simultaneously. To apply this method, we need to specify the marginal distributions

and any mistake in such specifications will affect the estimation results. A second approach

is a generalized method of moments (GMM), which is used to estimate the parameters af-

ter deriving the moment functions. A third approach is a two-stage maximum likelihood

estimation method: in the first stage, the marginal distribution functions are estimated with

the assumption of independence between the two random variables; in the second stage,

the estimated marginal distributions are substituted into the copula function and the depen-

dence parameter of this copula function is estimated. The marginal distributions and the

dependence structure are independently estimated. Using the two-stage maximum likeli-

hood method, we don’t need to make any assumption on the marginal distributions and we
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can use the estimated marginal distributions, which means that the estimated distributions

are free of specification error. Therefore, this paper focuses on the two-stage maximum

likelihood method.

3.5 Factor Copula Structure

In this paper, we introduce an alternative way of approaching the problem of find-

ing the dependence relationships between fluctuations on exchange rates by using copula

models conditional on the common factors found through the factor analysis.

Factor analysis is based on the fundamental assumption that some underlying fac-

tors, which are smaller in number than the number of observed variables, are responsible

for the co-variation among the observed variables. This analysis method is mainly used for

data reduction purposes or as a natural start point to find the common factors that describe

the underlying variables’ relationships. There are a few forms of factor analysis, includ-

ing principal component analysis. This paper focuses on the principal component analysis

method, which is the most common form of factor analysis. This method is particularly

appropriate since we can use the obtained principal components (which are also referred

as ”common factors for simplification in explanation) as criterion variables in subsequent

copula analyses. These principal components or common factors are able to account for

most of the variance in the observed exchange rate returns.

The correlation matrix of returns on exchange rates is calibrated by developing factor

models for exchange rate returns, where the underlying factors could be interpreted as a

small set of economic or financial factors. Here we first focus on a one-factor model and it

can be easily extended to a two-factor model.
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Instead of directly applying the marginal distributions of the exchange rate returns

into our copula function, we can use their marginals conditional on the common factors.

The correlation coefficients of these returns depend on the estimated common factors. The

ways the returns are interrelated with each other depend largely on the common factors.

To focus solely on the interactions among the returns, the factor copula correlations condi-

tional on the estimated common factors can more accurately describe the dependence re-

lationships among multiple variables. Specifically, conditional on the common factors, the

exchange rate returns will only be dependent on the joint distributions of Z1, Z2, · · · , Zn,

which are the unique parts for their respective exchange rate returns.

3.5.1 Two factor Gaussian copulas

We define ri(i = 1, 2, . . . , n) as the returns on the exchange rates. If these returns

were normally distributed, the joint distribution of them may be multivariate normal. As is

well-known in the academic world, the probability distribution of financial series tends not

be normal. To apply a Gaussian copula to model our data, we followed the suggestions of

Hull (2009) and first transformed the returns into new variables xi(i = 1, 2, . . . , n) using

xi = N−1[Qi(ri)], i = 1, 2, . . . , n.

where N−1 is the inverse of the cumulative normal distribution and Qi(i = 1, 2, . . . , n) are

the cumulative distribution functions for respective exchange rate returns, ri(i = 1, 2, . . . , n).

In this transformation, the new variables, xi, are constructed to have a standard normal dis-

tribution with mean equals to zero and standard deviation equals to one. This transforma-
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tion is percentile to percentile so that the correlations among the returns can be measured by

the ones among the new variables. Then introducing a Gaussian copula, we can study the

copula correlations or dependence relationships among financial returns that do not have

normal distribution, and separate the estimations for unconditional marginal distributions

and the joint distribution.

To avoid defining a different correlation between xi and xj for each pair of exchange

rate returns i and j in the Gaussian copula models or a different copula correlation between

the distribution function or the copula models, a one-factor model is often used. The as-

sumption is that

xi = aiF +
√

1− aiZi. (6)

In this equation, F is a common factor affecting all exchange rate returns andZi have

independent standard normal distributions. The ai(i = 1, 2, . . . , n) are constant parameters

between -1 and +1. The correlation between xi and xj is aiaj .

Suppose that the probability that exchange rate i will be below a threshold of m is

Qi(m). Under the Gaussian copula model, such low returns happen when N(xi) = Qi(m)

or xi = N−1[Qi(m)]. From equation (6), this condition is

aiF +
√

1− aiZi = N−1[Qi(m)]

or

Zi =
N−1[Qi(m)]− aiF√

1− ai
.

Conditional on the value of the factor F , the probability of having a return lower
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than m is therefore

Qi(m|F ) = N

(
N−1[Qi(m)]− aiF√

1− ai

)

as given in the book written by Hull (2009). Therefore, setting a threshold of m, we can

find out the probability of having such disappointing returns. In this paper, we extended the

above model and used a two-factor model for our data analysis. In the two-factor model,

xi = αiF1 + βiF2 +
√

1− αi − βiZi. (7)

In this equation, F1 and F2 are two common factors affecting defaults for all com-

panies and Zi have independent standard normal distributions. The αi and βi are constant

parameters between -1 and +1. The correlation between xi and xj is αiαj + βiβj . Sup-

pose that the probability that exchange rate i will be below a threshold of m is Qi(m).

Under the Gaussian copula model, such low returns happen when N(xi) = Qi(m) or

xi = N−1[Qi(m)]. From equation (7), this condition is

αiF1 + βiF2 +
√

1− αi − βiZi = N−1[Qi(m)]

or

Zi =
N−1[Qi(m)]− αiF1 − βiF2√

1− αi − βi
.

Conditional on the value of the factors F1 and F2, the probability of having a return lower

than m is therefore

Qi(m|F ) = N

(
N−1[Qi(m)]− αiF1 − βiF2√

1− αi − βi

)
. (8)
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Therefore, setting a threshold of m, we can find out the probability of having such disap-

pointing returns.

3.5.2 Two-Factor Archimedean Copulas

In addition, by using the factors we found, we can extend the copula models for

conditional variables. Besides one factor Gaussian copulas, Laurent & Gregory (2003)

outlined the one-factor Clayton copula model in their paper. Based on their work, we

extended their model and constructed two-factor Clayton and Gumbel copulas. The first

step is to identify the common factors. The common factors are extracted from the returns

without transforming them to normal variables. Instead of having a normal distribution, the

common factors follow a Gamma distribution with parameter 1/θ, where θ > 0, and with a

scale parameter equal to one. More precisely, the factor follows a Gamma distribution with

the probability density

f(x) =
1

Γ(1/θ)
e−xx

1−θ
θ .

Then we define:

Xi =

(
1− ln(Ui)

F

)1/θ

whereUi(i = 1, . . . , n) are independent uniform random variables and they are independent

from the common factors, F .

Conditionally on the common factors, F , for Clayton copula, the probability of

having a return lower than m is therefore

QClayton
i (m|F ) = exp

(
V (1−Qi(t)

−θ)
)

(9)
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and using similar logic for Gumbel copula, we have

QGumbel
i (m|F ) = exp

(
V (log(Qi(t))

θ)
)
. (10)

Using above conditional CDFs, we were able to find more accurate copula correla-

tions or dependence relationships among the exchange rate returns excluding the common

factors.

3.6 Data

The data used in this study were downloaded from Yahoo!Finance. Our research

interest is to investigate the dependence among foreign exchange rates. The data of interest

therefore were the daily returns of exchange rates in four different countries/regions. These

selected currencies are the Canadian Dollar, British Pound, Japanese Yen, and Euro. The

abbreviations used are CAD (Canadian Dollar), GBP (British Pound), JPY (Japanese Yen),

and EUR (Euro). The exchange markets would have been closed for the countries which

celebrate different specific holidays. Therefore, it was very important to filter the sample

data by removing observations corresponding to these holidays.

The chosen four countries/regions have differences in the development of their fi-

nancial markets. As a result of this, their exchange rates have different start dates. We

chose the start date of launching the Euro, which is January 2nd, 2002, as the cut-off point,

and eliminated any observations before this. The sample data ends with October 29th,

2010. This reduces the sample to 1,730 observations. In addition, the current financial

crisis would influence the empirical results we obtained on a large scale. It is interesting

23



to compare the pre- and post- crisis empirical results of sample observations. To achieve

this goal, we used the same filtered sample data but we further separated the sample by

the cut-off date of July 1st, 2007 (note: this is a rough estimation of the start date for our

current crisis). The first subsample has 1,037 observations between January 2nd, 2002 and

June 30th, 2007, while the second subsample has 693 observations between July 2nd, 2007

and October 29th, 2010.

4 Empirical Results

After obtaining the sample datasets, we estimated the dependence parameters and

their corresponding rank correlations in the selected copula functions. We also conducted

normality tests on all data series and calculated the linear correlation coefficients for all

pairs of exchange rate returns. To further our analysis, we conducted a null hypothesis of

independence on both the linear correlation coefficients and the rank correlations. At the

end of the empirical results analysis, we obtained the tail dependence parameters, which

give a clear idea of the dependence structure among the exchange rate returns. Based on

the estimation results obtained, we should be able to compare and find the appropriate

copula models for the chosen data.

4.1 Test of Normality and Linear Dependence

Linear correlation coefficients cannot capture the extreme fluctuations and nonlinear

dependence relationships in the sample data especially for non-Gaussian financial data.

Therefore, it is important for us to find an approach such as copulas to study the nonlinear

dependent relationships of financial data (i.e., exchange rate returns) that are not necessarily

24



normal. To confirm that the exchange rates have nonlinear dependence and are not normally

distributed, we conducted normality tests and zero linear dependence tests. We rejected

normality by obtaining p-value that equals zero from the Jarque-Bera test for all data series.

This is consistent to the findings of existing literature.

To verify if the data series are dependent on each other or not, we ran a simple

linear regression between the different data series. We obtained positive values of linear

correlations for all pairs of exchange rates (Tables 1-3). In other words, all data series

exhibit dependence relationships with each other. Moreover, after testing a simple null

hypothesis of zero linear independence, we rejected the linear independence relationship

for all of the data series as exhibited in Tables 1-3. As mentioned earlier, the exchange

rate returns may exhibit nonlinear dependence, and the linear correlation coefficients may

fail to capture these dependence relationships. From the results exhibited in Table 4, we

found that after separating the full sample into two samples by picking a start date for

the crisis and naming the two samples as pre- and post-crisis samples, the correlations

significantly changed after the crisis occurred. In other words, the linear correlations are

not consistent at different time periods. We can argue that the data series follow a nonlinear

dependence relationship and the linear correlations are unlikely able to accurately describe

the dependence relationships. Therefore, we need to use models such as copula models that

are able to capture the nonlinear dependence relationships.
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Table 1: Linear Correlation Coefficients and Test of Independence for Full Sample

t-Statistic p-value Correlation Coefficients
Rho (rc, rj) -4.92676 9.16E-07 -0.1177
Rho (rc, rg) 12.18942 0.00E+00 0.281384
Rho (rc, re) 13.9246 0.00E+00 0.317627
Rho (rg, rj) 3.264054 1.12E-03 0.07828
Rho (re, rj) 8.554479 0.00E+00 0.201565
Rho (re, rg) 38.37558 0.00E+00 0.678318

*Note: rc, re, rj, and rg represent the returns of CAD/US dollar, Euro/US
dollar, Japanese Yen/US dollar, and Pound/US dollar. Rho (·, · ) represents
the linear correlation between two different returns.

Table 2: Linear Correlation Coefficients and Test of Independence for Pre-Crisis Sample

t-Statistic p-value Correlation Coefficients
Rho (rc, rj) 0.228344 8.19E-01 0.007098
Rho (rc, rg) 2.533704 1.14E-02 0.078513
Rho (rc, re) 5.060373 4.95E-07 0.155384
Rho (rg, rj) 11.27572 0.00E+00 0.330761
Rho (re, rj) 12.13028 0.00E+00 0.352806
Rho (re, rg) 35.87575 0.00E+00 0.744498

*Note: rc, re, rj, and rg represent the returns of CAD/US dollar, Euro/US
dollar, Japanese Yen/US dollar, and Pound/US dollar. Rho (·, · ) represents
the linear correlation between two different returns.

4.2 Copula Model Selection

Patton (2006) found that the univariate distribution of daily exchange rate returns

resembles the Student t’s distribution. Therefore, a multivariate t distribution seems to be

an appropriate assumption for the true underlying model. However, as Patton (2006) and

Bollerslev (1987) mentioned in their paper, the multivariate Student’s t distribution can

be problematic since different exchange rates are likely to have different degrees of free-

dom parameters and cannot capture the possibility of an asymmetric dependence structure.

Therefore, an alternative solution for this problem for nonlinearly dependent data series
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Table 3: Linear Correlation Coefficients and Test of Independence for Post-Crisis Sample

t-Statistic p-value Correlation Coefficients
Rho (rc, rj) 10.77742 0.00E+00 0.379347
Rho (rc, re) 11.95872 0.00E+00 0.414094
Rho (rg, rj) -1.60283 1.09E-01 -0.06086
Rho (re, rj) 2.732024 6.46E-03 0.103374
Rho (re, rg) 21.91728 0.00E+00 0.640383

*Note: rc, re, rj, and rg represent the returns of CAD/US dollar, Euro/US
dollar, Japanese Yen/US dollar, and Pound/US dollar. Rho (·, · ) represents
the linear correlation between two different returns.

Table 4: Compare the Linear Correlation Coefficients for Different Samples

Full Sample Pre-Crisis Post-Crisis
Rho (rc, rj) -0.1177 0.007098 -0.1804
Rho (rc, rg) -0.28138 -0.07851 -0.37935
Rho (rc, re) -0.31763 -0.15538 -0.41409
Rho (rg, rj) -0.07828 -0.33076 0.060861
Rho (re, rj) -0.20157 -0.35281 -0.10337
Rho (re, rg) 0.678318 0.744498 0.640383

*Note: rc, re, rj, and rg represent the returns of CAD/US dol-
lar, Euro/US dollar, Japanese Yen/US dollar, and Pound/US
dollar. Rho (·, · ) represents the linear correlation between
two different returns.

is to use copula models, which decompose the multivariate distribution into the marginal

distributions and connect these distributions using a copula relationship. This allows us to

implement different copulas that capture the asymmetric dependence structure and avoid

the misspecification by assuming multivariate distributions. In addition, this paper intro-

duces an innovative way of combining factor structure into copula models. To select the

most fit copula models, we compared the conditional Gaussian, Gumbel, and Clayton cop-

ula models.

From our principal component analysis results shown in tables 6 and 10, we found
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that the first factor or principal component can explain at least 47 percent of the original

returns data, and the first two factors or principal components can explain around 75 percent

for full, pre, and post crisis samples. In other words, these results suggest that the number

of common factors or components is two. Therefore, the conditional models studied are

two-factor copula models.

4.3 Estimation of the Copula Models

For the two-factor Gaussian copula models, we transformed the non-Gaussian data

series into new variables that are normally distributed. Then we applied the factor analysis

to identify the common factors that are assumed to be normal. Conditional on these factors,

we applied the copula to the marginals to obtain the copula correlations. For the two-factor

Gumbel and Clayton copula models, we used the common factors that follow standard

gamma distributions as conditional variables in the copula models to obtain the estimates

on dependence.

In this paper, we adopted the estimation methods chosen by Hu (2006) and used

a two stage maximum likelihood semi-parametric method. In other words, the marginal

distributions or empirical CDFs (i.e., cumulative distribution functions) are estimated non-

parametrically, and then we substituted the marginal distributions or empirical CDFs into

the factor copula and estimated the dependence parameter in this copula. Similar to what

Hu (2006) has done in her paper, we assumed the observation data series (x1, x2, . . . , xn)

obtained are independent with the univariate marginal distribution or the empirical CDF of

Xi, FX(·), where F̂X(x) = 1
2

∑2
t=1 1{Zt ≤ z}. The univariate marginal distribution or

the empirical CDFs of Xi(i = 1, . . . , n) are expressed as F̂X(xi), then we restore the joint
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distribution function as follows:

Ĥ(x1, x2 . . . , xn; θ) = C(F̂X1(x1), . . . , F̂Xn(xn); θ).

There are several advantages to using this approach. The main advantage is that the estima-

tion results are free of specification errors and robust. The results are reported in the next

section.

4.4 Results Analysis

After applying the two stage estimation methods, we obtained and compared the full

sample, pre and post crisis estimates for the dependence parameters (θ), rank correlation

coefficients, and tail dependence for Clayton and Gumbel copulas. We also presented the

copula correlations for the Gaussian copula in all three samples.

4.4.1 Gaussian Copula with Factor Loadings

After transforming the non-Gaussian exchange rate returns into the normal variables,

we found the common factors of these variables with the factor loadings shown in Table

5 and the percentages that the principal components or common factors can explain the

underlying data exhibited in Table 6.

Since the transformation is a percentile-to-percentile transformation (note: the de-

tails are described under the methodology section), the correlations among the exchange

rate returns can be measured as the correlations among these transformed normal variables,

and these calculated correlations are referred to as the copula correlations (Hull, 2008). The
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Table 5: Compare the Linear Correlation Coefficients for Different Samples

Full Sample Pre-Crisis Sample Post-Crisis Sample
Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

rcad 0.46 -0.66 0.03 0.97 0.66 -0.35
reur 0.89 0.04 0.88 0.19 0.86 0.14
rjpy 0.86 0.03 0.88 0.11 0.84 0.01
rgdp 0.33 0.79 0.66 -0.19 0.02 0.96

*Note: rcad, reur, rjpy, and rgdp represent the returns of CAD/US dollar, Euro/US
dollar, Japanese Yen/US dollar, and Pound/US dollar.

Table 6: Proportions Explained by the Common Factors of the Transformed Variables

Proportion of Variance
Proportion Explained by Full Sample Pre-Crisis Sample Post-crisis sample

Factor 1 0.46 0.49 0.47
Factor 2 0.27 0.26 0.26

Cumulative Proportions 0.73 0.75 0.73

copula correlations in both the unconditional and two-factor Gaussian Copula models are

reported in Tables 7 and 8.

Comparing the Tables 7 and 8 with Table 4, we noticed that without using copula

models that can capture nonlinear relationships, there are no significant linear correlations

of the CAN/US returns with the JPY/US as shown in Table 4, while using copula models,

we identified significant copula correlations as shown in both Tables 7 and 8. As we can

see from both Tables 7 and 8, the copula correlations tend to exhibit a mixed result in terms

of increased or decreased dependence relationships. All copula correlations between the

exchange rate returns decreased significantly after the crisis occurred except the correlations

of the CAN/US returns with the JPY/US and UK/US returns for the unconditional Gaussian

copula models. For the two-factor copula, all copula correlations decreased significantly
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after the crisis occurred except the correlations of the CAN/US returns with the JPY/US

and EUR/US returns. This can be explained by the relative stability of the economy and

banking system in Canada compared to the ones in Japan, UK, and European.

Table 7: Unconditional Gaussian Copula Results

Full Sample Pre-Crisis Post-Crisis
Rho (rc, rj) 0.266391 0.157107 0.398597
Rho (rc, rg) 0.212978 0.083562 0.354494
Rho (rc, re) -0.06569 0.003878 -0.14168
Rho (rg, rj) 0.683859 0.761216 0.625544
Rho (re, rj) 0.223964 0.371452 0.072583
Rho (re, rg) 0.165226 0.363254 -0.03366

*Note: rc, re, rj, and rg represent the returns of CAD/US dol-
lar, Euro/US dollar, Japanese Yen/US dollar, and Pound/US
dollar. Rho (·, ·) represents the copula correlation between
two different returns.

Table 8: Factor Gaussian Copula Results

Full Sample Pre-Crisis Post-Crisis
Rho (rc, rj) 0.751957 0.264077 0.952702
Rho (rc, rg) -0.73271 -0.42395 -0.61651
Rho (rc, re) 0.470419 0.227673 0.714544
Rho (rg, rj) -0.12428 0.652986 -0.46903
Rho (re, rj) 0.910232 0.913827 0.866368
Rho (re, rg) 0.153417 0.713231 -0.04502

*Note: rc, re, rj, and rg represent the returns of CAD/US dol-
lar, Euro/US dollar, Japanese Yen/US dollar, and Pound/US
dollar. Rho (·, ·) represents the copula correlation between
two different returns.

4.4.2 Clayton and Gumbel Copula with Factor Loadings

For Clayton and Gumbel Copulas, the estimates of the common factor loadings for

the exchange rate returns are exhibited in Table 9 and the percentages that the principal
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Table 9: Factor Loadings of the Exchange Rate Returns

Full Sample Pre-Crisis Sample Post-Crisis Sample
Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

rcad 0.56 -0.55 0.04 0.97 0.67 -0.39
reur 0.89 0.14 0.88 0.2 0.88 0.18
rjpy 0.19 0.89 0.65 -0.19 0.02 0.96
rgdp 0.86 0.03 0.88 0.11 0.85 -0.02

*Note: rcad, reur, rjpy, and rgdp represent the returns of CAD/US dollar, Euro/US
dollar, Japanese Yen/US dollar, and Pound/US dollar.

Table 10: Proportion Explained by the Common Factors of the Exchange Rate Returns

Proportion of Variance
Proportion Explained by Full Sample Pre-Crisis Sample Post-crisis sample

Factor 1 0.48 0.49 0.49
Factor 2 0.28 0.26 0.27

Cumulative Proportions 0.75 0.75 0.76

components or common factors can explain the underlying data are exhibited in Table 10.

Conditional on the common factors, the estimates for the dependence parameters, the rank

correlations, and tail indices for both the unconditional and two-factor Clayton and Gumbel

copulas are shown in Table 11.

Table 11 shows that the dependence parameters tend to decrease after the crisis

occurred. In other words, after the crisis occurred, the returns on the currencies tend to

be less dependent on each other, and the dependence parameters of unconditional Gumbel

copula tend to be more than double the estimations of unconditional Clayton copula. This

means that the dependence among the returns is asymmetric, and these returns are more

negatively dependent on each other. Therefore, the models such as Gumbel copula that

can capture the extreme negative dependence would be a better fit to the chosen currencies.
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Examining the null hypothesis that the dependence among the returns of the spot exchange

rates can be modelled by the Gaussian, Gumbel, or Clayton copulas, the goodness-of-fit

tests confirmed that the Gumbel copula would be a better fit among the three copulas to

model the unconditional data series.

Using one of the common factor analysis techniques, the principal component anal-

ysis, two common factors were identified for the chosen currencies for all three different

samples (i.e., the sample before the crisis occurred, the sample since the crisis occurred,

and the full sample that includes at least one full business cycle). Conditional on these

common factors, the estimated dependence parameters of the Clayton and Gumbel copulas

are found to be similar to each other as shown in Table 11. In other words, the chosen

exchange rates exhibited no clear asymmetric dependence, and thus, both the Clayton and

Gumbel copulas are not appropriate tools for modelling the joint dependence of the cho-

sen exchange rate returns. These patterns are also evident when comparing the estimated

results of the Kendall’ Tau, Spearman’s Rho, and Tail dependence between the uncondi-

tional and two-factor copula models. Furthermore, the goodness-of-fit tests showed that

the two-factor Gaussian copula is a good fit for modelling the joint distribution of the cho-

sen currencies. Therefore, the copula correlations obtained from the conditional Gaussian

copula are reliable estimates.

Notably, without being conditional on the common factors into the copula modelling

analysis, the joint dependence among the returns is asymmetric, and thus the unconditional

Gumbel copula is a more appropriate tool to model these returns’ joint dependence. How-

ever, conditional on the common factors, the joint dependence is symmetric, and thus the

two-factor Gaussian copula is a better tool. These findings are particularly interesting since
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they confirm that the common factors play an important role in determining the joint de-

pendence among the exchange rate returns. The common factors can be oil price, global

consumer confidence index, or the combination of these factors. When the returns on these

factors change, all exchange rate returns will be affected to different degrees depending on

how much their representative economies are tied with these factors, and this contributes

to the asymmetric joint distributions of the chosen returns. To focus solely on the interac-

tions of the dependence among the currencies themselves, the two-factor Gaussian copula

models conditional on the common factors are preferable.

Summing up, the Clayton copula would fit best if negative changes in the chosen

exchange rate returns are more highly correlated than positive changes; the Gumbel copula

would fit best in the opposite situation. The Gaussian copula fits best if the dependence

among the data series is symmetric. The above results analysis indicates that the estimated

dependence results are similar under both the conditional Clayton and Gumbel copulas.

Combining with the goodness-of-fit tests, the results analysis leads to the conclusion that the

two-factor Gaussian copula is a good fit for these four exchange rate returns. Malevergne

and Sornette (2003) failed to reject the Gaussian copula hypothesis at the 95% confidence

level for more than 50% of the pairs of currencies over the five-year time interval. In this

research, the study is extended from the pairs of currencies to the joint distributions of the

chosen four currencies, and found that the symmetric joint dependence among the returns

of these currencies can be appropriately modeled with the Gaussian copula hypothesis.
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5 Conclusions

This paper applies multivariate copula modeling methods in order to study the de-

pendence relationships of daily returns of the four exchange rates: the Canadian Dollar,

British Pound, Japanese Yen, and Euro. Conditional on the common factors identified, the

copulas are used to estimate the dependence parameters (θ) and their corresponding rank

correlation (e.g., Spearman’s rho) for two different copulas: Clayton and Gumbel copulas.

These two copulas capture the left and right tail dependence, respectively. For the Gaussian

copula, we obtained the linear correlation parameters instead of rank correlations to cap-

ture the dependence relationships. In the two-step estimation approach, we first obtained

empirical CDFs to model the marginal distribution functions, and then we used these CDFs

to estimate the dependence parameter in the maximum likelihood function for each copula.

For exchange rate returns in our case, the copula modeling method gives more accurate re-

sults on the dependence relationships since we are able to utilize this method to capture the

nonlinear dependence relationships between non-Gaussian daily returns data of exchange

rates. Notably, since the common factors may affect the chosen exchange rates to different

degrees and this may contribute to the asymmetric dependence measures, to focus solely on

the interactions among the exchange rates, we used the copula models conditional on the

common factors, which are estimated from principal component analysis.

A few researchers such as Longin and Solnik (2001) found that the stock market

exhibits greater left tail dependence, and in other words, the stock markets tend more likely

to crash together than go up together. This intrigues us to explore if the foreign exchange

markets exhibit similar pattern, and in other words, whether the assumption that the chosen
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exchange rates have a symmetric dependence structure is consistent with the data. One of

the key findings of this paper is that, without being conditional on the common factors,

the dependence among the chosen currencies is strongly asymmetric and the unconditional

Gumbel copula is preferable. In contrast, another key finding is that, conditional on the

common factors, the dependence among the chosen currencies is weakly asymmetric and

the conditional Gaussian copula modelling hypothesis is more appropriate.

This paper may serve as a brief introduction to the concept of factor copulas and their

modeling and estimation methods. These techniques determine more accurate dependent

relationships between currencies and better assist the risk assessment, portfolio manage-

ment, option pricing, and hedging at government, corporate, and individual investor levels.

Since 2001, the literature on copulas has grown quickly in the fields of finance and eco-

nomics. There are several directions for future research and applications on conditional

copula modeling that we would like to point out here. First, it may be of interest to apply

the factor copula modelling method to study dependence relationships among the foreign

exchange markets and the financial stock markets. Factor copula modeling could also be

applied to risk management and asset pricing. In addition, the copulas we used and other

copulas could be extended to model the joint distribution of returns, volume, and duration

between transactions for foreign exchange rates. Finally, this factor copula tools can also

assist researchers to better measure the risks involved if the currencies such as Chinese

Yuan go floating.

37



38 

 

References 

Andersen, L. & J. Sidenius. (2004). Extensions to the Gaussian copula: random 

recovery and random factor loadings, Journal of Credit Risk, 1, 29-70. 

Alink, S. (2007). Copulas and Extreme Values, PhD thesis, University of Nijmegen. 

Bank of Canada Web site. (2009, May 25). Retrieved May 25, 2009, from 

http://www.bank-banque-canada.ca/en/index.html, consulted on October 6, 

2010. 

Bekiros, S. and D. Georgoutsos. (2007). Extreme returns and the contagion effect 

between the    foreign exchange and the stock market: evidence from 

Cyprus, Applied Financial Economics, 18, 239-254. 

Bodie, Z., A. Kane, A. Marcus, S. Perrakis, & P. Ryan. (2001). Investments, 5th ed. 

Canada: McGraw-Hill Companies. 

Bookstaber, R. (2009, September 10). The risks of financial modeling: VaR and the 

Economic Meltdown,Testimony of Richard Bookstaber. Retrieved October 5, 

2010, from 

http://gop.science.house.gov/Media/hearings/oversight09/sept10/bookstaber.

pdf. 

Boothe, P. and D. Glassman. (1987). The statistical distribution of exchange rates: 

empirical evidence and economic implications, Journal of International 

Economics, 22, 297-320. 

Chen, J., H. Hong and J. C. Stein. (2001). Forecasting crashes: Trading volume, past 

returns and conditional skewness in stock prices, Journal of Financial 

http://www.bank-banque-canada.ca/en/index.html
http://gop.science.house.gov/Media/hearings/oversight09/sept10/bookstaber.pdf
http://gop.science.house.gov/Media/hearings/oversight09/sept10/bookstaber.pdf


39 

 

Economics, 61, 345-381. 

Coles, S., J. Heffernan and J. Tawn. (1999). Dependence measures for extreme value 

analysis, Extremes, 2, 339-365. 

Deloitte. (2010). Banking and Securtities Outlook 2010. Retrieved October 6, 2010, 

from 

http://www.deloitte.com/view/en_US/us/Industries/Banking-Securities-Finan

cial-Services/article/05ff8971f7a75210VgnVCM200000bb42f00aRCRD.htm, 

consulted on October 6, 2010. 

Deloitte. (2010). Financial Services in 2010: Hallmarks of Success. Retrieved October 

6, 2010, from http://www.bglegis.com/FinancialServicesin2010.pdf, 

consulted on October 6, 2010. 

Demarta, S. and A. J. McNeil. (2005). The t Copula and Related Copulas, 

International Statistical Review, 73, 111-129. 

Dorey, M. and P. Joubert. (2004). Modelling copulas: an overview. Working paper, 

The Staple    Inn Actuarial Society. 

Eichengree, B., A. K. Rose and C. Wyplosz. (1996). Contagious currency crises, 

NBER working paper No. 5681. 

Embrechts, P. (2009) Copulas: a personal view, Journal of Risk and Insurance, 76, 

639-650. 

Embrechts, P., A. J. McNeil, and D. Straumann. (2002) Correlation and dependency in 

risk management: Properties and pitfalls, in : M. Dempster edition, Risk 

Management: Value at Risk and Beyond, Cambridge: Cambridge University 

http://www.deloitte.com/view/en_US/us/Industries/Banking-Securities-Financial-Services/article/05ff8971f7a75210VgnVCM200000bb42f00aRCRD.htm
http://www.deloitte.com/view/en_US/us/Industries/Banking-Securities-Financial-Services/article/05ff8971f7a75210VgnVCM200000bb42f00aRCRD.htm
http://www.bglegis.com/FinancialServicesin2010.pdf


40 

 

Press, pp. 176-223. 

Embrechts, P., F. Lindskog, and A. McNeil. (2001) Modelling dependence with 

copulas and applications to risk management, Working Paper, ETH, Zurich. 

Engle, R. (2002) Dynamic conditional correlation: a simple class of multivariate 

GARCH models. Journal of Business and Economic Studies, 20, 339-350. 

Erm, C. B., C. R. Harvey, and T. E. Viskanta (2004) Forecasting international equity 

correlations, Financial Analysts Journal, 50, 32-45. 

Fermanian, J. D. and O. Scaillet (2003). Nonparametric estimation of copulas for time 

series, Journal of Risk, 5, 25-54.  

Fernandez, V. (2006). Extreme-value dependence: An application to exchange rate 

markets, Physica A: Statistical Mechanics and its Applications, 377, 583-589. 

Retrieved October 28, 2008, from the ScienceDirect database. 

Floyd, F. and K. Widaman. (1995). Factor analysis in the development and refinement 

of clinical assessment instruments. Psychological Assessment, 7, 286-299.  

Frey, R., A. McNeil, and M. Nyfeler. (2001). Copulas and credit models. 

Psychological RISK, 111-114.  

Genest, C. and A. C. Favre. (2007). Everything you always wanted to know about 

copula modeling but were afraid to ask, Journal of Hydrologic Engineering, 

12, 347-368. 

Genest, C., M. Gendron, and M. Bourdeau-Brien. (2009). The advent of copulas in 

finance, European Journal of Finance, 15, 609-618. 

Genest, C. and R. J. MacKay. (1986). The joy of copulas: bivariate distribution with 



41 

 

uniform marginals, The American Statistician, 40, 280-283. 

Genest, C. and L. Rivest. (1993). Statistical inference procedures for bivariate 

Archimedean copulas, Journal of American Statistical Association, 88, 

1034-1043. 

Genest, C., B. Rémillard, and D. Beaudoin. (2009). Goodness-of-fit tests for copulas: 

A review and a power study, Insurance: Mathematics and Economics, 44, 

199-213. 

Genest, C., K. Ghoudi and L. Rivest. (1995). A semiparametric estimation procedure 

of dependence parameters in multivariate families of distributions, 

Biometrika, 82, 543-552. 

Galiani, S. (2003). Copula functions and their application in pricing and risk 

managing multiname credit derivative products. Masters thesis, University of 

London. 

Granger, C. W. J., T. Terasvrta, and A. J. Patton (2006). Common factors in 

conditional distributions for bivariate time series. Journal of Econometrics, 

132, 43-57. 

Hassanain, K. (2007). Cross sectional dependency heterogeneity and the real 

exchange rate in Africa. International Research Journal of Finance and 

Economics, 8, 215-223. 

Hu, L. (2006). Dependence patterns across financial markets: a mixed copula 

approach, Applied Financial Economics, 16, 717-729. 

Hubbard, R. and S. J. Allen. (1987). A cautionary note on the use of principal 



42 

 

component analysis: supportive empirical evidence, Sociological Methods & 

Research, 16, 30-308. 

Hull, J. (2009). Risk management and financial institutions, 2nd ed. New Jersey: 

Pearson Education. 

Hull, J. (2008). Options, futures, and other derivatives, 7th ed.  New Jersey: Pearson 

Education. 

Horn, J. (1965) A rationale and test for the number of factors in factor analysis. 

Psychometrika, 30, 179-185.  

Humphreys, L. and R. Montanelli. (1975). An investigation of the parallel analysis 

criterion for determining the number of common factors. Multivariate 

Behavioral Research, 10, 193-205.  

Hurd, M., M. Salmon, and C. Schleicher. (2007). Using copulas to construct bivariate 

foreign exchange distributions with an application to the sterling exchange 

rate index, Bank of England working papers, 334, Bank of England. 

James, J. & N. Webber. (2001). Interest rate modelling. West Sussex: John Wiley & 

Sons. 

Jarque, C. and A. Bera. (1987). A test for normality of observations and regression 

residuals. International Statistical Review, 55, 163–172. 

Jolliffe, I. T. (1986). Principal Components Analysis, New York: Springer-Verlag. 

Kendall, M. G. (1938). A new measure of rank correlation, Biometrica, 30, 81-93. 

Kolari, J., T. Moorman, & S. Sorescu. (2005, April 2). Foreign exchange risk and the 

cross-Section of stock returns. Retrieved October 6, 2010, from 

http://en.wikipedia.org/wiki/Carlos_Jarque


43 

 

http://www.unh.edu/acfi/ted-Forex-Risk.pdf, consulted on October 6, 2010. 

Koedijk, K. G. and C. Kool. (1992). Tail estimates of east European exchange rates, 

Journal of Business & Economic Statistics, 10, 83-96. 

Koedijk, K. G., S. Marcia and C. Veries. (1990). The tail index of exchange rate 

returns, Journal of International Economics, 29, 93-108. 

Li, D. (2001). On default correlation: A copula function approach, Journal of Fixed 

Income, 9, 43-54. 

Li, X. and L. Rose. (2007). Market integration and extreme co-movements in APEC 

emerging equity markets, Applied Financial Economics, 18, 99-113. 

Longin, F. and B. Solnik. (2001). Extreme correlation of international equity markets, 

Journal of Finance, 56, 649-676. 

Maheu, J. (2005). Can GARCH models capture long-range dependence. Studies in 

Nonlinear Dynamics & Econometrics, 9, 1-41. 

Malevergne, Y. and D. Sornette. (2003). Testing the Gaussian copula hypothesis for 

financial assets dependence, Quantitative Finance, 3, 231-250. 

Malevergne, Y. and D. Sornette. (2002). Tail dependence of factor models, Working 

Paper. 

Malkiel, B. (2007). A random walk down wall street. New York, N.Y. the United 

States of America: W.W. Norton & Company. 

Malz, A. (1997). Estimating the probability distribution of the future exchange rate 

from option prices, Journal of Derivatives, 5, 18-36. 

Marshal, R. and A. Zeevi. (2002). Beyond correlation: extreme co-movements 



44 

 

between financial assets, Working Paper, Columbia Business School. 

McGuirk, A., J. Robertson, & A. Spanos. (1993). Modeling exchange rate dynamics: 

Non-linear dependence and thick tails. Econometric Reviews, 12, 33-63. 

Melchiori, M. (2003). Which Archimedean copula is the right one?, Working Paper, 

Universidad Nacional del Litoral. 

Milne, F. (2008). Credit crises, risk management systems and liquidity modelling. 

Working paper. 

Milne, F. (2008). Anatomy of the credit crisis: the role of faculty risk management 

systems, C.D. Howe Institute Commentary, 269, 9-26. 

Milne, F. (2009). The complexities of financial risk management and systemic risks, 

Bank of Canada Review, 2009, 15-30. 

Mulaik, S. A. (1972). The Foundations of Factor Analysis, New York: McGraw-Hill. 

Norrbin, S., & O. Pipatchaipoom. (2007). Is the real dollar rate highly volatile?. 

Economics Bulletin, 6, 1-15. 

Nelson, R. B. (1999). An Introduction to Copulas, New York: Springer. 

Ogus, Ersin, Yazici, A. Canan and Gurbuz, Fikret (2007). Evaluating the significance 

test when the correlation coefficient is different from zero in the test of 

hypothesis, Communications in Statistics – Simulation and Computation, 36, 

847-854. 

Patton, A. (2001). Modelling time-varying exchange rate dependence using the 

conditional copula. Working paper, the Social Science Research Network. 

Patton, A. (2006). Modelling asymmetric exchange rate dependence. International 



45 

 

economic review, 47, 527-556. 

Patton, A. (2009). Copula-based models for financial time series, in: T.G. Andersen, R. 

A. Davies, J. P. Kreiss, and T. Mikosch, editions, Handbook of Financial 

Times Series, Berlin: Springer, pp. 767-785. 

Poole, M. and A. O’Farrell. (1971). The assumptions of the linear regression model. 

Transactions, Institute of British Geographers, 52, 145-58. 

Pyle, D. (1997). Banking Risk Management: Theory. Working paper, UC Berkeley 

Research Program in Finance. 

Rank, J. (2007). Copulas: From theory to application in finance. London: Incisive 

Financial Publishing Ltd. 

Raynor, M. (2007). The strategy paradox: why committing to success leads to failure 

and what to do about it. New York: The Doubleday Broadway Publishing 

Group. 

Revelle, W. and T. Rocklin. (1979). Very simple structure - alternative procedure for 

estimating the optimal number of interpretable factors. Multivariate 

Behavioral Research, 14, 403-414.  

Rockinger, M. and E. Jondeau. (2001). Conditional dependency of financial series: an 

application of copulas. Working Paper. 

Rodgriguez, J. C. (2003). Measuring financial contagion: A copula approach. 

EURANDOM Working Paper. 

Romano, C. (2002). Applying copula function to risk management. Working Paper. 

Santomero, A. (1997). Commercial bank risk management: an analysis of the process. 



46 

 

Working paper, the Wharton Financial Institutions Center. 

Schmidt, T. (2006). Coping with copulas. Forthcoming in Risk Books “Copulas – 

From Theory to Applications in Finance”. 

Smith, M. D. (2003). Modelling sample selection using Archimedean copulas, 

Econometrics Journal, 6, 99-123.  

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges, Publications 

de l'Institut de Statistique de L'Université de Paris, 8, 229-31.  

Thompson, S. (1999). The yen and its East Asian neighbours, 1980-95: Cooperation 

or competition? In T. Ito and A. O. Kreuger, eds., Changes in Exchange Rates 

in Rapidly Developing Countries, Chicago: The University of Chicago Press, 

185-207.  

Trivedi, P. and D. Zimmer. (2005). Copula modeling: an introduction for practitioners, 

Foundations and Trends in Econometrics, 1, 1-111.  

Velicer, W. (1976). Determining the number of components from the matrix of partial 

correlations. Psychometrika, 41, 321-327.  

Venter, G. (2002). Tails of copulas. Proceedings of the Casualty Actuarial Society, 89, 

68-113.  

Viviana, F. (2007). Extreme-value dependence: An application to exchange rate 

markets. Physica A, 377, 583-589.  

Westerfield, J. M. (1977). An examination of foreign exchange risk under fixed and 

floating exchange rate regimes. Journal of International Economics, 7, 

181-200.  



47 

 

Zhang, H. (2009). An introduction to copula functions and their application in 

studying the dependence of the international equity markets. Honours thesis, 

University of Victoria.  

 

 


	Final_MA_Essay_Title_Page.pdf
	Final_MA_Essay_Preliminary_Pages
	LaTeX1
	Final_MA_References

