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 i 

Abstract 
This paper studies the issue of bank runs in a dynamic model with aggregate uncer-

tainty. The information structure is asymmetric, with the bank having additional 

private information about the measure of impatient agents, which is modeled by a 

Markov chain. The additional information permits the bank to more accurately pre-

dict the measure of impatient agents in the current period than does the public in-

formation alone. Moreover, there exists a unique banking equilibrium where the de-

mand deposit contract achieves more efficient risk-sharing that the contract implied 

by the public information. The frequency at which a prediction is inaccurate enough 

to yield no payment for patient agents who do not withdraw early is also studied. A 

numerical exercise shows that the event occurs less frequently under the bank’s pre-

diction when compared to a prediction based solely on public information.  
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”Wisdom and knowledge shall be the stability of thy times.” 

- Isaiah 33:6 

1 Introduction 

 This paper studies the issue of bank runs and their prevention, in a dynamic 

model with aggregate uncertainty where the information structure of the model is 

asymmetric. I consider an environment where public information about the state of 

the financial system exists, and is available to both agents and the bank. In addition 

to the public information, the bank also has access to private information about the 

state of the financial system. Within this environment, I examine whether the bank’s 

access to private information yields a unique banking equilibrium where the demand 

deposit contract achieves more efficient risk-sharing that the contract implied by the 

public information alone. I also discuss the constraints that are placed upon the op-

timal contract by the asymmetric information structure. The model builds on the 

framework of Diamond and Dybvig (1983). 

Diamond and Dybvig begin the seminal work by warning that while bank 

runs had successfully been avoided in the United States following the end of the 

Great Depression in 1930s, the state of Savings and Loan institutions in the early 

1980s made the study of bank runs an important contemporary policy issue (Dia-

mond and Dybvig, 1983). Their warnings were well-founded, as the 1980s and 1990s 

brought forth the failure of 745 Savings & Loan institutions in the United States, 

costing the U.S. taxpayer an estimated $124.6 billion (USD) (USGAO, 1996). While 

bank runs have largely been avoided since the end of the S&L Crisis, (which, admit-

tedly, was not too long ago,) history has begun to repeat itself with yet another sys-

temic financial crisis. Beginning in 2007, the Subprime Mortgage Crisis has seen 

bank runs on Northern Rock in the U.K., Washington Mutual in the U.S., as well as 



 2 

a run on the securities of investment bank Bear Sterns. In light of these current 

events, I believe that the study of bank runs has become a current policy issue once 

again.       

 In this paper, I introduce an asymmetric information structure that favours 

the bank into the Diamond and Dybvig (1983) (herein DD (1983),) framework. Fur-

thermore, I take a different approach to modeling aggregate uncertainty, one which 

amalgamates a number of extensions on their work and introduces elements of sto-

chastic control theory to the banking panic literature. The main feature of the model 

is that the measure of impatient agents is considered to be stochastic, and modeled 

by a Markov chain. Naturally, this implies a second feature of the model, that the 

Diamond and Dybvig framework is considered to be dynamic, where the Markov 

chain evolves inter-game but not intra-game. This approach makes the supposition 

that while the measure of impatient agents may be stochastic, it depends on past 

history.  

 The model considers a single, socially-benevolent bank that is primarily con-

cerned with the stability of the bank, and secondly, the welfare of its depositors. I 

make the assumption that the bank has additional private information about the 

state of the financial system, but their information set is not complete. Agents and 

banks only have access to an observation about the state of the financial system in 

the previous period. The observation is noisy, public information which can be said 

to come from a public survey on ‘impatient agent status’. Sampling and truth-telling 

errors contribute to the noise in the survey’s observation. Privately, however, the 

bank has knowledge of the process that determines the observation and the state of 

the financial system, (the Markov chain,) but not the current state of the financial 

system itself.  
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 The model produces three important results. Firstly, I find that there exists a 

demand deposit contract that yields a banking equilibrium that is unique. Second, 

the aforementioned contract, which utilizes the bank’s prediction of ,
t

x  yields fewer 

‘pseudo-bank-runs’1 than the contract implied by the agents’ limited public informa-

tion alone. Lastly, while there exists a unique banking equilibrium, if the prediction 

of 
t

x  by the bank is considerably higher than the noisy observation implies, the bank 

is motivated to issue a less efficient contract. Based on the responses of the agents to 

the most efficient contract, the bank will opt to issue a contract with a lower, less 

optimal rate of return for impatient agents.  

 This paper brings together two areas of research from two different sub-

disciplines: the study of banking panics as a subset of Monetary Economics, and 

Kalman Filtering, a technique for estimation of partially-observed Markov Decision 

processes, which is a product of Control Theory. Therefore, although the paper is 

written with a monetary focus, a brief discussion will be included on the develop-

ment of Kalman Filtering and its fields of usage. 

Within the literature of banking panics, DD (1983) is often referred to as the 

seminal work, and this paper will not differ from that general sentiment. I will, how-

ever, begin by noting the work of Bryant (1980) as a predecessor to DD (1983) (as 

Green and Lin (2000) do), and its contribution to the discussion of panics. Bryant 

finds, in his expansion of the Samuelson (1958) pure consumption-loans model, that 

the liquidity disparity between the assets and liabilities of the bank can yield a bank 

run as a possible equilibrium. While Bryant makes mention of government-backed 

                                                 
1 I define a ‘pseudo-bank-run’ as the occasion where the bank’s estimate of the measure of impatient 

agents is inaccurate enough that patient agents who withdraw in subperiod 2 receive nothing. Thus, 

they are affected in the same way as they would have been, had there been a bank run in the first 

subperiod.  
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deposit insurance as a mechanism to eliminate the undesirable outcome, the topic is 

not treated in detail. Instead, Bryant suggests the need for a reserve requirement as 

a method for preventing bank runs. 

DD (1983) consider a similar asymmetric information problem of unobservable 

risk among agents, with the added dimension of aggregate uncertainty. Without ag-

gregate uncertainty, DD show that while a bank run is a possible equilibrium of their 

post-deposit game, the full-information optimal risk-sharing banking equilibrium is 

the unique outcome of the pre-deposit game. Under these conditions, they also cite 

the policy of suspension of convertibility as a method for preventing bank-runs in a 

post-deposit game situation. Furthermore, under aggregate uncertainty, DD show 

that government-backed deposit insurance can yield the optimal risk-sharing equilib-

rium. It is this powerful result that has arguably established the reputation of DD 

(1983) as a defining work in the bank run literature. 

Wallace (1988) lays a counterclaim to the result of DD (1983) that government-

backed deposit insurance can prevent a bank run ex-ante. Wallace argues that the 

treatment of the bank and the government with respect to the “sequential service 

constraint” is uneven –that banks are subject to the constraint, while the govern-

ment is not. He provides a re-evaluation of deposit insurance as a policy for eliminat-

ing the bank run equilibrium under aggregate uncertainty and finds that the result 

in DD (1983) does not hold when governments are also subject to the sequential ser-

vice constraint.  

As an alternative to the DD (1983) model, Green and Lin (2000, 2003) consider a 

finite-trader version of the seminal work with aggregate uncertainty that satisfies 

Wallace (1988), and, in addition, permits the bank to issue a broader range of con-
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tracts2, which include those contingent on the bank’s withdrawal history at the time 

of each withdrawal. Green and Lin show that the model has no bank-run equilib-

rium, which leads them to conclude that the bank-run equilibrium present in DD 

(1983) may be merely a product of the model’s environment3. Furthering the result 

discrepancy between DD (1983) and Green and Lin (2000, 2003), Peck and Shell 

(2007) expand on the Green-Lin modification of the DD model to show that a bank-

run equilibrium in the post-deposit game exists even when the banks are permitted 

to issue a broader range of contracts. The result also holds for suspension regimes 

that may be contingent on the withdrawal history at the time of each withdrawal 

request.  

Extending the work of DD (1983) in a different direction, Temzelides (1997) 

studies a multiple-bank repeated-deposit-game environment to analyze the contagion 

effects of a single bank failure on the financial system. Temzelides introduces a num-

ber of features into the DD (1983) model, notably repeating the deposit game. In 

this paper, I will use the repeated deposit game framework to define an evolution 

process for the measure of impatient agents in each period. Unlike Temzelides, how-

ever, I will limit my discussion to pure strategy equilibria and disregard the feature 

that the agents’ strategies evolve based on the outcome of the game each period. I 

leave those extensions to future research.  

The information structure of the model studied in this paper is such that the 

bank has access to more information than agents, and that the agent’s information 

set is nested in the bank’s information set. By defining the information structure in 

this way, the state and observation processes of the Markov chain form a (Partially-

                                                 
2 Green and Lin (2000, 2003), as well as other papers in this area, refer to these contracts as ‘mecha-

nisms’. The two terms are used synonymously throughout this paper. 
3 In Andolfatto, Nosal, Wallace (2007) the work of Green and Lin (2000, 2003) is further generalized. 
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Observed) Markov Decision Process (POMDP), a coupling of state equations of the 

form, 1 1( , ),
t t t

x f x w− −=  and observation equations of the form, 1 1 1( , ).
t t t

y g x v− − −=  The 

system of equations model the evolution of the state of the system, and a noisy ob-

servation process. POMDPs are widely studied in the Engineering Sciences as such 

models have numerous applications in the area of computer networking. I will note 

here, however, that POMDPs studied in the Engineering Sciences are commonly 

considered to be controlled POMDPs, that is, the decision-maker has the ability to 

control the system, usually at some cost. With a control included, the study of these 

POMDPs often falls into the area of Control Theory. To predict the true value of 

the state of the system from a POMDP, Rudolph E. Kalman developed a recursive 

solution technique popularly known as the ‘Kalman Filter’, which estimates the state 

of the POMDP by way of minimizing the mean-squared error (Kalman, 1960). The 

use of Kalman Filtering has been widely popular in the area of navigation (Bishop 

and Welch, 2006). Defining the information asymmetry in this way, the problem re-

sembles a POMDP, (albeit an uncontrollable one,) permitting the use of Kalman Fil-

tering to provide a more accurate description of the true state of the system than the 

noisy observation indicates.  

The paper is organized into the following sections: section (2) describes the 

model environment, and solves the model for the unique subgame perfect Nash equi-

librium. Section (3) describes ‘pseudo-bank-runs’ in detail and how the bank can 

prevent them. Constraints imposed on the bank’s demand deposit contract by the in-

formation structure of the model are also discussed. The closing remarks in section 

(4) provide suggestions for future research. 

 



 7 

2 The Model 

 In this section, I outline and examine a version of the DD (1983) model, 

which, as was noted briefly in the previous section, closely resembles the repeated 

version of the DD (1983) model that was studied in Temzelides (1997). The section 

begins with a description of the model environment, followed by the Nash equilib-

rium solutions of the post-deposit game, and the unique subgame perfect Nash equi-

librium solution to the pre-deposit game.   

 

2.1 Environment 

Below, a description of the environment is provided in detail. 

 

Time: The DD game is repeated over time periods indexed as ,t +∈ℤ  where the total 

of such periods are infinite. Each time period is divided into three subperiods, de-

noted { }| {0,1, 2} .st s ∈  These three subperiods reflect the three components of the 

standard DD game, in which agents decide their strategies for; investment at 0;s =  

early withdrawal at 1;s = and late withdrawal at 2.s =   

 

Population: The number of agents that make up the economy is assumed to be con-

stant, large and discrete. The total number of agents is denoted by { }1, 2,...,N n=  

and the number of patient agents by { }1, 2,...,M m= . By measure, the fraction of im-

patient agents is denoted by .
m

x
n

=  Furthermore, the measure of the population 

that is impatient is stochastic, but Markov. The evolution process of 
t

x  is defined by 

the following Markov chain, 
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{ } { }1 1
1 1 1 10 0

(1 1 ) (1 ) 1
t t

t t t t tw w
x w x x w

− −− − − −≤ ≥
= + + − ⋅  

where 1t
w −  is a zero-mean Gaussian error.  

 

Endowment: Each agent is endowed with one unit of goods that is costlessly storable 

across all subperiods, but not across time periods. At the end of subperiod 2, the 

good is either consumed or perishes. 

 

Technology: In addition to the opportunity of costlessly storing their endowment 

across subperiods, agents have the opportunity to invest in a productive technology 

in subperiod 0 that produces the following returns across subperiods 1 and 2, 

  1

  2

withdrawal in s

withdrawal in s

=

=

0 1 2

1
 1     0   

          1       0

s s s

R
ρ

= = =

− >  

Where ( )1/ ,1Rρ ∈  is the discount factor on goods held in the second subperiod. As 

the return schedule above stipulates, an investment of an agent’s entire endowment 

can produce either one subperiod 1 good, or 1R >  subperiod 2 goods. Thus, as the 

agents can do no worse with the productive technology in comparison to the storage 

technology, storage is strategically dominated by the productive technology in sub-

period 0. However, investment in the productive technology can only begin at subpe-

riod 0, and thus patient agents may still elect to use the storage technology if they 

choose to withdraw in subperiod 1, as they would wish to consume that good in sub-

period 2.  

 

Preferences: All agents, ,i  have identical ex-ante preferences represented by the fol-

lowing utility function, 
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2 ( )
( ) log( );  ( ) is ,  1,  

( )

i i c u c
u c c u C c

u c

′′⋅
= − > ∀

′
i  

The superscripts and subscripts on the consumption variable, ,i

st
c  refer to the follow-

ing: ,i  the agent’s type; ,s  the subperiod of consumption, and; ,t  the period of con-

sumption. Each agent is subject to a preference shock in subperiod 1 that dictates 

the agents type from the type set, { }1 2, .θ θΘ =  Agents that are of type 1θ  receive 

utility only from consuming in subperiod 1, and thus are deemed impatient, whereas, 

agents that are of type 2θ  receive utility only from consuming in subperiod 2 and 

thus are considered patient. Furthermore, there exists no mechanism through which 

an agent can learn the outcome of the shock in subperiod 0. Formally, an agent’s 

preferences are represented by, 

1
11

1 2 2
22

if  ( ) 
( , ; )

if  ( )   

u c
U c c

u c

θ θ
θ

θ θρ

= 
=  

= 
 

where ( )u i  is bounded by the conditions given above. 

  

Isolation: Agents are isolated from each other in subperiod 1, for all time periods, t. I 

make this assumption to preclude the creation of asset markets amongst the agents 

in subperiod 1 (Wallace, 1988). Temzelides argues that the validity of this assump-

tion stems from the needs of agents to hold liquid assets so as to consume when ac-

cess to asset markets may be difficult.  

 

Banks:  The economy consists of a single bank that is “reborn” every period. That 

is, there is no record-keeping of transactions from previous periods, nor do the out-

comes of previous periods carry over (such as debt resulting from a bank-run out-
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come.) The bank issues demand deposit contracts at each time stage in subperiod 

zero to all agents who deposit in the bank. The terms of the contract are as follows:  

0 1           2

 1  [ ( )]        0

          0       ( [ ( )])

t

t

s s s

E r x

f E r x

= = =

−  

where 1 [ ( )] ,   ( [ ( )]) [0, )
t t

E r x R f E r x R< < ∈  

That is, the rates of return of the contract depend on the expectation of the measure 

of impatient agents at time t. To maintain the social benevolence of the bank, as in 

the DD model, I set two goals towards which the bank will strive to achieve: sol-

vency, and welfare maximization of its depositors. Here, solvency is a binary condi-

tion, toward which the bank always seeks to be able to pay all agents the amount 

pre-specified by the demand deposit contract issued in subperiod zero. The bank also 

seeks to maximize the welfare of the agents in the economy, which implies posting a 

demand deposit contract such that the bank remains solvent, thereby satisfying the 

bank’s primary goal. This holds from the fact that the welfare of agents in a bank-

run equilibrium (even under a contract that would yield the optimal risk-sharing al-

location,) is strictly dominated by a demand deposit contract which maximizes wel-

fare given a stable banking equilibrium that may not yield the optimal risk-sharing 

allocation.  

Lastly, the bank serves individuals who withdraw sequentially, on a first-

come-first-served basis.  

 

Asymmetric Information: Agents and the bank have access to a noisy observation, 

1,t
y −  that describes the proportion of impatient agents in period 1t − . The observa-

tion can be thought of as the product of a survey on the number of impatient agents 

in the economy, which has a natural noise term comprised of truth-telling and sam-
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pling errors. Despite both agents and the bank having access to the observation, only 

the bank knows the process that determines the measure of impatient agents in the 

current period, ,
t

x  and the noisy observation, 1t
y − , herein lying the information 

asymmetry. Together, both the 
t

x  and 1t
y −  form a Markov decision process that is 

described as,   

{ } { }

{ } { }

1 1

1 1

1 1 1 10 0

1 1 1 1 10 0

(1 1 ) (1 ) 1

(1 1 ) (1 ) 1

t t

t t

t t t t tw w

t t t t tv v

x w x x w

y v x x v

− −

− −

− − − −≤ ≥

− − − − −≤ ≥

= + + − ⋅

= − + − ⋅
 

where ( )0,1tx ∈  represents the fraction of impatient agents in the current period; 

1t
y − , the observation of the previous period’s impatient investors; 1 1, ,

t t
v w− −  are zero-

mean Gaussian noise terms.  

 The disparity in information access allows the bank to make a more precise 

prediction of 
t

x , while agents are limited to the following prediction, 

1 1 1E[ | ] E[ | ]
t t t t t

x y y y y− − −= =   

Furthermore, agents are aware that the bank has access to additional private infor-

mation; however, they do not know the details of the information. 

 

Timeline: 

The timeline of period, t, is set out below, outlining the events that occur within 

each subperiod. The timeline for each period is identical. 

• Subperiod zero 

o Agents receive their endowments 

o Agents and the bank observe the noisy observation of the number of 

impatient agents from the previous time period. 
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o The bank posts a demand deposit contract based on the observation, 

its rational expectation of the agents’ belief function, and its prediction 

of the measure of impatient agents in the current period. 

• Subperiod one 

o Agents realize their types from the type set, { }1 2, .θ θΘ =  

o Type 1θ  agents withdraw 

o Type 2θ  agents choose whether to withdraw or wait until subperiod 

two. 

• Subperiod two 

o Type 2θ  agents who still have claims on deposits withdraw from the 

bank. 

 

2.2  The Bank’s Contract Design Problem 

 In subperiod zero, after observing 1t
y − , the bank must construct a demand de-

posit contract that stipulates the rates paid to those who withdraw in each of subpe-

riods 1 and 2. As it is the bank’s objective to maximize the welfare of all agents who 

deposit in the bank, the bank faces the following contract design problem, 

1 1 2 2
1 2 1 2

1 2

1 2
, , , ,

( ) max E ( ) (1 ) ( )
t t t t t

t t t t t
c c c c z

W x x u c x u cρ = ⋅ + − ⋅      

( )

1 2

1 1

1 2

2 2

.       (1 )

         1 (1 )

t t t t t

t t t t t

s t z x c x c

z R x c x c

≥ ⋅ + − ⋅

− ⋅ ≥ ⋅ + − ⋅
    

( )
( )
1

2
 

where 
t

z  represents the number of productive technology liquidations by the bank in 

subperiod one. The above contract design problem must also satisfy the following 

participation constraint, 

[ ] [ ]1 2 2

1 1 2E ( ) (1 ) ( ) E (1) (1 E ) ( )
t t t t t t t

x u c x u c c x u x u Rρ ρ ⋅ + − ⋅ + ≥ ⋅ + − ⋅   ( )3  
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In this subsection, I determine the conditions required to design the optimal 

demand deposit contract by solving the welfare-maximization problem defined 

above. To solve the problem, we begin by taking first-order conditions with respect 

to the choice-variable set { }1 1 2 2

1 2 1 2, , ,
t t t t

c c c c , 

[ ]

[ ]

1 1 1

1 1 1 1 1 1

2 2 2

2 2 2 2 2 2

2 2

1 1 1

1 1

2 2 2

( ) :   E ( ) 0 E ( ) 0

( ) :   E (1 ) ( ) (1 ) 0 E ( ) 0

( ) :   E 0 0

( ) :   E 1 0 0

t t t t t t t t

t t t t t t t t

t t t t

t t t t

c x u c x u c

c x u c x u c

c x c

c x c

λ λ λ

ρ λ ρ λ λ

λ

λ

′ ′   ⋅ − ⋅ = ⇒ = ⇒ >   

′ ′   − ⋅ − ⋅ − = ⇒ = ⇒ >   

− ⋅ < ⇒ =

− ⋅ − < ⇒ =

 

( )

( )

( )

( )

4

5

6

7

 

Equations (4) and (5) dictate that both constraints (1) and (2) must hold with 

equality. Moreover, by equations (6) and (7) we see that the contract design problem 

can be simplified to, 

1 2
1 2

1 2

1 2
, ,

1

1

2

2

( ) max E[ ( ) (1 ) ( )]

(1 )
.

1

0,  , ,

t t t

t t t t t
c c z

t
t

t

t
t

t

i

st

W x x u c x u c

z
c

x

z R
s t c

x

c i s t

ρ= ⋅ + − ⋅

=

− ⋅
=

−

≥ ∀

   

( )

( )

( )

8

9

10

 

Next, we consider the necessary condition for the optimal choice of ,
t

z  the number of 

liquidations in subperiod one. By inserting equations (8) and (9) into the contract 

design problem above and taking first-order conditions with respect to ,
t

z  we obtain,   

( )
( )

1
21
2

( )
( ) :   E 1 ( ) 0

1

t t
t t t

t t

x u c R
z x u c

x x
ρ

 ′⋅ −
′+ − ⋅ ⋅ = 

− 
   ( )11  

1 2

1 2E ( ) E ( )
t t

u c R u cρ′ ′   ⇔ = ⋅     
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The condition above therefore implies that 1 2

1 2t t
c c<  must hold in the optimal demand 

deposit contract. Taking note of the aforementioned necessary condition, (which we 

will use momentarily to prove an important claim,) we add both the equality con-

straints together, simplifying the problem to a one-variable optimization problem in 

1

1t
c , which I redefine as .r  The demand deposit contract stipulates that agents who 

withdraw in subperiod one can expect to receive the rate, .r  Herein, I will refer to r 

as the ‘demand deposit rate’. The contract design problem can now be represented 

as, 

( ) ( )
( )1

( ) max  E 1
1

t

t t
r

t

x r R
W r x u r x u

x
ρ

 − ⋅ 
= ⋅ + − ⋅  

−   
  ( )12  

I now state and prove the following claim about the solution to the contract design 

problem. 

Claim 1: The solution to the contract design problem satisfies the following condi-

tions: i) The optimal contract is unique; ii) 1 2

1 21
t t

c c R< < < ; iii) The banking contract 

is preferred to autarky, and thus all agents deposit in the bank initially.4  

 

Proof: The proof of the above claim will be sectioned into two steps. First, by show-

ing conditions i) and ii), and secondly, showing that conditions i) and ii) imply con-

dition iii). I begin by combining the two equality constraints and generating from 

them the relation, 

( )
2

1 2
1

1
1 1 t

t t

t

c
c x

x R

 
= ⋅ − − ⋅ 

 
     ( )13  

                                                 
4 We may also write condition iii) of claim 1 in terms of the participation constraint, namely, 

1 2 2

1 1 2
E[ ( ) (1 ) ( )] E[ ] (1) (1 E[ ]) ( )

t t t t t t t
x u c x u c c x u x u Rρ ρ⋅ + − ⋅ + > ⋅ + − ⋅ . 
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Next, the term 1

1t
c  in equation (11) is replaced by the aforementioned relation, 

thereby generating the function, 

( ) ( ) ( )
2

2 22
2 2

1
=E 1 1 0t

t t t

t

c
f c u x R u c

x R
ρ

   
′ ′⋅ − − ⋅ − ⋅ =   

    
  ( )14  

which, for a general [ ]1, ,c R∈  is defined as, 

( ) ( ) ( )
1

=E 1 1 0t

t

c
f c u x R u c

x R
ρ

   
′ ′⋅ − − ⋅ − ⋅ =   

   
   ( )15  

Now, to determine the function’s behaviour about [ ]1,c R∈ , we take the first-order 

condition of ( )f c , 

( ) ( )
( )

( )
11

=E 1 1 0
t

t

t t

xc
f c u x R u c

x R x R
ρ

 − −  
′ ′′ ′′⋅ − − ⋅ ⋅ − ⋅ >   

   
  ( )16  

By condition (16), and the conditions imposed on ( ) ,u •  it is clear that ( )f c  is a 

continuous, monotonically increasing function in ( ),  0,1 .tc x∀ ∈  Equation (15) indi-

cates that the optimal *c  satisfies the relation that ( )* 0.f c =  To show condition i) 

and ii), we first evaluate equation (15) at the point where 1 2

1 2 .
t t

c c c= =  This yields, 

( ) ( ) ( )=Ef c u c R u cρ′ ′− ⋅       ( )17  

( ) ( ) ( ) ( )E E 1 0u c R u c u c Rρ ρ′ ′ ′⇔ − ⋅ = − <        

by the assumption that 1.Rρ >  Next, we evaluate equation (15) at the point ,c R=  

( ) ( ) ( )=E 1 0f c u R u Rρ′ ′− ⋅ >  
5   ( )18  

By the intermediate value theorem and the functional properties of ( )f c , the func-

tion in equation (17) must pass through ( ) 0f c =  at a unique *c  such that it satis-

fies the condition ( )
1

1 1 1 ,
t

t

c
x c R

x R

 
< ⋅ − − ⋅ < < 

 
 which proves conditions i) and ii) of 

                                                 
5 The proof for ( ) ( )1u R u Rρ′ ′> ⋅  can be found in Diamond and Dybvig (1983), JPE, pp. 408.  
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claim 1. Furthermore, by the result that the contract produced by ( )1 2

1 2,
t t

c c  is 

uniquely optimal, it is preferred to autarky, and thus the participation constraint 

holds with strict inequality. •  

The formulation of the contract design problem in equation (12) shows that 

the bank’s decision problem in the pre-deposit game is merely a single-variable opti-

mization problem in r. This simplification arises from the result that the participa-

tion constraint holds with inequality in the optimal demand deposit contract, and 

therefore all agents deposit in the bank in subperiod zero. Therefore, there is no need 

to consider the subgame where agents choose whether to deposit in the bank in sub-

period zero. Before solving for the optimal demand deposit rate, however, the patient 

agent’s withdrawal decision problem in subperiod one must be considered. The solu-

tion to this problem defines a representative best-response function to the bank’s 

proposed demand deposit contract for all patient agents. Under rational expecta-

tions, banks expect this best-response function, and utilize it in solving for the wel-

fare-maximizing r. The next subsection solves for the Nash equilibria of the patient 

agent’s withdrawal problem in the post-deposit game. 

 

2.3  The Post-Deposit Game 

The agent’s decision problem subgame has two components. First, given the 

agent has deposited in the bank, and taking the demand deposit rate as given, the 

agent chooses whether to withdraw in subperiod one, once their type is realized. Sec-

ond, taking the demand deposit contract as given, the agent chooses whether to de-

posit in the bank. As the design of the optimal demand deposit contract guarantees 

in the previous subsection, all agents deposit in the bank in subperiod zero, so there 

is no need for a treatment of the subgame that considers the agents’ deposit decision 
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problem. Therefore, this subsection considers only whether agents, taking the bank’s 

demand deposit rate as given, should withdraw in subperiod one, once their types 

are realized. In terms of notation, I define the withdrawal probabilities of agents of 

individual type 2θ  agents as ,ω  and the aggregate probability of withdrawal of type 

2θ  agent in subperiod one as .Ω  For completeness, I define the withdrawal prob-

abilities of agents of individual type 1θ  agents as ,δ  and the aggregate probability of 

withdrawal of type 1θ  agent in subperiod one as .∆  I note, however, that because 

type 1θ  agents prefer to consume only in subperiod one, agents who realize that they 

are of type 1θ  withdraw in subperiod one with certainty, and thus 1δ = ∆ =  always. 

After observing their type, type 2θ  agents choose whether or not to withdraw in 

subperiod one, taking Ω  as given. In choosing whether to withdraw early, type 2θ  

agents formulate their withdrawal decisions based on what they observed from the 

noisy observation, 1,t
y −  in subperiod zero. With this information, type 2θ  agents be-

lieve that they will receive a positive payment in subperiod 2 if the following ine-

quality is satisfied: 

1 1

1

1

1
(1 )

1

1

t t

t

t

y y
r

y
r

y

− −

−

−

+ − ⋅Ω ≤

−
⇒ Ω ≤ Ω =

−

     

( )19

 

Condition (19) presents the agent with the following choice problem, where α  repre-

sents the probability of receiving payment in the first subperiod for those who with-

draw. For ,  (0,1)αΩ > Ω ∈ , whereas for ,  1,αΩ ≤ Ω =  trivially. 
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[ ]

[ ]

1 1

1 1

1

1 ( (1 ) )
max ( ) (1 )    if 

1 (1 )

( , , )    

max ( ) (1 ) (0) (1 ) (0)   if 

t t

t t

t

y y r R
u r u

y y

W r y

u r u u

ω

ω

ω ω

ω α α ω

− −

− −

−

  − + − ⋅Ω ⋅ ⋅
⋅ + − ⋅ Ω ≤ Ω  

− − − ⋅Ω 


Ω = 
 ⋅ ⋅ + − ⋅ + − ⋅ Ω > Ω



 

which implies that if ,Ω > Ω  then 1, [1, ],r Rω = ∀ ∈  as, 

( )( ) (1 ) (0) (0),  0,  0,1u r u u rα α α⋅ + − ⋅ > ∀ > ∈  

Taking the first-order condition of 1( , , , | )
t

W r yω − Ω Ω ≤ Ω  with respect to ,ω  we note 

the following condition for the optimal choice of ,ω  

[ ]1 11

1 1

1 ( (1 ) )( , , )
( ) 0

1 (1 )

t tt

t t

y y r RW r y
u r u

y yω
− −−

− −

 − + − ⋅Ω ⋅ ⋅∂ Ω
= − = 

∂ − − − ⋅Ω 
  ( )20  

which implies that the choice function for ω  is distributed about the following 

equality, 

[ ]1 1

1 1

1 ( (1 ) )

1 (1 )

t t

t t

y y r R
r

y y

− −

− −

− + − ⋅Ω ⋅ ⋅
=

− − − ⋅Ω
    ( )21  

Solving for Ω , the distribution function, ( )fω = Ω  is described as, 

ˆ
0

ˆ[0,1]

ˆ1

ω

 Ω < Ω


= ∈ Ω = Ω


Ω > Ω

     ( )22  

where 1 1

1

(1 )ˆ
(1 ) ( 1)

t t

t

R r y y R

y r R

− −

−

− ⋅ − + ⋅
Ω =

− ⋅ ⋅ −
 

The Ω̂  term in the distribution function above indicates the point at which a pa-

tient agent is indifferent between withdrawing in subperiod one, and waiting until 

subperiod two. Graphically, equation (22) represented in ( , ) spaceωΩ −  below: 
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Focusing only on symmetric equilibria, the symmetric Nash equilibrium of the post-

deposit game is defined below.  

Definition 1: A Nash equilibrium of the post-deposit game consists of the set 

1( , , , )
t

y rω −Ω  such that: i) Given 1( , , )
t

y r−Ω , the agent’s choice of ω  solves the 

agent’s maximization problem; ii) All agents’ choices of ω  are symmetric, and thus, 

ω = Ω . 

Under these conditions, the game admits three symmetric Nash equilibria. Be-

low, I outline these equilibria in detail by mapping the solutions to the agent’s 

maximization problem in ( , ) spaceωΩ −  [condition i) of the equilibrium definition] 

and note the points where condition ii) is satisfied. 

 

0 

1 

Ω Ω̂  1 

ω
 

0 

1 

Ω Ω̂  1 

ω
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As seen in the figure above, there exist three symmetric equilibria, namely, 

• (0,0) – Stable banking pure strategy equilibrium 

• ( Ω̂ , Ω̂ ) – Mixed strategy equilibrium 

• (1,1) – Bank-run pure strategy equilibrium 

In the next subsection, I determine the subgame perfect Nash equilibria of the pre-

deposit game by evaluating the bank’s decision problem at the two pure-strategy 

Nash equilibria of the post-deposit game. I leave the consideration of the mixed-

strategy equilibrium to future research. 

 

2.4  The Pre-Deposit Game  

 In subperiod zero, prior to agents realizing their types and choosing whether 

to withdraw in the first subperiod, the bank must post a banking contract so that 

agents may decide whether to deposit in the bank. From the contract design prob-

lem, the optimal contract design guarantees that all agents will deposit in the bank, 

and therefore the bank need only to choose the optimal demand deposit rate, r, such 

that the expected welfare of agents is maximized. Thus, the bank solves the follow-

ing problem,  

2

1 2( , , , , ) max E[( (1 ) ) ( ) (1 (1 ) ) ( )]t t t t t t t
r

W x y R x x u r x x u cρ ρ−Ω = + − ⋅Ω ⋅ + ⋅ − − − ⋅Ω ⋅  

where, 2

2

(1 ( (1 ) ) )

1 (1 )

t t
t

t t

x x r R
c

x x

− + − ⋅Ω ⋅ ⋅
=

− − − ⋅Ω
 

The following two claims show the existence of two Nash equilibrium solutions to the 

pre-deposit game. Each solution corresponds to a pure strategy Nash equilibrium of 

the agent’s post-deposit game.  
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Claim 2: There exists a stable banking equilibrium such that: i) All agents will de-

posit in the bank at subperiod 0; ii) 0,ω = ∀  agents st. 2 ,θ θ=  at subperiod 1;  

iii) 1,δ = ∀  agents s.t 1,θ θ=  at subperiod 1.  

 

Proof: In the post-deposit game stable banking equilibrium, 0.Ω =  The problem 

then reduces to, 

2

1 2( , , , ) max E[ ( ) (1 ) ( )]t t t t t
r

W x y R x u r x u cρ ρ− = ⋅ + ⋅ − ⋅  

2

2

(1 )

1

t
t

t

x r R
c

x

− ⋅ ⋅
=

−
 

Note here that, because the participation constraint in the contract design problem 

holds with strict inequality, the optimal contract is always preferred by the agent to 

autarky, and thus at subperiod zero, all agents deposit in the bank. Furthermore, it 

is always optimal for agents of type 1θ  to withdraw in subperiod 1, so conditions i) 

and iii) of the equilibrium definition are already satisfied. I now proceed to show 

that ii) is also satisfied. 

 

Taking first-order conditions with respect to r, we obtain,  

2 21
2 2

( ; , , , )
E[ ( ) (1 ) ( ) ( )] 0t t

t t t t

W r x y R
x u r x u c c r

r

ρ
ρ−∂ ′′ ′= ⋅ + ⋅ − ⋅ ⋅ =

∂
  ( )23  

2

2

2

2

E[ ] ( ) E[ ( )] 0

E[ ] ( ) E[ ( )]

t t t

t t t

x u r R x u c

x u r R x u c

ρ

ρ

′ ′⇔ ⋅ − ⋅ ⋅ =

′ ′⇔ ⋅ = ⋅ ⋅

 

Equation (23) gives the condition for the optimum *.r  

Taking second-order conditions, 

2
2 2 21
2 22

( ; , , , )
E[ ( ) (1 ) ( ) ( ( )) ] 0t t

t t t t

W r x y R
x u r x u c c r

r

ρ
ρ−∂ ′′′ ′′= ⋅ + ⋅ − ⋅ ⋅ <

∂
 ( )24  
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2 2

2

2 2 2

2

E[ ( ) ( ) ( ) ] 0

E[ ] ( ) E[ ( )] 0

t t t

t t t

x u r u c x R

x u r R x u c

ρ

ρ

′′ ′′⇔ ⋅ + ⋅ ⋅ ⋅ <

′′ ′′⇔ ⋅ + ⋅ ⋅ <

 

By the above conditions, it is clear that the welfare function is well-defined, continu-

ous and concave. Given these properties, we proceed to show existence of an 

( )* 1,1/ tr x∈  that solves equation (23). To do so, we evaluate ( )W r′  over the set of 

points { }0,1,1/ tx , to show that (1) / 0,W r∂ ∂ >  and ( )1/ / 0.tW x r∂ ∂ <  Then, by the in-

termediate value theorem, there exists an ( )* 1,1/ tr x∈  such that ( *) / 0W r r∂ ∂ = .  

Evaluating ( )W r′  at the points { }0,1/ tr x= ,  

(0) E (0) E
1 1

t t t t

t t

R R
W x u R x u x R x u

x x
ρ ρ

      
′ ′ ′ ′= ⋅ − ⋅ ⋅ = ⋅∞ − ⋅ ⋅ = ∞      

− −      
 ( )25  

( ) ( )
1 1 1

E 0 Et t t t

t t t

W x u R x u x u R x
x x x

ρ ρ
        

′ ′ ′ ′= ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅ ∞ = −∞        
        

 ( )26  

which implies that ( *) 0W r′ =  lies within the interval ( )0,1/ tx . Now, by showing 

only that (1) 0,W ′ >  the conditions for contract optimality will be satisfied. 

Evaluating ( )W r′  at 1,r =  

( ) [ ] ( ) [ ] ( )

( ) [ ] ( ) ( )( )

1 E 1 E

1 E 1 ( )

t t

t

W x u R x u R

W x u R u R F R

ρ

ρ

′ ′ ′= ⋅ − ⋅ ⋅

′ ′ ′⇔ = − ⋅ ≡

   

( )27

 

 To evaluate the behaviour of ( ),F R  we take the first-order condition of equation 

(27), 

( ) ( )( )F R u R R u Rρ ρ′ ′ ′′= − ⋅ − ⋅     ( )28  

By my assumption that, ( ) / ( ) 1,c u c u c′′ ′− ⋅ >  the following must be true about ( ) ,u R  

( ) ( ),R u R u R′′ ′− ⋅ >        
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This implies that, 

1
( ) 0 ( ) 0F R F R F

ρ

 
′ > ⇒ > > 

 
      

By plotting the function ( )W r′  in ( , ( ))r W r space′ −  with the information obtained 

from the points { }0,1,1/ ,tx  it can be seen graphically that { } ( )( *) 0 1,1/ tW r x′ = ∈ . 

 

Therefore, by the intermediate value theorem, ( )W r′  must pass through ( ) 0W r′ =  

for some ( )1,1/ tr x∈ . This is the r* that solves the bank’s decision problem such 

that 20,  ω θ= ∀  at subperiod 1, and therefore condition ii) of the equilibrium is satis-

fied. Thus, the stable banking equilibrium of the pre-deposit game exists.•  

 

Claim 3: There exists a bank run equilibrium such that: i) All agents will deposit in 

the bank at subperiod 0; ii) 1,ω = ∀  agents, ,θ ∈Θ  at subperiod 1. 

 

Proof: To prove the existence of the bank-run Nash equilibrium, we begin by again 

noting that condition i) is already satisfied, as the participation constraint still holds 

with " "> . Therefore, all agents deposit in the bank initially. Given that 1Ω =  in 

this equilibrium, a type 2θ  agent choosing whether or not to withdraw in subperiod 

  ( )W r′  

 
1

t
x

 

r   *r  1 
0 
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one faces the following problem: to withdraw in subperiod 1, the value function for 

an agent, (which is based on their position in line, j,) is given by, 

1

 .  1
( )

0  .  1

tj

t

tj

r j s t x r
V r

j s t x r

∀ ⋅ ≤
= 

∀ ⋅ >
 

whereas, to wait and withdraw in subperiod 2, 2 ( ) 0.
t

V r =  Clearly, 1 2( ) ( ),  ,
t t

V r V r j≥ ∀  

and so it is optimal for any type 2θ  who believes that 1Ω =  to withdraw in subpe-

riod 1. By this argument, conditions i-ii) are satisfied, and thus the bank-run Nash 

equilibrium of the pre-deposit game exists.•   

 Although both Nash equilibria of the bank’s decision problem exist, as shown 

in the two previous claims, I argue that the stable banking equilibrium is the unique 

subgame perfect Nash equilibrium of the pre-deposit game. The bank run equilib-

rium ensures every agent only a risky return with a mean of one, a return which is 

dominated by autarky. Therefore, if one considers that the outcome of the pre-

deposit game must coincide with the expectations of the agents depositing in the 

bank, the stable banking equilibrium outcome becomes an equilibrium outcome that 

is self-fulfilling, as no agent would deposit in the bank expecting a bank run, when 

they could improve on that contract by investing in the productive technology them-

selves. 

 

3 The Stable Banking Equilibrium 

 In the previous section I determined that under the stable banking equilib-

rium of the post-deposit game there exists an optimal demand deposit rate, 

{ }* 1,1/ ,tr x=  such that there exists a stable banking equilibrium in the pre-deposit 

game, and moreover, is unique. In the subsections to follow, I analyze how the bank 

can use its knowledge of the Markov decision process to set the rate, *,r  such that it 
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yields a demand deposit contract that is as close to achieving the optimal risk-

sharing allocation as possible, and what effect this may have on patient agents in 

terms of the payment they receive upon their withdrawal.  

 

3.1 …and Pseudo-Bank-Runs 

When the bank posts the deposit contract in subperiod 0, it consists of two 

rates: one for impatient agents, and one for patient agents. While the agents do not 

know at the time of depositing what type of agent they will be in subperiod one, 

they choose whether or not to deposit in the bank based on their expected utility of 

the posted contract. As discussed earlier, the bank expects this and sets the contract 

in such a way that the participation constraint holds with strict inequality. Fur-

thermore, in the stable banking equilibrium, all patient agents are playing the pure 

strategy “withdraw in subperiod 2”, as they deposit not anticipating a bank run. It 

is not always guaranteed, however, that they will receive the amount in subperiod 2 

that is specified by the demand deposit contract posted by the bank in subperiod 0. 

The reason being that the value for 
t

x  that yields the demand deposit contract rate 

is only a prediction for the true value of 
t

x .  Therefore, in the case where the predic-

tion is wildly incorrect, it is possible that the patient agent receives considerably less 

(or more,) than specified in the contract. In fact, there may be occasions where the 

agent receives nothing at all. The latter case I have earlier defined as a ‘pseudo-

bank-run’. To be more precise about this concept, I make the following definition: 

Definition 2: A stable banking equilibrium is called a ‘pseudo-bank-run’ if it satis-

fies the condition, 1 * 0
t

x r− ⋅ ≥ . 

The event is defined in this way because while the bank is not actually run with any 

intent by the patient agents, any patient agents waiting until the second subperiod 
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to withdraw would receive the same payment as they would under the bank-run 

equilibrium.6  

 In this subsection, I consider the frequency of these ‘pseudo-bank-runs’ by ap-

pealing to a numerical simulation of the model economy. For comparison, the fre-

quency of occurrence of these pseudo-bank-runs is analyzed under two estimators of 

:
t

x  the prediction as produced by the bank’s superior estimation technology; and the 

prediction generated solely by the noisy observation, 1.t
y −  To determine whether the 

superior estimating technology is an improvement on the noisy observation as pre-

dictor, I compare their performances towards minimizing the occurrence of pseudo-

bank-runs. While the bank may use any number of estimating technologies to im-

prove on the accuracy of the noisy observation as an estimator, this paper considers 

only the technique of Kalman Filtering. Before analyzing the numerical simulation, 

the mechanics of this technique are described in brief. 

 Recall the Markov chain that governs the evolution of 
t

x  is defined by the 

system of equations, 

{ } { }

{ } { }

1 1

1 1

1 1 1 10 0

1 1 1 1 10 0

(1 1 ) (1 ) 1

(1 1 ) (1 ) 1

t t

t t

t t t t tw w

t t t t tv v

x w x x w

y v x x v

− −

− −

− − − −≤ ≥

− − − − −≤ ≥

= + + − ⋅

= − + − ⋅
 

While the technique of Kalman filtering was created for use with controlled Markov 

chains7,  the technique is still able to improve upon the noisy observation as a pre-

dictor, as the procedure takes both the noisy observation and the Markov process 

into account when forming its prediction. The process begins with a guess as to the 

                                                 
6 Our definition of a ‘pseudo-bank-run’ does not stray too far from the scenario considered in Car-

mona (2007). Carmona considers case where the number of actual early withdrawers is so large that 

the bank may not have enough resources to pay the entire true measure of impatient types who with-

draw in subperiod one. As a result, all patient agents withdrawing in subperiod two would receive 

nothing. 
7 A controlled Markov chain is a Markov chain that can be acted upon by a controller in the current 

period to affect the evolution of the chain in the next period (usually at some cost.) 
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initial state, 0.x  In this paper, the guess and the noisy observation, 0y , are set to 

equal the true initial state, 0 ,x  for simplification purposes only. Given this guess, the 

bank sets its expectation of 0x  as a linear function of the observation, 0 ,y  defined 

by, 

[ ]0 0 0 0 0E |x y yα β= +      ( )29  

and defines the error of it’s guess as, 

[ ]0 0 0 0 0 0 0E |x x y x yα β− = − +             ( )30  

The goal of the bank is then to minimize the squared error of this guess by solving, 

[ ]( )
0 0

2

0 0 0
,

min E |x x y
α β

−  

which admits the solution, 

( )
2

0

0 0 2 2

0 0

E
, ,0

E E

x

v x
α β

    =
    +    

 

and so the expectation of 0x  simplifies to, 

[ ]
2

0

0 0 02 2

0 0

E
E |

E E

x
x y y

v x

    = ⋅
    +    

        ( )31  

With this, we can solve for the expected squared error, which is defined as, 

[ ]( )
2 2

2 0 0

0 0 0 0 2 2

0 0

E E
: E E |

E E

x v
x x y

v x

   ⋅    Σ = − =
     +   

  ( )32  

If the process is iterated for t periods, the following general formula can be obtained 

for [ ]1E | ,t tx I −  (where 1t
I −  is all information available to the bank at period t-1,) 

[ ] [ ] [ ] [ ]( )1 1 1 2 2 1 1 2 2E | E | E | E |
t t t t t t t t t t

x y x y x y y x yα− − − − − − − − −= = + ⋅ −      ( )33  
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where, 
( )( )

2

2 2

1 2 2

2 2 1

2 2

3 3 2

2 2 2

3 3 2

E E

E E

t t

t

t t t
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   Σ +    
Σ =

   Σ + +   

 

 To show that using the Kalman Filter to predict the value of [ ]1E |t tx y −  yields 

a more accurate prediction than simply using the information provided through the 

noisy observation, I simulate the partially-observed Markov decision process over 20 

time periods, apply the Kalman filter technique, and compare it’s results with those 

generated by the noisy observation. I set 
1 1

2 2

t tv wσ σ
− −

> , thereby making the observation 

process more volatile than the process that governs the proportion of impatient 

agents each period. With these values, I compute the Kalman Filter as defined 

above, and the results for its prediction of the true 
t

x  are compared to the true 
t

x  

and the agents’ prediction (which is just the observation value, 1,t
y − ) in the graph 

below; 
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It can be seen clearly from the previous figure that the Kalman Filter predic-

tions are considerably closer to the true 
t

x  value, and provides a consistently better 

predictor than the noisy observation alone. I now determine whether using the Kal-

man Filter prediction to obtain the optimal *r  yields fewer pseudo-bank-runs. Re-

call that for a pseudo-bank-run to occur, the discrepancy between the actual measure 

of impatient agents and the one predicted by the bank must be large enough to sat-

isfy the condition, 1 * 0
t

x r− ⋅ ≥ . The simulation finds that by using the noisy observa-

tion as a predictor, two pseudo-bank-runs occur in time periods 18 and 19. The 

Kalman Filter prediction, however, is closer to the true value of 
t

x  in every time pe-

riod, and the numerical analysis8 shows that the Kalman Filter prediction does not 

yield any pseudo-bank-runs over the 20-period simulation. It should be noted, how-

ever, that the Kalman Filter prediction departs enough from the true value of 
t

x  in 

period 18 that a patient agent withdrawing early in that period would have received 

more than waiting until subperiod 2, albeit still receiving more than their initial en-

dowment. In time period 19, though, the Kalman Filter prediction not only avoids a 

pseudo-bank-run, but provides patient agents who wait until subperiod 2 with a rate 

greater than that which they would have received had they withdrawn in subperiod 

1.9 Thus, it is clear from this numerical exercise that the bank’s prediction using the 

Kalman Filter generates a contract that avoids pseudo-bank-runs better than those 

generated by the noisy observation alone. 

Before proceeding to the following subsection, it is important to note that the 

choice to use Kalman Filtering as the technique for predicting the measure of impa-
                                                 
8 We display the impatient withdrawal rates and the ex-post patient withdrawal rates for the periods 

1-20 for both the Kalman Filter and the observation-implied deposit contracts in the Appendix. 
9 While our simulation does not admit a case where the contract produced by the Kalman Filter esti-

mate yields a pseudo-bank-run, such an event is possible, if the noisy observation differs from the true 

state by a very large amount.   
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tient agents in the current period does not preclude the possibility other techniques 

may produce similar or better results.  

 

3.2 … and the Optimal Demand Deposit Rate 

 In the previous subsection, it was shown through a numerical exercise that 

the Kalman Filter estimator used by the bank to determine the expected measure of 

impatient agents in the current period is a relatively more efficient estimator of the 

true measure of impatient agents than the noisy observation, 1.t
y −  However, because 

of the information asymmetry in the model, there are occasions where the bank has 

an incentive to deviate from issuing the demand deposit rate implied by their predic-

tion of .
t

x  As banks can expect ˆ ( ),rΩ  they are aware that ˆ ( )rΩ  admits a bank-run 

equilibrium ex-ante for all demand deposit rates within the interval, 

1 1

1
,

1
t t t

R
r

y y R x− −

 
∈ 

− + 
 

Therefore, it is in the best interest of the bank to issue a demand deposit contract 

with a demand deposit rate equal to, 

1 1

*
1

t t

R
r

y y R− −

=
− +

 

as this is the rate that will maximize the expected welfare of the agents while still 

admitting the stable banking equilibrium as an ex-ante Nash equilibrium of the 

game. As no agent will deposit in the bank expecting a bank run, the existence of a 

stable banking equilibrium makes the outcome self-fulfilling. Therefore, the private 

information possessed by the bank permits it to post a contract that will prevent the 

bank-run ex-ante (but not always pseudo-bank-runs, as noted in the previous sec-

tion). It is clear, however, that the information asymmetry, and the inability of the 
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bank to signal the credibility of their superior information, yields a sub-optimal out-

come that is a less efficient risk-sharing allocation for all rates such that,  

1 1 1 1

1 1
* , ,  .  

1 1t t t t t t

R R
r s t

y y R x y y R x− − − −

   
∈ <  

− + − +   
 

Thus, if one considers more patient agents as being a “good state” of the economy, it 

can be said that, based on their prediction of ,
t

x  banks can optimally post contracts 

when the state of the economy is “poor”. Yet, in extremely “good” states of the 

economy, agents are unlikely to believe these optimistic contracts, forcing the bank 

to post a contract that is suboptimal, based on their prediction of the state of the 

economy. 

 

4 Conclusion 

 In this paper I depart from the classic DD (1983) framework by considering a 

measure of impatient agents that is stochastic over time, and modeled by a Markov 

chain. Further, the bank and agents have noisy public information about the past 

history of the measure, but only the bank has private information about the Markov 

process. The results of this paper generate three important conclusions. First, there 

exists a demand deposit contract which admits a unique banking equilibrium. Sec-

ond, this contract yields fewer pseudo-bank-runs than the contract implied by the 

public information alone. Lastly, if public information about the measure of impa-

tient agents is considerably lower than the bank’s prediction, the bank is motivated 

to issue a less efficient demand deposit contract.  

 By introducing the Markov process into DD (1983), the model is open to a 

handful of extensions for future research, two of which I will note here. Firstly, and 

perhaps most simply, the model can be extended to a multiple bank economy, where 
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the information sets differ amongst the banks. Secondly, in addition to the multiple 

bank extension, one might consider the feature of ‘accumulated debt’, whereby the 

balance of each bank carries over to the next period. With this feature, a bank run 

would result in the affected bank owing outstanding deposits to its patient agents in 

the next period. One could explore the desirability of inter-bank lending towards en-

suring individual bank stability, and how the risk of financial contagion, as in 

Temzelides (1997), may be a factor in the desire for inter-bank information sharing.   

 This paper begins what I hope will be a wealth of adaptations of stochastic 

control theory to the banking panic literature, and to the seminal Diamond and 

Dybvig framework in particular. Further research in this area may be able to gener-

ate a clearer understanding of how those with larger information sets (commercial 

banks as compared to agents; central banks as compared to commercial banks) may 

choose to share private information so as to direct the stability of the banking sys-

tem.  
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6 Appendix 

 Below I display the impatient and patient rate tables generated by the Kal-

man Filter prediction as well as the noisy observation. *
K

r  refers to the demand de-

posit rate as determined using the Kalman Filter prediction. *
y

r  is determined using 

the noisy observation. 

Kalman-Filter-Implied Rates 
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r  

( )
( )

2

2

1 *

1

t K

t

x r R
c

x

− ⋅
=

−
 

 

t 

 

*
K

r  
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t K

t

x r R
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x
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1 1.48 3.96 11 1.66 3.31 

2 1.57 3.71 12 1.74 2.53 

3 1.33 4.38 13 1.47 3.75 

4 1.58 3.57 14 1.37 4.13 

5 1.54 3.45 15 1.57 4.33 

6 1.50 3.83 16 1.57 3.10 

7 1.46 4.00 17 1.55 2.75 

8 1.54 2.96 18 1.53 1.07 

9 1.56 4.32 19 1.38 1.39 

10 1.46 4.32 20 1.44 3.88 

 

Observation-Implied Rates 
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*
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( )

( )
2

2

1 *

1
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t

x r R
c

x
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1 1.54 3.83 11 1.33 4.16 

2 1.28 4.38 12 1.66 2.79 

3 1.17 4.68 13 1.84 2.77 

4 1.4 4.01 14 1.53 3.75 

5 1.57 3.36 15 1.28 4.67 

6 1.79 3.15 16 1.44 3.54 

7 1.4 4.13 17 1.55 2.75 

8 1.66 2.50 18 1.7410 0.0 

9 1.43 4.48 19 1.7311 0.0 

10 1.24 4.65 20 1.42 3.93 

 

                                                 
10 Note: At this rate, the bank is under a pseudo-bank-run and some impatient agents will not receive 

payment.  


