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Abstract
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having diverse characteristics. This is cast in a labor market setting where workers of different
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efficient allocation and then show that it can be decentralized by a competitive framework. A
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tightness in addition to a machine quality. The differential market tightness as an additional
allocative device implies that the assignment is not always positively assortative, i.e., high
quality machines are not necessarily assigned to high skills even though machine qualities
and skills are complementary in production. The market mechanism that decentralizes the
efficient assignment has the feature that firms post wages to attract workers in addition to
choosing machine qualities. A steady state is established and numerical exercises are used to
show that the differential market tightness for different skills is also quantitatively important
for the wage function and wage distribution.
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1. Introduction

This paper deals with the fundamental issue of resource allocation in a frictional economy, the
frictional assignment, which refers to the following two-sided matching problem. The two sides
of a market, each side having diverse characteristics, need be matched with each other in order
to produce “output”. The matching process is time-consuming and the level of output depends
on the pair’s characteristics. The market can be the labor market where workers of different
skills need be matched with machines of different qualities, or the loan market where projects of
different qualities need be financed by different loan provisions, or the marriage market where men
and women with different attributes seek for marriages. What does the efficient assignment look
like in this frictional world? How can a competitive market decentralize the efficient allocation?
And, What division of the match surplus does the frictional assignment imply? These are the
questions addressed here. To be specific, I will focus on the matching problem in the labor market
between machine qualities and worker skills.

The emphasis on frictions can be easily motivated by the existence of persistent unemployment
and under-utilized machines. Until recently such frictions have been ignored in the assignment
literature. The classic pieces by Tinbergen (1951) and Becker (1973) deal exclusively with fric-
tionless matching environments, i.e., economies where a match can be formed instantaneously
if it is advantageous for the two sides to do so.! A central result there, that the market yields
efficient assignments, fails in general in the frictional environment with random-matching even
when agents on each side of the market are homogeneous (see Diamond (1982), Mortensen (1982),
Pissarides (1990) and Hosios (1990)). This failure makes one wonder whether agents can design
other mechanisms to capture the large unrealized gains in the frictional matching environment.

Besides efficiency, there are other issues that motivate the examination of a frictional assign-
ment. The first is about the nature of the assignment and the second is about wage inequality

between skilled and unskilled workers. In a frictionless matching world, the market assignment is

1See Sattinger (1993) for a survey and Jovanovic (1998) for a dynamic model.



positive in the sense that high machine qualities are allocated to high skills, provided that the two
sides are complementary in the production function. The positive assignment implies that the
wage differential between a high-skill worker and a low-skill worker is attributed to the difference
in machine qualities assigned to them as well as to the skill difference itself. With frictions it is
far from obvious whether the assignment is positive and so, to understand wage inequality, one
must know what the frictional assignment looks like.

To address these issues I examine a large market where workers differ in skills and skills are
complementary with machine qualities in production. To emphasize the difference between a
frictional assignment and a frictionless one, skills are assumed to be perfectly observable so as to
make it straightforward to characterize the frictionless assignment. There is free entry by firms
which choose machine qualities to match with workers. The matching process is time-consuming,
as each worker can choose at most one firm in a period to form a match. I characterize the efficient
allocation, show that it can be decentralized by a competitive framework, and then explore the
implications on wage inequality.

The main departure of the efficient frictional assignment from a frictionless one is that it is
not always positive, even though machine qualities and worker skills are always complementary
in production. This is because a frictional assignment must assign a “right” number of firms (i.e.,
tightness) as well as a “right” machine quality to each skill in order to ensure efficiency and, as
a result, high-skill workers might be compensated by sufficiently less tight markets that make
it unnecessary to assign to them high quality machines at the same time. To ensure a positive
assignment, machine qualities and skills must be sufficiently complementary in production.

There is a realistic market mechanism that decentralizes the efficient assignment. The key
feature of the decentralization is that firms post wages to affect the number of matches they get.
The philosophical reason for this mechanism to be efficient is that firms, the side of the market
that incurs the cost of making a match (the cost of vacancy), are given the “property rights” to

post wages to divide the match surplus. This generates differential market tightness for different



skills that rewards the firm’s choice of machine qualities and so implements the efficient outcome.
In contrast, the lack of such property rights, as characterized by an exogenous matching function
and an exogenous division of the match surplus, contributes to the failure of the markets in
delivering efficiency in the random matching model mentioned above.?

The differential market tightness for different skills is also quantitatively significant for the
wage differential between skills. Calibration exercises show that the friction increases wage in-
equality more through the differential market tightness than through changes in the machine
quality assignment. A general technological progress that increases all skills’ productivity in the
same proportion benefits low-skill workers more than high-skill workers.

This paper builds on wage-posting models analyzed previously by Peters (1991), Montgomery
(1991), Burdett et al. (1996), Moen (1997) and Acemoglu and Shimer (1998). In particular, Moen
(1997) shows that the efficient allocation in a frictional matching economy can be decentralized
by a wage-posting framework. The main limitation of these previous wage-posting models is that
one or two sides of the markets are assumed to be homogeneous. This makes the assignment
problem much less interesting, since the gist of the assignment problem is to find how differences
in one factor price can be amplified by differences in other factors assigned to it. Allowing
both machines and workers to have different qualities is necessary for addressing this issue and
generates a stronger efficiency result: the wage-posting framework ensures not only the efficient
division of the match surplus between the two sides of the match, as in Moen (1997), but also
the efficient allocation of machine qualities to different skills.

The frictional assignment model is also closely related to two-sided matching models analyzed
recently by Burdett and Coles (1997), Shimer and Smith (1998), Sattinger (1995), and Burdett
and Wright (1998). In particular, Shimer and Smith have also reached the conclusion that suf-

ficient complementarity in production between the two sides of the market is necessary for a

2 Another strand of the search literature, surveyed by McMillan and Rothschild (1994), assumes that agents only
know the distribution of wages before search and must incur the search cost to find any particular wage. With this
type of search the market assignment is also unlikely to be efficient.



frictional assignment to be positive.?> Focusing on equilibrium outcomes rather than efficiency,
these models follow the footsteps of earlier random-matching models to employ exogenous match-
ing functions and/or exogenous rules of surplus division between matched agents. In contrast,
the current model uses the wage-posting setup to endogenize both the matching function and
the surplus division which, as described above, are essential for the market mechanism to deliver
efficiency. In comparison with Shimer and Smith (1998), in particular, the additional difference
is that the number of firms here is determined by free-entry rather than being fixed. Allowing
for endogenous entry is necessary for the market to provide the correct tightness for each skill.
Also, if matching is time-consuming and the ratio of agents on the two sides of the market is
fixed at an arbitrary number, a non-positive assignment may not be surprising. By allowing for
free-entry, I establish a stronger result: Even when the market tightness adjusts efficiently, the
assighment is not necessarily positive.

The remainder of this paper is organized as follows. Section 2 analyzes the frictionless assign-
ment. Section 3 characterizes the efficient assignment with matching frictions. Section 4 describes
the decentralization mechanism. Section 5 examines the properties of the frictional assignment.
Section 6 extends the analysis to a dynamic setting and calibrates the model. In particular, the
wage distribution and its responses to technological progress are calculated. Section 7 concludes

the paper and the appendix provides some proofs.

2. Frictionless assignment

For the moment let us consider a simple economy where the time horizon is one period and
agents are all risk neutral. There are a large number, IV, of workers who differ in skills. To make
things simple, skills can be observed and measured by a one-dimensional object s, which lies in a
compact set S with a minimum sz > 0 and a maximum sz. Skills are distributed among workers

in the labor force according to Go(-) with a density function go(-). The number of workers with

3There is also a fair amount of work that analyzes centralized matching with frictions and/or decentral-
ized matching without prices (see Roth and Sotomayor (1990)). In contrast, the focus of this paper is on how
prices/wages can induce efficiency in a decentralized matching framework.
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skill s is n(s) = Ngo(s), which is a large exogenous number.

Machines differ in qualities that are denoted ¥ € K C R,. A machine of quality %k costs
C(k) to make. In contrast to the fixed distribution of workers, the distribution of machines is
endogenously determined by firms’ entry. A machine can be operated by only one worker at a
time. Workers and firms derive income solely from their production. A worker of skill s operating
a machine of quality k produces output F'(k, s). Machine qualities and skills are complementary,
i.e., Frs > 0. The assignment problem is to find a mapping ¢: S — K, that assigns a machine
quality ¢(s) to each skill s. The assignment is called positive if higher skills are assigned better

machines, i.e., if ¢5(s) > 0.

Assumption 1. (i) C(0) > 0, Cy(0) =0, Cx(k) > 0 and Cyi(k) > 0 for all k > 0;
(ii) Iy(k,s) >0, Fyp(k,s) <0, Fy(k,s) > 0 and Fss(k,s) <0 for all s and k;

(iii) Frs > 0, F(0, 5) = F(k, 0) = 0;

(iv) There exists a non-empty subset of K such that F(k,sy) — C(k) > 0;

Conditions (i) and (ii) are standard for cost and production functions. (iii) requires skills and
machine qualities to be complementary and, for unmatched machines and workers, output to be
zero. (iv) says that even the lowest skill can produce positive net output with some machine
qualities. Since Fy; > 0, there are positive match surpluses to be made for all skills. (v) is a
concavity condition necessary for the assignment problem to have a maximum.

Consider first a perfect world without matching frictions so that every worker can be matched
instantaneously with a machine. The efficient assignment in this world, denoted ¢P, maximizes

the net output, F(k,s) — C(k). That is, for each s, ¢P(s) satisfies:

F(¢(s),8) = Cr(¢¥(s))- (2.1)

Under Assumption 1, the assighment ¢P exists and is unique. Moreover, complementarity between

skill and machine quality implies ¢%(s) > 0, i.e., the assignment is positive.
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The efficient assignment can be decentralized as follows. Imagine that for every pair of machine
quality and skill, (k, s), including those pairs that are not observed in equilibrium, there is a wage
W(k,s). This wage schedule must satisfy two requirements: it must be non-negative for every
pair (k,s), and whenever F' — C' > 0 it must deliver zero net profit for the firm. The zero net
profit requirement comes from the assumption that there is free entry by firms into the economy.

Thus, for every pair (k, s),

Flk,s) — C(k), if F(k,s)—C(k) >0

W(k,s) = { 0 (2.2)

, otherwise.

Given the wage schedule and for any given skill s, a firm chooses k to solve:
max {W(k,s): (2.2)}.

Thus, the choice of k¥ maximizes the net output and the solution is the efficient assignment given

in (2.1). This assignment implies the following equilibrium wage for skill s:

w(s) = W(g(s), 5) = F(¢"(s),5) — (P (s)) > 0.

The equilibrium wage satisfies w®(s) = Fs(¢P(s),s) > 0. Thus, as in a standard framework
with homogeneous machines, a skill is rewarded at the margin with its marginal product and
higher skills get higher wages. In contrast to a framework with homogeneous machines, the wage
(or earning) function is not necessarily concave: Since the assignment is positive, a higher skill
uses a better machine and so the marginal product of skill may increase with skill levels.

The competitive assignment problem can be formulated as a dual problem where firms compete
in offering machines to workers so as to minimize the net cost W + C — F'. That is, given the

wage schedule and for any given skill s, the choice of k solves:
max {F(k,s) — C(k) —W(k,s): W(k,s)>uwP(s)}.

The dual formulation illustrates that firms cannot increase the net profit by bringing into market

s a machine that is different from ¢*(s).



It is important that the wage schedule W (k, s) specifies a wage for every possible pair (k, s),
even though in equilibrium only the pair (¢*(s), s) is observed for each skill s. For all &’ #£ ¢?(s),
(2.2) is a restriction off the equilibrium path and it is rationalized as follows.* Other pairs (&', s),
where &’ £ ¢P(s), are not observed in equilibrium not because no firm has ever thought about
pairing &’ with s but because &’ is inferior to the chosen one ¢(s). If a firm offers &’ #£ ¢*(s) to
workers with skill s and makes a non-negative profit, the firm should expect other firms to enter
and drive the wage to W(k',s) = F(k',s) — C(K'). In this case, the firm will not attract any
worker, since W (K, s) < W(¢P(s),s) for all & # ¢P(s).

The same off-the-equilibrium-path restriction implies that workers of skill s have no incentive
to apply to firms with any other machine quality &' # ¢¥(s). If they did, they would receive the

wage W (K, s) which is strictly less than the wage they receive if they stay with firms with ¢P(s).

3. Efficient assignment with frictions

Now consider an economy with frictions that not all workers and machines can be matched
instantaneously. The simplest way to do this is to assume that a worker can apply to at most
one firm in the period. Let the efficient assignment be ¢°(-) and, for brevity, refer to the group
of machines with quality ¢°(s) and workers with skill s as market s, although at this point I
am not concerned with the market assignment. If there are m(¢°(s)) machines in market s (and
n(s) workers), the matching probability is 1 — e ¥"(®) for each firm and [1 — e *"()]/b°(s) for
each worker, where b°(s) = n(s)/m(¢°(s)) is the tightness of market s. These probabilities are
derived later in Section 4. At this point let us notice that the matching probabilities depend on
the tightness in an intuitive way and they imply a linearly homogeneous matching technology.
The efficient assignment in this frictional world maximizes the sum of expected net product
of all pairs of machine qualities and skills. The social planner cannot achieve this objective by
choosing machine qualities alone. This is because the sum of expected net output also depends

on the number of matches. The planner must also choose the number of firms for each market s,

4Similar restrictions off the equilibrium path are imposed in Gale (1992).
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m?(s), in order to control the number of matches. That is, the planner solves:

= o B e ) [(1= ) (). 9) = o) d, (3.1)

subject to m°(s) = n(s)/b°(s). The first term in the square brackets of the integrand is expected
output of each firm and the second term is the cost of the machine. Note that a machine must
be put in place in order to be matched with a worker and so the cost of the machine must be
incurred regardless of the outcome of the match.

The first-order conditions for (¢, b) are:

o) — Cu(97(s))

! = T(0(s), )

(3.2)
or .y — _C(87(s))

1—(140°(s))e ) = T6°0s). 8] (3.3)
(3.2) states that the assignment ¢° equates the expected marginal product of the machine quality,
(1—e %) Fy, to the marginal cost. To explain (3.3), note that adding one more firm to the market
increases the expected net output by (1 —e °)F — C but also increases congestion to existing
firms. The increased congestion reduces each existing firm’s matching probability by %e’b and
hence reduces aggregate output in that market by be °F. (3.3) requires that the number of firms
be such that at the margin expected net output from an additional firm is equal to expected

crowding out caused by that firm.

Proposition 3.1. Under Assumption 1, there exist an efficient assignment ¢° and an associated

market tightness b°. Moreover, ¢°(s) < ¢¥(s) for every s € S.

Proof. Under (v) in Assumption 1, the solution to (3.2) and (3.3) is a local maximum of the
efficient assignment problem if it exists. Since the LHS of (3.2) is less than one for all b < oo, the
assignment must satisfy Cy < Fj. Since the frictionless assignment ¢F(s) satisfies C}, = Fy and
since Cy, — F}, is an increasing function of k, the condition Cy < Fy, is equivalent to ¢°(s) < ¢(s)

for all s. Also, the LHS of (3.2) is greater than that of (3.3) for all b > 0 and so the assignment
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must satisfy Cy/Fy > C/F. This is equivalent to k > kmin(s), where kmin(s) is defined as follows:

[F(k, s)Cr(k) — C(k) Fr(k, 8)] p—kmin(s) = O- (3.4)

Under Assumption 1, kpin(s) is well defined and 0 < ki (s) < ¢P(s).
Eliminating 0° from (3.2) and (3.3) yields:

GO0 (G (G

" Fi(k, s) " Fi(k, s)

3.5
Fy(k,s) F(ks (3.5)
Temporarily denote the left-hand side of the above equation by LHS(k) for any given s. Then
LHS(kmin(s)) < 0, LHS(¢P(s)) > 0 and so, for each s € S, there is at least one solution for &

lying in the interior of (kmin($), d*(s)). QED

For general functional forms uniqueness of the efficient assignment is difficult to be estab-
lished but will be assumed throughout the following analysis. Examples in Section 5.2 show that
uniqueness is guaranteed for some popular functional forms. Note that the frictional assignment
assigns a lower machine quality to each skill than the frictionless assignment does. This is because
the possibility of failing to get matched in the frictional economy reduces the expected profit from
any machine quality. Let me delay the discussion on other properties of the efficient assignment

and turn now to the decentralization of the efficient assignment.

4. Market assignment with frictions

To decentralize the efficient assignment described above, consider the following markets. For each
pair (k, s), there is a market tightness schedule B(k, s) determined by a zero-profit condition for
entry. Taking this schedule as given, each firm selects a machine quality and each worker chooses
a quality k to target the application. Before each worker selects any particular firm in the targeted
group, firms post wages simultaneously. Observing all the posted wages, workers decide which
firm to apply to, possibly with mixed strategies, and then each firm chooses a worker among its
applicants. Note that, in contrast to the frictionless world, what is taken as given by firms here

is not the wage schedule but the schedule of market tightness.
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The problem can be solved backward. First, for given machine quality k& and the tightness
B(k, s), I determine the equilibrium wage in market s, W (k,s). With the wage I can compute
firms’ expected profit and workers’ expected wage. Second, the market tightness schedule B(k, s)
must be such that firms in each market earn a zero expected net profit, i.e., the expected profit
equals the cost of the machine. Third, taking the schedule B(k,s) as given, firms solve for the

assighment by choosing k to maximize workers’ expected wage.
4.1. Wage W (k, s)

Isolating the market where the machine quality is & and workers’ skill is s, I determine the wage
emerging from the wage posting game. Variables here are indexed by (k, s) which are suppressed.
It is useful to express the wage as a share A of output, i.e., A = W/F, and formulate firms’ wage
posting decision as one that determines the wage share. Throughout this paper, I am interested
only in the equilibrium that is symmetric within each market, i.e., in equilibrium all firms in a
market post the same wage share A for the same skill.

All firms announce their wage shares simultaneously and workers apply to the firms after
observing all posted wage shares. If a firm gets only one worker, the worker is rewarded the job.
If the firm gets more than one worker, each worker is selected with equal probability. In either
case, production begins immediately after the match and output is divided between the worker
and the firm according to the posted share. If a firm fails to recruit any worker, output is zero.?

Since workers observe all posted wages and then choose which firm to apply, firms can directly
influence workers’ application strategies through the posted wages. To be more specific, let all
(m — 1) firms in the market post a wage share A and the remaining one firm post a wage share

A4, Call this firm the deviator and other firms non-deviators. If A% > A, the deviator can

5The qualitative results will be similar if each worker observes only two independently drawn wages, but the
exercise is more cumbersome (see Acemoglu and Shimer (1998)). Similarly, one can allow firms to post the reserve
wage rather than the actual wage and then hold an auction after receiving two or more applications. With this
setup the actual wage equals the reserve wage if the firm receives only one application and equals zero if the firm
receives at least two applications. The reserve wage serves a role very much like the actual wage in the current
framework but there is a dispersion in actual wages (see Julien et al. (1998)). Such a dispersion complicates the
analysis without contributing much to the main issue.
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attract more workers than non-deviators do. However, not all workers go to the deviator with
probability one — if they did so, the probability for each to be selected by the firm would be very
small (1/n) and workers could improve the expected wage by applying to a non-deviator. Let p?
be the probability with which each worker applies to the deviator. Then p = (1 — p%)/(m — 1) is
the probability with which the worker applies to each of the non-deviators.

To find how p? depends on A%, let us compute the expected wage of an arbitrary worker in that
market, say worker 1, who applies to the deviator. When worker 1 applies to the deviator, there
might be k other workers applying to the same firm, which occurs with probability C* | (p?)*(1 —
ph)"~ 1=k In this case worker 1 is chosen by the firm with probability 1/(k 4 1). Since k can be

any integer from 0 to n — 1, worker 1 gets the job from the deviator with the following probability

n—1 dy\n
1 L 1-a—pY
Z_Ck dyk(] _pdyn-t-k _ 2 — 7P )

If worker 1 gets the job from the deviator, his ex post gain (wage) is AYF. The expected gain
must be the same as that obtained from applying to a non-deviator, i.e.,
1- (ip_d pd)nAd _ 1- (ip— p)nA‘ (4.1)
This equation implicitly defines a function p? = p%(A%), which can be shown to be an increasing
function. Therefore, by posting a higher wage share the deviator can obtain a higher expected
number of workers. Since the function p®(-) is continuous, workers respond to a marginal increase
in the offer by only a marginal increase in the application probability.
The deviator chooses A% to maximize the expected profit, taking the dependence p?(A?)
into account but taking other firms’ wage shares as given. Since the probability with which the

deviator has at least one worker is 1 — (1 — p?)", A% solves:
max {[1 — (1 —p")"|(1 = AD)F: (4.1)}.
A

The above problem can be solved directly but the algebra is messy. The complexity arises

from the fact that a single firm’s deviation affects both p? and p. That is, the expected wage that
11



a worker gets from applying to any other firm, the right-hand side of (4.1), is also affected by
A%, By posting a high wage share the deviator attracts workers away from other firms, reduces
the congestion that workers face in other firms and hence increases workers’ expected wage from
applying to those firms. To simplify algebra, I assume that n and m are sufficiently large. In
this case, a single firm’s deviation has a negligible effect on the congestion which workers face in
other firms and so the deviator can treat the expected wage that a worker gets from other firms
as exogenous (see Burdett et al. (1996)). Denote this expected market wage as a share FA of
output. Then, for large n and m, the solution to the deviator’s problem can be approximated
arbitrarily closely by the solution to the following problem:

1—(1—pH"

np?

max {[1 — (1 —pH"(1 — AY): At = EA} .

The above deviation cannot be profitable in equilibrium and so the solution to the above
problem must be A% = A, which implies p? = p = 1/m. In the limit n,m — co (but n/m — B),

np? = np — B and (1 —p)" — e B. The limit of the first-order condition becomes:

(4.2)

It is evident that A is in the interior of (0, 1) for all finite B and is a decreasing function of B.
Thus, workers get a smaller share of the output when the ratio of workers to firms is larger.

Moreover, the matching probability for a firm is endogenously determined as 1 — (1 — p)" —
1 — e P and the matching probability for a worker is

{1 _»\" _ B
1—(1 p)_)le'

np B

These matching probabilities were used in Section 3 for the efficient assignment. Each worker’s

expected wage, EW, and each firm’s expect profit, £ P, are as follows:

EW =e¢PF, EP=[1-(1+B)e B|F. (4.3)

SMore precisely, when n and m are both large with a finite ratio n/m, the effect of a single firm’s deviation
on the probability that each worker applies to the deviator, p?, is of order 1 /n, but the effect on the probability
that each worker applies to a non-deviator, p = (1 — p?)/(m — 1), is of order 1/n?. Thus, the deviation has a
non-negligible effect on the probability that a worker obtains a job from the deviator, [1 — (1 —p®)™]/(np?), but a
negligible effect on the probability that a worker obtains a job from a competing firm, [1 — (1 — p)"]/(np).

12



These results are intuitive. If a firm did not face any risk of failing to obtain a worker, i.e., if
e B =0, the firm would have all the monopoly power and would demand the entire output; if
a worker did not face any risk of failing to get a job, the worker would have all the monopoly
power and would demand the entire output. More generally, as the market gets tighter, i.e.,
as B increases, the worker’s expected wage as a share of output decreases and the firm’s share

increases. Note that FW and EP do not add up to the value of output: the remainder, Be P F,

is the expected loss in output due to congestion and is borne by the firm.

4.2, Market tightness and the choice of machine quality

The market tightness schedule B(k,s) must be such that the expected net profit of operating
machine k with skill s is zero, i.e., EP(k,s) = C(k), where FP is given above. This is true for
such (k,s) that output is at least as high as the cost of the machine. For all other (k,s) such

that C'(k) > F(k,s), no firm will adopt k for s and so B(k, s) = co. That is,

F(k,s)?

1—[L+ Bk, s)le B®s) = CE. i (k) < F(k, 5) (4.4)
B(k, s) = oo, otherwise. '

Taking the schedule B(k, s) as given, each firm chooses k to maximize workers’ expected wage,
i.e., maxy e P%5) F(k, s). The solution yields the assignment k& = ¢(s), which induces a market
tightness for market s, b(s) = B(#(s), s). Since the choice of k affects the value of B, to depict
the solution in a two-dimensional diagram we can alternatively formulate the problem as such

that each firm directly chooses (B, k):

(P) fré?g {eBF(k:,s): 1-(1+B)e B= FC(’/E:I,{:Z)}

The solution is illustrated in Figure 4.1. For any given s and the worker’s expected wage,
the worker’s indifference curve, B = IN D(k), is increasing and concave. The constraint in (P)
gives an upward sloping curve, B = ZNP(k). The place where the two curves are tangent to
each other gives the solution to the first-order conditions of (P). Condition (v) in Assumption 1

ensures Z N Py, > I N Dy, around the solution and so the solution is a local maximum of (P).
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Figure 4.1:
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I now argue that the assignment leaves no incentive for firms or workers to deviate. As in
the frictionless assignment, the assignment problem (P) can be alternatively written as a dual
problem where each firm maximizes the expected net profit, subject to the constraint that the
worker gets at least the equilibrium expected wage. Therefore, if a firm brings into market s a
different machine quality ¢’ # ¢(s), it will make a negative net profit.

Note that (4.4) imposes off-equilibrium-path restrictions on the tightness which can be ratio-
nalized as follows. If a firm offers k' # ¢(s) to worker s and makes a non-negative profit, the firm
should expect other firms to enter to offer &’ to s as well, which will drive the expected net profit
to zero and the market tightness to B(k', s) described in (4.4). Similarly, for a worker s who tries
to target a machine quality &', both the firms and the worker must perceive a tightness B(k/, s).
This off-the-equilibrium restriction makes it irrational for worker s to target any machine quality
other than ¢(s): Given the tightness schedule, ¢(s) maximizes the expected wage of worker s.

I am now ready to present the central result:

Proposition 4.1. The assignment given by the solution to (P) is an equilibrium (market) as-

signment. The market assignment ¢ and the market tightness b are efficient.

Proof. I have already argued that the solution to (P) forms an equilibrium. To show that it
is efficient, let A be the Lagrangian multiplier of the constraint in (P). The first-order condition

for B yields A = F'/B. Substituting X into the first-order condition for & yields: Be ? = ]—C;& — %
k

This combined with the constraint in (P) gives 1 — e ? = C}/F},, which is the same as (3.2).

The constraint in (P) is the same as (3.3). Therefore, the solutions for (k, B) are (¢°?,0°). QED

Remark 1. Since the market assignment is efficient, the expected wage for a worker with skill s

must be equal to the social marginal benefit of such workers. That is,

EBw(s) = (4.5)

where L is the maximized value of the social welfare defined in (3.1). Then w(s) can be recovered

from the relation Fw(s) = w(s)(1 —e %) /b(s).
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The market assignment is efficient because equilibrium wages are tied endogenously to the
market tightness in a special way. As (4.2) reveals, the wage share for a pair (k, s) is a decreasing
function of the market tightness, B(k,s). For any given skill, if there are fewer firms in the
market, i.e., if B(k,s) is larger, the wage posting scheme enables firms to explore the relatively
large supply of labor and retain a larger share of output. Thus, for given s, a higher quality
and more expensive machine is rewarded with a larger share of the surplus. This higher share
does two things for a more expensive machine. First, it compensates the diminishing marginal
product of machine quality and enables the (expected) social marginal product of machine quality,
(1 — e P)F}, to be equal to the social marginal cost, Cj. Second, it ensures that the number of
firms using the machine to be equal to the efficient one, i.e., the one given by (3.3).

Another way to look at the connection between the wage share of output and the market
tightness is to tie the wage share to the matching function. The matching function is endogenously
generated by the wage-posting game and the total number of matches in a period in market s
is m(1 — e /™). The elasticity of the total number of matches with respect to the number of

workers in that market is

n Alm(1 —e /™ B
e B, o

Therefore, the wage-posting outcome rewards each factor by precisely the factor’s contribution
to the match, defined as the elasticity of matches to the factor. This is not a sheer coincidence.
Rather, it arises from the fact that agents (firms) who actively create matches by creating vacan-
cies are given the “property rights” to choose the split of the match surplus (by choosing wages).
Also, they are the ones who bear the congestion from their choices, as (4.3) shows.

It should then be clear that efficiency cannot be guaranteed by arbitrary wage determination
schemes. One such scheme that fails is the Nash bargaining framework in Diamond (1982),
Mortensen (1982), and Pissarides (1990). In these models, both the matching function and the
weights in Nash bargaining are exogenously fixed. When the wage is determined, there is only

one firm and one worker on each side of the bargain and each side has local monopoly power.
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This one-to-one situation does not accurately reflect the composition of firms and workers before
the match and so the Nash bargaining outcome typically fails to deliver efficiency. The only
exception is when the worker’s bargaining weight is exogenously set to be equal to that in (4.2),
but then it cannot be constant as it necessarily varies with the market tightness. This efficiency
requirement is, of course, the one obtained by Hosios (1990). The current analysis generalizes it
to a richer environment. Not only is the condition necessary for the match surplus to be divided
efficiently between workers and firms, but also it is necessary for stimulating firms to choose the
“right” machine quality for each skill.

The second scheme that fails to deliver efficiency is the search models surveyed by McMillan
and Rothschild (1994), where workers know only the distribution of wages and must costly search
to find a specific firm’s wage offer. Since any specific firm’s wage is not observed by workers
before search, it does not influence workers’ search decisions directly; only the distribution of
wages does. That is, individual firms’ wages do not have the ex ante allocative role as they do in

the wage-posting framework and so the market tightness for each skill is unlikely to be efficient.

5. Properties of the frictional assignment and wages

5.1. Properties

An important feature of the frictional assignment is that each skill level is associated with a
market tightness as well as a machine quality. One implication is that the assignment is not
always positive. If high-skill workers get matched sufficiently more quickly than low-skill workers,
they may get lower quality machines than do low-skill workers and yet still enjoy a higher expected
wage. That is, the machine assignment can be negative if b(s) is sufficiently decreasing in skill.

These properties are stated below:’

Proposition 5.1. The assignment ¢ is positive, i.e., ¢s(s) > 0 for all s € S, if and only if

FFy,  CF(Fy = C)
W, ~ Co(FCp —C1y)

"The proof is omitted, since it involves tedious algebra of differentiating (3.2) and (3.3) and substitution.
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A higher skill has a higher matching rate, i.e., bs(s) < 0, if and only if

FFy, < CF(FpCrr — CrFrr)
Fobs ~ Chbn(FCR—CFy)

Thus, bs > 0 implies ¢5 > 0 and so ¢s < 0 implies by < 0. Under (v) in Assumption 1, there is a

non-empty parameter region in which both ¢s > 0 and bs < 0.

Although a positive assighment cannot be guaranteed in general, it does emerge when skills
and machine qualities are sufficiently complementary to each other in production. Exactly how
complementary should the two factors be to generate a positive assignment depends also on
features of the cost function. On the other hand, if the two are extremely complementary to each
other, an increase in skill requires a large increase in machine quality, which at the margin is very
costly for firms to make. In this case there will be fewer firms using high qualities machines, i.e.,
bs(s) > 0. When skills and machines qualities are strongly but not extremely complementary to
each other, high skills are assigned high quality machines and find jobs more easily.

These properties can be illustrated in Figure 4.1 by increasing the skill level from s to s'.
When s increases to s', the zero-net-profit curve ZN P(k) shifts down. The new tangency point
in Figure 4.1 can be either on the left or on the right side of the original tangency point and so
¢(s') can be either smaller or greater than ¢(s). Similarly, the new tangency point can be either
above or below the original tangency point and so a higher skill is not necessarily associated with
a less tight market or a higher matching probability. Nevertheless, if the new solution is at least
as high as the original one along the vertical axis, then it must be on the right side of the original
one. That is, for s’ > s, b(s’) > b(s) implies ¢(s') > ¢(s) and so ¢(s') < ¢(s) implies b(s') < b(s).
With a negative assignment, higher skills must be compensated by a higher matching rate.

I now turn to equilibrium wages. First, let us examine the expected wage for worker s:
Euw(s) = ¢ " F(g(s),s) = e PO 1 (4(s), 5).

The fact that the worker’s indifference curve I N D(k) in Figure 4.1 moves toward southeast when

s increases shows that a higher skill gets a higher expected wage, regardless of the signs of ¢,
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and bs. A close inspection of the expression for the expected wage reveals that skill might affect
the expected wage in three ways. An increase in s (i) affects the machine quality assigned to it;
(ii) increases output directly; and (iii) attracts more firms to the market and hence reduces the
workers’ congestion. The effect of (i) on the expected wage depends on whether the assignment
is positive, but the effects of (ii) and (iii) are unambiguously positive. Moreover, the effect of (i)
on the expected wage vanishes when the machine quality is chosen optimally by the firm. In the
current setting, in particular, the output increased by a better machine is exactly canceled by the
increased congestion that the better machine creates for workers (since, for any given skill, the
higher cost of the better machine make fewer firms choose it).

The observed wage for skill s is w(s) = W (¢(s), s). Direct computation yields:

Proposition 5.2. Fw(s) > 0 for all s. If s > 0 then ws > 0. That is, a higher skill is rewarded

a higher wage if the assignment is positive. Moreover, ws < Fy(¢(s), s) if and only if bs(s) < 0.

The result that wages increase with skills for positive assignments is not obvious ex ante. As
stated in Proposition 5.1, a positive assignment may be accompanied by an increasing matching
rate for high skills. Since what matters to workers’ decisions is not the actual wage but rather the
expected wage, the outcome wy < 0 can be consistent with ¢, > 0, a priori, if b(s) is sufficiently
decreasing. The proposition shows that this does not happen in equilibrium.

The proposition also states that the marginal reward to skill, ws, is less than the marginal
product of skill if and only if the matching rate increases with skill. This is because an increase in
skill is compensated not by the actual marginal product but by the expected marginal product of
skill which takes into account of the matching rate. If a higher skill comes with a lower matching
rate, i.e., if by > 0, the additional skill must be compensated by more than the marginal product
of skill in order to make up for the reduced matching probability. This is in contrast with the
result in the frictionless economy, where w;g is always equal to the marginal product of skill.

The case where b(s) is constant over S is an important special case. What economies give rise

to a constant b? The following proposition provides an answer (see Appendix A for a proof) and
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the next subsection provides some examples.

Proposition 5.3. Suppose b(s) = constant. Then the assignment ¢° is positive. If F(k,s) is
linearly homogeneous in (k,s), then there exist constants (61,62) with 61 < 62 < 1 such that

¢(s) is implicitly given by the following equation:

s = 5[ eX[) — (i 3 51
(;3(5[)/5[ (52 - (51 Y Y Y

where f(k/s) = F,/F},. If the production function F is the CES type, F' = Fylakl + (1 —a)sP]'/?,

then the assignment is

(1 —a)dl

y 1/p
m(s —SL):| s (52)

o(s) = [w (s2))” +

and the cost function must have the following form:

b2 a(62 — 61)

1/p
C(k) = 81- Fy [Wkp (1 —a)sf - S [¢(5L)]P] . (5.3)

In this case the assignment is concave if and only if Cy > 0.

5.2. Examples

Example 5.4. C(k) = Cok” and F(k,s) = Fpk®s'™%, a € (0,1).

This is a special case described in Proposition 5.3, with p = 0. In fact, taking the limit p — 0
on (5.3) shows that C(k) = Cok®®?/%1 for some Cy > 0. Therefore, ad2/61 = ~ and the unique

assignment in (5.2) becomes

o(s) = dls1) (i)(la)/w) .

SL
The assignment is concave if and only if v > 1, an implication of Proposition 5.3. Since bs; = 0,

Proposition 5.2 implies that the marginal wage w; is equal to the marginal product of labor.

Example 5.5. C(k) = Cok and F' is the CES form with p < 1.
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This is another special case of Proposition 5.3, with Cyr = 0. Setting Cyr, = 0 in (5.3) yields
a restriction on ¢(sy). Substituting such ¢(sy) into (5.2) yields ¢(s) = ¢os for some constant
¢o > 0. The assignment is positive and linear. This example is interesting because Jovanovic
(1998) shows that, in a frictionless assignment, non-degenerate distributions of skills and machine
qualities are consistent with positive long-run growth in per-capita income only when the cost of
machine is linear in quality, at least at the aggregate level. This example indicates that a similar

result can be established when the assignment is frictional.

Example 5.6. F(k,s) is the CES type with p # 0 and C(k) = Cok” with v > 1.

The assignment is no longer linear and b, # constant. The assignment can even be decreasing
in skill. To see this, let Cp = 0.2, v =3, Fy = 1, a = 0.35 and p = 0.8. Then ¢(2) = 0.254 >
0.25 = ¢(3). Skills are compensated for the negative assignment by a higher matching rate, as

b(2) = 0.075 > 0.064 = b(3).

6. Dynamic assignment

I now extend the analysis to a dynamic setting where unmatched workers and firms keep trying
to get matched over time. The extension is necessary for three reasons. First, it is important
to show that the central results are robust to workers’ and firms’ dynamic concerns. Second,
the one-period model is difficult to be calibrated to check the quantitative results. Third, it
is important to examine how steady state wage distribution responds to disturbances in the

production technology. I characterize the efficient allocation below.

6.1. Characterization and existence

Firms and workers live forever and discount future with a factor 5 € (0,1). Quality & machine
costs C(k)/(1 — ) to produce and so C'(k) is the cost per period. Now N is the total number
of workers in the entire labor force rather than the ones who are looking for jobs. Let n(s) be
the exogenous number of skill s workers in the labor force and go(s) = n(s)/N be the density of

the skill distribution in the labor force. A number u:(s) of skill s workers are unemployed at the
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beginning of period t and Fy(s) are employed after recruiting in period ¢. Since u:(s) and Fy(s)
are measured at different points of time in period ¢, they do not add up to n(s). Let my(s) now
stands for the number of firms that recruit in period ¢ in market s rather than the total number of
firms in market s. In any period t, the labor market tightness in market s is by(s) = u(s)/me(s);
the matching rate is p:(s) = (1 — e %(9)/b,(s) for each unemployed worker and 1 — e %(®) for
each recruiting firm. Those firms that already have a worker at the beginning of a period do not
recruit in that period and, similarly, those workers who already have a job at the beginning of the
period do not look for a job. Also as before, the machine cost per period is incurred the moment
a firm posts a vacancy.

If an unemployed worker and a vacant job get matched in period ¢, they produce immediately.®
After production, some matches separate. Since the focus here is on recruiting rather than
separation, I simply assume that each match separates with an exogenous probability ¢. Thus,

the number of workers remaining matched at the beginning of period ¢ is (1 — o) E¢_1(s). Then,
ur(s) = n(s) — (1 — o) Ep1(s); (6.1)

By(s) = (L — 0) B (s) + puls)ua(s). (6.2)

Eliminating us(s) gives employment dynamics:
Ei(s) = pa(s)n(s) + (1 — o) [1 — pi(s)] B 1 (s). (6.3)

In the steady state the market tightness is b(s) and so F and u are:

_ ns) e =
E(s) = o to/m(s) u(s) =n(s) — (1 — o) E(s). (6.4)

The social planner now maximizes the sum of net present value added in each period. Consider
the cost of machines first. Each time a vacancy is posted, the cost for that period is that of the

vacant machine, which is C(k) for machine k. The number of vacancies in period ¢ is u(s)/b(s).

80ften it is assumed that new matches start to produce in the next period. The immediate production assumed
here has no particular implications on the analytical results. It is used here because it is used in the one-period
setting. This makes it easy to interpret the one-period result as a special case of the dynamic result when 3 — 0.
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Using (6.1), aggregate vacancy cost in period ¢ in market s is

n(s) — (1 —o)Er_1(s)

“ b(s)

Next, consider the value produced by new matches in £. The number of new jobs created in period

t in market s is Fy(s) — (1 — o) F_1(s). Each new job generates the following present value:

F(k,s)— p(1 —0)C(k)
16 —0)

F(k,s) —C(k)

I—si—0) W=

The first term on the left-hand side is the present value of the net product from the new match,
where the discount rate takes into account of both subjective discounting and job separation.
Since the machine cost in period ¢ is counted both in the vacancy cost and in the net product in
period t, it is added back onto the present value of the new match to avoid double accounting.
The efficient assignment assigns a machine quality k; = ¢¢(s) and a market tightness b.(s) for

each s in each period ¢ to solve the following problem:

— o Lt F(kg,s) — B(1 — 0)C(ky)
= (1) t:Oﬁ /SES { 1-8(1—-o0) [Ee(s) = (1 —0) B (s)]
MO AP, s

subject to (6.3). In the steady state, the first-order conditions for (b, Fy, k) yield:

L o) — [1—B(1 —0)|Cy(k)
: Fk(kvs) _6(1 —O')Ck(k‘)’ (66)
0w = {1~ 1+ bla)le 0} - =L O 67

The above conditions have similar interpretations to the one-period counterparts, (3.2) and (3.3),

and approach the one-period counterparts when either 5 — 0 or 0 — 1.

Remark 2. Focusing on the steady state assignment does not lose much insight. In fact, the first-
order conditions for (kg by, Fy) can be used to obtain a closed sub-system of dynamic equations
involving only k and b. Thus, when a shock hits the system, the values of k; and b, must

immediately jump to the new steady state levels, while F, gradually adjusts.
23



Rewriting (6.6) and (6.7) to express C}/ Fy, and C/ F as functions of b, as in (3.2) and (3.3), one
can use the same procedure for proving Proposition 3.1 to show that the steady state assignment
exists. Therefore, the features of a one-period assignment can be easily translated into the
dynamic environment for the steady state assignment. Also, the dynamic efficient allocation can
be decentralized by a market assignment following a similar route to that in Section 3. The
exercise is much more involved because agents now consider the payoffs from infinitely many
periods. There is no need to repeat the procedure here, which is available upon request.

Equilibrium wages can be computed directly from (6.5) using Remark 1 in Section 4. That
is, since the equilibrium allocation is efficient, wages must be such that the expected gain to an
unemployed worker with skill s is equal to the social marginal benefit of increasing n(s). Let us
focus on the steady state and compute the expected gain to the worker. Let V,(s) be the steady
state value function of an unemployed worker with skill s and V,(s) be the corresponding value

function when the worker is employed. Then,
Vu(s) = p(s)Ve(s) + [1 — pu(s)]8Va(s);

Ve(s) = w(s) +08Vu(s) + (1 — 0)BVe(s).

If an unemployed worker gets hired, the value is V,, but if he/she fails to find a job, the value is
the discounted value from the next period, SV,,. The expected gain to the worker is p(s)[Ve(s) —
BVyu(s)]. Efficiency then requires

S Bh(s)Vils) — AV(s)] = 2.
= dn(s)

where £D is defined in (6.5). From the value functions one can obtain:

(s)[Ve(s) = BVuls)] = (1= B)Vu(s)

_ g — gy 1280 =)
= wlo)- [ o)+ ]
Computing dL£D/dn(s) and using (6.7), we have:
C(o(s 1-81—-0o
w(s) = % [ﬁ(l —0o)+ i((s) )] (6.8)



Given market tightness b(s), the wage w(s) is an increasing function of the machine quality
assigned to it; given the machine quality ¢(s), the wage w(s) is a decreasing function of the
market tightness. Of course, the assigned machine quality and the market tightness cannot be

separated because they are a package of the deal.

6.2. Steady state distributions

Let us denote the steady state density of the skill distribution in employment by h(-) and the
skill distribution in unemployment at the beginning of a period by g(-). The density of the wage
distribution is then h(w~1(:)), where w1(-) is the inverse function of the wage function w(-).

With (6.4), the total number of workers employed after recruiting in the steady state is

n(s)

TE=| —22
ses L—o +o/u(s)

ds.

The number of workers unemployed at the beginning of a period is N — (1 — o)T'E. Then,

hs) = n(s)/TE

__ n(s)/TE n(s) = (1= o) E(s)
T—o+o/u(s) |

98 = =N o TE

Naturally, both distributions depend on the skill distribution in the labor force through n(s).

More important, the skill distributions in employment and unemployment depend on equi-
librium tightness in each market, b(s). Compared with the exogenous distribution of skills in
the labor force, go(s), the skill distribution in employment is more skewed toward high skills and
the skill distribution in unemployment is more skewed toward low skills if and only if bs(s) < 0.
Since the market tightness depends on the assignment ¢(s), one must have a good idea about the
nature of the assignment in order to make inferences on the skill distribution in each status of
employment. In contrast, in a frictionless economy every worker finds a match instantaneously
and so the skill distribution in employment is identical to the one in the labor force.

Compared with a frictionless world, in a frictional world it is also more unreliable to directly
draw inferences on the shape of the skill distribution from the wage distribution or vice versa. In
the frictionless world, the assignment is always positive and so observing the wage distribution

tells us something useful about the skill distribution in the labor force. For example, if the
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density of the wage distribution is uniform, then the skill distribution in the labor force must
also be uniform; if the density of the wage distribution has a peak at some level w*, then the
skill distribution density in the labor force must also have a peak at some skill level s*. Such
inference cannot be made in a frictional world without knowing the assignment. For example,
unevenly distributed wages over skills can be consistent with uniform distribution of skills in the
labor force if fewer high-gkill workers are unemployed than low-skill workers.

The market assignment and the market tightness both depend on the production function
and the cost function of producing machines. To say more about the wage distribution and the
skill distribution in employment, I calibrate the model next. The exercise also shows whether the

differential tightness is quantitatively significant for wage inequality.

6.3. Numerical exercise

In the following numerical exercise, skill levels are discrete points ranging from sy, = 1 to sy = 5,
with a mean sy; = (sy +s1)/2 and a grid 0.08. The total number of skill levels is 51. Skills in the
entire labor force are assumed to be uniformly distributed over the 51 levels, i.e., go(s) = 1/51.
The uniform distribution is used here because the distributions of wages and employment in the
frictional economy can be easily compared with those in a frictionless economy. The production

function and the cost function are:
F(k,s) = Fok®s'™%  C(k) = Co(E" + C).

The constant €y > 0 captures the cost of machines that are independent of the quality.
The parameter values are as follows:
N = 1, =1, a=03,5=0.99, ¢ =0.06,
v = 2.8565, Cy = 27.0596, C'y = 0.01519.

The total number of workers, /V, and the multiplier in the production function, I, are normalized

to one. « is set to 0.3, which gives a wage share of output as 66% for s = sy.2 The length of

9The wage share of output is commonly calibrated to 0.64 (see Christiano, 1998). When labor were paid with
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a period is interpreted as a quarter and so the discount factor, 3, is chosen to imply a quarterly
real interest rate around 1%. The quarterly job separation rate o = 6% is a realistic number, as
documented in Davis and Haltiwanger (1991). To identify , I set the unemployment rate to 12.5%
for workers with skill sy and to 6.5% for workers with skill sy;, where the unemployment rate is
the average of the rate before recruiting, u(s)/n(s), and the rate after recruiting, 1 — F(s)/n(s).
These rates are realistic. For example, the U.S. unemployment rate in 1991 is 12.3% for workers
who had less than 4 years of high school and 6.7% for workers who had 4 years of high school
only (Bureau of the Census, 1997). With (6.6) and (6.7), these two restrictions solve for 7. They
also give a restriction between Cy and C4. Finally, I set C; = 0.1 x kps to solve for Cy and (7,
where kjs is the machine quality allocated to workers with skill s3;.10

The main characteristics of the frictional assignment are illustrated in Figures 6.1 — 6.4 with
circles, together with the characteristics of the frictionless assignment (solid lines). I discuss them
below. First, the assignment is positive and concave, as shown in Figure 6.1. This result is useful
because a positive assignment cannot be guaranteed a priori, as stated in Proposition 5.1.

Second, Figure 6.1 confirms the result in Proposition 3.1 that the machine quality assigned
to each skill is lower in the frictional economy than in the frictionless economy. The difference
between the two gets larger as skill increases. Figure 6.2 reveals similar differences in wages
between the two economies. It is remarkable that even with significant unemployment the machine
quality and wage for each given skill in the frictional economy are very close to those in the
frictionless economy. Do we then conclude that the frictions do not matter much for machine
quality assignments or wages? Of course not, and we come to the third feature.

Third, the distributions of machine qualities and wages are more skewed toward high levels in
the frictional economy than in the frictionless economy. Figure 6.3 plots the employment density

for each skill in the two economies, h(s) and go(s), against the corresponding machine quality, ¢(s)

the marginal product, this would imply o = 0.36. A lower value of & is chosen here because wages are strictly
below the marginal product of labor.

10Not surprisingly, machine qualities and wages vary sensitively with the value chosen for C; /kar. However, this
amounts to a shift in the supports of the wage and machine quality distributions but not much change in the shape
of these distributions.
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and ¢*(s). The diagram gives the densities of machine qualities in the two economies. The figure
shows that about 6% fewer machines with the lowest quality and about 2.5% more machines with
the highest quality are used in the frictional economy than in the frictionless economy. Similarly,
Figure 6.4 shows a similar skewness of the wage density in the frictional economy. Thus, there is
a sense that the wage distribution is more unequal in the frictional economy.

The additional inequality arises here not because a higher skill is assigned with an even higher
machine quality than that suggested by the traditional assignment literature. On the contrary,
the opposite occurred, as discussed above for Figure 6.1. Rather, the additional inequality arises
because the assignment induces changes in the employment distribution. That is, it reduces
the proportion of low-gkill workers in employment by making the market tighter for them. This
additional channel for the assignment to affect wage inequality can be seen from Figure 6.2, where
the matching rate p(s) increases with skill. The wage share (not shown) also increases with skill,

as firms compete for high-skill workers.

6.4. Responses to a reduction in machine costs

I now briefly examine the response of the assignment to a technological progress that makes
machines cheaper to make. In particular, consider the case where the costs for all machines fall
in the same proportion. I examine this type of technological progress not because I believe it is
the most realistic one but because its effects on skill and wage distributions are not clear relative
to the effects of, say, a skill-biased technological progress. Let Cy fall by 5%. The percentage
changes in machine assignment, wages and matching rates are reported in Figures 6.5 and 6.6 for
both the frictional economy (circles) and the frictionless economy (lines).

Not surprisingly, the reduction in machine costs increases the machine quality assigned to each
skill. This is true for both economies, but the percentage increase in machine qualities is slightly
smaller in the frictional economy than in the frictionless economy. The increases in quality are
almost uniform across skills in both economies. In contrast, the percentage wage increases are far
from uniform, as shown in Figure 6.6. The cost reduction benefits low-wage earners much more
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than high-wage earners. In both the frictional economy and the frictionless economy, wages at
the bottom increases by more than 15% but wages at the top increases by less than 3%. Thus, a
uniform reduction in machine costs reduces wage inequality in both economies.

The reduction in wage inequality is larger in the frictional economy than in the frictionless
economy, because there is a simultaneous shift in employment distribution in the frictional econ-
omy. Although the matching rate increases for all skills when machine costs fall, it increases by
roughly 10% for bottom-wage earners but by less than 2% for top-wage earners. The employment
distribution becomes less skewed toward high skills than before.

A general interpretation of the result is that a uniform technological progress benefits low-skill
workers more than high-skill workers by increasing the relative employment of low-skill workers.
However, technological progress is not always uniform and in many cases it reduces the cost of
advanced machines proportionally more than reducing low quality machines (see Greenwood and
Yorukoglu (1997)). In this case, employment and wage distributions will become more rather

than less skewed toward high-skill workers (see Shi (1998) for a comparison).

7. Conclusion

A wage-posting framework is shown to induce an efficient assignment between diverse skills and
diverse machines when the matching is time-consuming. The (efficient) frictional assignment
assigns each skill with a market tightness as well as a machine quality. It has several features
in contrast with a frictionless assignment. First, higher skills are not necessarily assigned higher
machine qualities even when machine qualities and skills are complementary in production —
sufficient complementarity is required for a positive assignment. This is because a higher skill
can be sufficiently compensated by a less tight market without a higher machine quality. Second,
differences in skill prices reflect differences not only in skills and machine qualities assigned to
them but also in matching rates. If skills and machine qualities are sufficiently but not extremely
complementary with each other, higher skills are assigned better machines and experience higher

matching rates. In this case the wage distribution is more skewed toward high wages in the
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frictional economy than in the frictionless economy. Calibration exercises show that the matching
friction increases inequality more through the differential tightness than through wages.

As indicated in the introduction, the use of the framework is not restricted to the labor
market. Rather, it is applicable to any market that has the following features: a large number of
participants on each side of the market who have diverse characteristics, a matching process that
is time-consuming, and a high turnover rate. For example, the loan market can be analyzed in
a similar way, where projects can differ vastly in size and probability of success and loans come
also in different sizes and terms.

Even if we restrict the discussion to the labor market, the analysis should be useful for macroe-
conomists who like to know how technological progress affects productivity and the allocation
of skills. It should also be useful for labor economists who estimate the earning function. The
central implication of the analysis is that a worker’s wage depends on market characteristics,
such as the market tightness, in addition to the worker’s characteristics, such as skill, and the
firm’s characteristics, such as machine quality and capital intensity. An earning function that is
estimated without much attention to market characteristics is likely to be biased, as reality is
that skilled workers are more likely to find a job than unskilled workers. The estimates are also
likely to be unstable when there is rapid technological progress, which changes the differential
market tightness for different skills and the wage distribution.

The analysis is only a first step to analyzing frictional assignments and some important aspects
of the labor market are ignored, such as multi-dimensional skills, match-specific productivity,
private information and/or uncertainty in productivity. These elements will enrich the model by
increasing wage inequality between similar workers and hence allow a better match between the
model and the data. They will also illustrate the ex post role of wages in retaining workers and

revealing productivity, in addition to the ex ante role of attracting workers analyzed here.
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Appendix

A. Proof of Proposition 5.3

When b is a constant, Proposition 5.1 immediately implies ¢s(s) > 0. Also, (3.2) and (3.3) imply
that Cy/F, = 62 and C/F = 61 are constants, with 61 < 62 < 1. Totally differentiating the
equation C'/F = 41 with respect to s, substituting Cy by 62F) and writing F,/Fy as f(k/s)

yields:

ds(s) = 526—151 g <¢(55)> ' (A1)

Making a transformation z(s) = ¢(s)/s and substituting ¢ yields

% - (52(5—151f(z) _Z>1‘

Integrating from sy, to s yields the solution in the proposition.

If I is the CES type, then f(y) = %yl’p and integrating (A.1) gives (5.2). Substituting
s = ¢ (k) into the function I and using C' = §1F, one recovers the cost function (5.3). With

p < 1, the cost function is strictly convex if and only if

(1-a)ol ,

[p(sL)]” > mé’p

which is also necessary and sufficient for ¢ss(s) < 0. QED
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Complementary note for “Frictional assignment”
B. Dynamic market assignment

In this appendix, a market assignment is described to decentralize the dynamic efficient assign-
ment in Section 6. In the competitive framework, machine producers produce machines and rent
them at market rates to firms. Let the machine producing sector be perfectly competitive. Since
the cost of producing a quality & machine is constant over time, C'(k)/(1 — (), the machine must
yield a present value of the rental income equal to C(k)/(1 — /), no matter when it is produced.
This implies that the rental cost of a quality k& machine must be C'(k) in each period.

To find the market assignment in this dynamic setting, first suppose that firms use machine
k to combine with skill s in market s. Let us find the wage share in market s, Ay(k,s) =
Wi(k,s)/F(k,s). Suppress the indexes (k,s) and denote Af = {A;};>;. Let Jp(Af) be the
present value of a job (to the firm) that is already filled at the beginning of period ¢ and that pays
a path of wage shares A{. Let J,; be the present value of a vacancy posted in period ¢. Similarly,
let V1(Af) be the present value of a job (to the worker) that is already filled the beginning of
period ¢ paying a path of wage shares A{ and V,; be the present value of an unemployed worker
in period t. (The symbols V,; and V,,; are the dynamic counterparts of those used in the text.)
Note that, unlike J¢; and V¢, Jyr and V¢ depend not on a specific firms’ wage offers but on all
firms’ wage offers and so the dependence is suppressed.

The value functions are given by the following Bellman equations:

Ji(Af) = 1 — A)F — C +0BJyei1 + (1 — 0) BT pe11(A71); (B.1)
Juo==C+ (1= P) [Tp(A) + C) + e P B (B.2)
Ver(Af) = Al + 08V + (1 —0) BVerp1 (AL 1 )s (B.3)

1 —¢e B p 1 —¢e Bt
Vut = Ttvet(At) —I— <1 — T) ﬁVuH»l- (B4)

These equations are standard. For example, (B.2) equates the present value of vacancy to the
expected value from hiring minus the vacancy cost C. With probability e # the vacancy fails to
be filled, in which case the present value is the discounted value of a vacancy in the next period,
BJyiy1. With probability 1 — e P the job is filled, in which case the job yields a present value
Jre +C. The cost C' is added to Jy; because Jy; is not the present value of a newly created job
but rather the value of a job that was filled before ¢, in which the machine rental cost C' is already

deducted (see (B.1)).
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Now consider the determination of the equilibrium wage share. Suppose that in market (k, s)
all other firms post the path of wage shares Af and a single firm is contemplating a deviation to
A = {A%) ;. If the firm succeeds in hiring a worker in ¢, it pays the wages according to the
share path A¢? until the job is separated. The present value of this filled job is J ft(Agd) + C,
where J(A$?) is calculated as in (B.1) with A°? replacing A°. If the firm fails to hire any
worker in t, it reverts to the share path Af,; that other firms will post from next period onward,
which yields a discounted present value (.J,:y1. The surplus to the firm from filling the job is
J ft(Agd) 4+ C — BJyty1. Similarly, if a worker is hired by the firm in period ¢, the present value
is Vo1 (A$?), which is calculated as in (B.3) with A replacing A°, and the surplus to the worker
is Vet (AS?) — BViuty1. Using the counterparts of (B.1) and (B.3) for Jp(A5%) and Vit (A$?), T can

compute:
Tp(Ash) = 31801 = o) [(1 = ADF = C + 0Bt r14+] (B.5)
7=0
VA7) = SOIB(L - o) [ALF 4+ 08Viaiais] (B6)
7=0

Let p¢ be the probability that each worker applies to the deviating firm. Then the firm’s

decision problem is:
_ R AY ) cd _
max 1= @ =p)"] [T (A5) + C = B
subject to
1—(1—pf)"
npf
where FS is the expected surplus that the worker gets from that market. With (B.5) and (B.6),

Vel Ai") = BV | = B3,

the problem yields the following division of the match surplus in a symmetric equilibrium:

Vet = BVury1 =

B, 1 (st +C = Blogyr) + (Ver = BVuri1)] (B.7)

The equation states that the worker’s surplus in terms of the present value is a share B;/(e Pt —1)
of the total match surplus. Note that this share is identical to that given by (4.2) in the one-period
case.

(B.7) implicitly determines the wage share path A§ but recovering the wage shares is compli-
cated. To simplify, I impose the free entry condition J,; = 0 for every pair (k,s) and consider
only the steady state. In the steady state, (B.5) and (B.6) (without the superscript d) can be
used to solve for Jy; and Vi as functions of steady state w and V. Substituting these functions
into (B.7) and putting back the indexes (k, s) yields:

Ws) = o (k) — (1~ 0)SC(K)

41



B(k, s)
+ (1 - m) (1=p)1—0)8Vy, (B.8)
where
e B0 [F(k, 5) — B(L = ) C(k)]
1-8)[1-81-0)d—e Bl
Substituting V,, into (B.8) and using (6.7) yields the same wage equation as that in (6.8) when &

Vi =Vu(k,s) = (B.9)

is set to ¢(s).
One can compute the worker’s steady state expected surplus in a match, denoted ES(k,s),

and the firm’s expected surplus, denoted FP(k,s), as follows:

e~ B(k.s)
ES(k,s) = T—30—0) {F(k,s) = B(1 =) [C(k) + (1 = B)Vul}; (B.10)
1 —[1 4 B(k,s)]e B9
EP(k,s) = =Bl 0) {F(k,s) = B(1 =) [C(k) + (1 = B)Vu]}- (B.11)

Notice that the wage, the worker’s expected surplus and the firm’s surplus all approach to their
one-period counterparts when 5(1 — o) — 0. Finally, with (B.2), the entry condition (J, = 0)

requires J; = C'/(eP — 1), which is equivalent to
EP(k,s) = (1 —pB)C(k). (B.12)

In the above formulas for W, ES and EP, I have deliberately kept the notation V,, rather
than substituting it with (B.9). The purpose is to make its easier to describe firms’ choices on

machine quality, to which I now turn. For any given s, the choice of k solves:
(PD) max {ES(k,s): (B.12) holds},

where the value V,, is taken as given in the formulas for £S and £ P. The solution can be written
as k = ®(s, V,,). This choice of machine quality is the fixed point of ¢(s) = ®(s, Viu(P(s), s)).
The reason why V,, should be taken as given in (P D) is that a single firm has a negligible
influence on the value function of an unemployed agent, which depends all firms’ decisions. To
see this more clearly, consider the decision problem associated with the dual of (P D). That is,
imagine a single firm’s decision on entering market s using a machine &’ that is not necessarily
the same as what every other firm in market s uses, ¢(s). Since all other firms in market s use
machine ¢(s), the entry by a single firm using a different machine has negligible influence on the
value function of an unemployed worker, which is V,,(¢(s),s) = V,f(s). After the firm enters the
market with machine %, it announces a wage W’ which could differ from w(s) = W(¢(s), s).

Since both (&, W’) are potentially different from ((s), w(s)), each worker may apply to the firm
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with a probability that is different from what he uses to apply to other firms. Let this probability
be p’ and denote B’ = limy, ;.00 np’. One can repeat the firm’s wage posting decision to show
that the firm’s wage offer, W', is given by precisely (B.8) but with B(k, s) being replaced by B’,
V., being replaced by V,*(s) and k in the functions F' and C' being replaced by &’. Similarly, this
firm with k' gets an expected surplus £ P'(k', s) and any worker s who applies to this firm gets
an expected surplus FS'(k’, s), which are given by (B.11) and (B.10), respectively, by replacing
B(k,s), V,, and k in the way described above. The choice of k' solves

(PD") max {EP(K,s) — (1 —=B)C(K): ES'(K,s) > ES(¢(s),)}.

This is, of course, the dual problem of (P D) and has the same solution. Since V,, here is taken
as given at a value V,,(¢(s), s), the solution is &' = ®(s, V,,(¢(s),s)). For the assignment to be
consistent with equilibrium, I must have ®(s, V,,(¢(s), s)) = ¢(s), as I stated for (P D).

It is now straightforward to show that the first-order conditions of either (PD) or (PD’) after
substituting V,, by (B.9), lead to (6.6) and (6.7). Therefore, the market assignment is efficient.
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