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Abstract

This article concerns the existence of equilibrium in a two-period model with general personal and
corporate tax structures. We show that an equilibrium exists if there is a price system under which
no consumer and firm has an arbitrage opportunity. The model can be modified to handle non convex

tax structures and capital gains.

1. Introduction

There is an extensive literature addressing the role of taxation in competitive financial markets.
One of the difficult issues is to construct a model which is sufficiently general to deal with the complex-
ities of the tax law, and yet remain tractable. There are many papers that consider the implications
for asset prices or asset allocations in specialised models(for a small sample see:Constantinedes (1983),
Dammon and Green(1987), Dybvig and Ross(1986), Green(1993), Zechner(1990)).

Before discussing the properties of an equilibrium it is important that there are sufficient restric-
tions on the economy to imply the existence of an equilibrium. This is important if agents face different
tax functions that allow tax arbitrage possibilities. This issue has been addressed in a two period ex-
change economy by Dammon and Green(1987) and Jones and Milne(1992). Dammon and Green(1987)
consider restrictions on tax functions to eliminate arbitrage and define a set of arbitrage-free asset
prices. Their paper considered tax functions of considerable generality and exploited the theory of
recession(asympototic) cones to determine arbitrage free prices. Jones and Milne(1992) argued that
Dammon and Green(1987) did not include the government sector explicitly, ignoring the feasibility
constraints implicit in the government budget constraint. Once these constraints were introduced and
recognised by the agents, there were natural bounds on the possible asset trades consistent with tax
arbitrage. These restrictions allowed more general tax functions to be consistent with equilibrium. Of
course the differences in the two models could be resolved by assuming that Dammon and Green’s

tax functions included the implicit tax rules that come into play as soon as large tax arbitrages were
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claimed from the government by consumers.

In this paper we extend the ideas in Dammon and Green(1987), and Jones and Milne(1992) to
a more general economy:we assume an explicit government sector, productive firms, spot commodity
markets, and the possibility of non-convexities in the tax functions. The aim of the paper is to
show how the basic ideas can be extended in a number of realistic directions. In particular the
introduction of firms allows us to accomodate models(eg. Zechner(1990)) that discuss the interaction
of personal and corporate taxation and its impact on corporate financial structure. The introduction
of government is more general than the modelling in Jones and Milne (1992). We show that the
introduction of spot commodity markets is easily accomodated(For simplicity we assume only one
commodity is traded in the second period, but this is an expositional restriction that can be relaxed).
Finally we show that tax law often allows for subsides or thresholds that imply non-convexities in the
tax functions. In general this can imply the non-existence of competitive equilibrium. Exploiting ideas
from General Equilibrium theory(see Heller and Starr (1976), or for an excellent text-book discussion
see Ellickson(1993)) we prove the existence of an approximate equilibrium, where the approximation is
bounded by the deviation from the convexified economy. We show that even though the tax functions
may be non-convex we can obtain weak restrictions on the tax functions that will eliminate arbitrage
opportunities. As most tax non-convexities occur at the lower income levels it should be reasonable
to assume that the approximate equilibrium is a plausible representation of the true economy.

The plan of the paper is as follows:in Section 2 we set out the model; in Section 3 we state the
assumptions and prove some preliminary lemmas on arbitrage free asset prices; in Section 4 we prove
the existence of an equilibrium for the case of convex tax functions; in Section 5 we prove the existence
of an approximate equilibrium for non-convex tax functions. Finally in the conclusion we indicate how

the model may be extended in future research.

2. The Model

There are two dates, t = 0, 1; [ physical commodities at time 0 and one commodity at time 1; and
finite states of the world S = {1,:--, S} when uncertainty is resolved at ¢ = 1. All economic agents in
the economy observe the states, so there is symmetric information.

We assume a finite number of firms J = {1,:--,J}. The firm j € J has initial holding, ,5?, of some
securities, which gives the firm a positive initial cash flow. The firm makes input of production and
financial decisions at t = 0, facing competitive markets for commodities and assets and pays tax. At
date t = 1, uncertainty is resolved and the firm must pay its security holders and taxation, from the
revenue derived from assets and production. In general the firm’s taxation function will discriminate

across assets, combinations of assets and scale of the firm’s portfolio.



In addition to firms, we have a finite set of consumers I = {1,---,I}. Each consumer has a
consumption set and preferences over the commodities at time 0 and the contingent commodities at
t = 1. At t = 0 the consumer is endowed with some of the first date commodities, Z) and initial
holding of securities, @, and(possibly) pure profits from firms. The endowment is traded for assets
on the competitive asset markets and used to consume and to pay the tax. At ¢ = 1, uncertainty is
resolved and the consumer receives asset returns net of personal tax. The consumer faces a general
personal tax function over asset returns that discriminates over assets and combinations of assets.

The government is also included as part of the economy. Rather than provide a detailed analysis
of the operations of the government, we will place weak restrictions on government activity. For
simplicity assume that the government has net resources z% € Rﬂ_ at time 0 and 5 € Ry at time
1 and state s, sets tax rates ex ante, and then consumes z¢g at time 0. Since the economy ends at
time 1, the government constrains the tax rebates, in other words, the government cannot promise
infeasible tax rebates to consumers and firms. We call this a No Ponzi Game(NPG) condition®. We
stress that this constraint is a weak bound and that more restrictive conditions could be introduced
by appealing to tax laws or financial regulations.

There are N financial assets, indexed by n, which are characterized by their state-contingent
payoffs Cp, 5,5 € S. We assume that these payoffs are in units of a single, numeraire commodity. And
for asset n(n = 1,---, N), part of its payoff, v, sCn s, contributes to taxable income, where v, 5 € [0,1].
When v, s = 1,Vs € S or 1, = 0,Vs € S, asset n is called fully taxable or tax exempt. We assume
that one of the assets is a riskless bond.

We are now in a position to present the formal model.

The firm j has an underlying production technology Y; C (—Rl+) x R3. At time 0, firm j
chooses a input plan yg € —R! and an asset portfolio §; = (Bj1, -, Bin)T € RN (where T is the
transpose transformation) with the usual sign convention for issuing of assets(positive) and holding of
assets(negative). Then it pays tax T (2) 7 [p° (,30 +8j)+py ] where p© and p° are prices of commodities
and prices of assets respectively.

Now, at date 1 and state s, the firm obtains contingent revenue from its output y; € R4 and
net holdings of assets, —C,f3;, where C; = (C14,+,Cn,s). This revenue is taxed via a general tax
function T( )(yJ —CspB;j), where Cs = (71,sC1,8: * *  Y,sCn,s). We assume that T (2)( -) and T}f,)(-)(s € S)
are continuous and convex with TJ(,O) (0) =0and T(Z)(O) =0.

Finally, given price p = (»%,p%) = (®{,---,p¢,p5,---,0%) C Rﬂ'_*’N for the commodities and
assets at ¢t = 0, we can formulate firm j’s value maximizing problem as:

93 The No Ponzi Game condition has been introduced in macroeconomic models to eliminate unbounded borrowing
positions by consumers and/or goverments. See Blanchard and Fischer(1989).



maxqy, g,)er; Vi (0, Y5> B5) = 05 (B + BY) + %42 — T a0 (B; + BY) + p°yY, (%)

where y; = (v7,y},---,y;) and Fj is set of all (y;, 3;) satisfying

yi €Y, 2 —Csfj 2 T (ys — Csfj), s €S.

The above inequality is the condition of no unanticipated bankruptcy of of firm j.

We have assumed tax functions of similar form to Dammon and Green(1987) in allowing for
different proportional state contingent rates on different asset returns. Our functions do not allow
for capital gains taxation, but can be modified and extended in the same manner as Dammon and
Green’s extension(their Section V) to taxes that depend upon prices. For expositional clarity we omit
this generality and refer the reader to Dammon and Green(1987) for further discussion.

Consider consumer i € I. the consumer has a contingent consumption set X; = X? x X} C R‘j‘s
(X? € R,,X! C RY), and preferences defined over X? x X}, represented by a utility function
Ui : Xi — R. At time 0, the consumer chooses an asset portfolio o; = (e 1,---,a;n)T (with sign
convention for long position(positive) and short position(negative)) and a consumption plan z;, paying
taxes according to the tax function Ti(},) (+), which is continuous and convex with Ti(},) (0) = 0(It is trivial
to add income from the commodity and asset endowments, and we omit them as arguments of the tax
function.). When asset returns are realized at ¢t = 1, the consumer pays personal tax on the proceeds
and then, consumes. The consumer’s tax function, at state s, is summarized by ﬂg)(c_’sai), which is
continuous and convex with Tl(;) (0)=0.

At date t = 0 the consumer has wealth:

W; = p%z} + p°al + ) 6:5v(p, vj, B),
J

where 6;; > 0 and ) ;6;; = 1, for all j is consumer i’s share in the present value of firm j. So i’s

consumption and portfolio are constrained by:

1
poi +p°z; + T,-(,o) (P50i) < Wi (2.1)
At date ¢ = 1, the consumer’s contingent consumption z} = (z},---,z}) is constrained by:
z{ = Cya; — fl"i(;)(C_’sa,-), s €S. (2.2)

In summary, the consumer i’s problem is:

max U;(z;, z! *%
(x”z:)eEl 'I:( 29 1,)’ ( )



where E; is set of (z;, z!) = (zi,z}," -+ ,z; ) which satisfies (2.1) and (2.2). Let Ui(z;, ;) = Uiz, Cros—
Crfj)(éla,-), -+, Csa; — ﬂf?(c_'sai)], then (*x) is equivalent to the following problem:

(:c,,a,a)‘)éE’ U ($1,, O(z) (**)’

where E! is the set of feasible consumption-portfolio plans (z;, o;) of consumer i, which satisfies (2.1)
and Csa; — T3 (Csars) 2 0,Vs € S.

Suppose that the government has preferences over its consumption set X¢ = R "+, represented by
a utility function Ug. At time 0, it spends its income which comes from its endowment z2 and tax
revenue y_; T; T )(p ;) + 3 ](%) [ps(ﬁg +B;) +p y?] and, at time 1, the government has a future
contingent budget constraint(a NPG) condition:

% + ZT(I) Cyai) + ZT(2) — Cyf;) > (2.3)

That is, the government does not react to attempts to drain government resources through tax-
avoidance measures. It can be seen later that (2.3) holds for sufficiently large zg.

The government’s problem can be stated as:

max Ug(zc), (% % %)

where G denote the set of government’s consumption z¢ which satisfies:

p°ze <9z + ST 0¥ ) + 3 TR 05 (B + B5) + o). (2.4)
i J

To conclude the section, we give the definition of competitive equilibrium.
Definition 2.1. A competitive equilibrium with asset taxation is a non-negative vector of price
(p*C,p*S) and allocations {(z},c}) for alli € I; (y7,B;) for all j € J; zg} such that:
(i)(z}, a}) solves the consumer problem (*x)' for each i € I;
(i) (y;, B;) solves () for each j € J;
(iii)zy; solves (* * x);
(IV)ZJ +‘TG +Zz 1 Zi m: +$*G;
VXio; =X;(8; +B) + ;&

3. Tax Arbitrage and Assumptions

The purpose of this sectiion is to give a definition of no-tax-arbitrage prices, some basic assump-
tions and two basic propositions on no-tax-arbitrage.



Definition 3.1. The price vector p® of assets is a "no-tax-arbitrage” price vector for consumer
i(firm 7)if and only if for each of(8?) satisfying

Cs(ai + af) — T [Colei + af)] = Coars — T (Cocvs) (3.1)

for all o; and all s € S and there exists at least one o; and one state s such that (3.1) holds with
strict inequality;

(2 — Cs(B; + B%) — T[S — Co(B; + B = v — Cobs — T (45 — Caby) (3.2)

for some y; € Y; and all 3;((y;, ;) € F;) and all s € S, and there exists at least one (y;, 3;) and one
state s such that (3.2) holds with strict inequality.) then pa > 0(p°8? < 0).

This definition captures the notion that, starting from «;, there is a feasible direction of improve-
ment that consumer i would wish to exploit. This is called, in Ross(1987), a local arbitrage opportunity
at a; of consumer i. Likewise, (3.2) is a local arbitrage opportunity of firm j. This arbitrage may
depend on the investor’s position; there may be positions held by no one from which this arbitrage
would be available in equilibrium. And, moreover, this arbitrage depends upon, as shown in Dammon
and Green(1987), investor’s tax functions.

Regarding consumer i, if o; satisfies (3.1) with strict inequality and if T( )( -) is differentiable, then

dT(l)(C_'sai)
dx
Therefore, from (3.3) and Assumption 2, it can be deduced that if all assets are fully taxable, that

Csad — Csad > 0. (3.3)

is, Yn,s = 1,Vn, s, or s = 7s,Vn, s, then consumer i has an infinite arbitrage direction if and only
if Csaf > 0. Thus, consummer i has an infinite arbitrage opportunity starting from any position.
This arbitrage is inconsistenct with equilibrium, and the arbitrage opportunity is independent of the
investor’s tax functions. _

Let NEU be the set of no-tax-arbitrage prices for consumer ¢, N§2) denote the set of no-tax-arbitrage
prices of firm j.

Assumption 1: The set of no-tax-arbitrage prices for each consumer and each firm is nonempty,
that is, N = (N;etN{") N (N;egN$) # .

To guarantee the positivity of no-tax-arbitrage prices, we introduce assumptions on tax functions.

Assumption 2: Foralli € I, all j € J and all s € S, Tz(?() T(Z)() are differentiable and
0<infoc .(i)( ) (1)(2) dT (z) (2)(m)

<supyep—5— <1, 0<i nfweR—J-'——<sup$€R—-'-a$—<1
Assumptlon 3: For each asset n and each state s, Cy, s > 0.

Proposition 3.1: Under Assumptions 2 and 3, each no-tax-arbitrage price p° = (p7,---,p%) € N
is positive, that is, p;f >0, n=1,---,N.



Proof. From Assumption 3, Cp s > 0 for all s € S and all n. Let o = (1,0,---,0). We now show
af satisfies (3.1).

By convexity of T} ( ) and Assumption 2, for each ; and s € S,
Cs(ar + a?) — T [Cs(r + )]

> Cs(ay +a?) — T}E},)(C_'sal + Csa)

ar)
> Cyay — T )(C,oq) +Csar ( (x)L Cs14+C a°)

> Cyar — T{H (Coen).

Therefore, for each no-tax-arbitrage price p° € N, pSa = p§ > 0. Similarly, we can show pS >0(n =
2,---,N).O
For consumer i, let W'i(l) denote the set of a? satisfying (3.1), W; 1) be the set of all oY which

3

satisfies

Cs(ai +af) — (1)[Cs (ai +a)] = Csa; — T( )(Csa,)

for all o; and s € S. o

Likewise, for firm 7, let W}Z) denote the set of 37 satisfying (3.2), W]@) be the set of all ﬁ;-" which

satisfies
— Co(B; + BY) — T ys — Co(B; + BY)] = 2 — CaBj — T2 (45 — CsB;)
for all (y;,0;) € Fj and s € S.

We can deduce, by Theorems 8.1, 8.7 and Corollary 8.3.3 of Rockafellar(1970), the sets R(l)
Wi(l) U Wi(l) is the recession cone* of convex sets {o;| i’s)(Csa,) — Csa; < 0,Vs € S} and R;z)
{(0,8;)|8; € Wj(2) u W}Z)} is a subset of the recession cone of {(yZ, )|y} — CsfBj — Tj(zs) (5 — CsB3j) 2
0,Vs € S, and 3y such that (42,y;,---, 7)€Y}

Remark 3.1: When all assets are fully taxable, that is, yns = 1,Vn, s, it is not difficult to deduce
that o; € Wi(l) and B; € W}z) if and only if CsaéO and —Csﬁ]gO. Therefore, it is deduced again
that the arbitrage opportunity is independent of the tax function of any agent. Similarly, if yn s = s,

for all n, the same conclusion holds.
The following proposition presents another characteristic of no-tax-arbitrage prices.
Proposition 3.2. Under Assumptions 2 and 3, each no-tax-arbitrage price pS € N is zero on the
set W = (UieIW'i(l)) U (UJ'GJW}2)), that is, pa = 0,Ya € W.

04 The recession cone, denoted O* (C) of a subset C in R™, is a subset of all points z satisfying C + Az C C,VA > 0.



Proof. Let o € W. Without loss of generality, suppose that o € W( ) . Then, by the definition of
W( ) , for each a; and s € S,

Cs(an + @) = TV [Cs(ar + )] = Csan — T (Corr)

Let @ = (¢,-- -, €), where (> 0) is sufficiently small.
As in the proof of Proposition 3.1 and by above equality,

Cylan + (a + @) = T Ciloa + (@ + @)}

a1} ()

> Gyl + @) = T [Calen + )] + Crar(1 — =™

a::C‘,q(a1+a)+Csd)
> Cean + Tl(,ls)(C_'sal)

for all @; and all s € S. Thus, a+a € W( ) , which implies p®(a + @) > 0 and therefore, pSa > 0 by
letting e — 0. ______

On the other hand, it follows from the definition of W(l) that —a € W(l) ifae Wl(l). This implies
that pS(—a) > 0 and therefore, p°a = 0. O

Before concluding this section, we make some standard assumptions about consumption and
production.

For consumer i:

Assumption 4: X? € R, is closed and convex set;

Assumption 5: U; is a continuous, concave and strictly increasing function;

Assumption 6: T( ) is differentiable and 0 <infzegr :;( 2) < Supger T:;(z) <1

Assumption 7: z) > 0,a) >0,;z? € R}, and ¥ ;&) € RY,.

For firm j:

Assumption 8: Yj is a closed and convex set including zero;

Assumption 9: If (O,y}-,- . ,yf ) € Y; then y? = 0,Vs € S, where 0 is a l-dimensional vector
whose components are all zeros;

Assumption 10: 39 > 0;

7(2) ar®
Assumption 11: T(o) is differentiable and 0 < inf;cp —J-;i—(-)- < sup,ep d"z(z) <L

For government;
Assumption 12: Ug is a continuous, concave and strictly increasing function;

Assumption 13: 72 and z{, are sufficiently large(these will be made explicit below).

4. Existence of Equilibrium



Section 4.1.1. The Main Theorem

This section is devoted to the proof of existence of equilibrium of our model. The technique of
proof is very similar to that used in Werner(1987). The main theorem of this paper is as follows:
Theorem 4.1.1. Suppose that the Assumptions 1-13 hold, then there exists an equilibrium
e* = ((z}, )il (Y7, B} ) je3» TG p*) : that is, e* satisfies (i)-(v) of Definition 2.1.
Section 4.1.2. The Proof

To show the existence of equilibrium, as in Arrow and Debreu(1954), we will construct a bounded
commodity spot market.

For consumer i, define

X9 = {z; € X?|there exists zy € X for each i’ # i,y; € ¥; for each j and zg € X¢ such that
Yizi+ 26 < X;y) + 3] + 35}
and, for firm j,

Y; = {y; € Yj]|there exists z; € X for each i yj € Yy for each j' # j and zg € X such that
Yizi+ e < Xyl + 7] + 5L}

It is not difficult to prove by Assumptions 8 and 9 that the set Y; is bounded and therefore, the
set X? is bounded. So we can find a cubes C in R' and C' in RS such that C and C’ include X?
and ¥; in their interiors respectively. And define X = X N C,Y; = ¥; N C' but X¢ = X¢, which

will be used to prove Walras’ law below.

M+ @ M @ ,
Let W; and W; denote the orthogonal complements of W;"" and W; respectively. Let

A ={p=(p°,p%)Ip° € R, ;,p° e N, T, pf + T, 05 = 1}
For consumer %, given p = (pC, pS ) € A, define

'Bgl)(pc,ps,e) = {(mi, ai)lzi € X?, Csai - {T;(l) (ésai) Z 0, s € S)

pSa; + pPx; + TV (05 i) < pPa? + p5a? + 3, 05,5 max(0,7; (v, yj, ;) };
and B
B @°,05,€) = {(@i e)l(z1,00) € (Xs x W) n g0, p%, )}

where e = (yhﬂla tee ’y.hﬂ.f)'
For firm j, given p = (p©,p%) € A, define

B2 0°,0°) = {(,8) € F;luj — Cs; > T (v — CB;), Vs € S);
and

732 (. C oS\ — (0. A @ C SV AN € Vo x WO (1 B
B;” (0%, p°) = {(y;: Bj) € B;” ®0°,p”)(y5, B;) € Y; x W;™ ,7;(p,y;,55) = 0}



For the government, given p = (p®,p%) € A define
Bo(v°,p%, f) = {zc € Xolp®ac < Pzl + YTy (00eu) + Do T30 (8] + 65) +p ufl}-
i J
where f = (1,01, ,Z1,01,91, 61, *, Y7, B1)-
Given p = (p%,p%) € A, set
U(p%,p%) = {(z1,01,  ",z1,01,91,P1, Y1, Br, ) |(zi, i) € ﬁ,gl)(PC,PSae),i €l

(v, 85) € B (0°,p%),5 € J,z6 € Bo(p®,p%, F);
Ui(as, o) 2 Uila, o), V(ah,of) € B (0°, 0%, 0);
Yi(p,y3» B5) 2 73 (p, v, B7), VW5, B) € B (0, 95,5 € 3

Us(zc) > Us(zy), Vi € Ba(C,p5, F)}

and

T(pC,p5) = {(m1,01,- 1,00, y1,B1, 41, By 26) (@i, @) € B (00,05, €)i €1,
(y5,67) € B (0°,0°),5 € 3,36 € Ba(®®,p5, f);
Ui, ) > Uil o), ¥(ah, o) € B (0°, 05, €);
7i (2,95 B5) = i (2,9} B3,V (¥, B5) € BY) (0,05),5 € 3,
Us(ze) > Us(zg), Yoi € Ba(0®,p°, f)}

Finally, define
Z(p%,p%) ={z=Ticr(®i, ) + (26,0) — Zje3®%, B) — Tic1(@,af) — ¥;es(0,57) — (2, 0)]

(xlaalv t ,-’L‘I,GI,yl,ﬁl, e ayJaﬂJamG) € \I/(pC’pS)},

ZI(PC,PS) = {Z = Ziel(mi,ai) + (.'EG,O) - Zje.](y;'),ﬂj) - Ziel(f?a&?) - ZjGJ(O’ B?) - (E?P 0)|
(xl,ah oy ZTr, a[aylvﬂly Tt ,yJaﬂ.th) € \i;(pC’pS)}.

The approach to prove Theorem 4.1.1 is to use the following lemma similar to Lemma 1 and
Remark 1 in Werner(1987).

Lemma 4.2.1. If (1)coA, the cone generated by A, is not a linear subspace and its relative
interior is nonempty and convex:(2)Z! satisfies Walras’ law on A, that is pZ'(p) = 0,Vp € A; (3)the

10



set Z! is nonempty,convex- and compact-valued and upper hemi-continuous on A; (4)if pr — p, zx =
(2, o)+ (ak, 0) — 53, (0, B5) — 554 (80, &9) — 55,0, B9) — (82,0) € Z1(pk), pk € A, and |z]| — oo,
then for every cluster point 2 of {zx/M*}, p2z > 0,Vp € A, where® M* =, ||(z¥, of)||+Z; [|(vF, B5)|
+||z&l; (5)if pr — P*, 2k € Z1(pk) and 2 — z* = (z*,*) with * < 0, then p* € A; (6)for p € A,
if z € A%where A? is polar of A) and pz = 0, then Z1(p) — z C Z(p).

Then there exists p* € A such that 0 € Z(p*).

Proof. As in the first paragraph of proof of Lemma 1 in Werner(1987), by using conditions
(1)-(4) of Lemma 4.2.1, it can be shown that there exist px(€ A) — p*, 2(€ ZY(pr)) — 2* =
(z*,0*) € AY. Then, (p©,p%)z* < 0,V(p,p°) € clA(the smallest closed set including A), particularly,
pCz* < 0,VpC € Al(simplex of space R') and therefore, z* < 0.

Hence, by (5), p* € A and moreover, by (2), 2* € Z'(p*). Finally, by Walras law and (6),
Z(p*) — z* C Z(p*) and therefore, 0 € Z(p*).O

We will show that correspondences Z(-) and Z(-) satisfy the assumptions of Lemma 4.2.1. Before
doing this, we will prove some auxiliary results.

Proposition 4.2.1. B}l)(pc,ps ,e) is nonempty, convex- and compact-valued and lower hemi-
continuous on A X [];¢5 Fj.

Proof. ﬁgl) (p©, p°, e) is nonempty since 0 belongs to it. The convexity and closedness are also
obvious.

To show that B,m (p©,p5, e) is compact-valued it suffices to prove that it is bounded. Assume, by
contrary, that there exists a sequence {(z7,a?)} C B (p°,p%, €) such that ||(z?,a?)]| — co. This
implies that ||a?|| — oo since z? € X? and therefore, is bounded.

Let (&,&) be a cluster point of the bounded sequence {(z},af)/||(z?,af)||}. It is not difficult to
deduce that £ = 0 ,& # 0 and furthermore, & € Wi(l) since o} € Wi(l) .

Note that Ti(l)(C—'sa?) — CsaP <0 for each n and each s € S. Hence, by Theorem 8.2 of Rockaf-
fellar(1970), & € Wi(l) U W',-(l). This implies that & € Wi(l) and therefore, by Assumption 1,p5& > 0.

On the other hand, as in the proof of Proposition 3.1, by Assumption 6, we have

dTy) (z)
pcx? + psa? (1 + —zc,i:z;

__,) Sp°a! +p°ad + EJ: ;.5 max(0,7; (P, s B5));
this implies p°& < 0, a contradiction which proves the boundedness of set Bgl)(pc, pS,e).

It remains to show the lower hemi-continuity of Bgl)(pc,ps ,e) at (p©,p%,e) € A x [lje3 Fj. To
this enda suppose (pg,pﬁ,en) = (pgapgvy?aﬁ?’ e 7y?’ﬁ,1}) — (pC,pS,e) = (pcaps’ylaﬁl, et ayJ,ﬁJ)
and (x'ia ai) € ﬁfl) (pC,pS, 6)-

% |lz|| = Yo, |zl VE = (21, ..., Tm) € R™.
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If
pSa; +pCz; + Ti(,(l)) (p ;) = p©z) + pal + Z 0;,; max(0,v;(p, 5, B)), (4.1)
J

then p>o; + pSx; + Ti(’é) (pS ;) > 0 for sufficiently large n since pC € RQ + and therefore, pC:i'? > 0.

Take, for sufficiently large n,

An = [pSZ) + phod + 2;91',]' max(0, 7 (pn, ¥, B/ (P50 + pSmi + T (P cw)).
Jj€

Clearly, \, — 1 as n —» oo. Let A\, = min(1, \,) and (z}, of) = A, (z;, 0s)-

——1
Hence, of € Wi(l) , a — «; and, by convexity of Ti(},)(-),

1 1 _ _
pE Al +pSal T (b5 al) < N,y (Pl ai+pSaitThy (p504)) < pSE+pSad+) . 0; 5 max(0,; (P, ).
J

Furthermore, by convexity of Ti(’?(c_'sai) — C,04, we have

T (Coof) — Csa < My(T1D(Csn) — Csn) <0, s €S.
Therefore, (z7,0}) € B,(”(p,(.f ,p3,e"), proving the lower hemi-continuity. And the proof for the
case of strict inequality of (4.1) is standard. O

For BJ(?) (p©,p®), we have the following similar result to Proposition 4.1.

Proposition 4.2.2. BJ(?) (p®,p°) is nonempty, convex- and compact-valued and lower hemi-
continuous on A.

Proof. The nonempty of ,51(2) (p©, p®) is obvious since it includes 0. We now show that BJ(.z) (»%,p%)
is compact-valued. Suppose that {(y},57)} C BJ(?) (p©,p®). Then

p5(BY + BY) + pCyd" — TS (B9 + B2) + py%" > 0. (4.2)

It is obvious that ,BJ(-z) (p®,p®) is compact-valued if we can show the boundedness of sequence
{zn = (y},B}) : n > 1}. Assume, by contrary, that there exists a subsequence of {zn} still denoted

{zn} such that lim, o ||zn|| = co. Let £ = (yj,Bj) be a cluster point of the bounded sequence

N . —=l
{zn/||zn||}. As in the proof of Proposition 4.2.1, it can be shown that §; = 0,3; # 0,8; € W}Z) and,
by means of (4.2),

53: >0 (4.3)
b ﬂ] 2 U.

And, furthermore, as in the proof of Propositiion 4.2.1, it can be proved that
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3; (2 (2)
Bj € W; UW;™.

A A ot N
This implies 3; € Wj(2) since 3; € Wj(z) . Hence, by Assumption 1, p°3 < 0, a contradiction to (4.3),
proving the boundedness of {z,}.
The convexity of 32 (p€,pS) is obvious. It remains to show its lower hemi-continuity. Suppose
a(2
(S, p5) — (0°,95) and (y;,,6;) € B (p°,p°). Then 7;(p,y;, ;) > 0 and

yS — Coffj — T2 (5 — CaBj) 2 0,Vs € S.

Note that, v;(pS,p3,0,369) > 0, and by Assumption 10, Cs(547) — T}? [-Cs(389)] > 0,Vs € 8,
that is, there exists an interior point in the set of feasible production-portfolio plan of firm j.
Hence, the proof of lower hemi-continuity of 31(2) (p®,p©) is standard. O

Proposition 4.2.3. Suppose that z% is sufficiently large such that

p°z% + 3.9 (p%i) + S Tio 05 (B2 + ;) +C48) > 0,
i J

Y(z;, ;) € ﬁzw (p©,p5,e) and (y;,5;) € B](.z) (€, p%). Then B(p®,p°, f) is nonempty, convex- and
compact-valued and upper hemi-continuous at any (p®, p°, z1,1,**,z1,@1,91,61, "+, Y7, B7) , where
(8°,9°) € &, (i, 1) € B (0°, 05, ) and (y;, 8)) € B (0°,p°).

Proof. The proof is standard.O

Proposition 4.2.4. ¥(p®, p°) is nonempty, convex- and compact-valued and upper hemi-continuous
on A.

Proof. See Appendix.O

Proposition 4.2.5. For (p€,p5) € A, ifz = (1,01, , 101,91, 81,147, B1,TG) € ¥(p©,p%),
ad € Wi(l) U W'i(l), ﬂ;-) € WJ@) U W'j(2) with pSad = pS,B;) = 0. Then z + z% € ¥(p®,p°), where
29 = (0,09,---,0,a?,0,49,---,0,89,0).

Proof. See Appendix. O

Proposition 4.2.6. If (57, p)(€ A) — (17,%), 2° = Tiex(al, o) + (@2, 0) — Sjeaw, 5}) -
Tie1(E),09)—3;¢3(0,89) - (3%,0) € Z1(pS,pS) and ||2"|| — oo, then (p€,p5)2 > 0 for every cluster
point 7 of {2"/M"} and all (57,5%) € A, where M™ = Tiey [I(a?, o) |+ Esea 16, BDII +11(%, 0) |

Proof. See Appendix.0

We now verify that correspondences Z(p©,p®) and Z1(p®,p°) satisfy the assumptions of Lemma
4.2.1.

Proposition 4.2.7. Under the Assumptions 1-13, the conditions (1)-(6) of Lemma 4.2.1 holds.

Proof. (1)To show that the relative interior of co(A) is nonempty, it suffices to prove that co(N)
has nonempty interior. Suppose co(N) is No-dimensional(N® < N). Then there exists N 0 linearly
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independent price vectors (p{,p?),---, (pz((}o, p}f,o) € co(N). Clearly, for ); € (0,1),i =1,---, N°, with
iN__.Ol Ai =1, Z{V:I Xi(pf,pP) € co(N). Hence, the relative interior of co(N) is nonempty.

(2)Now we verify that Z(p®,pS) satisfies Walras’ law on A. Consider the government. Since
Xe = Rl+ and the utility function Ug is strictly increasing, (2.3) holds with equality for the optimal
consumption of government.

Now we turn to the consumer i(€ I). Note that, by Assumptions 2 and 3 and by Proposition 3.1,
pB > 0 and CsB — T (Csf) > 0,VB € RY,,p° € N.

Hence, it is not difficult to deduce that (2.1) holds with equality for any optimal consumption-
portfolio plan of consumer 3.

(3)(3) can be deduced from Proposition 4.2.4.

(4)(4) follows from Proposition 4.2.6.

(5)Since z* = ¥, T} + TE — ij;(’ -y,70-30 <0,z € X; and y; € lA/'j,Vi el,jeld.

Note that p* = (p*©,p*S) > 0. Hence, by Assumption 7, there exists at least one ig € I such
that the initial wealth, p*C:Ego +p*S c‘v?o, of consumer g is positive. Therefore, if p*C & Rl+ +, then, by
the strictly increasing utility of consumer ig, it follows that z} € C but ¢ X;,, a contradiction and
therefore, p*© € Rl+ 4

As in the proof of Walras’ law, by Assumption 2 and strictly increasing utility of consumer i, it is
not difficult to show p*S € Rl 4

(6)The condition that z = (z,a) € A? is equivalent to the following one.
Pz +p°a <0, V@, 5%) € dA. (4.4)

By taking 5° = 0 in (4.4), we have p°z < 0, Vp© € clAl. This implies z < 0. By taking p¢ = 0
in (4.4), we have 7%a < 0, Vp° € cIN. This implies a € (cIN)°. But, by Walras’ law, pa + p®z =0
and p€ € Rl++, thus z = 0 and pSa = 0.

Thus, we have arrived at the conclusion that z = 0, € (cIN)°. As in Werner[P.1413,(1987)], by
Lemma A.1 in Appendix, there exist o; € Wi(l) U Wi(l) (¢ €I) and B; € WJ@ u W]-(z) ( € J) such
that —a = ;05 — 3, B;. It follows that pSa; > 0,Vi € I and p°B; < 0,Vj € J. Consequently,
pSa; = p°B; = 0,Vi € 1,Vj € J since p°a = 0.

By Proposition4.2.5, z+2' € ¥(p®,p%),Vz € ¥(p®, pS), where 2/ = (0,1, --,0,09,0,61,---,0, 8,
0). Then it follows that z — z € Z(p%, p®),Vz € Z1(p°, p°).

This completes the proof of this proposition.O

We have proved that there exists a general equilibrium for the economy with the bounded spot
commodity market. It remains to show that this equilibrium is a equilibrium of the original economy.

Note that the feasible sets ,Hi(l) (p%,p%,e), ,3](-2) (p®,p%) and Bg(p©,p°, f) of consumers, firms and
government are all convex. Hence the remainder of the proof is standard.
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5. Non-Convex Tax Functions

This section is devoted to an exchange economy with consumers and government, but no firms.
We make this assumption for expositional convenience, the extension to an economy with production
is straightforward.

In this model, each consumer pays tax according to a tax function which is not necessarily con-
vex. Because of a number of exemption thresholds, subsidy schemes etc., taxation functions sometimes
exhibit discontinuities and non-convexities. We will assume that discontinuities can be closely approx-
imated by a continuous tax function. But there will remain a non-convexity that is the subject of this
section.

By using the technique of Heller and Starr(1976), we will show the existence of an individual
approximate equilibrium as defined by Heller and Starr(1976). An approximate equilibrium is generally
defined as a price p* and two allocations, a* and a*': one, a*, is the allocation desired by consumers
and government at this price, which may not clear the market; the other, a*, is an allocation obeying
the market clearance condition although it need not represent agents’ optimizing behaviour. The
equilibrium is approximate, of a modulus C, if some suitably chosen norm of the difference between
these two allocations is no larger than C. The desired allocation represents an approximate equilibrium
in the sense that the failure to clear the market at this price is bounded by C.

We have a finite set of consumer I = {1,---,I}. We omit the description of the behavior of
consumers and the government since it is as same as in Section 2 except that the wealth W; of
consumer i does not include the firms’ profit and the government’s tax does not include taxes from
firms. Assume that all tax functions Ti(o) in period 0 and Tl(’i) in period 1 are all not necessarily
convex. All assets are assumed to be fully taxable, that is, v,s = 1,Vn,s.

The main theorem of this section is as follows:

Theorem 5.1 Under the assumptions given below, there exists an individual approximate equi-
librium of modulus C. That is, there exist a price p* and two vectors a* = (z}, 03, -, 2z}, 0}, z5) and
a* = (.'z:’{',a’{', e ,x}',a}',m*g') such that

(i)a* satisfies market clearance with respect to p*, that is, ¥;(z*,a*) + (:zz*G',O) =¥, (@,a?) +
(z%,0).

(ii)a* is optimal with respect to p*, that is, it solves problems (**)’ and (* * *) without firms.

(iii) (s lla — af |IP)/2 < C.

We will still adopt the Assumptions 3-5,7,12 and 13 in Section 3. We further assume the following.

Assumption 5.1: Ti(q)(O) = O,Ti(q)(a:) > 0,VYz > 0 and sup,cp lz*(—g(—m—)l <1,Vz #0,q=0,1.

Assumption 5.2. T(9)(.) is continuous function.

This assumption will be used to proved the upper hemi-continuity of excess demand correspon-
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dence defined below(Proposition 5.6). But this assumption can be deleted if we do not consider the
tax at time 0 as in Dammon and Green(1987).

Inspired by Remark 3.1, we now give the definition of no-tax-arbitrage price for the non-convex
tax functions.

Definition 5.1. The price vector p® of assets is a "no-tax-arbitrage” price vector if and only if
for each o satisfying Csa > 0 for all s € S and there exists at least one state s such that Csa > 0,
then pSa > 0. And the set of no-tax-arbitrage prices is denoted N'.

Remark 5.1: From Assumption 5.1, if Csa > 0, then limy—00[Cs (¢ +na) —Ti(l)(Cs(a'—i-na))] =
o0,Va',i € I. Thus, o/ +na will be an opportunity every investor would wish to arbitrage ad infinitum
starting from any position /. And this opportunity is independent of investor’s tax functions and is
inconsistent with equilibrium.

Assumption 5.3: The set of no-tax-arbitrage prices is nonempty, that is, N’ # @.

As in Section 3, we have the following results similar to Propositions 3.1 and 3.2. We will omit
their proofs since it is easy to prove:

Proposition 5.1: Under Assumptions 3, each no-tax-arbitrage price p’ = (pf yeoe ,pﬁ,) € N'is
positive, that is, p;f >0, n=1,--+-,N.

Proposition 5.2. Under Assumptions 3, each no-tax-arbitrage price p° € N is zero on the set
W, that is, p’a =0,Va e W.

Here W = {a|Csa = 0,Vs € S} and let W denote the set of o which satisfies the condition of
Definition 5.1.

We will truncate the economy and use Lemma 4.2.1 to prove the existence of individual approxi-
mate equilibrium.

Let M(> 3;1Z9|| + ||1Z%)|]) be sufficiently large and define

XM={.'1:=(-’IJ1,"',~TJ)GRUZ‘E’CSM}'
k

For consumer i, given p = (p©,p°) € A, define
IBi(pCapS) = {(wi,ai)lmi € X? n XIM,Csai - Es}g)(ésai) ..>_ 0’ s € Sa
Pz + pSai + T (5 es) < p°20 + P &Y,
and
_ w7l
Bi(°,p°) = {(zi, o) € Bi(p®,p°)|li e W},
where W denote the orthogonal completements of .
For the government, given p = (p€,p°) € A define

Ba(p, 0%, f) = {zc € XalpCzc < p°z% + Y. TV (05 cu)}.
i

16



where f = (21,01, ,Z1,071).

The following result is similar to Proposition 4.2.1.

Proposition 5.3. 5;(p€,p°) is a nonempty and bounded set on A. And, hence, clB;(p©,p°) is
compact-valued on A.

Proof. It suffices to show that §;(p®,p°) is bounded. Assume, by contrary, that there exists a
sequence {(z},al)} C ,Bzgl)(pc,ps ) such that ||(z%,aP)|| — oo. And let (Z,&) be a cluster point of
the bounded sequence {(z}, a?)/||(z},a})||}.

As in the proof of Proposition 4.2.1, we can deduce that £ = 0,& # 0 and furthermore, & € wt.

Note that ’1}(1)(6—'301?) — Cs0f <0 for each n and each s € S. It follows from Assumption 5.1 that
Csal > 0,Vs,n. Hence, as in the proof of Proposition 4.2.1, by Theorem 8.2 of Rockaffellar(1970),
pSa > 0.

On the other hand, as in the proof of Proposition 4.2.1, by Assumption 5.1, it is easy to show
that p5& < 0, a contradiction proving the boundedness of set 3;(p©,p°). O

As in Heller and Starr(1976), in order to prove the continuity of cl3;(p®, p°), we give the definition
of local interior.

Definition 5.2. [; is said to be locally interior if for each (z,a) € B(p€,p°) there is (z*,a*) so
that

(i)(z*, a*) € intBi(p©,p).

(ii) There exists a continuous function f : [0,1] = G;(p€,p°) so that f(0) = (z*,*), f(1) = (z, )
and for all o(€ [0,1)), f(o) € intB(p°,p5).

Assumption 5.4. B(p,p%) is locally interior.

As in Heller and Starr(1976), we have the following result. We omit its proof since it can be shown
in exactly the same manner as that of Heller and Starr(1976).

Proposition 5.4. cl3(p®,p°) is continuous under the Assumption 5.4.

For the government, we have the following result.

Proposition 5.5. Suppose that 7% is sufficiently large such that p©z% + 3 Ti(,(l)) (P°a;) > 0,
Y(z;, ;) € ,Bi(l)(pc, p%). Then Bg(p®,p°, f) is nonempty, convex- and compact-valued and upper
hemi-continuous at any (p©,p°,z1,a1,---,21,a1) , where (p©,p%) € A, (zi,a;) € Bgl)(pc,ps).

Given p = (p©,p°%) € A, set

\I,(pC’pS) = {(zlaala Tt ’xlaalazG)l(a:iaai) € ,B'i(pc’ps)ai € I’$G € :BG(pCapsaf);
ﬁi(wiaai) Z ﬁi(a;;;, a;),V(x;,a;) € :Hi(pc7ps);

UG(xG) 2 UG(x’G)yV‘T’G (S ﬂG(pC,pS,f)},
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‘T’(PCaPS) = {(1?1, ai, -, T1,Q7, xG)I(zi, ai) € Bi(pcaps)si € Ia TG € ,BG(pCapSa f)v
Ui(zi,04) > Ui(z}, o), V(z}, o) € Bi(p°,p%);
UG("EG) > UG(w’G)avm’G S ,HG(pCapSaf)}a

d[¥(p%,p%)] = {(z1,01, -, z1,01,26)|(zi, ) € d[Bi(C,p%)),i € I,z¢ € Ba (@, p°, f);

Ui(zi, o) > Ui(a}, o), ¥(a}, o) € cl[Bi(0C, p%)];
Us(zg) 2 Us(zg), Vg € Be(0®,p%, )},

¥ (p°,p%)] ={(z1,00, -, 21,01,%6)|(zi, ) € cl[Bi(pC,p%)),i € L,z € a0, 0%, f);
Ui(i, ou) > Ui}, o), ¥(a}, of) € el[Bi(0°,p%));

Us(z) 2 Us(zg), Vg € Be(0®,p°, f)}.

Let co{cl[¥(p®,p5)]} and co{cl[¥(pC,p®)]} denote the convex hull of sets cl[¥(p®,p%)] and
cl[¥(p©, p5)] respectively. We have following results.

Proposition 5.6. co{cI[¥(p®,p°)]} is nonempty, convex- and compact-valued and upper hemi-
continuous on A, .

Proof. The proof is standard.O

Proposition 5.7. For (pC,p%) € A, if z = (z1,a1, -, 21, a1,76) € co{cl[¥(p®,p%)]}, of €
W UW with pSa? = 0. Then z + 2° € co{cl[¥(p®,p®)]}, where 20 = (0,a},--,0,0},0).

Proof. It suffices to show that ¥(p®,pS) € ¥(p®,p®). The proof is same as that of Proposition
4.2.5.0

Finally, define

Z(PC,PS) = {z = Z(zi, ai)+($G, 0)_2(52’ d?)_(a_:OG7 O)I(wla a1, TI,01, $G) € co{d[\l,(pc,pS)]}},
i€l . i€l
and
Zl(pC,pS) = {z = Z(zia ai)"'(‘”G’O)_Z(fga dg)—(EOGaO)I(xl’ala 1, TL05,T6) € Co{d[@(pcvps)]}}'
i€l i€l

Proposition 5.8. If (pS,p5)(€ A) — (8°,p%), 2" = Tic1(z?, o) + (2%,0) — Ticr(a?, a?) —
(2%,0) € Z'(pS,p3) and ||z"|| — oo, then (p%,p5)2 > 0 for every cluster point 2 of {2"/M™"} and
all (p°,7°) € A, where M™ = ¥icq ||(zF, of )| + |21

Proof. The proof of this proposition is as same as that of Proposition 4.2.6.0

Note that c!N'"® = —W UW. Hence, we have the following result similar to Proposition 4.2.7.
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Proposition 5.9. The conditions of Lemma 4.2.1 hold for Z(p®,p°®) and Z!(p©, p%).

Proof. The proof of this proposition is as same as that of Proposition 4.2.7.00

Now we are in a position to prove the existence of an individual approximate equilibrium of the
economy with non-convexity. But we omit its proof since it can be obtained in the same method
as Heller and Starr(1976) using Shapley-Folkman Theorem. The constant C in Theorem 5.1 only
depends on the bound of ¥ (p®, p°).

Now we have got the individual approximate equilibrium for the truncated economy. It is not
difficult to show, by letting M — oo, that this approximate equilibrium is also an approximate
equilibrium of the original economy.

Conclusion

This paper has generalised the existing literature in a number of directions to provide a general
equilibrium model of an asset economy with consumers, firms and goverment, and the taxation of
assets. There are further directions that this research can proceed:(a)the model should be extended
to many periods to capture the complexity and richness of the dynamics of tax planning; and (b)the
equilibrium should be characterised to show the general structure of asset economy equilibrium prices
and asset allocations with financial taxation.

Appendix

Proof of Proposition 4.2.4: ¥(p©,p¥) is clearly nonempty. The proof of being compact-valued
is standard. From Propositions 4.2.1-4.2.3, to show the upper hemi-continuity it suffice to verify the
condition of Proposition 4.2.3.

For consumer i, since the optimal consumption-portfolio plan satisfies Walras’ Law, it can be
shown from (2.1) that

dI{g) () -1 4Ty (@) -1
pSa; > min [(1 + sup = ) (3 — x;), (1 +in f iz ) pC (3 — :1:;)] = ti(p%,p°, zi, i),

and therefore,

4Ty (z)

dT(l)
——(——)t,(pC p s Tiy Q) mf T—t,(p ps,xi,ai)).

1 .
{3 (p¥e) > min (sgp o

For firm j, since ;(p, yj, 8) = p° (B2 +6;) +p°y2 — Tt o [ (B +6;) +9°%2] > 0, p (B2 + ;) +p°y?
> 0 by Assumption 2 and therefore, Tj(,o) [p5( ﬂ;-’ + ,3,) +p yO] >0.

Therefore, by combining the above, the condition holds when a:G is sufficiently large.

Note that a; and B; are all bounded. Hence Z¢ + )°; T(l)(Csaz) + 3 T-(i) (yi — C,p) is positive
for any s € S and sufficiently large Z¢,.
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We now turn to the proof of convexity.

Suppose z = (z1,Q1,- -, T1, @5, Y1,81, -, Y7, B1,7c) € ¥(p©,p%), and &’ = (24,0, -, 2, af, 4,
:Bia ° 'ay:hﬂ,’]a:B’G) € \I;(pC,pS) and A € [0, 1]-
Note that

(yj1 ﬂj)a (y;": ﬂ;) €arg _ I_I(I%X '7j(p1 ga 5)7.7 €eJ.
(gaﬂ)eﬂj (pC’pS)

and
My;, B5) + (1= N ) € B (0°,p5).

Hence, by convexity of CI’J%),

7j(p, ij + (1 - A)ygaAﬂJ + (1 - )‘):B;) = 7j(pa yj’ﬂj) = IYj(pa y;aﬂ;) > OaJ € Ja (Al)

this implies that
B @C,p% ) = B (0%, 0%, ¢) = BV [p%,p°, Ae + (1 = N)e].

and therefore, by the concavity of U;(-),

Ui M3, 05) + (1 = N) (2}, 04)] = Ui(mi, o4) = Ui(xl, o).

(2t

It can be deduced from (A.1) that
TSP (B + B5) + POyl + (1 = Np*(B) + ) + %y}

AT (B + B5) + pCu8] + (1 = VTR S (B + B5) + pCy)-

On the other hand, since any optimal consumption-portfolio plan satisfies the Walras’ Law, it is
not difficult to prove from (2.1) and (A.1) that

Ti(,%J)[’\psai + (1= Np°af] = )\T;:(}))(psai) + (1= NT, (1)(ps .

Hence, Azg + (1 — )zl € Ba[pC,p%, Af + (1= A f'] = ABa (@, p%, f) + (1 — X)Ba(p®, p°, f') and
therefore, Az + (1 — A\)z; is a optimal solution of the government corresponding to Af + (1 — A)f'.

Consequently, by combining above results, we arrive at the convexity.O

Proof of Proposition 4.2.5: As in Werner(1987), it suffices to show ¥(p©,p°) € ¥(p®,p°). To
this end, suppose e = (z1, a1, -, Z1, a1, Y1, 81, » Y1, B7,%c) € ¥(p€,p°), we must show

0i(zi’ai) > ﬁi(zgaag)av(mg,ag) € ﬁz(l)(pcapsae)av'i el (AZ)

and
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vi(®, 5, B5) = vi(®, 5, B5),Y(y;, B;) € ﬁ§2)(pc,ps),Vj €J, (A.3)
and
Us(zg) > Us(Zg), Vzc € Ba(p®,p°, f)- (A.4)

(A.4) holds automatically by the definitions of ¥ and ¥. We now prove (A.2) and (A.3).
Suppose that, for some j, there exists a (y,3;) € F; such that y; € Y; and (A.3) does not hold.

5 1 N
Consider now the orthogonal projection §; of 8} into W}z) . Hence p(B8; — B;) = 0 by Proposittion
3.2, and thus

7P, 95, 8)) = vi(p: 45, B5), €T, (A.5)

Note that, by the definition of W >,

y} — Coffy — T2 (43 — CoBj) = v — CuBj — Tf3 (y — CoBy), Vs € 8.

Hence, (v}, 8;) € B®(pC,p°), and by (A.5)v;(p,¥;,B85) < 7i(p, v}, B}), which provides a contra-
diction and proves the asseration.

Suppose now that (A.2) does not hold for some (z},c}). Consider now the orthogonal projection
el
@, of o into Wi(l) .

As in the first case, we have

~ 1 ~ 1 ~
pSaé +pC£L" + Ti(,o) (pSa) — pSaI +prl + Ti(,o) (psar),

and

Cs&; — 51-"1,(;) (Csé;) = Csarj — Ti(,?(c_'sa;) Vs € S.

Thus, (z,&,) € B (pC,p%, €), and

[71(13:,&;) > &5(:1:1,0&5),
a contradiction proving the asseration.

Proof of Proposition 4.2.6: It is easy to see that M™ — 0. Let & = (£1, 41, - ,.'i:I,éq,gjl,Bl,
D) BIJI, #¢) denote any cluster point of sequence {z" = (z%, 0%, - -, 2}, af,yt, B, -+, ¥}, BT, 1)
/M™ : n > 1}. Then the cluster point 2 of {z"/M™ : n > 1} can be expressed as 2 = ) ;cy(&i, ;) —
Yjea(@5,B5) + (26, 0).
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As in the proof of Proposition 3.2 , by Theorem 8.2 of Rockafellar(1970), we can show that
Z;=9;=0,8; € W(l) UW(I), ﬂ] € W(z) UW(2) and therefore, p%&; > O Vi € I and pS,BJ <0,Vjeld.

But Z¢ is not necessarily zero since Xg = R‘ And, moreover, &; € W( 7 and ,6] € W(z) Therefore,
or £¢ > 0 or there exists at least one 1 € I or j € J such that pS&; > 0, or p ,B] < 0, for every p% € N.

Consequently, pz = p€ig +p5(T; & — > ,6']) > 0, proving the conclusion of Proposition 4.2.6.0

Lemma A. (ciN)? = —[5,(W® uw ) — 7,(w® uw?)].

Proof. We will prove the conclusion in four steps.

Step 1: This step is to show N = (N;cIN; (1)) (ﬂ,clN( )) It is obvious that the right side
includes the left side. Now we prove the opposite inclusion. Let p € (ﬂ,clN(l)) N (ﬂjclN( )) and
p® € N. Then, by Definition 3.1, A\p+ (1 — A\)p® € N,VA € (0,1). And Ap+ (1 — Ap? —pasd—1
and therefore, p € c/N. ___

Step 2:This step is to show cll}I_&= —(Wi(l) U Wi(l))o. It follows from Definition 3.1 and Propo-
sition 3.2 that Llligl) - —(Wi(l) U Wi(l))o. It remains to show the opposite inclusion. Suppose that

(W(l) W(l))o that is pa > 0,Va € W(l) U W(l) and therefore, Ap + (1 — A\)p’ € Ngl) for all
p € N( ) and ) € (0,1). Hence, by taking A — 1, p € clN(I)

Likewise, it can be shown that clN(-2) = (W(z) W(2))0

Step 3:This step is to show that the set >_;(W, (1)UW(1)) -2 (W(z)UW(z)) is closed. By Corollary
9.1.1 in Rockafellar(1970), it suffice to show that if z; € otw®y W(l)) and z} € O+(W(2) W(z))
with ¥, 2 — 3, 7} = 0, then —z € 0T (W) U w®) and -2 € 0F (WP U W(z))

Since 0 € W(l) W(l) and 0 € W(z) W(z) z; € W(l) W(l) and z € W(z) W(Z) by definition
of recession cone. This implies pz; > 0 and sz < 0,Vp € N’ and therefore, pz; = pz] = 0 since
>i%— EJz =0.

Consequently, z; € W() and z € W(z) and therefore, —z; € W(l) C O+(W(1) U W(l)) and
— ew® c ot WP uwd).

Step 4: As in Werner(1987), by Corollary 16.4.2 of Rockafeller(1970) and by combining Step
1-Step 3, we finish the proof of this lemma.
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