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Abstract

This paper uses an extension of the equilibrium model of Lucas (1978) to study the valuation
of options on the market portfolio with return predictability, endogenous stochastic volatility
and interest rates. Equilibrium conditions imply that the mean-reverting of the rate of dividend
growth induces the predictable feature of the market portfolio. Although the actual drift of the
price for the market portfolio does not explicitly enter into the option price formula when the
equivalent martingale pricing principle is used, parameters underlying the predictable feature
affect option prices through their influence on endogenized volatility and interest rates. Equilib-
rium conditions also review that there is strong interdependence between the equilibrium price
process for the market portfolio and its volatility process, both of which are induced by the
process for aggregate dividend. Closed-form pricing formulas for options on the market portfo-
lio incorporate both stochastic volatility and stochastic interest rates. With realistic parameter
values, numerical examples show that stochastic volatility and stochastic interest rates are both
necessary for correcting the pricing biases generated by the Black-Scholes model. In addition,
Closed-form solutions for European bond option prices are obtained, which encompass the Va-
sicek (1977) model and the Cox-Ingersoll-Ross (1985) model. In this sense, the current model
provides a consistent way to price options written on the market portfolio and the bonds.

* This is a significant expansion on an earlier paper entitled “General Equilibrium Valuation of Options with

‘Stochastic Volatility: A One Factor Model”. I thank Phelim Boyle, Ritchie Y. He, John Hull, Robert Jarrow,
Raymond Kan, Graig Lewis, Tom McCurdy, Alan White and participants of the finance workshop at the University
of Toronto for helpful comments and valuable suggestions. I also gratefully acknowledge the Social Sciences and

Humanities B;{esearch Council of Canada for financial support: All remaining errors are mine alone.
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1. Introduction

The Black-Scholes (1973) formula is still rightly regarded by both practitioners and academics as the
premier model of option valuation. However, it has some well-known deficiencies when matched with
market prices. In particular, thg model overprices out—of-the-money call options and underprices
in-the-money calls.! These deficiencies are usually ascribed to the strong assumption in the Black-
Scholes model (BS henceforth) that the price of the asset underlying the derivative security follows
a geometric Brownian motion with constant interest rate and volatility. The majority of empirical
works indicates that volatility is not constant(‘(e.g. Rosenberg 1972, Oldfield, Rogalski and Jarrow
1977). Consequently, many theoretical option models have allowed for non-constant volatility while
maintaining the assumption of constant interest rates. Notable examples are Merton (1976), who
adds a jump risk into the diffusion process used by Black and Scholes for the stock price, Hull
and White (1987) and Stein and Stein (1991), who assume that the volatility is driven by a state
variable which is different from the one in the stock price process. |
These modifications of the BS model are important attempts to incorporate non-constant volatil-
ity in option prices but they are not satisfactory for three reasons. First, they fail to incorporate
the influence of stock return predictability on option prices. The predictability of financial asset
réturns has been documerited by Bekaert and Hodrick (1992), Breen, Glosten and Jagannathan
(1989), Campbell and Hamao (1992), Fama and French (1988a, 1988b) and Ferson and Harvey
(1991). The predict,a.bility is typically reflected in the drift of the stock price and can be reviewed
as a mean-reverting process. In partial equilibrium models, Grundy (1991) states that the BS
model can be consistent with thc; stock return predictability, while Lo and Wang (1995) argue that
the predictability can provide information on the forecast of the volatility. It will be interesting

to investigate how the predictability affects option prices when the interest rate and volatility are

1This evidence is documented by MacBeth and Merville (1979). Similar findings are provided by Lauterbach and
Schultz (1990) in an empirical study on warrants.



both endogenous.

Second, the typical assumption on the stochastic volatility is that it is uncorrelated with ag-
gregate consumption. This assumption is problematic when the security under consideration is the
market portfolio.> A considerable amount of evidence has shown that the non-constant volatility of
stock prices is highly correlated with the volatility of the market as a whole. For example, Wiggins
(1987) has found a significantly negative correlation between volatility movements and stock prices
for highly aggregated stock indices. The estimated correlation for S&P 500 is -0.79 for an 8-day
interval in which the volatility is assumed constant. Intuitively, the volatility and price of the
market portfolio are both driven by the same fundamental forces such as aggregate consumption or
aggregate dividend. Thus, it is desirable to specify only the processes for these fundamental forces,
drive endogenously the processes for the ma.rk‘et portfolio and its volatility, and then examine the
relation between these two processes.

The third unsatisfactory feature of non-constant volatility models is that they have assumed
a constant interest rate. However, the volatility of the market portfolio is in general negatively
related to the interest rate (see Bailey and Stulz 1989). To reflect this negative correlation, one
must abandon the assumption of constant interest rates and simultaneously analyze the effects of
stochastic volatility and stochastic interest rates. Finally, previous models of non-constant volatility
have introduced a non-traded source of risk such as jumps or stochastic volatility and hence lost
their completeness, i.e., the ability to hedge options with the underlying asset. Such ability is
desirable for hedging and risk management in the business world, as stated in Dupire (1994).

To eliminate these unsatisfactory features, I use a continuous-time extension of the Lucas (1978)
equilibrium model. As in Lucas (1978), the economy is a pure exchange economy in which there is
a single representative agent with an infinite lifetime horizon. In the financial market, this agent

can instantaneously trade a single risky stock, pure discount bonds and other contingent claims

2In a parallel fashion, Naik and Lee (1990) argue that the jump risk in the market portfolio should be correlated
with aggregate consumption and dividend.



written on this risky stock and the discount bonds. The risky stock can be viewed as the market
portfolio whose dividend is the only exogenous source of uncertainty. By appealing to the study
of Marsh and Merton (1987) on the dynamic behavior of aggregate dividend, the rate of dividend
growth is modelled as an affine-class of mean reverting process. The general pricing equation (the
Euler equation) is derived by solving the representative agent’s maximization problem. Under the
specification of dividend pfocess and the agent’s preference, the processes for the market portfolio,
its volatility, the spot interest rate and the bond price are derived in equilibrium.

Equilibrium results indicate that the mean-reverting feature of the rate of dividend growth
generates the predictability of the stock return. Endogenizing the return of the market portfolio,
its volatility and spot interest rates enables me to determine whether the BS model is consistent
with a mean-reverting actual stock return. It is shown that the predictability of the return to the
market portfolio requires either the volatility and/or the spot interest rate to be stochastic. Thus,
the BS model with constant volatility and spot interest rate is not consistent with the predictability
of the asset return on the market portfolio. In addition, I analyze how the predictable features
affect the option prices in an environment where the spot interest rate and the volatility of the
market portfolio are mean-reverting. Although the actual drift rate does not explicitly appear in
the option pricing formula when the equivalent martingale pricing principle is used, _funda.menﬁa.l
forces that affect the drift a.lso affect option prices through their effects on the endogenous interest
rate and volatility.
| It is also shown that the process of the market volatility and its price process are not inde-
pendent. The two processes are negatively correlated, as indicated by empirical evidence, when
reasonable conditions are imposed on the parameters underlying the dividend process. Finally, the
equilibrium spot interest rate exhibits the mean-reverting feature. As a result, stochastic interest
rates and stochastic volatility are both incorporé.ted into the European stock option formulas which

include the BS model as a special case. The predictability affects stock option prices through both



the stochastic interest rate and stochastic volatility. Since changes in parameters underlying the
predictable features generate opposite impacts on the interest rate and volatility simultaneously,
an induced increase in the volatility or interest rate by these fundamental parameters does not
necessarily increase the call price.?

In addition to its simplicity and analytical tractability, the current stock option model ade-
quately corrects the BS pricing biases very well under reasonable parameter values. Numerical
exercises show that the current model provides higher prices for in-the-money calls and lower prices
for out-the-money calls than the BS model. Also, call prices given by the current model generate
a realistic pattern of implied volatility which is consistent with the empirical study on S&P 500
index European option by Wiggins (1987) a.n:i‘Dumas, Fleming and Whaley (1995). These results
indicate that eliminating the unsatisfactory features can significantly improve some aspects of the
BS stock option model.

The equilibrium approach for option valuation is shared with Bailey and Stulz (1989) who price
options written on stock indices, Naik and Lee (1990) who address the systematic jump risks in
the ma:ket portfolio, and Amin and Ng (1993) who focus on individual stock option prices with
systematic volatility. The current model differs from these models by explicitly modelling the
predictability of stock returns and stochastic interest rates. In addition, this paper provides closed-
form formulas for European bond option prices which encompass the Vasicek (1979) model and the
Cox-Ingersoll-Ross model (1985, CIR henceforth). It provides a consistent way to price options on
the market portfolio and bonds in a one-factor context.

On the effects of predictability of the asset return on opﬁon prices, this paper is related to
Grundy (1991) and Lo and Wang (1995). Using partial equilibrium frameworks, these studies
have attempted to understand some basic issues such as whether the BS risk-neutral log-normal

assumption is consistent with a trending Ornstein-Uhlenbeck proceés for the actual stock return

3The common belief is that an increase in stock volatility will be accomplished by an increase in call price according
to the BS model. Bailey and Stulz (1989) show that this common belief is not necessarily supported in an equilibrium
framework. The results in the current paper confirms the observation made by Bailey and Stulz (1989).



(Grundy 1991) and how parameters underlying such a process affect the BS formulas (Lo and Wang
1995). These studies employ the BS environment where interest rates and volatility are constant. In
contrast, the current paper uses an equilibrium framework where both interest rates and volatility
are endogenous and stochastic, which shows that the BS model with constant volatility and interest
rate is inconsistent with stock return predictability.

The remainder of this paper is organized as follows.i Section 2 describes the economy, presents
the general equilibrium results and then analyzes the dynamics of the price of the market portfolio,
its volatility, the bond price and the spot interest rate. Section 3 examines the relations among the
spot interest rate, stock return predictability and its volatility. Section 4 derives the equilibrium
pricing formulas for options written on the market portfolio and bonds, and examines the effects
of predictability on option prices. In addition, comparative statics are performed for both types
of options. Section 5 numerically compares the option pricing for the market portfolio with the
BS model and examines the pattern of the implied volatility for the market portfolio. Section 6

concludes the paper and the appendices provide necessary proofs.

2. The Economy

2.1. Structure of the Economy

Consider a continuous-time extension of the Lucas (1978) pure exchange economy in which there is a
representative investor with an infinite lifetime horizon. In the financial market, the representative
agent can trade a single risky stock, pure discount bonds; and a finite number of other contingent
claims at any time. The risky stock can be viewed as the market portfolio, whose total supply is
normalized to one share and its dividend stream {6;:} can be understood as the aggregate dividends
in the economy. The contingent claims and the riskless bond are all in zero net supply. I assume
that the aggregate dividend process is exogenously given by a Markov process on a given probability
space (€2, F, P). The fundamental uncertainty in the model is completely described by the process

for the aggregate dividend. Denote the security prices at time ¢ by a vector X; and the corresponding



vector of dividends by ¢;. The cumulative dividends up to ¢ are defined as D; = fg g-dr.
The representative agent’s information structure is given by the filtration 7; = 0( 6,,0 < 7 < t).

His preference is described by a smooth time-additive expected utility function:
o0
V()= E / U(cs, t)dt,
0

where U : R4 X (0,00) — R is smooth on (0, 00) X (0, 00) and, for each t € (0,00), U(:,t) : Ry = R
is increasing, strictly concave, and has a continuous derivative U(-,t) on (0,0). Initially, the agent
is endowed with one share of the risky stock. Denote his portfolio holdings at time ¢ as 6; = (63, 62,
67'), where 6§, 0F and 6¢' represent the number of shares invested in the risky stock, the discount
bond and other contingent claims, respectively. The agent’s consumption over time is financed by
a continuous trading strategy {6:,t > 0}. The -agent’s decision problem is to choose such a trading

strategy so as to maximize his expected lifetime utility. Precisely, he solves*

max E [ Ule, t)dt 2.1)
{et,6:} Jo
s.t.
t t t -
/ocrd'r=00-Xo+/ 0T-dDT+/ 6, -dXT — ;- Xs. (2.2)
0 0 g

The first order conditions give the usual stochastic Euler equation:

Xe = -U—c(%t—’-BEt (/too Uc(c,,'r)dD.r) .

Thus, the price of any security equals the expected discounted sum of its dividends, with the
marginal rate of substitution being the stochastic state price deflator.

In equilibrium, the financial market clears and so the demand for the stock equals the supply
of shares, which is one share. Also, eq11i1ib1;ium prices are such that the representative agent holds

nothing of the other claims because the corresponding net supply is zero. In addition, the goods

4All the expectations in this paper are taken with respect to the filtration specified earlier. The budget constraint
is similar to that defined in Duffie (1992) for the security market equilibrium. This Euler equation approach is also
adopted in Naik and Lee (1990). The partial differential equation satisfied by the price of any asset can also be
derived through the optimal control rule. Such an analysis is omitted here but available upon request.
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market clears so that consumption equals dividends generated from the risky stock. Therefore, the

equilibrium price of the risky stock, denoted S;(6:), is

Si(8:) = Uc((st’t)Et (/ U(6:,7)6, d’r) vV te(0,00). (2.3)

For a riskless bond paying 1 unit of consumption goods at T" and 0 at all other time, its equilibrium

price at time t , denoted By(T, &), is

By(T,6;) = ———E; (Uc(6r,T)), V t€(0,T). (2.4)

U(6 Ua(6s,t)

For any contingent claim i with a payoff ¢§- at maturity T, its price at time ¢ , denoted F;(T), is
FAT,8) = g5 B (UérT)ah), ¥ £€(OT). (25)

In particular, g% = max{Sr(é7) — K,0} for a European call option written on the risky stock,
and ¢& = max{Br(T,ér) — K, 0} for a European call option written on the riskless bond whose

maturity is T > T. K denotes the striking price for both options.

2.2. Equilibrium Prices under a Specific Dividend Process

To facilitate discussion and to obtain closed form solutions, let us restrict attention to a specific
dividend process for the market portfolio. The specific process is chosen by appealing to the study
of Marsh and Merton (1987) on the dynamic behavior of aggregate dividends (see also Lintner 1956

‘and Fama and Babiak 1968). Their estimation results suggest that changes in the rate of dividend

tend to conform with the following description:®
In (divg) — ln(div;-l)A= speed of adjustment x (target ratio x change in stock price; — Indiv¢—;).

Their regression results also show that the random components in the change of dividend growth
exhibit heteroskedasticity. In order to be consistent with these ﬁndings, the process for aggregate

dividends is assumed as follows:

SLintner (1956) and Fama and Babiak (1968) study the dividend behavior for individual stocks. They use the
accounting earnings variable instead of the changes in stock prices.
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Assumption 1. The rate of aggregate dividend growth evolves according to the following stochas-

tic process:
dlné = (B — o1 Iné)dt + /B2 + a2 Iné dz, (2.6)

where dz is the standard Wiener process. In addition, restrict 0 > a2 > —2a;.

The drift in (2.6) captures the mean-reverting feature of the rate of dividend growth while the
volatility structure B2 + az1né corresponds to a GARCH model. Note that (2.6) is an extension
of the process assumed for the single state variable in CIR (1985). It is the continuous-time
counterpart of a first-order autoregressive process in discrete-time where the randomly changing
rate of dividend is pulled toward a long-run mean, f1/a;. Parameter o determines the speed of
mean reversion. The restriction 0 > ag > —204 is imposed in order to guarantee the realistic
negatiire relationship between the stock price and its volatility, as well as the negative relationship
between the bond price and the spot interest rate (see later discussion).

In order to describe the distribution of 87 conditional on (8,t), I take a linear transformation

Y (6) = B2 + az1lné. By Ito’s Lemma, we have

dY = (182 + agfi — a1 Y)dt + aVYdz. 2.7

The process implied by (2.7) has the following properties: (i) Y is strictly positive if 2(c1f2 +
asf1) > o and oy > 0; (ii) the variance of Y increases when Y increases; and (iii) Y7 conditional

on (Y;, t) has a non-central x? distribution with the following density function:6

f(Yr,T;Y:,t) = aft, T)e'("*"\)( ) 30D, (VazX) (2.8)
where : :
2a = 2(a1f+a2f

D)= gy Heabigestd, 9)
= aft, T)Ke‘“l(T"") z = a(t, T)Yr.

6See Johnson and Kotz (1970) for the non-central x? distribution and Feller (1951) for the corresponding the
probability transition function.



In this description, 2 is the non-central parameter, 2v is the degree of freedom, and I,,_; () stands
for the modified Bessel function of the first kind of order v — 1.7 In the steady state as T' — oo,
the density function (2.8) converges to f(Yuo,00;Y;,t) = al'(v) le ®Ye (@Y0)""", a central x2
distribution. @ = limr_ a(t,T) = 2:2 and the degree of freedom is v.

The conditional expected mean and variance of In §7 can be computed as:

E(Inér | In6;) = Ine=1T—8) 4 BL(] — g=oa(T-9)),

Var(Inér | Iné;) = Z1n 6e(e= (Tt — g=20a(T-1)) 4 -%(1 — e 2a(T-t)) 4 %(1 —e~(T-))2,
When the reversion rate a; goes to 0, the mean converges to Iné; + 51(T — t) and the variance
converges to (a2Iné; + B2)(T —t) + agﬁl (T —t)%. As T — oo, the steady state mean and variance
are B;/a; and (82 + a2f1)/203, reSpectivefjr.

For analytical tractability, I adopt the typical logarithmic assumption on the agent’s preference.®
Assumption 2. The representative agent’s period utility is described by

U(ct,t) = e " Incy, (2.10)

where p > 0 is the rate of time preference.

Based on Assumptions 1 and 2, the equilibrium price for any financial asset can be solved

through the Euler equation. The equilibrium stock price S; can be easily computed from (2.3):

Proposition 2.1. Under Assumptions 1-2, the equilibrium price of the riqu}r stock at time t, is
S = S(&t) = ép‘, V te (0,00).

The stock price equals the present value of future dividends discounted at the rate of time

preference. That is, the stock generates a constant dividend yield which is equal to the rate of time
"The modified Bessel function of the first kind of order q is defined as:
= (%Y

= (Y BN W S

where I'(a) is expressed as I'(a) = [~ e~¥y°~'dy. (see Johnson and Kotz 1994).
®This assumption is also adopted by Merton (1971) and CIR (1985) for a similar reason.
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preference. The equilibrium stock price follows a similar process as the dividend:

ds 6
< = (ns — §)dt+ VVdz = [ﬂl + %2 —(oq — —og) 1n6] dt + /B2 + a21né dz,

where s is the expected stock return and V is the variance, explicitly given below. The expected

stock return and its process are:

ps = P1+P2/2— (1 —02/2)Inb+p,

2 2

v «a vo
dus = (ap+ 72- — ayps)dt — V (01— 72)(0210 + 72 — agps)dz.

The speed of reversion () and the long-run mean of the stock return (p + vad/4a;) determine
the predictable features of the stock return. Clearly, the predictability is affected by all parameters
(p, 1, B1, @2, B2). This result provides a theoretical explanation for the predictability of the stock
return. That is, such predictability is induced by the mean-reverting feature of the fundamental
rate of dividend growth (See references at the beginning of this subsection).

The dividend process also endogenously generates stochastic volatility that is meaning-reverting
and provides a rationale for a similar stochastic volatility process assumed by Stein and Stein (1991).

The volatility and its process are:

V = ﬂ2+a2ln6a

dV = (fraz+a1f2 —aqV)dt + q2\/17dz.

The instantaneous variance exhibits the mean-reverting feature, with the speed of adjustment being
a; and the long-run mean being (a;f2 + c261)/c1. The mean-reverting feature of the volatility is
induced by the heteroskedasticity in the dividend yield. Note that the restriction oz < 0 ensures a
negative correlation between the price of the market pprt;folio and its volatility.

Since bond prices and the spot interest rate are useful for analyses on option prices, they are

determined in the following proposition and corollary (see Appendix A for a proof):
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Proposition 2.2. Under Assumptions 1-2, the equilibrium price of a pure discount bond with

maturity T at timet < T, By(T,6;), is

_ T)e~ ™ (T-t)_ .
e e D)
)

By(T,6;) = A(t, T)% (2.11)

where A(t,T) = j‘é%g%, a(t,T) and v are defined in (2.9). LT

Corollary 2.3. Denote the instantaneous interest rate at any time 7 € (t,T) by v(7) and define it
implicitly through By(T,6:) = Ef(e” I m(r)d7) 9 The spot instantaneous interest rate r(t) and the
expected steady state interest rate T are '
| rt)=p+p1—a1lnb — (B2 + 2Inéd;), - - / -

7 = limp_,00 By [';(T)] = p—vad/do;.

Since the spot interest rate is linear in Iné, I can rewrite the bond price in Proposition 2.2 in

terms of the spot interest rate. That is,

BT, 80 = AT exp (oL 1) = (= p— )AL T,
The restriction 0 > ap > —2a; ensures a negative relation between the bond price and the spot
interest rate. Under such restriction, the bond price has appealing properties. For example, the
bond price is a decreasing convex function of the interest rate and an increasing. (decreasing)
function of time (maturity). The bond price is negatively correlated with the aggregate dividend.
That is, the common disturbance in aggregate dividends has similar effects on the prices of the
stock and the bond. The intuitive explanation is that a high aggregate dividend implies a high stock
price, which in turn induces a low demand for the stock as agents look for investment opportunities

in the bond market. Consequently, a high demand for bonds will pull down the bond price.

The dynamics of the bond price are described as

5= [r —(r—p—av/2)A(t, T)(1 - e'al(Tft))%] dt + [1 — A(t, T)e‘al(T"t)] VYdz.
t - a1

9E¢ (-) denotes the expectation under equivalent martingale measure.

11



The volatility of the bond price is Vp(t,T) = [1 — A(t, T)e_"‘l(T“)]2 Y. As one should expect, the
volatility of the bond price equals 0 when the bond is at the maturity. When the maturity goes
to infinity, the volatility approaches Y which is the same as that of the stock price. The intuitive
reason is that when the bond has an infinite maturity, it is very similar to a stock. In this case,
the volatility of bond mimics that of the stock price, which in turn reflects the voiatility of the
aggregate dividend.

The bond price is usually quoted in terms of the yield-to-maturity, R(r,t,T), which is defined

through e~ R(rt.T)(T-t) — Bi(T', 6:). We have

_ 2(r — p—aqv/2) vln(A(t,T))
RntT)=p+ ag(aga(t;T) + i)(T -t  T-t

As the bond approaches the maturity, the yieid—to—maturity a.pproa.chés the spot interest rate. If
the maturity goes to infinity, the yield approaches the dividend yield for the risky stock (p).1°
When the spot rate is below p, the term structure is uniformly increasing. If the spot rate is above
p — vaZ/4a;, the term structure decreases. For any value of the spot rate in between, the yield
curve is hump shaped.

The spot interest rate here obeys a mean-reverting process similar to that of In4§ since it is

linear in In§. Under the restrictions 0 > a3 > —2a;, the spot interest rate follows:

o2 2
dr = (a1p - % —ogr)dt + 4/ (oq + %)(azp + 1—);—2 — agr)dz.

This mean-reverting process resembles the so-called affine class of the term-structure model.1! The
mean-reverting speed for the _Spbt rate is ; and the long-run mean is p — va3/4a;. The Vasicek

(1977) model corresponds to az = 0 and the CIR (1985) model to p = —agv/2, respectively.

" !9This also confirms the earlier observation that the bond with infinite maturity is similar to the risky stock.
11As stated in Duffie (1992), the process of the affine class of term-structure model is

dr = (a1 + azr)dt + /by + bor dz.
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3. Relations among the Spot Interest Rate, the Predictability of Return of the

Market Portfolio and its Volatility
Before getting into the details of pricing options, let us examine the relations among the spot
interest rate, the stock return and its volatility. Recent studies in partial equilibrium settings
have attempted to find the relationship between the stock return predictability and the BS model.
For example, Grundy (1991) states that the BS model can be consistent with a mean-reverting
stock return. Lo and Wang (1995) cautioned that the predictability of stock returns could provide
additional information on the forecast of the volatility in the BS model. With the current model,
one can investigate whether the BS model can be consistent with the stock return predictability in
equilibrium where the spot interest rate (r), the drift ;co the stock price (us) and its volatility (V')
are all endogenously determined. ~

As is typical in such an examination, I first present the equivalent martingale price process for
fhe market portfolio. Using the formulas for y,, V and r, we can rewrite ps = r+B+aglnd =r+V.
This implies that the market risk of dz, defined commonly as (us —1)/VV, is VV. The equivalent

martingale process for the stock price is

!

dS:("'—P)Sdt+S\/‘7dz*, ' S VR SO

I".'-:v...-'.'-".gy'_-"- L ;{.”c'b\("

. . .
. - v ~—

i e Vi s
A T TR W
<

where dz* = dz + V/Vdt is the equivalent martingale Wiener process. The equivalent martinga.lé" -

process for the volatility is

av = [Braz + a1f2 — (o1 + a2)V]dt + aVVdz*,

which differs from the actual volatility process in the reversion speed and the long-run mean.
As the usual argument suggests, the actual drift of the stock price (p5) does not explicitly enter
the option price formula when the equivalent martingale pricing principle is used. However, it

would be erroneous to infer that fundamental forces that affect the drift p, do not affect the option

12} e market risk of dz can be easily verfied under the partial differential equation approach.
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prices. As is apparent from the formulas for r and V, parameters (p, c1, 81, a2, B2) that underlie
the predictability affect both the volatility and the spot interest rate simultaneously. This result,
which can be obtained only in an equilibrium model where p,, V and r are endogenous, is quite
different from and much stronger than that in Lo and Wang (1995), who only argue that the stock
return predictability can help the forecast on volatility. The effects of the parameters which affect
predictability on the interest rate and volatility can be briefly discussed here. First, the rate of time
preference, p, affects the spot interest rate positively, but has no effect on the market volatility in
this context. Second, a; not only determines the speed of adjustments for r and V, but alsc affects
the long-run means for ~ and V. The parameter oy affects the long-run mean of r negatively, but
affects that of V positively. In addition, pafameters (81, o2, B2) influence the spot rate and the
market volatility differently. For example, an i;xcrease in the long-run mean for r could be resulted
from increase in B; or decrease in either ap or ;. Also, an increase in the long-run mean for V

could be resulted from decrease in B; or increase in either az or Bs.

Table 1: Summary of Special Cases for Stock Return, Volatility and Spot Interest Rate

Stochastic Interest rate: SI Constant Interest Rate: CI
Generic Case (SVSI): Special Case 1 (SVCI):
Stochastic restrictions: —2a; < a2 <0 restriction: ag = —2&1
Volatility: V=pF+az2lné V=08 +02lné
SV r=p+f—onlné— (fa+cznb)/2 | r=p+p1—PBa/2
ps=p~+pP1—c1lnéd + (B2 + a21nd)/2 s =p+pP1+ P2/2 —2011nd
Special Case 2 (CVSI): Special Case 3 (CVCI):
Constant e e e oy —
Volatility: restriction: as =0 restrictions: ag = a; =0
r=p+pf1—ar1lné—fFa/2 T =p+P1— PB2/2
,_,,,=p+ﬁ1—a11n6+ﬂg/2 #3=P+ﬂl+ﬁ2/2

Table 1 presents a summary of the relations among r, ps and V under the restriction 0 > ag >

—20. In the generic case (SVSI), ps, V and r are all stochastic and mean-reverting. There are
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three special cases. Case 3 (CVCI) corresponds to the BS model, where volatility V' and interest
rate r are constant. However, in this case the actual drift s should also be constant, implying that
the BS model is not consistent with a mean-reverting drift in the current context. This result differs
from Grundy (1991) who states that the BS formulas hold for an Ornstein-Uhlenbeck process for
the stock return. To accommodate the predictability of the stock return, either the volatility or the
spot interest rate or both must be made stochastic and mean-reverting, as in cé.se 1 (SVCI), case
2 (CVSI) and (SVSI), respectively. Incorporating the predictability of the stock return, stochastic
spot interest rate and stochastic volatility can also significantly improve the numerical performance
of the option model, as we will show in Section 5 later.

The equilibrium approach also illustratesthat the two endogenized equivalent martingale pro-
cesses (dS and dV) are inherently interdepend;ent. Such interdependence can not be established in
any partial equilibrium option model, where the two processes are exogenous. For example, Hull

and White (1987) and Stein and Stein (1991) simply assume the two corresponding processes as
dS = rSdt + vV §dzf, dV = 6(V)dt + ¢(V)dz23,

where the drift in dV is not related to the stock price process (dS). Moreover, the correlation
between dz; and dz; is usually assumed to be zero. In contrast, the endogenized processes for
S and V indicate that the drifts 6f dS and dV are associated in a particular way.r. Also, the
correlation between dz; and dz; depends on the sign of as. They are perfectly negatively correlated
if ag < 0. Although the special relation between dz; and dzz here depends on the one-factor
setting, the general message of our exercise should be valid when the model is extended into a
" multi-factor setting. These requirements suggest that cross-equation restrictions must be imposed

on the coefficients when the processes for S and V are to be estimated.
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4. Pricing European Options

4.1. Options Written on the Market Portfolio

Consider the European style stock option. The equilibrium price of such a stock option satisfies the
Euler equation (2.5). We can explicitly compute (2.5), since the stock price is linear in the dividend
which is a function of ¥ and since the density function of Y conditional on (Y%, t) is known. For a
European call written on the risky stock with a striking price K that matures at time T, its price
at time ¢t < T, denoted C;(K,T), can be written as

Uc(cT, T)

Cy(K,T) = B, ( oo

max(St — K, 0)) = e T, F, (% max (67 — pK, 0)) .

Similarly, for a European put written on thé risky stock with a striking price K that matures at

time T', its price at time ¢ < T, denoted P;(K,T'), can be expressed as
Py(K,T) = ePT-93,, (6l max(pK — 6r, 0)) .
T

The following proposition summarizes the European stock option price formulas for the generic

case (SVSI) with the restriction —204 < a3 < 0 (see Appendix B for a proof).13

Proposition 4.1. Under Assumptions 1-2, the equilibrium stock option prices are:
—o(T— =A\I j,a(t,T)Y (pK
Ci(K,T) = ST 72, eJ_!:\’:L(m%}T(LH

—ACTIA A T)A) YO+, SRR Y (PK))
- —KBy(T,6t) X320 = J(! (LTAP ) ,

RN AR
and e

—A(t.T) i D(v+5,55 Ty (oK e e T
PK,T) = KBY(T,8) i DAY NHEERLEO) o~

—p(T— =\ [(v+5,a(t,T)Y '
e HP) g0 €A T HIGLTIV 1)

where I'(a,z) = [[° e Vy*~ldy, 7(a,z) = [§eVy*ldy (V = > 0), and v(a,z) + I'(a,z) = I(a).

The call and put prices satisfy the put-call parity condition for European options on assets with a

constant dividend yield.

1®Note that the domain for § is & € (0,e772/°2) under a3 < 0 since Y = B + a2 In§ > 0. However, the domain for
& becomes & € (e7#2/%2,00) under az > 0. The option price formulas under condition a2 > 0 are presented in the
appendices.
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Since the stock option prices are functions of parameters (01, B1, a2, P2, p), I can explicitly
examine how each parameter affects the option prices. To economize on space, I examine only the
call option written on the risky stock. Similar analysis can be conducted on puts. Comparative
statics show that a high p results in a low call price. The intuitive explanation is that, since the
stock dividend yield in equilibrium equals the rate of time preference, a high dividend yield (p)

generates a low stock price which in turn induces a low call price. However, the signs of g—g{‘, %1‘,

gc and %ac—'; are all ambiguous, which confirm the discussion on the effects of the predictability in

Section 3. Changes in any of the four parameters have opposite effects on the long-run mean of
r and V. For example, a high §; implies a high long-run mean of r and a low long-run mean of
V. Since the spot rate and the volatility are pulled toward their long-run means, a higher f; is -
more likely to result in a higher r and a lower‘ V. A higher r alone generates a higher call while a
lower V alone corresponds to a low call price, thus the overall effect on the call price is ambiguous.
The effects of s or B2 can be explained in a similar way. The effect of changing «; is even more
complicated since such changes not only affect the long-run means of r and V differently but also
influence the reversion speeds of both.

" Finally, the limit behavior of the call option when S; becomes very large is intuitive. When
S; — o0, a call option is almost certain to be exercised. The call option becomes very similar to
a forward contract with a delivery price K. That is, C¢(K,T) — Sie—P(T-t) — K By(T), which is

confirmed by the limit of (4.1).

4.2. Pricing European Bond Options

Consider the price of European style bond options. Denote by CB.(k,T,T) (PB:(k,T,T)) the
value at time t of a call (put) option on a discount bond of a maturity date T', with a striking price

k and an expiration date T. It is understood that t <T < T. According to (2.5), we have

CB(k,T,T) = ePT-96E, (67" x max(Br(T, 67) - k,0)),

PBi(k,T,T) = e PT-I4E, (6;1 x max(k — Br(T, 8T),0)) .
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Since the bond price By (T, é6r) is a function of 67, we can compute the bond option prices in the
same way as those of the stock options. The explicit formulas under the generic case (SVSI) are

stated in the following proposition (see Appendix C for a proof):

Proposition 4.2. Under Assumptions 1-2, the equilibrium bond option prices are:

(t.T.T) Y(v+4, 28I, v (k)
CBi(k, T, T) = By(Ty6:) ¥ —b.T.T "J(D(t T T)A) 113((;3)

—~kBy(T, 8) T2 S22 AGTINY Ao+ )Y )

7=0 T(wts)
and (4.2)
| T e~ Al D(v+i, qierh Y
PUK,T,T) = KBU(T, 8) g 24T AGTIY N A Y )
— [(v+j,-2ET v (%))
—By(T, ) 2;'30 2 D(‘TT)*(D(t TNy rz‘,((; IJ’;‘)

where k is so chosen that Br(T,k) = k and D(t,T,T) = ﬁ%’%. The call and put prices satisfy

the put-call parity condition.

As one should expect, the call on bond is an increasing function of the bond price and a
decreasing function of the striking price. Also, the call price increases with the maturity of the
option. The remaining signs of comparative statics are ambiguous. These general features are
similar to those of the call on bonds stated in CIR (1985), since the latter model is a special case

of the current model.

5. Performance of the Model for Options on the Market Portfolio

In this section, I use numerical examples to examine the performances of the generic case (SVSI,
Table 1) where both the spot interest rate and volatility are stochastic and mean-reverting, then

investigate the implied volatility pattern in the current model.

5.1. Comparison with the Black-Scholes’ Model

Table 2 compares the generic case SVSI with the BS model for European call options for three
different maturities, assuming a stock price of S; = 100. The rate of time preference, p, is set to be
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4% to match the aggregate dividend yield on stock index. To compute the BS call prices, the risk-
free rate is set to be the long run real interest rate 7ps = 4% and the volatility is set to match the
observed average volatility ogs = 20%. Choosing a; to match the estimate by Marsh and Merton
(1987) on the speed of adjustment of aggregate dividends gives a; = 0.25. To determine f3;, we
initialize the spot interest rate and instantaneous volatility to be rgs and ops. Thus, 51 = 0.3666.

Further, o = —0.1029 and B = 0.1827 are identified through the condition on the instantaneous

volatility and restrictions to ensure positive Y.

Table 2, Figure 1 and Figure 2 here.

Table 2 shows the price differences betwesn the model SVSI and the BS model for call options
on the same stock with different striking prices: The generic case SVSI corrects the BS price biases,
providing lower prices for the out-of-the-money calls and higher prices for the in-the-money calls for
different maturities. Such biases of the BS model become more pronounced as the time to maturity
increases or the degree to which the option is in- or out-of-the-money increases. These numerical
results are consistent with the empirical study by MacBeth and Merville (1979) for stock options
of large companies during 1976. They also confirm the result in Hull and White (1987) for the case
where the Wiener process for the stock price and the process for volatility are negativel_y correlated.

The current model corrects the BS bias because of the mean-reverting feature of 7 and V' and the
negative correlation betwéen the stock price and its volatility. To be specific, consider a situation
where the rate of dividend is very high, which indicates a low spot rate. The mean-reverting force
will push the spot rate up, which induces a high call price. Also a high rate of dividend results
in a high stock price which, in turn, implies a low volatility because of the negative correlation
between S and V. In this case, it is unlikely for the stock price to change by a large amount. The
joihf effect is that a high stock price will imply a higher call value in the current model than in
a model with constant interest rates and constant volatility. Numerical exercises in Table 3 show

that the effect of mean-reverting interest rates dominates the effect of negative correlation between
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the stock price and its volatility when the stock price is low.

Figure 1 shows that the price difference is positive and the largest for the deep-in-the-money
call, which falls monotonically as the call goes less and less in the money. This pattern resembles
the recent empirical results of Dumas, Fleming and Whaley (1995) on the S&P 500 index options.
When the call is slightly out-the-money, the price difference is almost 0. When the call moves
more to out-of-the-money, the price difference is negative and the absolute difference increases.
The influence of the time to maturity on absolute price bias is insignificant. The percentage price
correction is illustrated in Figure 2. Note that the largest percentage price correction is for the
deep-out-of-the-money option. The time to maturity also affects the percentage price bias. The

longer the maturity, the larger the percentage price bias for the same striking price.
Table 3, Figure 3 and Figure 4 here.

Table 3 compares the BS model (case 3 CVCI), case 1 (SVCI), and case 2 (CVSI). A SVCI
model generates reasonable price corrections for the in-the-money call, but fails to correct the BS
price bias for the out-of-the-money call. On the other hand, a CVSI model generates a uniformly
lower call prices than the BS model. This is because the stock price and bond price are negatively
correlated. In this case, according to Merton (1973), stochastic interest rates reduce the call price
in relation to the BS value with constant interest rates. Thus allowing for a stochastic interest rate
alone can only produce reasonable prices for the out-of-the-money call.

Comparing the performance of the generic case in Table 2 and those of the other three cases in
Table 3, one concludes that both stochastic volatility and stochastic interest rates are necessary to

generate reasonable corrections for the bias in the BS model for in- and out-of-the-money calls.

5.2. The Pattern of Implied Volatility

Table 4 presents the implied volatility of the current model, which is calculated through the BS
formula using the option prices of the generic case SVSI given in Table 2. Consistent with empirical

results, the pattern of the implied volatility with respect to the striking price is a decreasing function
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of K/S. For the deep-in-the-money calls, the implied volatility is very large and decreases as the
call moves to the deep-out-of-the-money, as illustrated in Figure 5. This phenomenon is consistent
with the empirical findings of MacBeth and Merville (1979) and Wiggins (1987). Also, a recent
empirical study by Dumas, Fleming and Whaley (1995) on S&P 500 index European option finds
the same regularity. In addition, for a given maturity, the average of the implied volatility with

different striking prices is higher than the instantaneous volatility.
Table 4 and Figure 5 here.

In summary, call prices given by the generic case SVSI match market prices better than the
Black-Scholes formula. Important for correcting the BS price biases are the mean-reverting feature
of the spot interest rates, the negative correlati;)n between the stock price and its volatility and the
negative correlation between the market volatility and the spot interest rate. These features are
also necessary for delivering a realistic pattern of implied volatility. Sensitivity analyses show that

these results are robust with respect to changes in parameter values.!4

6. Conclusion

This paper has used an extension of the equilibrium model of Lucas (1978) to study the valuation of
options on the market portfolio with stochastic volatility and predictability of stock return. I have
investigated the equilibrium relationship between the price of the market portfolio and its volatility,
as well as the relationship between the spot interest rate and the market volatility, in an endowment
economy. The only uncertainty in this economy is the aggregate dividend whose growth rate follows
an affine class of mean-reverting process. The equilibrium results indicate that the predictability
of the stock return can be induced by the mean-reverting feature of the growth rate of aggregate
dividends. In contrast to previous analyses that employ partial equilibrium settings, here we show

that the BS model is not consistent with the predictability of return on the market portfolio when

14Eor lack of space, sensitivity analyses are not presented here but available upon request.
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the interest rate and volatility are endogenously generated from the underlying dividend process.
Although the actual drift of the stock price does not explicitly enter the option price formula when
the equivalent martingale pricing principle is used, fundamental forces that affect the drift do affect
option prices through their effects on the endogenous interest rate and volatility. It is also shown
that there are strong interdependence between the price process and its volatility process for the
market portfolio.

Using the Euler equation, I have derived the pricing formulas for the options on the market
portfolio which incorporate both stochastic volatility and stochastic interest rate. Since there
is only one source of uncertainty, this model preserves the completeness feature for the hedging
and risk management purpose. Numerical eXamples show that the current model performs better
than the BS model with realistic parameter va:lues. They suggest that the option valuation should
incorporate both stochastic volatility and stochastic interest rates in order to correct the BS pricing
bias. Moreover, stochastic volatility and stochastic interest rate are consistent with predictability
of stock return.

In addition to providing pricing equations for options on the market portfolio, I have also derived
closed-form formulas for European style bond options in a manner that is consistent with the prices
of options written on the market portfolio. The Vasicek (1977) model and the CIR (1985) model
can be viewed as special cases. These formulas have potential use for future examinations of the

term structure and bond option pricing.
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Appendices

A. Proofs of Proposition 2.2 and Corollary 2.3:

A.l. The Price of Pure Discount Bonds

Proof. By equation (2.4) and the specifications in section 2.2, we can express the pure discount

price with maturity T at time t < T as
Bt(T, 61:) = e"tétEt (e"’T6;1 X 1) = e“’(T_t)ﬁtEt (6;1) s V te (O,T)

Since Y = f2 + a21né, we use the conditional density function for Y7 in (2.8) and parameters
defined in (2.9), thus

g —PatYy [0 Pp—Yr _ (=)
By(T,8) = e PT-¢ %2 at, T)e @M1 § ————dY;
¢(T, 6¢) e S - a(t, T)e =5 3'T(v + ) T
— C_P(T_t)-*-%i e\ . a(t,T)og )v+j

= J'T(v +3) Plv+ ])(a(t,T)az +1

—(pr AT 1T 1 v \
= A(t,T)% R "

where A(t,T) = 7—(—y)—a';,;’,Ta‘2"il. [ |
A.2. The Instantaneous Interest Rate

T
Proof.  The instantaneous interest rate is defined through B:(T,é;) = E} (e’ft "(")d’) . Thus
r(t) = _%M |r=¢ - Since

dln By(T, &) _

2 ( ’Uaz A(t T) —ay(T-t) _ ( + )Yt A(t T)2 —cu(T—t))

therefore, the spot instantaneous interest rate is

1
rt)=p+P1—ar1lné; — -2-(ﬂz + a2 Inéy).

It is easy to show that

2
Efr(T) =p- Z—?— - —(2a1 + ag)e~ 11§, — -ﬂl

Then, the expected steady state interest rate is ¥ = limp_,oo Ex[r(T)] = p — vod/4c;. B
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B. Proof of Proposition 4.1:

Proof. The domain for 6 is § € (0,e~P2/2) for o < 0 since Y = 2 + a21n6 > 0. As stated
in section 4.1, the European call option with a striking price K and maturity T at time t < T is

computed as
C(K,T) = e T8, (67" x max(6r — K, 0))

e—P2/x2
= e PT-98,Prob(67 > pK) — e T~ KpS; / . 67" g(ér | 6:)dér -
p

The call price of the stock is proven as follows:
e=P(T=%)8,Prob(67 > pK) = e T~ 5;Prob[Yr < Y (pK)]

= ePT-95, [ 5 g(t, T)e~ N1 T2, ]!in\;] dYr

—K
= e—p(T t) S, Eoo e AN XJ ‘Y§v+_1,;%i iJ!Y! pK n,

ePTOKpS, [% /° 65 g(6r | 6:)d6r

and

—Ba+Y =Y
= Ko TR e G o, Them Vet 2 7fRlavy

Y, .
_ KeAT%ay oo, 0 (Y0K) g4, T)e ™ on e~ TV (at, T)Yy)*+ ¥y

—p(T— —A\ ; a vt
AT S e 5 S GROAGT

—A(tT)A i ( +J,—-§-L—’5Y(pK))
= KBy(T, &) Y320 - (A(t DAy T F(:-f-]) -u

The European put option price can be computed in a similar way as for the call:

K
P(K,T) = e T 9KpS, /o g s72g(67 | 6:)d6r — e PTSProb(br < pK), V t€(0,T)
00 o~ACTN( A, TINY T(v + 3y Y (PK))

= KB ) 7 T(v+9)
2. e 2N I'(v + j,a(t, T)Y(pK))
-p(T-t) g )
¢ ¢ ;0 3! T(v +3)

C. Proof of Proposition 4.2:

Proof. Since
Y7 Ty —a(T=T) _
Br(T,6r) = A(T,T)"e‘P(T —T)- AT T-D-1)
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we first compute the present value of By (T, é7). It is easy to show that
E,[PV (Br(T, ér))] = " ~96,E, (87" Br(T, 6r)) = Bu(T, é).
As stated in section 4.1, the value of a European call option on bond, CB;(k,T,T), is
CBi(k,T,T) = e *T-9¢,E, (5 x max(Br(T,6r) - k,0)) V t<T<T

| = e ATt /: e 671 (Br(T, 67) — k)g(br | 6:)d6r, V a9 <0,

where k is chosen so that By(T, k) = k. We have
e~P(T=06, [ *'** §-1B1(T, b7)g(6r | 6:)d6r
= ATty =220

— _ B2 _ (. (F_m_Ys 7\ —a(T—
1 ® AT, Tyred~¢T-D-sfATDTD cp | vayy

—p(T t)+cx2 A(T, T)v _0 W’Y(v + 7, Jﬁ@L)D(t,T,T)vH’

D(t.T.T)
_ e—D(t,TT)A v(v+5, 2Ty (oK)
= By(T,6,) T2 (PELIAY T sy P

where D(¢,T,T) = -}((;,’—?T%. It has been shown in Appendix B

ke~P(T=0)6, [£/2 6-10(57 | 6,)d6

=k Bt(T, 6t) Zoo e—Alt, T)A( A(t, T)N)? ’7(U+J,z%'7.)-Y(k)) .

j=0 T(v+j)
Therefore ey
_ oo e-DETIA Ty Vs, —2ET v (E))

t.T) +3, Y (%
—kBi(T, 6:) T320 & ek "(A(t T)A) (v JI‘??E% (@ )

Similarly, we can show that, for ap < 0, the value of a Europea.n put option on bond is

P,(K,T,T) = kBy(T, &) ¥ o | eTA T)"(A(t T)A) P45, R Y ()

J! T(v+j5)
_ —D(t,T,T)A Ty Do+, =510y (k)
—By(T,6) £ & (PELTIN 2o
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D. The Option Valuation with oy >0

D.1. Call and Put Options on Stock

The domain for § under az > 0is § € (e7? 2/92,00). We can compute the call and put on the risky

stock in the similar way as we do in Appendix B.
CuK,T) = ePT95,E; (67" x max(6r — pK, 0))
o0
— e PT-0G,Prob(sr > pK) — e PT-DKpS, / erg(er | 8)dér
p.
Tedious exercises show that

Ci(K,T) = Se—PT-t) Y20 e"‘AJ I‘(u+.1,;%i IJ)Y(QK))

o e—AT) I(v+ ,HY( K)) .
K BT, ) S it D AT, i

Similarly, the European put option with a striking price K and maturity T" at time t <T is

Pu(K,T) = KBy(T, 6) Y320 = T’*(A(t T)AY vlv+aq{ﬁ’§;f(px)1

) i g
D.2. Call and Put Options on Bond

For a > 0, the value of a European call option on bond, CBi(k,T,T), is
OBk, T,T) = 9%, [ 87 (Br(T,br) ~ K)g(6r | &),
k

Tedious exercises give us

— _ -D(t.T.T)A T(v+5, 28Iy (k)
CBy(k,T,T) = By(T, 8) T30 2 (DTN 1‘3(‘.‘,15’

—AGTINA®,T)N) T(v+ds Y (%))
—kBy(T, 8) TR0 =g 12 ?«%ﬁ; '

Similarly, we can show that, for a2 > 0, the value of a European put option on bond is

T —A(tT)A (v+3, Y (k)
Pu(K, T, T) = kBy(T, ) T2 e (AGTINY 7(45(:_5;%

—D(t,T,T)A 5 Y(v+is=r —2tT)y (k)
BT S D pray WD
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Table 2

Comparison between the General Case SVSI and the Black-Scholes Model
Option Parameters: S = 100, al = 0.25, Bl =0.3666, a2 =-0.1029, B2=0.1827, p = 0.04.

T =1 months T = 6 months T =12 months
Svsi B-S % Correction SvVSI B-S % Correction SvVSi B-S % Correction
K/S c Cc (c-CyCc c (o} (cCyc c Cc (c-C)yC
0.75 26.5608 24.9181 6.59% 28.2181 24.6373 14.53% 30.9969 24.6864 25.56%
0.80 21.2530 19.9349 6.61% 22.8966 19.9474 14.78% 25.6596 20.4626 25.40%
0.85 15.9525 14.9554 6.67% 17.8514 15.5362 14.90% 20.6686 16.5912 24.58%
0.90 10.7354 10.0413 6.91% 13.2393 11.5759 14.37% 16.1212 13.1513 22.58%
0.95 5.9667 5.5596 7.32% 9.2311 8.2194 12.31% 12.1061 10.1919 18.78%
1.00 24257 2.2960 5.65% 5.9703 5.5511 7.55% 8.6907 7.7263 12.48%
1.05 0.6268 0.6543 -4.20% 3.5284 3.5656 -1.04% 5.9106 5.7350 3.06%
1.10 0.0888 0.1243 -28.56% 1.8730 2.1810 -14.12% 3.7622 4.1730 -9.84%
1.15 0.0059 0.0158 -62.66% 0.8739 1.2735 -31.38% 2.2032 2.9806 -26.08%
1.20 0.0002 0.0014 85.71% 0.3468 0.7118 51.28% 1.1578 20928 -44.68%
1.25 0.0000 0.0001 -98.49% 0.1106 0.3821 -71.05% 0.5256 1.4465 -63.66%
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Figure 1: Price Comection, T=12 months
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Table 3

Comparison between the Special Cases and the Black-Scholes Model
Option Parameters: S = 100, al =0.25, pl = 0.3666, p =0.04.
ForSVCl: a2=-2al, p2=21.
ForCVSl: o2=0, p2=0.04.

T = 1 months T = 6 months T = 12 months
SVCl cvsl B-S SVCl cvsl B-S svCl cvsl B-S
KIS c c Cc c c Cc c C
0.75 24.9183 24,9181 24.9181 25.2259 24.6061 24,6373 25.8826 24.4771 24.6864
0.80 19.8430 19.9349 19.9349 20.7169 19.8699 19.9474 21.6238 20.1049 20.4626
0.85 15.0003 14.9550 14.9554 16.3715 15.3873 15.5362 17.4756 16.0680 16.5912
0.90 10.1839 10.0372 10.0413 12.2398 11.3453 11.5759 13.4514 12.4747 13.1513
0.95 5.7568 5.5443 5.5596 8.3813 7.9223 8.2194 9.5657 9.4016 10.1919
1.00 2.2570 2.2724 2.2960 48663 5.2237 5.5511 5.8335 6.8793 7.7263
1.05 0.3402 0.6374 0.6543 1.7762 3.2502 3.5656 2.2703 4.8912 5.7350
1.10 0.0000 0.1181 0.1243 0.0000 1.9106 2.1810 0.0000 3.3838 4.1730
1.15 0.0000 0.0145 0.0158 0.0000 1.0637 1.2735 0.0000 2.2815 2.9806
1.20 0.0000 0.0012 0.0014 0.0000 0.5627 0.7118 0.0000 1.5020 2.0928
1.25 0.0000 0.0001 0.0001 0.0000 0.2839 0.3821 0.0000 0.9672 1.4465
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Figure 3: Price Correction for SVCI, T=12 months
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Figure 4: Price Correction for CVSI, T= 12 months
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TAble 4

Implied Volatilities Calculated by Black-Scholes Formula from the Call Prices
Given by the General Case SVSI in Table 2

K/S T =1 month T =6 month T = 12 month
Implied Volatility Implied Volatility Implied Volatility
0.75 0.9245 0.5117 0.4897
0.80 0.7167 0.4135 0.4077
0.85 0.5236 0.3351 0.3417
0.90 0.3547 0.2781 0.2909
0.95 0.2491 0.2400 0.2531
1.00 0.2108 0.2153 0.2253
1.05 0.1965 0.1987 0.2046
1.10 0.1877 0.1866 0.1885
1.15 0.1812 0.1768 0.1751
1.20 0.1789 0.1679 0.1636
1.25 0.1701 0.1592 0.1520
Average
Implied Volatiltiy 0.3540 0.2621 0.2629
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Figure 5: Impled Volatility for T = 12 month
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