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Abstract

This paper presents a software library for predicting social experiments. The
software is freely available and licensed under the GNU General Public License.
Social experiments are modelled as a Discrete-choice Dynamic Programming
problem. An overview of the social experiment mathematical model is given.
Additionally, a detailed description of the software library is given as well as a
sample application using Illinois Reemployment Bonus experiment.
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1 Introduction

“First, structural econometric work is just very hard to do, simply in terms
of the amount of labor involved. It often takes several years to write just
one good paper in this genre, and this poses a daunting prospect for the
young assistant professor seeking tenure, or the graduate student seeking
to finish a dissertation.” (Keane 2006, p.40)

Since the late 1980’s, increases in computational power has allowed the estimation

of more complicated structural models (Keane 2006). Available computational power

is, however, only part of the problem. A recognized phenomenon is the rapid progress

of hardware advances when compared to that of software (Brooks 1987). The differ-

ence is attributed to the greater complexity in developing software. In this regard

software for estimating rich structural models has inherit complexity which slows

the progress of development, including the concern of this paper: Discrete-choice

Dynamic Programming problems (DDP hereafter).

Structural estimation’s raison d’etre is to conduct policy experiments based on

estimates of preferences and technology. Most real policy questions, however, are

raised and answered in less time than required to formulate, program, and debug

a sophisticated model, only to then compute consistent parameter estimates from

data. When faced with real decisions, policy makers rarely have the patience to wait

five years for an answer, which may not be definitive due to the many assumptions

maintained to generate the answer. Hence policy experiments conducted in the DDP

literature tend to be related to past policies or hypothetical questions and not to

ones relevant to current debates. Consequentially, it is unsurprising that economists

advising policy makers have failed to adopt the DDP paradigm for assessing labor

market questions. Instead they use tools that provide straightforward answers in a

timely fashion despite any shortcomings in the method. The development of code to

streamline the development of estimated DDP models may alleviate this problem.

Although some researchers have released software so others can estimate DDP

models (e.g. Rust (1987), Aguirregabiria and Mira (2002)), this area is still seen as a
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cottage industry. Students learn by writing their own code (or revising the advisor’s

code) to carry out the calculations. Despite the pedagogical value, this approach

makes verification and extension of work difficult if not impossible, which undermines

the main justifications for the effort reflected in Keane’s quote. In addition, the issues

raised will not be addressed by software that is a bare-bones program, expensive, or

computationally inefficient.

This paper presents the Niplow software library for estimating social experiments,

as well as, a model summary, a presentation of the user’s experience, and a demon-

stration using the Illinois Reemployment Bonus experiment. The software is designed

to automate elements of DDP that are common across models. The goal is to provide

inexpensive (i.e. free) “turn-key” code that allows a user to focus on the details of

their environment.

Niplow is an example of “object-oriented programming” (OOP hereafter), a soft-

ware engineering technique for producing “reusable, extendible and reliable” software

(Meyer 1988, p.vi preface). Although novel to the field of econometrics, OOP has not

been “faddish”. Instead, the technique has lead to many important developments,

such as “design patterns” (Gamma, Helm, Johnson and Vlissides 1995), which de-

scribes recurrent software design problems along with their elegant solutions. Regret-

tably, many economists continue to use the procedural style of FORTRAN 77, which

strongly discourages an OOP approach.

Currently, policy-related empirical work is expected to be based on exogenous

variation in the economic environment. The techniques that satisfy this demand

include randomized field trials or experiments (Burtless 1995), natural experiments

(Rosenzweig and Wolpin 2000), and (valid) instrumental variables estimation (Angrist

1990). Only recently have DDP models tried to contribute to this standard either by

applying techniques to experimental data (e.g. Todd and Wolpin 2006, Lise, Seitz and

Smith 2003, Ferrall 2000), or comparing predictions of structural versus IV techniques

(Keane 2006). The Niplow software library builds on Ferrall’s (2002) framework for
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applying DDP to environments that include unexpected (to the subject) changes in

policy. While the ideal situation is a randomized social experiment, the framework

applies equally as well to natural experiments that occur to forward-looking subjects.

3



2 Experiments and Forward-Looking Behaviour

In modelling social experiments, if only random selection is considered exogenous,

then the mean outcome in the participants is the unbiased mean outcome of the

population. If, however, a model does not account for large heterogeneity effects

in selection and treatment, then the mean outcome for the population cannot be

determined without bias. For instance, the treatment effects of an experiment is not a

good predictor of another similar but different experiment if individual characteristics

including pre-treatment characteristics are not taken into account (Hotz, Imbens,

Mortimer and Center 1999).

In the realm of natural experiments, the military draft lottery in the United States

was thought of as a “perfect” instrument for estimating the impact of military service

on future earnings for the population. Keane (2006), however, demonstrated the

possibility of unobserved heterogeneity in the benefits of military service causes the

lottery to be an invalid instrument. Instead of the entire population, the lottery can

only be a valid instrument to determine the average effect on future earnings of men

who would not serve in the military unless drafted (Angrist and Krueger 2001). The

lottery is not a valid instrument for those who would volunteer for military service

regardless of the draft. This phenomenon is known as the Local Average Treatment

Effect (Imbens and Angrist 1994). Moreover, after reviewing twenty studies of the

use of natural experiments as instruments, Rosenzweig and Wolpin (2000) conclude

natural experiments reduce the number of interpretations of the estimates but do not

produce conclusive interpretations due to a lack of theoretical grounding.

Ferrall’s (2002) model, which is implemented by the Niplow software library, en-

dogenously models both observed and unobserved heterogeneity in selection and treat-

ment effects so mean outcomes for the population can be estimated without bias. The

model is structural in nature and is similar to Rust’s (1996) discrete decision processes

which are a subclass of Markovian decision processes. Individual’s choices are mod-

elled as a DDP problem which captures the choices of forward-looking agents.
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Dynamic programming models (Bellman 1966) have been used extensively in

econometrics literature. The applications range from how social security effects work

versus retirement choices in men (Rust and Phelan 1997) to the analysis of a random-

ized experiment assessing the impact school subsidies on the parental choice between

fertility and child schooling (Todd and Wolpin 2006). A survey by Wolpin (1996),

which focuses on the use DDP in public policy, describes applications in welfare,

education, employment, agricultural development and industrial policy.

An issue with dynamic programming models is that they suffer from the “curse

of dimensionality”, that is, computational time for estimation increases exponentially

with the number of dimensions. In computer science nomenclature, this type of

intractability is known as a “NP complete” problem for which there is no known

general solution. Strategies have been suggested to help alleviate the issue.

A Bayesian approach for solving DDP models, known as the IJC algorithm, has

two features that improves tractability (Ching, Imai, Ishihara and Jain 2009). First,

unlike the conventional Nested Fixed Point algorithm (Rust 1987), the IJC algorithm

uses information from previous iterations to reduce each iteration’s computational

cost. Second, the IJC algorithm directly produces the posterior distribution of pa-

rameter vectors, and the corresponding solutions for the DDP model so searching the

likelihood function for the global maximum is unnecessary.

An interpolation strategy has been suggested by Keane and Wolpin (1994a) as

well as Howitt, Msangi, Reynaud and Knapp (2002) who suggest using Chebechev

polynomials in particular. Unfortunately, interpolation helps but does not solve the

“curse of dimensionality”. This is noted by Rust (1997) who employs a random

algorithm to break the “curse” for a subclass of dynamic programming problems.
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3 Predicting Impacts of Social Experiment

In this section a mathematical description of a social experiment is given followed by

different aspects of the Niplow software library such as the Ox programming language

and algorithms used. Finally a detailed description is given of what user input is

required for Niplow to predict a social experiment.

3.1 The Social Experiment Model

This section summarizes Ferrall’s (2002) model using slightly different notation. Only

key equations are provided and some elements of the model are introduced and ex-

plained without repeating explicit expressions available in Ferrall’s (2002) paper. Fu-

ture versions will of Niplow will fully support all the model features described (i.e.

GMM parameter estimation), but the current version is not full featured.

3.1.1 The Experimental Environment

The full state of a subject in the experiment is contained in a vector θ ∈ Θ where

Θ is the state space. The elements of θ are shown in Equation 1 along with a brief

description of their roles in Table 1.

θ =
[
d k e g f r t s1 · · · sn

]
(1)

The variables s1 · · · sn are defined by the user as part of their model of behaviour.

The other variables have interpretations related to the overall framework. User pro-

vided definitions determine the range of variable values.

State variables d through f vary over integers from zero up to their cardinality

less one. This definition corresponds to array indexing in Ox, which like C, is zero-

based. Therefore, user code can use a state variable as an index into an array. The

current period r has cardinality that depends on the current phase f . Each phase of

treatment has a maximum length, R(f), because experimental treatment is assumed

to be finite-lived.
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Table 1: Required State Variables

Variables Description Cardinality Examples
(User-Defined)

d observed type D married males
k unobserved type K finite mixture type
e entry group E
g treatment group G treatment or control
f experiment phase F in training
r current period of phase R(f) 2nd period of training
t time tmax(e)− tmin(e) + 1 periods until or since

randomization

For d, k and e, Niplow simply needs to know how many different values to loop

over during the solution and estimation stages. The particular values of d, k and

e have no special meaning. Other state parameters, however, do have values with

specific meanings.

For experimental group, the control group is defined as g = G−1 and all treatment

groups have g < G−1. Phases of treatment f also have some special values. The first

(i.e. f = 0) and the last (i.e. f = F − 1), are pre-experiment and post-experiment

phases, respectively. Thus, subjects assigned to group G − 1 move from phase 0 to

phase F − 1 directly. Subjects in a treatment group spend time in some or all of the

treatment phases before reaching F − 1.

The time variable t has the special purpose of coordinating measurement of dif-

ferent entry and treatment groups across the experiment. The cardinality of t is

implicitly defined for each entry group e by the definitions of tmax(e) and tmin(e).

Besides the cardinality of the required state variables, the user supplies other

parameters that are not state variables but are dependent on them. These variables

are summarized in Table 2. Note that
∑

k λ(d, k) = 1 for a given demographic group

d.

State variables d, k, e and g are invariant for a subject: the probability they

change is zero. This means Niplow loops over the values automatically. As explained
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Table 2: Experiment and Population Parameters

Variable Description

tmin(e) Initial observation period
t0(e) Randomization period
tmax(e) Last possible observation period
f0(e) initial phase of group e
λ(d, k) population proportion of k given d (estimated)

below, the user will specify how their state variables si evolve over time for a given

subject. In addition, the user specifies transition rules for f and r. These transitions

must make treatment progressive: the phase cannot go backwards, and within a phase

r counts up. For example, let F = 4 (i.e. f ∈ {0 . . . 3}) and suppose the current phase

is f = 2 and the phase next period is f ′. Then transitions f ′ = 0 or f ′ = 1 are invalid.

For period transitions, if f ′ > f then the only valid transition for r is r′ = 0, otherwise

the phase is unchanged (i.e. f ′ = f ) and the period is incremented, that is, the next

period is r′ = r+1. Together these restrictions guarantee that treatment is finite. The

subject’s forward-looking behavior during treatment can be solved working backwards

starting from f = F − 2 and r = R[F − 2].

Niplow allows the user to define early ends to treatment in that the transition to

phase F − 1 can happen anytime during treatment. For example, suppose the exper-

iment involves training (the treatment) offered to unemployed workers. Furthermore,

the experiment is designed so that taking a job makes the subject ineligible for addi-

tional training. In implementing the model, the user will instruct Niplow that such

a choice results in f ′ = F − 1. Subjects who do not take a job stay in training until

the last (finite) period before an automatic end.

3.1.2 Subject Behaviour

Subject behaviour, both outside the experiment and during treatment, is based on

an infinite horizon dynamic programming problem. The user provides the model

elements, which can depend on unknown “structural” parameters to be estimated
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using the tools in Niplow. These elements, including a brief description are given in

Table 3.

Table 3: Elements of Behaviour and Measurement

Variable Description

A(θ) feasible action sets
U(α, θ) utility
Pr{θ′|α, θ} state transition
Y (α, θ) vector of observations
δ(k) time discount factor for type k (estimated or fixed)
ρ(k) smoothing factor for choice probabilities (estimated or fixed)

The action of a subject in a period is denoted by the vector α. Together (α, θ)

define an “outcome”. Not all actions may be possible in a particular state. At each

state actions are chosen from the user-defined feasible set A(θ).

The user provides U(α, θ), the one period utility function of the subject given

the current outcome, and Pr{θ′|α, θ}, the transition or law of motion of the state.

This is the probability that the state next period is θ′ given the current outcome. By

using Pr{θ′|α, θ}, the user can specify endogenous transitions to subsequent treatment

phases.

The value of an outcome is

v(α, θ) = U(α, θ) + δ E[V (θ′)]

= U(α, θ) + δ
∑
θ′

Pr{θ′|α, θ}V (θ′),

where V (θ′) is the indirect value of state θ′ given optimal choice:

V (θ) = max
α∈A(θ)

v(α, θ) ∀θ ∈ Θ.

Combining v(α, θ) and V (θ) results in Bellman’s Equation (2) for the DDP.

V (θ) = max
α∈A(θ)

[
U(α, θ) + δ

∑
θ′

Pr{θ′|α, θ}V (θ′)

]
(2)

It is worth noting that, while this formulation is now standard, in applications

researchers usually compute (2) by writing their own programs. Although there is
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publicly available code (e.g. Rust 1987, Aguirregabiria and Mira 2002), it is written in

Gauss which is not free for academic use and not known for speed. One innovation is

that using Ox, which is free for academic research, users are only required to program

the primitive elements of their model. Niplow then carries out all the necessary com-

putations. In addition, Niplow accounts for key extensions of standard frameworks:

unexpected randomization, endogenous selection into eligibility for randomization,

and both permanent (type-specific) and transitory unobserved states.

Typically in empirical applications of DDP, U(α, θ) is made a random variable

with infinite support. For example, Rust (1987) extends McFadden’s static random

utility model by including an additive extreme value term in U(α, θ). Keane and

Wolpin (1994b) include a multivariate normal error term to allow for cross-choice

correlations. Either specification is designed to make choice probabilities smooth

functions of underlying parameters and to rule out any (feasible) choice having zero

probability. This randomness becomes structural, because current choices account

for future randomness through V (θ). Niplow, however, follows Eckstein and Wolpin’s

(1999) approach by not adding a random term to U(α, θ). Instead, the deterministic

v(α, θ) is computed without building error into V (θ). The choice probabilities are

then smoothed using a logistic kernel with parameter ρ(k):

Pr{α|θ} =
ṽ(α, θ)∑
α′ ṽ(α′, θ)

where

ṽ(α, θ) =

{
e

ρ
1−ρ

[v(α,θ)−V (α,θ)] if α ∈ A(θ)

0 otherwise.

Note that 0 ≤ ρ < 1. As ρ → 0 then Pr{α|θ} → 1
|A(θ)| , that is, each choice

becomes equally likely, and value has no bearing. Also, as ρ → 1 then Pr{α|θ} →

arg maxα v(α, θ), so only optimal actions (based on the deterministic utility) are taken

as choices probabilities are no longer smooth.
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3.1.3 Measurement and Endogenous Sample Selection

Until recently most applications of DDP assumed that the econometrician could ob-

serve θ up to the value of estimated parameters, and in some cases up to the value

of permanent unobserved type k. In these cases, the model choice probabilities can

be used to form the likelihood for a sample of outcomes. While it is often desirable

to provide for states that are not directly observable, maximum likelihood estimation

becomes difficult because it requires integrating out the distribution of unobserved

states at each point in time.

This framework assumes the model will include unobserved states and so uses an

estimation method that is feasible under that assumption. Namely, the user specifies

a function of the outcome, Y (α, θ), that returns a vector of observations. The vector

corresponds to data that the user wishes to use for estimation via GMM. Measure-

ments do not include d, e, g or t, because these are required to be observed aspects

of θ. The expected measurement E[Y |θ] in state θ is,

E[Y |θ] =
∑

α∈A(θ)

Y (α, θ) Pr{α|θ}

The model assumes that a population of potential subjects exists and makes

choices according to the DDP. Over time their choices and current states determine

transitions to states next period. The state-to-state probabilities Ps(θ
′|θ) are found by

combining the primitive transitions Pr{θ′|α, θ} with the smoothed choice probabilities

Pr{α|θ}:

Ps(θ
′|θ) = Pr{θ′|θ} =

∑
α∈A(θ)

Pr{θ′|α, θ}Pr{α|θ}

The environment outside the experiment is required to be ergodic, in the sense that

all states are reachable by any other state through repeated application of Ps. This

means that, starting with no other information about past choices, potential subjects

of the experiment are distributed across states according to the stationary (ergodic)
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distribution. This distribution, denoted P−∞(θ), is defined by,

P−∞(θ) = Pr{θ} =
∑
θ′

Ps(θ
′|θ)P−∞(θ) for ∀θ ∈ Θ

In many experiments, natural or otherwise, the sample is not a random sample of

the entire population. Typically, eligibility for randomization is conditional on past

choices that are often similar to the behaviour the experiment alters. Therefore, ac-

counting for endogenous selection is important when making policy recommendations

from the experiment, even when the conditional randomization is “clean”.

An eligible subject has a panel of pre-randomization measurements that meet

requirements defined by the user through the boolean function H[y; d, e, t]. For in-

stance, the subject is still eligible for random selection into entry group e at period

t ≤ t0(e) if H[y; d, e, t] = 1 for measurement vector y.

Starting from P−∞(θ) at t = tmin(e) updates to the distribution over states occurs

by imposing the selection transition:

P ?(θ′|θ) = Pr{θ′|θ} =
∑

α∈A(θ)

H[Y (α, θ); t, e, d] Pr{θ′|α, θ}Pr{α|θ}

Selection continues sequentially until t0(e). That is, during sample selection the

probability of states in the next period only includes current outcomes (α, θ) that

generate a feasible Y (α, θ). The software sequentially renormalizes the distribution

each period to account for this attrition, until t = t0(e). The resulting distribution,

denoted Ω0(θ|e, d, k), is the selected sample at the point of randomization, which

occurs at the end of period t0(e), after choices are made but before the next state

is realized. For a given entry group, Ω0(θ|e, d, k) is common to all treatment groups

g because they are assumed to be assigned randomly just before the start of period

t0(e) + 1.

The distribution Ω0(θ|e, d, k) controls for selection on endogenous states because

it depends on unobserved type k which affects choice probabilities. The population

weights λ[k, d] are updated to control for permanent heterogeneity. The endogenous
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proportion of unobserved types within each demographic group d is different than

the underlying (unselected) population proportion. At randomization the endogenous

proportion is denoted λ?(k; t, g, e, d).

3.1.4 Matching Predictions to Data

The model can be “fit” to data by estimating the exogenous parameters that give the

smallest discrepancy. Estimation is accomplished by using GMM to match moments

from the prediction with those from the observed data (i.e. averages).

There are several reasons for choosing to match moments rather than using max-

imum likelihood to estimate the parameters (Ferrall 2002). First, the maximum like-

lihood estimates may be difficult to compute, especially if the subject makes choices

using more information than is being empirically measured. In this case, costly com-

putation must be undertaken to integrate out those choices. Second, differences

between the modelled and actual experiment can give zero probability to observed

measurements. Lastly, only averaged data maybe available to the researcher as data

on individuals may be restricted due to privacy laws.

Let Ŷ be a vector of observed averaged measurements (i.e. averaged data) con-

ditional on t, g, e, and d. The empirical impact is then the difference between the

mean observed outcome of the treatment groups and the control group:

∆̂(t, g, e, d) = E[Ŷ |t, g, e, d]
∣∣
g<G−1

− E[Ŷ |t, g, e, d]
∣∣
g=G−1

Correspondingly, the predicted mean outcome and impact of the model is,

E[Y |t, g, e, d] =
∑
θ

λ?(k; t, g, e, d)Ω{θ|k, t, g, e, d}E[Y |θ]

∆(t, g, e, d) = E[Y |t, g, e, d]
∣∣
g<G−1

− E[Y |t, g, e, d]
∣∣
g=G−1

Denote ∆̄ as the difference in mean outcomes between the data and the model,

that is,

∆̄(t, g, e, d) = E[Ŷ |t, g, e, d]− E[Y |t, g, e, d]
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Let θexog be exogenous model parameters that the user wishes to be estimated.

These parameters can include λ, ρ, and δ, as well as, user defined model parameters

(e.g. those governing utility). The discrepancy between the data and the model is

given in Equation (3). Note that A(t, g, e, d) is a positive definite matrix.

Z(θexog) =
D−1∑
d=0

E−1∑
e=0

G−1∑
g=0

tmax(e)∑
t=t0(e)

∆̄(t, g, e, d)′A(t, g, e, d)∆̄(t, g, e, d) (3)

Let the impact based estimates of the model parameters be denoted as θIE
exog which

is the solution to minimizing Z(θexog), that is,

Z(θIE
exog) = arg min

θexog

Z(θexog)

The estimate of θIE
exog will be consistent but inefficient. A consistent estimate of the

covariance of the moments can be computed by simulation using θIE
exog as the model

parameters. With the consistent covariance of the moments, a second stage of GMM

can be estimated to produce a more efficient estimate of θIE
exog.

3.2 Software Library

Niplow is “open source” in that it is freely available and can be found at https:

//qshare.queensu.ca/Users01/ferrallc/public/Niplow/. Niplow is licensed un-

der the GNU General Public License (hereafter GPL) and although the software

is free, the GPL does place some responsibilities on user. The accompanying file,

“license.txt”, describes the licensing terms in detail. The GPL has many advantages

such as the formation of developer communities and the “taming of complexity”

(Raymond 1999).

3.2.1 The Ox language

Niplow was developed using the econometric programming language called Ox (Doornik

and Ooms 1998). Ox, which was first released in 1996 as version 1.0, has a thirteen

year history and is currently at version 5.10. It has been described as a language
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which is dynamically type, object-oriented, has a native matrix data-type and a syn-

tax which is close to C, C++ or Java. There are several advantages to using Ox.

One of the main advantages of Ox is its speed. When compared with GAUSS or

S-PLUS, two other popular statistical languages, Ox proves to be the fastest (Cribari-

Neto 1997). For applications that require additional speed optimizations, the compu-

tational bound portion of code can be implemented in C and called seamlessly within

Ox. Also, Ox has an already existing library of econometric functions, that range

from ARMA(p, q) forecasting to estimation of dynamic panel data. Additionally, Ox

has incorporated programming language concepts which increase expressiveness such

as the objected oriented paradigm. The advice given by Kendrick and Amman (1999)

is that junior economists should learn a high level econometric language and work

towards learning a low level language such as Fortran or C. In this regard, the syntax

similarity between Ox and C eases the effort of learning C.

3.2.2 Object Oriented Programming

Niplow was developed using object-oriented techniques. With Ox, objects are defined

by classes which encapsulates both data (members hereafter) and functions (methods

hereafter) for the particular object. Encapsulation hides implementation details of an

object while providing a public interface to the object. Objects or instances are then

created or “instantiated” when the class “constructor” method is called with the new

operator. With languages such as Ox or C++, the constructor has the same name

as the name of its class. The purpose of the constructor is to initialize the members

before the object is used elsewhere.

Another feature of object oriented programming is inheritance which allows a class

to be defined as a subclass of one or more base-classes. A subclass has all the non-

private methods and members as the base-class plus any members and methods that

are particular to it. Ox currently does not support private class declaration and so

all members and methods are inherited by subclasses.
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To clarify, in the example below A is the base-class and B the subclass. A has two

methods: the public method foo(), and the protected method bar(). Public members

or methods can be accessed by any function. Protected members can only be accessed

by methods of the same object. Note that in Ox data members are protected and

methods are public by default (i.e. in absence of public: or protected: declarations).

Returning to the example, class B inherits both foo() and bar() from A. In

addition, B has a method baz() which is particular to it but not A.

class A {
public:

foo ();
protected:

bar ();
}

class B : A {
baz ();

}

Another property of inheritance is method “overriding”. This is when an inherited

method is reimplemented in the subclass. A further extension is a virtual method

which is declared and optionally implemented in the base-class. The virtual method

and can be called by other base-class methods even if it is not implemented in the

base-class. Method overriding is an important concept because users need to override

key methods in the inherited SocialExperiment base-class in order to implement a

social experiment. In the following example foo() is declared as a virtual method in

class A and overridden in class B.

class A {
virtual foo ();

}

class B : A {
foo ();

}
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3.2.3 Algorithms

Only an overview of the main algorithms used in the software library is given as several

helper functions occur in the pseudo code but are not defined (e.g. Enumerate(θ)).

Also, memory management, due to the large number of states, is an issue but is

ignored here. The algorithms are represented using a generalized pseudo-code rather

than Ox as mathematical notation can be used for conciseness.

Given a model with n endogenous state parameters, a particular vector of en-

dogenous state parameters is represented by s = [s1 . . . sn]. The state space of s is S,

that is s ∈ S. For brevity, the symbols D, K, E, G, F , R[f ], Φ, A(α, θ), P (θ′|α, θ),

U(α, θ), Y (α, θ), H[y; t, g, e, d], ρ(k), δ(k), f0(e), and λ(d, k) are considered global to

all functions. All other symbols (i.e. EY) are local to the procedure that they occur

in. Note that comments are displayed in enclosing “{}”. Also, tuples are “unpacked”

with assignment statements. For example, if a function Foo() returns a two-tuple, the

statement x, y ← Foo() will unpack the return value, such that x and y are assigned

the first and second element respectively.

The top level function is Predict-Social-Experiment which corresponds to

Predict::run() from file predict.ox. For a given entry group, the endogenous pro-

portion of the unobserved type k at the end of t0(e) is λ? which in mathematically

defined as,

λ?(k; t, g, e, d) =
λ[d, k] · ω0(k; t, e, d)∑K−1
k=0 λ[d, k] · ω0(k; t, e, d)
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Algorithm 1 Predict-Social-Experiment()

for d← D − 1 to 0 do
for k ← K − 1 to 0 do
P−∞, Pα[k], Ps[k],Ey[k]← Solve-Behaviors(d, k, δ[k], ρ[k])
Ω0[k], ω0[k]← Solve-Entry-Group-Endog-Sample(d, k, P−∞, Pα[k], y[k])
λ?[k]← λ[d, k] · ω0[k] {NB: | λ?[k] |= E}

end for
for e← E − 1 to 0 do
λ?sum =

∑
k∈{0...K−1} λ

?[k][e]
for k ← K − 1 to 0 do
λ?[k][e]← λ?[k][e]/λ?sum {Ensure proportions for entry groups ∈ [0 . . . 1]}

end for
end for
EY[d]← Compute-Expected-Outcomes(d,Ω0, ω0, λ

?, Pα, Ps,Ey)
end for
return EY

The Solve-Entry-Group-Endog-Sample(·) algorithm implements the pre-assignment

period of endogenous sample selection. The corresponding Niplow implementation is

Predict::solveEntryGroupEndogSample(·). Ω(θ′|t, e, d, k) is the distribution across

states and ω(k; t, e, d) is the cumulative proportion of unobserved type k surviving to

time t. At the start of the data generating process for entry group e (i.e. tmin(e)) the

distribution across states is the ergodic distribution. The initial values of Ω(·) and

ω(·) are,

Ω(θ′|t, e, d, k) |t=tmin(e) = P−∞(θ)

ω(k; t, e, d) |t=tmin(e) = 1

At tmin(e) + 1 the distribution of those still eligible for entry into the experiment

is no longer stationary. Both Ω(·) and ω(·) are calculated recursively and for t < t0(e)

they are updated as follow:

ω(k; t, e, d) = ω(k; t, e, d) |t−1

[∑
θ′

∑
θ

P ?(θ′|θ) · Ω(θ′|t, e, d, k) |t−1

]

Ω(θ′|t, e, d, k) |t=tmin(e) =
ω(k; t, e, d) |t−1

ω(k; t, e, d)

[∑
θ

P ?(θ′|θ) · Ω(θ′|t, e, d, k) |t−1

]
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The values returned by Solve-Entry-Group-Endog-Sample(·) are Ω0, ω0, the dis-

tribution of the selected sample and the proportion of unobserved type k surviving

at the point of randomization, respectively.

Algorithm 2 Solve-Entry-Group-Endog-Sample(d, k, P−∞, Pα, y)

g ← G− 1 {Set g to control group}
r ← 0, f ← F − 1
for e← E − 1 to 0 do

Ω[e]← P−∞
ω[e]← 1
for t← tmin[e] to t0[e] do

for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s {Append endogenous parameters, s}
i← Enumerate(θ)
P ?[i]←

∑
α∈A(θ)H(y[i, α]; t, e, d) · Pα[i, α] · P (θ′|α, θ) {P ? ≡ P ?(θ′|θ)}

end for
Ωnext ← ω[e] ·

∑
θ P

?[Enumerate(θ)] · Ω[e][Enumerate(θ)] {sum over θ}
ω[e]←

∑
θ′ Ωnext[Enumerate(θ′)]

Ω[e]← Ωnext/ω[e] {Renormalize so distn sums to 1}
end for

end for
return Ω, ω

The next algorithm computes the predicted treatment outcomes and is imple-

mented as Predict::computeExpectedOutcomes(·). Note that during the post-assignment

period, t0(e) < t ≤ tmax(e), Ω(·) and ω(·) continue being recursively updated as de-

fined in equations (4) and (5). The difference in definition with the pre-assignment

period is that H[·] is not used because sample selection has been completed and so

P ?(θ′|θ) is replaced with Ps(θ
′|θ).

ω(k; t, g, e, d) = ω(k; t, g, e, d) |t−1

[∑
θ′

∑
θ

Ps(θ
′|θ) · Ω(θ′|t, g, e, d, k) |t−1

]
(4)

Ω(θ′|t, g, e, d, k) =
ω(k; t, g, e, d) |t−1

ω(k; t, g, e, d)

[∑
θ

Ps(θ
′|θ) · Ω(θ′|t, g, e, d, k) |t−1

]
(5)

Also note that both Ω(·) and ω(·) are now dependent on g.
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Algorithm 3 Compute-Expected-Outcomes(d,Ω, ω, λ?, Pα, Ps,Ey)

r ← 0
for e← E − 1 to 0 do
f ← f0[e]
for g ← G− 1 to 0 do

tick← 0
for t← t0[e] to tmax[e] do

EY[e][g][tick] = [0 . . . 0]
for k ← K − 1 to 0 do

for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s {Append endogenous parameters, s}
i← Enumerate(θ)
EY[e][g][tick]← EY[e][g][tick] + λ?[k][e] · Ω[k][e][i] · Ey[k][i]

end for
Ωnext ← ω[k][e] ·

∑
θ′ Ps[k][Enumerate(θ′)] · Ω[k][e][Enumerate(θ′)]

ω[k][e]←
∑

θ′ Ωnext[Enumerate(θ′)]
Ω[k][e]← Ωnext/ω[k][e] {Renormalize so distn sums to 1}

end for
tick← tick + 1

end for
end for

end for
return EY

Algorithms 4 through 8 are implemented in behaviour.ox as the following methods

respectively:

Behaviour::solve(const delta, const rho)
TreatmentBehaviour::solve(const delta, const rho, const realityV)
RealityBehaviour::solve(const delta, const rho)
RealityBehaviour::solveInfiniteHorizon(const delta)
RealityBehaviour::solveErgodicDistn(const nextStateProb)

Algorithm 4 Solve-Behaviors(d, k, δ, ρ)

P−∞, V ← Solve-Reality-Behavior(d, k, δ, ρ)
Pα, Ps, y ← Solve-Treatment-Behavior(d, k, δ, ρ,Expand-For-All-States(V ))
return P−∞, Pα, Ps, y
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Algorithm 5 Solve-Treatment-Behavior(d, k, δ, ρ, Vreality)

for e← E − 1 to 0 do
for g ← G− 1 to 0 do
Vtomor ← Vreality

for f ← F − 1 to 0 do
for r ← R[f ]− 1 to 0 do

for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s
i← Enumerate(θ)
v ← U(α, θ) + δ

∑
θ′ P (θ′|α, θ)Vtomor[Enumerate(θ′)]

Vtoday[i]← maxα∈A(θ) v[α]
Pα[i]← Compute-Choice-Prob(ρ, v, Vtoday[i], θ) {NB: Pα ≡ Pr{α|θ}}
Ps[i] =

∑
α∈A(θ) Pα[i, α]P (θ′|α, θ) {NB: Ps ≡ Ps(θ

′|θ)}
Ey[i]←

∑
α∈A(θ) Pα[i, α] · Y (α, θ) {NB: Ey = E[Y |θ]}

end for
end for

end for
end for

end for
return Pα, Ps,Ey

Algorithm 6 Solve-Reality-Behavior(d, k, δ, ρ)

e← E − 1, g ← G− 1
t← tmin[e], r ← 0, f ← F − 1
v, V ← Solve-Infinite-Horizon(d, k, e, g, f, r, t, δ)
for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s {Append endogenous parameters, s}
i← Enumerate(θ)
Pα[i]← Compute-Choice-Prob(ρ, v, V [i], θ) {NB: Pα ≡ Pr{α|θ}}

end for
for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s
i← Enumerate(θ)
Ps[i] =

∑
α∈A(θ) Pα[i, α]P (θ′|α, θ) {NB: Ps ≡ Ps(θ

′|θ)}
end for
P−∞ ← Solve-Stationary-Distribution(Ps)
return V, P−∞
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Algorithm 7 Solve-Infinite-Horizon(d, k, e, g, f, r, t, δ)

Vtoday ← [0 . . . 0], Vtomor ← [0 . . . 0]
repeat

for all s ∈ S do
θ ← [d, k, e, g, f, r, t] |s {Append endogenous parameters, s}
{Assigning v a function of α}
v ← U(α, θ) + δ

∑
θ′ P (θ′|α, θ)Vtomor[Enumerate(θ′)]

Vtoday[Enumerate(θ)]← maxα∈A(θ) v[α]
end for
Swap(Vtoday, Vtomor)

until Converged(Vtoday, Vtomor)
return v, V

Algorithm 8 Solve-Stationary-Distribution(Ps)

See Judd (1998, p. 85)

The Compute-Choice-Prob algorithm is implemented by Outcome::calcActionProb(·)

in behaviour.ox and returns a function of α partially evaluated on θ. Recall, a logistic

kernel with ρ parameter is used to smooth state-contingent probabilities.

Algorithm 9 Compute-Choice-Prob(ρ, v, V, θ)

υ̃ ← bool(α ∈ A(θ))eρ[υ(α,θ)−V (θ)] {Assigning υ̃ a function of α}
return υ̃/

∑
α′∈A(θ) υ̃(α′) {Returning a function of α.}

3.3 Defining a social experiment

The SocialExperiment class is the base-class for user defined experiments. Specifi-

cally, the user starts by defining their class as a subclass of SocialExperiment. An

example class declaration is given below. Recall, the single method shown in the

example is the constructor.

class MyExperiment : SocialExperiment {
MyExperiment ();
...

}

By inheriting the SocialExperiment class a member named def, which is an in-

stance of the SocialExperimentDefinition class, is available to the user. By using
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def the user is able to define all the necessary parameters of the experiment.

To define a social experiment the researcher must define the symbols given in

Table 4. Note that symbols given as arguments to the defining function calls are only

to illustrate the connection between the mathematical symbol and the function call.

Using a constant as a function argument is usually more natural. For instance, to

define two demographic groups (i.e. D = 2) the function call def.d.setSize(2) can

be made. These function calls must be made in the constructor of the subclass.

Table 4: Parameters to be Defined

Variable Defining function call

D def.d.setSize(D);

K def.k.setSize(K);

E def.e.setSize(E);

G def.g.setSize(G);

F def.f.setSize(F);

R(f) def.R.setValue(f, R(f));
tmin(e) def.tMin.setValue(e, tmin(e));
t0(e) def.t0.setValue(e, t0(e));
tmax(e) def.tMax.setValue(e, tmax(e));
f0(e) def.startPhase.setValue(e, f0(e));
ρ(k) def.rho.setValue(k, ρ(k));
δ(k) def.delta.setValue(k, δ(k));
λ(d, k) def.unobsWeights.setValue(d, k, λ(d, k));

The methods given in Table 4 can be tedious to use if multiple method calls are

necessary to define a parameter. There are, however, alternatives which can make

multiple definitions in one call. For instance, def members that have the setValues(·)

method can set several values at once rather than having to make separate func-

tion calls. For example, given K = 2, the call def.delta.setValues(0.9, 0.8)

can be made to define δ0 = 0.9 and δ1 = 0.8 for k = 0 and k = 1 respectively.

Another alternative, for def members that have the setLabels(·) method, is to

set the labels and omit setting the size as it is implicitly set to the number of

labels. For example, def.k.setLabels(‘‘unskilled’’,‘‘skilled’’) also implicitly

calls def.k.setSize(2).
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Of special note is def.unobsWeights.setValues(·) as it requires a parameter for

d before the value parameters. Returning to the previous example, given K = 2,

def.unobsWeights.setValues(0, 0.3, 0.7) sets λ(d, k) for d = 0. Recall that the

weights must conform to
∑

k λ(d, k) = 1 for a given demographic group d.

Different parameter types determine which methods are available. These are sum-

marized in Table 5 below. As an example r has two methods available def.r.name()

and def.r.index() because it’s definition is done within the library using R(f). Cor-

respondingly there are two “yes” entries in the def.r column. Note that defining

methods are those that are prefixed with “set” with the exception of def.?.add(·)

which is used to define actions and endogenous state parameters.

Table 5: Available Parameter Methods

def.? def.? member
method def.?1 def.?2 def.?3 def.r def.unobsWeights

.name() yes yes yes yes yes

.index() yes yes

.indices() yes

.size() yes yes yes

.value(·) yes yes yes

.values() yes yes yes

.allValues() yes

.labels() yes yes

.get(·) yes

.getAll() yes

.add(·) yes

.setValue(·) yes yes

.setValues(·) yes yes

.setLabels(·) yes

.setSize(·) yes yes

def.?1 includes def.d, def.k, def.e, def.g and def.f

def.?2 includes def.R, def.tMin, def.t0, def.tMax,
def.startPhase, def.delta and def.rho

def.?3 includes def.endog and def.action

In addition to parameter definitions, the following six virtual methods of

SocialExperiment must be defined in the subclass. The relationship between these
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methods and the social experiment mathematical description is given in Table 6.

feasibleActions (const actions, const currState);
utility (const feasActions, const currState);
measurement(const feasActions, const currState);
select (const measurement, const e, const time);
treatmentTransition(const jump, const feasActions, const currState, const lastPeriod);
realityTransition (const jump, const feasActions, const currState);

Table 6: Virtual methods to be Overridden

Mathematical entity Method name

A(θ) feasibleActions (·)
P{θ′|α, θ} realityTransition(·)

and treatmentTransition(·)
U(α, θ) utility(·)
Y (α, θ) measurement(·)

Recall, α is a vector of actions that can be undertaken by the individual if fea-

sible. Therefore, α can be defined as α = [α1, . . . , αm]. The first argument of

feasibleActions(·), actions, is a matrix with α1, . . . , αm represented as rows and

different combinations of possible values represented as columns. For example, say

α = [α1, α2] where α1 ∈ {0, 1} and α2 ∈ {2, 3}, then the actions argument will be:

actions =

[
0 1 0 1
2 2 3 3

]
Within Ox, the selectifc function is a convenient way to select the feasible

combinations. Given θ and using actions as defined above, say only actions with

α2 = 3 are feasible. The snippet of Ox code which accomplishes this is,

selectifc(actions,actions[1][].==3);

which results in,

selectifc(actions,actions[1][].==3) =

[
0 1
3 3

]
The second parameter of feasibleActions(·) is currState which is simply a col-

umn vector representing the values of the current state θ. The required return value of

feasibleActions(·) is a submatrix of actions where the number of rows are identical
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but the columns are only those that represent the feasible actions, as demonstrated

above.

An issue that has not yet been discussed is how to determine the index for a partic-

ular parameter. For state parameters, d, k, e, g, f and r the most obvious way to get

the index is to use the def.?.index() method. Another, more direct, way to get the

index for the aforementioned parameters with the exception of r is to use the return

value from the defining method call. For example, dIdx = def.d.setSize(2) both de-

fines D = 2 and as well as having the same effect as executing dIdx = def.d.index().

For both def.actions and def.endog the easiest way to get the index from a newly

created parameter is to use the return value from def.?.add(const name, const size)

method call. For instance, myActionIdx = def.action.add(‘‘myAction’’, 2) defines

a new action with two states and sets the row index for referencing the actions

matrix.

The methods utility(·) and measurement(·) have the same parameter definition:

const feasActions and const currState. The feasActions parameter is the matrix

returned from the feasibleActions(·) method and currState is a vector as before.

The utility(·) method returns the single period utility over the feasible actions,

resulting in a row vector with the same number of columns as feasActions. The

measurement(·) method returns a matrix of measures where rows represent particular

measurements and columns represent the measurements over the feasible actions.

The two transition methods are more complicated, although neither has a return

value. The difference between the methods is that the realityTransition(·)

method only needs to give transitions over the endogenous parameters whereas the

treatmentTransition(·) method must also handle phase and period transitions (i.e.

f and r). To avoid code replication, realityTransition(·) can be called within

the treatmentTransition(·) method to handle the endogenous parameters’ tran-

sition. The parameters that the two methods have in common are const jump,

const feasActions and const currState. Both the feasActions and currState are
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defined as before: the output from the feasibleActions(·) method and the current

state vector respectively. The const jump parameter is an object used to define the

transitions or “jump” of the relevant parameters and has two methods:

get(const index);
update(const index, const probs);

The implementation of jumps is different than Ferrall’s (2002) definition, in that

the default jump is defined implicitly rather than being an explicit parameter in the

jump calculation. A transition definition starts by retrieving the transition matrix for

a particular state parameter by using it’s index. This is the same index that is used

to get values from the state vector. The different state parameter values and feasible

actions are represented by rows and columns respectively. The transition matrix is

initialize with Ox .NaNs (Not a Number). An example will help clarify.

Say an endogenous state parameter is defined in the constructor using the following

code snippet,

myEndogIdx = def.endog.add(‘‘myEndog’’, 3);

Note the default values for the endogenous parameter are 0,1 and 2. Within the

realityTransition(·) method, the transition matrix is retrieved using the following

line of code:

myEndogTrans = jump.get(myEndogIdx);

Assuming, for this example, that there are two feasible actions the myEndogTrans

matrix is,

myEndogTrans =

.NaN .NaN
.NaN .NaN
.NaN .NaN


Once the matrix is set using the native Ox matrix operators, the library is then

notified by using the update(·) method as is shown below.

jump.update(myEndogIdx, myEndogTrans);

For a valid transition matrix each column vector must sum to one, although it is

not necessary for each cell to be set. Rather the library detects if a column vector sums

to less than one and then splits the residual equally over the remaining unset cells
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(i.e. cells with a .NaN value). Returning back to the example, say given the current

state and feasible actions, the endogenous state parameter stays at its current state

value with a 2
3

probability or goes to any other value with an equal probability. Also,

for simplicity, say the transitions are not a function of the feasible actions, that is,

the jump is autonomous (Ferrall 2002).The desired code snippet is,

myEndogVal = currState[myEndogIdx];
myEndogTrans[myEndogVal][] = 2/3;
jump.update(myEndogIdx, myEndogTrans);

Once the update(·) method is called, the library eliminates all remaining .NaNs.

For illustration, say that myEndogVal = 1 and the transition matrix is retrieved again.

The now defined transition matrix would be,

myEndogTrans =

1/6 1/6
2/3 2/3
1/6 1/6


The treatmentTransition(·) method takes an additional const parameter,

lastPeriod, which is boolean valued. If lastPeriod is TRUE then the phase is currently

in its last period and the period must be set so it jumps back to zero (i.e. r = 0). In

addition the period must also transition unless it is in its final state. If lastPeriod

is FALSE, then the period must be incremented. A caveat is that anytime the phase

jumps to a new value the period must be set to zero. The code snippet below will

clarify the requirements,

MyExperiment::treatmentTransition(
const jump,
const feas,
const state,
const lastPeriod)

{
decl

f = state[fIdx],
r = state[rIdx],

...
nextPeriodProb = jump.get(rIdx);
if (lastPeriod) {

// If in last period don’t forget to set r to zero.

nextPeriodProb[0][] = 1.0;
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} else {
// Have to refetch f to get proper probs (i.e. no NaN’s).

nextPhaseProb = jump.get(fIdx);
// Increment r if phase unchanged.

nextPeriodProb[r+1][] = nextPhaseProb[f][];
// If phase changed set r=0.

nextPeriodProb[0][] = 1.0 - nextPhaseProb[f][];
}
jump.update(rIdx,nextPeriodProb);

}

Building on these basics, the next section will go through a sample application in

detail.
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4 Application - Illinois Reemployment Bonus ex-

periment

4.1 Background

The Illinois Reemployment Bonus experiment was a random assignment experiment

of unemployment insurance (UI hereafter) claimants conducted between mid-1984

to mid-1985 by the Illinois Department of Employment Security. The goal of the

experiment was to determine the effect of the UI system on the behaviour of the

unemployed. The experiment allowed those in the treatment group to receive a $500

bonus if they found employment within 11 weeks of filing their UI claim and then

stayed employed for 4 months. Selection into the experiment required that the in-

dividual be a new UI claimant. A variation of this experiment was also conducted

concurrently where the new employer would receive the $500 bonus rather than the

individual. In this paper only the bonus for individuals is considered.

The experimental data included characteristics such as sex, age and race (i.e. de-

mographics) as well as history for earnings and UI benefits, whether the claimant

received the $500 bonus (i.e. endogenous characteristics) and treatment group mem-

bership (e.g. control, claimant receives bonus if eligible, employer receives bonus if

eligible). The first analysis of the Illinois Reemployment Bonus experiment was con-

ducted by Woodbury and Spiegelman (1987) and Table 2 within their report gives a

breakdown of claimant counts by characteristics and treatment group.

4.2 Example model

As the Illinois Reemployment Bonus experiment is presented here as an illustration

the model is simplified. For instance, rather than multiple demographic groups only

two will be used. A summary of the state parameter values, including definitions of

endogenous variables (i.e. wrking through to npue), are presented in Table 7. As the

model is a simplification the descriptions used are purely illustrative. For instance,

rather than choose men and women for the two demographic groups, two racial groups
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could have been chosen (e.g. black and white).

Table 7: Experiment State Parameters

D = 2 men and woman
K = 2 low and high skilled
E = 1 only one way to enter the experiment
G = 2 treatment and control
F = 5 preexperiment, qualify, stayemployed, getbonus and

postexperiment

wrking Working? (0=FALSE/1=TRUE)
offer five wage offer indices (0 . . . 4)
preearn five previous wage offer indices (0 . . . 4)
npwrk number periods worked (0 to 5 months)
npue number periods unemployed (0 to 5 months)

The maximum number of periods in a given phase which is measured in months

is defined in Equation 6. For the qualification phase in the first period (i.e. r =

0) the probability of being employed is necessarily zero as only new UI claimants

are considered. The remaining three periods or months in the qualification phase

represents the 11 week limit, which is rounded to three months from the actual 2.5

months, to find a job in order to receive a bonus.

R(f) =

{
4 if f ∈ {qualify, stayemployed}
1 otherwise

(6)

Additional parameters that are dependent on state variables e, d and k are given

in Table 8. There is only one entry group so ∀e is equivalent to e ∈ {0}.

Table 8: Time, Treatment Start Phase and Weight Parameters

tmin(e) = -1 for ∀e
t0(e) = 0 for ∀e

tmax(e) = 5 for ∀e
f0(e) = qualify for ∀e

λ(d, k) = 0.5 for ∀d, k

There are also several exogenous parameters for the model. These are given in

Table 9.
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Table 9: Other Exogenous Parameters

κ = 1.0 Value of effort
µ[k] = [1.1, 1.2] Heterogeneity of wage offers

offprob = 0.1 Probability of job offer
layprob = 0.2 Probability of layoff
uiRate = 0.6 % of previous wage received as UI benefit
REbonus = 5.0 Reemployment bonus in $100s

Individuals have an endogenous choice to exert effort in both job search and

employment. Also, the individual can choose to accept or reject a job offer. Receiving

a wage offer of $0 corresponds to no job offers. Therefore the action vector is either

α = [effort, accept] if offered a job or α = [effort] if currently working. Both effort

and accept are boolean valued.

The wage function is assumed to be a discretized log-normal distribution that also

includes a $0 wage possibility. The wage is given as,

wage[k] =

{
0 if offer = 0

exp
{
µ[k] + Φ(offer−1

F
)
}

if offer > 0

The UI benefits are a portion, uiRate, of previous earnings. In addition, to qualify

for unemployment the individual must have worked previously, that is npwrk > 0.

Therefore the benefits received while on UI are,

UI =

{
0 if npwrk = 0

uiRate · wageUI if npwrk > 0

where,

wageUI[k] =

{
0 if preearn = 0

exp
{
µ[k] + Φ(preearn−1

F
)
}

if preearn > 0

The single period utility function is defined as,

U(α, θ) =

{
valueUE + (wage− valueUE) · accept + UI if unemployed

wage− valueUE + REbonus · bRecd otherwise
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where,

valueUE = κ(1− effort)

bRecd =

{
1 if f = getbonus

0 otherwise

The measurement vector, Y (α, θ), are characteristics to be predicted by the Ni-

plow software and are also used as a parameter for determining valid measurements,

H[y; t, e, d]. For this model the measurements are chosen as follows,

Y (α, θ) =



effort

accept

wage
wrking

UIRecd
UI

bRecd


where,

UIRecd =

{
FALSE if UI = 0

TRUE otherwise

The model includes five phases, preexperiment, qualify, stayemployed, getbonus

and postexperiment. The initial phase for the experiment is the qualify phase.

A general overview of the phase transitions are given in Figure 1. Recall that phase

changes are progressive in that if the phase changes it cannot move back to a previous

phase.
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Figure 1: Phase Transitions

Pre-experiment
Illinois Reemployment

Bonus Experiment
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Qualified
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Get bonus Post-experiment

no offer accepted in 11 wks
OR control group

qualify

did not qualify

offer accepted

employed 4 mths

employed <4 mths

4.2.1 Source code - reempBonus.ox

This section describes the source code in detail. Small portions of code are presented

with the descriptions, but longer listings are in Section A.1 of the Appendix.

A listing of the ReempBonus class is in Section A.1.1. As is mandatory the class in-

herits from the SocialExperiment (line 1), and declares the parameterless constructor

ReempBonus() (line 21) as well as declares the six methods that need to be overridden

(lines 24 to 29). Notice that all the members are declared as constants using the

const decl statement rather than using static enum’s. This is because some of the

values will be real valued which is not support by enum and also may not be known

until run-time. For example indices values for the state variable vector is not given

by Niplow until runtime which is why members, such as dIdx, cannot be declared as

an enum.

The constructor ReempBonus() is listed in Section A.1.2. The code is written

for clarity but there are several points that may not be obvious. First, in Ox the

constructor of the base class, SocialExperiment(), must be called explicitly (line 2).

Second, the def.?.values() method returns an array not a vector. This allows Ox’s
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multiple assignment syntax to be used of which there are two examples involving def.d

and def.f (lines 7 and 11). Third, def.f.setLabels(·) implicitly sets F = 5 (line

10). Forth, def.r has a reduced set of methods compared to other state parameters.

For this example, only the index of r is needed (line 13). Finally, the last treatment

group defined must be the control group (line 29).

Each of the current state values are passed in separate method calls, but all the

feasible actions are passed simultaneously. The underlying assumption is that the

number of feasible action combinations is small and so can be passed as a group

without taking excessive amounts of computer memory. Recall, the feasible action

matrix stores the separate action vectors as column vectors. For this model, the two

actions, effort ∈ {0, 1} and accept ∈ {0, 1}, are represented as matrix rows 1 and

2 respectively. The restriction on the actions is that if an individual is working (i.e.

wrking = 1) then not accepting (i.e. accept = 0) is considered infeasible. Therefore,

the feasible actions matrix and the generating method feasibleActions(·) are as

follows.

feasActions =



[
0 1

1 1

]
if wrking = 1

[
0 1 0 1

0 0 1 1

]
if wrking = 0

1 ReempBonus::feasibleActions (const actions, const state) {
2 print(selectifc(actions,actions[accept][])); exit(1);
3 // Not accepting is feasible only if not working.

4 return (state[wrkingIdx]) ?
5 // Remove the "not accepting" columns.

6 selectifc(actions,actions[accept][]) :
7 actions;
8 }

The methods utility(·) and measurement(·), listed in Section A.1.3, only differ in

terms of their return values (lines 2 to 11 and 20 to 29 are identical). The code does

have a slight divergence from the model in that separate wages, wage and wageUI, for

working and not working respectively are not calculated. Instead wage is contingent
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on effwage which is the wage index conditional on the wrking endogenous parameter

(line 4). The return value for utility(·) is a row vector of one period utilities for each

feasible action. The return value for measurement(·) is a matrix of measurements, as

rows, for each feasible action, as columns.

Only new UI claimants are eligible to enter the experiment. The select(·) method

ensures that all individuals are employed in the preexperiment phase, or equivalently

when t = −1, and are then unemployed when the experiment starts and the individual

enters the qualify phase at t = 0.

1 // Measurement vector.

2 enum {effort, accept, wage, employed, anyUI, UI, bonus};
3 const decl measurementLabels = {
4 "effort", "accept", "wage", "employed", "anyUI", "UI", "bonus"
5 };
6

7 ReempBonus::select(const measurement, const e, const time) {
8 return (time==-1) ?
9 // off UI - so we include only new spells

10 (1-measurement[anyUI][]) :
11 // on UI - initiate new spell

12 measurement[anyUI][];
13 }

The realityTransition(·) method, listed in Section A.1.4, only sets transitions

for the endogenous state parameters. There are several lines which contain some

illustrative examples that would be implemented differently or completely removed

to optimize the code. The def member is accessible to every ReempBonus(·) method

and can be used during estimation to fetch properties, although more efficient code

would assign the properties to const members in the constructor. Examples are,

assigning the number of offer states to nwo (line 9), preventing an index overrun for

npwrk (line 71), and assigning fractional effort to eff (line 15), although for this model

eff ∈ {0, 1}. Most jump probabilities are set in a single line, with the exception of the

preearn jump matrix, prevWageProb, which is more complicated for the unemployed

case (lines 58 to 63).

The treatmentTransition(·) method, listed in Section A.1.5, sets transitions for
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the phase and period and then sets the endogenous state parameters by calling

realityTransition(·) (line 48). Setting of the period transition is dependent on

whether the maximum period has been reached (i.e. r = R(f) − 1) which is deter-

mined by lastPeriod. This is “boiler-plate” code (lines 32 to 45) and will be made

part of Niplow in a future version, however, its inclusion here is useful for insight into

the workings of the period transition.

4.2.2 Obtaining results

The following is the main() of ReempBonus.ox. The model must be instantiated and

run to produce a prediction (line 3). The result, predict, is a series of nested arrays,

which are navigated using the nested for loops.

1 main () {
2 decl predict, d, e, g;
3 predict = (new ReempBonus()).run();
4 for(d=0; d<sizeof(predict); d++) {
5 for(e=0; e<sizeof(predict[d]); e++) {
6 for(g=0; g<sizeof(predict[d][e]); g++) {
7 println("d=",d,", e=",e,", g=",g);
8 print("prediction","%c",measurementLabels,
9 "%12.5f", predict[d][e][g]’);

10 }
11 }
12 }
13 }

The prediction output is below. Note that only values for d = 0 are shown because

those for d = 1 are identical. The rows represent months in the experiment ranging

from 0 to 5 (i.e t0 . . . tmax). Notice how control groups (i.e. g = 1) never receive the

bonus, but some portion of those in the treatment group (i.e. g = 0) do in the last

month.
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4.2.3 Output - reempBonus.ox

d=0, e=0, g=0

prediction

effort accept wage employed anyUI UI

0.98178 0.97096 3.76463 0.96895 0.00176 0.00264

0.90130 0.77720 3.01307 0.77219 0.00181 0.00271

0.83461 0.63899 2.45868 0.62111 0.01287 0.01930

0.78331 0.53940 2.05484 0.51233 0.02076 0.03114

0.72497 0.46609 1.75823 0.43262 0.02628 0.03943

0.69814 0.39492 1.51671 0.35633 0.03047 0.04570

bonus

0.00000

0.00000

0.00000

0.00000

0.00000

0.39398

d=0, e=0, g=1

prediction

effort accept wage employed anyUI UI

0.93219 0.97110 3.76463 0.96895 0.00176 0.00264

0.85209 0.73944 2.95999 0.73393 0.00164 0.00246

0.78895 0.58670 2.38981 0.56610 0.01486 0.02229

0.74529 0.48546 1.99045 0.45489 0.02358 0.03537

0.71477 0.41689 1.70697 0.37970 0.02936 0.04404

0.69316 0.36965 1.50340 0.32796 0.03327 0.04991

bonus

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
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5 Conclusion

A choice faced by econometricians is whether to write their software or use existing

software to perform calculations. For an experimentalist approach, the decision is

easier given the plethora of choices both free (e.g. R) and commercial (e.g. Stata).

When dealing with structural models and, in this case, their application to social

experiments the more immediate choice, given the lack of options, is to expend con-

siderable effort programming. The Niplow software library, implementing Ferrall’s

(2002) comprehensive mathematical model for estimating social experiments, gives

the researcher an alternative. In addition, Niplow is “open source” allowing users to

verify correctness and extend the framework in a way that benefits themselves and

the entire user community. Given this is the first release of the software there is

plenty of opportunity for future development.

Niplow implements a subset of Ferrall’s (2002) model. For example, the extension

for policy innovations and functions that allow for concise jump descriptions (e.g.

autonomous jumps) have not been implemented. Also unimplemented is using GMM

to estimate the model using observed moments, which would be valuable addition.

There are other features which would go beyond the contemporary model. For

instance, Niplow could allow for a finite horizon problem which has a non-ergodic

absorbing state (e.g. death), rather than the current infinite horizon problem. Also,

the user could be given the option of providing their own probability distribution over

endogenous states for a given d and k.

From a design point of view, the software can be enhanced in several ways. Further

code verification by inspection and additional test cases would alleviate correctness

concerns. Also important is the inclusion of “asserts” at key points of code execution

to ensure the program has not entered a “fault” state which otherwise may be difficult

to detect. The addition of parallel execution over d and k and optimizations of serial

code would allow practical estimation of more complex models. By splitting the

code into a simple library for estimating DDPs and a dependent social experiment
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estimation library, researchers would be able to easily use the library for estimating

other types of DDP models. Finally, further reducing the programming burden, such

as letting the library rather than the user be responsible for “boiler-plate” code, will

enhance the users experience which is a key determinant of the software’s success.
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A Appendix

A.1 Source code Listings

A.1.1 ReempBonus Class

1 class ReempBonus : SocialExperiment {
2 const decl dIdx, kIdx, fIdx, rIdx, gIdx, eidx;
3

4 // Experiment phases.

5 const decl preexperiment,qualify,stayemployed,getbonus,postexperiment;
6

7 // Indices for endogenous state parameters.

8 const decl wrkingIdx, offerIdx, preearnIdx, npwrkIdx, npueIdx;
9

10 // Agent actions.

11 const decl effort, accept;
12

13 // Utility parameters and labels.

14 const decl upars, parlabels;
15

16 // Discretized wage offer distribution.

17 const decl wageDistn;
18

19 const decl REbonus, uiRate;
20

21 ReempBonus();
22

23 // Methods to override.

24 feasibleActions (const actions, const currState);
25 utility(const feasActions, const currState);
26 measurement(const feasActions, const currState);
27 select(const measurement, const e, const time);
28 treatmentTransition(const jump, const actions, const currState, const lastPeriod);
29 realityTransition(const jump, const actions, const currState);
30 }

A.1.2 ReempBonus() Constructor

1 ReempBonus::ReempBonus() {
2 SocialExperiment();
3

4 // Define demographic groups.

5 decl d1, d2;
6 dIdx = def.d.setSize(2);
7 [d1, d2] = def.d.values();
8

9 // Define phases.
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10 fIdx = def.f.setLabels("pre","qualify","stayemp","getbonus","post");
11 [preexperiment,qualify,stayemployed,getbonus,postexperiment] = def.f.values();
12

13 rIdx = def.r.index(); // Don’t set r - it’s done internally!

14

15 // Set phase limits.

16 def.R.setValue(qualify,4);
17 def.R.setValue(stayemployed,4);
18

19 // Define experiment entry types.

20 eidx = def.e.setSize(1);
21 decl e = def.e.values()[0];
22 def.tMin.setValue(e,-1);
23 def.t0.setValue(e,0);
24 def.tMax.setValue(e,5);
25 def.startPhase.setValue(e,qualify);
26

27 // Define treatment groups.

28 // Control MUST be the last group.

29 gIdx = def.g.setLabels("treatment","control");
30

31 // Define unobserved types.

32 kIdx = def.k.setSize(2);
33 def.delta.setValues(0.9, 0.9);
34 def.rho.setValues(2.0, 2.0);
35

36 def.unobsWeights.setValues(d1, 0.5, 0.5);
37 def.unobsWeights.setValues(d2, 0.5, 0.5);
38

39 upars = new matrix[def.k.size()][NNpars];
40 parlabels = new array[NNpars];
41 upars[][kappa] = 1.0; parlabels[kappa] = "valef";
42 upars[][mu] = <1.1;1.2>; parlabels[mu] = "mnoff"; // heterogeneity

43 upars[][sigma] = 1.0; parlabels[sigma] ="sdoff";
44 upars[][offprob] = 0.1; parlabels[offprob] = "offprb";
45 upars[][layprob] = 0.2; parlabels[layprob]="layprb";
46

47 // Endogenous parameters.

48 wrkingIdx = def.endog.add("Working?", 2); // Working? (TRUE/FALSE)

49 offerIdx = def.endog.add("Wage offer", 5); // Wage offer.

50 preearnIdx = def.endog.add("PreEarn", 5); // Previous wage.

51 npwrkIdx = def.endog.add("# mths work", 6); // # periods worked.

52 npueIdx = def.endog.add("# mths UE", 6); // # periods unemployed.

53

54 // Define actions.

55 effort = def.action.add("effort", 2);
56 accept = def.action.add("accept", 2);
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57

58 // Define wage distribution.

59 // Number of offers including $0.

60 decl offerCnt = def.endog.get(offerIdx).size();
61 // Number of actual job offers (i.e. actual offers are >$0).

62 decl jobOfferCnt = offerCnt-1;
63 wageDistn = 0 ~
64 exp(upars[][mu]+upars[][sigma]*quann(range(1,jobOfferCnt)/(offerCnt)));
65

66 // Set constants.

67 REbonus = 5.0; // Illinois Reemployment bonus, in hundreds of dollars

68 uiRate = 0.6; // Proportion of previous wage received as UI benefits.

69 }

A.1.3 utility(·) and measurement(·)

1 ReempBonus::utility(const feasActions, const state) {
2 decl
3 wrking = state[wrkingIdx],
4 effwage = state[ wrking ? preearnIdx : offerIdx ],
5 k = state[kIdx],
6 wage = wageDistn[k][effwage],
7 eff = feasActions[effort][],
8 UEval = upars[k][kappa]*(1-eff),
9 bRecd = state[fIdx]==getbonus,

10 elig = state[npwrkIdx]>0,
11 ui = (1-wrking)*elig*uiRate*effwage;
12 decl utilVal;
13

14 utilVal = UEval +(wage-UEval).*feasActions[accept][] + REbonus*bRecd + ui;
15

16 return utilVal;
17 }
18

19 ReempBonus::measurement(const feasActions, const state) {
20 decl
21 wrking = state[wrkingIdx],
22 effwage = state[ wrking ? preearnIdx : offerIdx ],
23 k = state[kIdx],
24 wage = wageDistn[k][effwage],
25 eff = feasActions[effort][],
26 UEval = upars[k][kappa]*(1-eff),
27 bRecd = state[fIdx]==getbonus,
28 elig = state[npwrkIdx]>0,
29 ui = (1-wrking)*elig*uiRate*effwage;
30

31 return
32 (feasActions[effort][].>0) |
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33 feasActions[accept][] |
34 wage | wrking | (ui>0) | ui | bRecd;
35 }

A.1.4 realityTransition(·)

1 ReempBonus::realityTransition(const jump, const feas, const state) {
2 decl
3 wrking = state[wrkingIdx],
4 offer = state[offerIdx],
5 preearn = state[preearnIdx],
6 npwrk = state[npwrkIdx],
7 npue = state[npueIdx],
8 k = state[kIdx],
9 nwo = def.endog.get(offerIdx).size(),

10 eff;
11

12 decl wrkingProb, offerProb, prevWageProb, valueProb, npwrkProb, npueProb;
13

14 // Get the effort value (i.e. 0, 1/2, 1) given the effort state.

15 eff = feas[effort][]/(def.action.get(effort).size()-1);
16

17 // Probability matrices come initialized with .NaN’s.

18 wrkingProb = jump.get(wrkingIdx);
19 offerProb = jump.get(offerIdx);
20 prevWageProb = jump.get(preearnIdx);
21 npwrkProb = jump.get(npwrkIdx);
22 npueProb = jump.get(npueIdx);
23

24 if (wrking) { // Currently EMPLOYED.

25

26 // TRANSITION FOR WORKING STATUS

27 // Probability of NOT getting laid off.

28 wrkingProb[1][] = (1-upars[k][layprob])*eff;
29

30 // TRANSITION FOR WAGE OFFER

31 // No offers while working.

32 offerProb[0][] = 1.0;
33

34 // TRANSITION FOR PREVIOUS WAGE

35 // If working previous wage is unchanged.

36 prevWageProb[preearn][] = 1.0;
37

38 // TRANSITION FOR MONTHS WORKING IN PAST YEAR

39 // Increment months worked in past year unless at the maximum.

40 npwrkProb[min(npwrk+1,def.endog.get(npwrkIdx).size()-1)][] = 1.0;
41

42 // TRANSITION FOR MONTHS of UI benefits remaining

47



43 // Months on UI in past year remains unchanged.

44 npueProb[npue][] = 1.0;
45

46 } else { // Currently UNEMPLOYED.

47

48 // TRANSITION FOR WORKING STATUS

49 // Probability of accepting a job.

50 wrkingProb[1][] = feas[accept][];
51

52 // TRANSITION FOR WAGE OFFER

53 // Probability of no wage offers.

54 // Positive wage offers are equally likely so leave as NaNs.

55 offerProb[0][] = 1-upars[k][offprob]*eff;
56

57 // TRANSITION FOR PREVIOUS WAGE

58 // Change .NaN’s to zeros for offer and preearn states.

59 prevWageProb[newVector(offer,preearn)][] = 0;
60 // Jump to wage offered if accepted.

61 prevWageProb[offer][] += feas[accept][];
62 // Otherwise keep the current wage.

63 prevWageProb[preearn][] += 1.0-feas[accept][];
64

65 // TRANSITION FOR MONTHS WORKING IN PAST YEAR

66 // Months worked in past year remains unchanged.

67 npwrkProb[npwrk][] = 1.0;
68

69 // TRANSITION FOR MONTHS of UI benefits remaining

70 // Increment months unemployed in past year unless at the maximum.

71 npueProb[min(npue+1,def.endog.get(npueIdx).size()-1)][] = 1.0;
72 }
73

74 // Update the jump transition matrix.

75 // Any remaining .NaN’s are replaced with the residual probability.

76 jump.update(wrkingIdx,wrkingProb);
77 jump.update(offerIdx,offerProb);
78 jump.update(preearnIdx,prevWageProb);
79 jump.update(npwrkIdx,npwrkProb);
80 jump.update(npueIdx,npueProb);
81 }

A.1.5 treatmentTransition(·)

1 ReempBonus::treatmentTransition
2 (const jump, const feas, const state, const lastPeriod)
3 {
4 decl
5 wrking = state[wrkingIdx],
6 f = state[fIdx],
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7 r = state[rIdx],
8 nextPhaseProb, nextPeriodProb;
9

10 // Set phase transitions.

11 nextPhaseProb = jump.get(fIdx);
12 if (f==qualify) {
13 // Move to stayemployed phase if accepting a job.

14 nextPhaseProb[stayemployed][] = feas[accept][];
15 /* Not accepting a job can cause a jump to

16 postexperiment phase if in last period. */

17 nextPhaseProb[lastPeriod ? postexperiment : qualify][] =
18 1.0 - feas[accept][];
19 } else if (f==stayemployed) {
20 nextPhaseProb[wrking ?
21 (lastPeriod ? getbonus : stayemployed) : postexperiment][] = 1.0;
22 } else if (f==getbonus) {
23 // After getting bonus go to the postexperiment phase.

24 nextPhaseProb[postexperiment][] = 1.0;
25 } else {
26 // Other phase states are absorbing.

27 nextPhaseProb[f][] = 1.0;
28 }
29

30 jump.update(fIdx,nextPhaseProb);
31

32 // Set period transitions.

33 nextPeriodProb = jump.get(rIdx);
34 if (lastPeriod) {
35 // If in last period don’t forget to set r to zero.

36 nextPeriodProb[0][] = 1.0;
37 } else {
38 // Have to refetch f to get proper probs (i.e. no NaN’s).

39 nextPhaseProb = jump.get(fIdx);
40 // Increment r if phase unchanged.

41 nextPeriodProb[r+1][] = nextPhaseProb[f][];
42 // If phase changed set r=0.

43 nextPeriodProb[0][] = 1.0 - nextPhaseProb[f][];
44 }
45 jump.update(rIdx,nextPeriodProb);
46

47 // Gather the same transitions for endogenous variables as if in reality.

48 realityTransition(jump, feas, state);
49 }
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