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Abstract

This paper discusses ways to reduce the bias of consistent estimators
that are biased in finite samples. It is necessary that the bias function,
which relates parameter values to bias, should be estimable by computer
simulation or by some other method. If so, bias can be reduced or, in some
cases that may not be unrealistic, even eliminated. In general, several
evaluations of the bias function will be required to do this. Unfortunately,
reducing bias may increase the variance, or even the mean squared error, of
an estimator. Whether or not it does so depends on the shape of the bias
function. The techniques of the paper are illustrated by applying them to
two problems: estimating the autoregressive parameter in an AR(1) model
with a constant term, and estimation of a logit model.

JEL Classification Number: C13

Keywords: bias function, mean squared error, simulation, finite samples



1. Introduction

Many econometric estimators are consistent but biased in finite sam-
ples. It is natural to try to “correct” this bias by using computer simulation,
and the idea of doing so is probably very old. For example, in an inter-
view (Phillips, 1988), James Durbin reports that he worked on this idea in
the early 1950s but gave up because it was beyond the capabilities of the
computers available at that time. Nevertheless, despite the enormous im-
provements in computers in recent years, bias correction is rarely attempted
in practice.

In this paper, we discuss ways in which finite-sample bias can be es-
timated, reduced, and in some cases even eliminated. The key concept is
that of a “bias function,” which relates the bias of some estimator to the
parameter value(s). In many cases, this function can be estimated by com-
puter simulation. In some cases, it may even be obtained analytically, at
least up to some order of approximation; see Section 6. The paper has two
principal results. First of all, bias correction generally seems to do a very
good job of reducing bias, even when the bias functions are quite nonlin-
ear. Secondly, although bias correction may often reduce the mean squared
error of an estimator, it can, under some circumstances, increase it.

We begin by considering the case of a scalar parameter # which can be
estimated consistently from data y;, t = 1,...,n by some standard tech-
nique such as least squares or maximum likelihood. Let §* denote a con-
sistent estimator of § based on a sample of size n and let 8y denote its true
value. We shall call § the initial estimator. Then we can always write

~

(1) 6" = 6o + b(007n) + ’U(oo, n)a

where b(6y,n) = E(6™) — 6, and v(8p,n) is defined so that (1) holds. Thus
b(6o,n) is the bias of §* and v(fp,n) is the random difference between
6™ and its mean. The function b(6p,n) will be called the bias function.
Except for the parameter 6, we are assumed to know the distribution of the
yt’s. Thus we are able to estimate the bias function by simulation without
using the bootstrap (Efron, 1982; Hall, 1992). The key feature of the bias
function is that, in general, the bias of 8 (henceforth, we will suppress the
superscript n) depends on 6y. It is this dependence that makes correcting
bias difficult and, sometimes, undesirable to do.

As an illustration, Figure 1 plots bias functions for three sample sizes
for the OLS estimate of the parameter p in the nonstationary autoregressive
model

(2) Yo = p+ pyi—1 +us, us ~ NID(0,0?).
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We choose not to assume stationarity here for two reasons. First of all, the
stationarity restriction that |p| < 1 makes bias correction more complicated.
Secondly, because p = 1 implies the presence of a unit root, we did not want
to rule out this interesting case. Because we are not assuming stationarity,
we had to make an arbitrary assumption about starting values. We assumed
that yo = p + uo. Alternative assumptions would have resulted in slightly
different bias functions.

The bias functions in Figure 1 were obtained by computer simulation,
using 800,000 replications for n = 25, 400,000 replications for n = 50, and
200,000 replications for n = 100. These functions do not depend on the
values of p and 0%; see Appendix A of Andrews (1993). Using the regression
technique proposed by Davidson and MacKinnon (1992), the control variate
E?:z uy¢—1 was used to reduce the variance of the estimates and, in order
to make the graph as smooth as possible, the same seeds were used for all the
simulations. In this case, it would have been possible to obtain these bias
functions analytically (Sawa, 1978), but it was easier to use simulation. We
see from the figure that the bias function for $ in this model is nearly linear
for —0.85 < p < 0.85. However, it is severely nonlinear in the neighborhood
of |p| = 1. Thus, in this example, it would never be reasonable to assume
that the bias function is constant, but for many values of p it might be
reasonable to assume that it is linear.

In the next section, we consider what happens when the bias function
is linear. This case is simple to deal with and may often be a good ap-
proximation. Then, in Section 3, we consider the more general case of a
nonlinear bias function. Subsequently, Section 4 extends some of the results
to the case in which there is a vector of parameters. Finally, in Sections 5
and 6, we present two sets of Monte Carlo results, one for an AR(1) model
and one for a logit model.

2. Estimation with Constant and Linear Bias Functions

The simplest case to deal with is the one in which the bias function is
flat, so that b(6,n) = b(n) for all 6. In this case, we could estimate b(n)
simply by generating N samples of size n from the model that is hypoth-
esized to have generated the y,;’s, using any value of 6 at all. Although
it does not matter what value of § we use, the obvious one is 6. Let the
average of the estimates obtained from the N simulated samples be

L1 SN
é FZ(),-.
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Then our estimate of b(n) would be

Il
S

(3) b=1b(0,n)=6-4.

Since the simulated samples are assumed to be drawn from the same model
as the data, b will provide an unbiased estimate of b(n), and as N — oo it
should, under plausible conditions, converge to b(n).

In this simple situation, then, we can obtain an estimate of b(n) that is
as good as we want (or can afford) it to be. The corresponding estimate of 6,
which we shall refer to as the constant-bias-correcting, or CBC, estimator,
will simply be

(4) 6=6-b=20-4.

We could then make inferences about 6 by using the estimated asymptotic
variance of §. However, it seems more sensible to use the simulation results.
We can estimate a conﬁdence interval by using the empirical quantiles of
the simulated quantities 9 — 2b. Note that we have to subtract b twice
here, once to allow for the fact that the DGP for the simulation used the
biased estimate 6 and once to allow for the fact that the 0 s are biased
estimates of §. The ends of a symmetric 95% confidence 1nterva1 would be
the .025 and .975 quantiles of 0 — 2b. It would also be possible to obtain
non-symmetric confidence iAntervz}ls, which could be shorter than symmetric
ones if the distribution of §; — 2b were not symmetric.

When the bias function does depend on 6y, as it normally will, a single
simulation will not allow us to obtain an unbiased estimate of §. When
the bias function is linear in 6, however, it is still quite easy to compute
unbiased estimators by using simulation. Even if the bias function is not
precisely linear, it may often be a reasonable approximation to assume that
it is, and we shall make this assumption for the remainder of this section.

If the bias function is linear, we can write it as
(5) 5(6) = a1 + axb,

where we have suppressed the explicit dependence of (:) on n. By evalu-
ating (5) at two points, we can solve for @; and a;. It seems logical that
one point should be 6. A natural choice for the second point is the CBC
estimator 8, which was defined in (4). We need to do a second simulation
experiment to obtain 5. This experiment should be identical to the first
one, except that the DGP must be evaluated at 6 instead of 6. In order
to ensure that the slope of the bias function is estimated accurately, both
simulations should use the same sequence of random numbers.
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Given é, 6, and the estimates b and b, it is easy to solve for a; and as.
The results are

a':1=3——(lz_l.).>é and d2=b———b.
6—0 -

Under plausible conditions, &; and &2 will converge to a3 and as as the
number of simulations is increased. Now consider the estimator 6 that is
defined as the solution to the following equation:

~

(6) 6 =0—é; — dab.
Equation (6) simply says that 6 is equal to § minus the bias function eval-
uated at 6 itself. Solving (6) yields

1
14 as

(7) 6= (0 — éy).

This is the linear-bias-correcting, or LBC, estimator.

Unlike the CBC estimator 6, which is unbiased only when the bias
function is flat, the LBC estimator 6 will be unbiased whenever the bias
function is linear. To see this, observe that

o B(6) = B3 - H0)
=6+ b(6o) — b(6p) = 0.

The key to this result is that E(b(f)) = b(6o), which will only be true, in

general, when b(6) is linear.

As with the CBC estimator, we will generally want to obtain a confi-
dence interval for § as well as an unbiased estimate, and there are numerous
ways to do so. Since we have already done two simulations to obtain 6, it
seems natural to use simulation again. However, we will need to do one
more simulation, because this time we must use 6 to generate the data. On
each replication of this simulation, we calculate

1
T 14 dy

; (6 — &)
From the empirical quantiles of the 9]-’3, we can then calculate whatever
confidence interval we are interested in.

The parameters of the bias function, ¢; and dg, are treated as con-
stants for the purposes of the simulation just described. Similarly, b was
treated as a constant when confidence intervals for § were discussed. There-
fore, the confidence intervals that emerge will ignore any variation due to
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experimental error in the simulations. It would be possible to take account
of this error, but only at the cost of considerable complexity. Since experi-
mental error can be made arbitrarily small by making N sufficiently large,
there does not seem to be much point in worrying about it. Even when
N is only 1000, the standard errors of the simulation errors in estimating
b(d) and b() will be only about .032 times the standard error of §. When
N = 10000, the former will be only .01 times the latter. In many cases,
it will be possible to obtain even smaller simulation errors without making
N unreasonably large by using control or antithetic variates; see David-
son and MacKinnon (1992). These methods tend to work particularly well
when they are used to estimate the mean of a set of parameter estimates.

It is interesting to see how the variance of the LBC estimator 6 is
related to the variance of the initial biased estimator f. In the remainder
of this section, for simplicity, we shall assume that &2 = a2, ignoring the
possible effects of experimental randomness. From (7), it is easy to see that

< 1 A
9 V() = ——=V(9),

©) @)= T2V O

a result which holds whether or not the bias function is actually linear.
Thus whether the variance of @ will be greater than or less than that of 6
will depend on whether a; is less than or greater than zero.!

If ap < 0, it is quite possible for the unbiased LBC estimator 8 to have
greater root mean squared error (RMSE) than the initial estimator 6. This
will happen whenever

(10) =V (6) > (o1 + 0260)* + V(B).

(1+a2)

Of course, this equation is based on the assumption that the bias function
is in fact linear. Notice that, if the variance of 8 is small enough or a; > 0,
condition (10) will never be satisfied. Thus bias correction can be expected
to work relatively well when the bias function slopes upwards and when the
variance of 6 is small relative to the bias.

The results (9) and (10) do not make sense if a3 = —1. It seems
plausible to assume that a; > —1, since otherwise the derivative of E()
with respect to 6y would actually be negative, and it does not seem a
very strong requirement for an estimator that its expectation should be
positively related to the true parameter value. However, it is certainly
conceivable that this assumption could sometimes be false.

1 Smith, Sowell, and Zin (1993) make a similar point.



It is interesting to look at the behavior of the CBC estimator § when
the bias function is actually linear. In this case, its bias will be

b(6p) — E(b(0)) = o1 + a2 — oz — az E(6]6,)
= by — a2(fo + a1 + azby)
= —ag(a1 + az6))
= —axb(6y).

(11)

Thus the bias of § is —ay times the bias of §. Provided that |az| < 1,
the CBC estimator will be less biased than the initial estimator. It will
be biased in the same direction when a; < 0 and biased in the opposite
direction when ag > 0.

Since 8 = § — a; — as0, the variance of the CBC estimator is
(12) V(8) = (1 - a2)?V().

Thus, like the LBC estimator, the CBC estimator will have greater variance
than the initial estimator when as < 0. If a2 # 0 and |az| < V2, then
(1 — a2)? < 1/(1 + a2)?, which implies that the CBC estimator will have
smaller variance than the LBC estimator in almost all cases of interest. It is
quite possible that this smaller variance will more than offset the bias of the
CBC estimator, causing it to have smaller RMSE than the LBC estimator.
The condition for 6 to have smaller RMSE than 6 is

(13) (I+IT2)2V(9) > (1= az)2V(8) + o2(a + az6o).

The above results suggest that the CBC and LBC estimators may
well have larger RMSE than the initial estimator, and that CBC may have
smaller RMSE than LBC even though it is biased and LBC is not. Consider
the bias functions in Figure 1, and suppose that p = 0.4 and n = 25. Then
the bias of p is —0.0869, its variance is 0.0358, and the value of ag is
approximately —0.1257. Therefore, by (11) and (12), the bias and variance
of p will be —0.0109 and 0.0454. Similarly, by (9), the variance of p will be
0.0469. These numbers imply that RMSE(j) = 0.2083, RMSE(p) = 0.2134,
and RMSE(p) = 0.2165. These theoretical results will be confirmed in
Section 5; see Figure 3.

The results of this section make it clear that bias correction is not
always a good thing to do. Although bias correction leads to smaller bias
in a wide variety of circumstances, it increases mean squared error if the
bias function slopes downward and the variance of 6 is sufficiently large
relative to its bias. These results generalize easily to the case in which
there is a vector of parameters to be estimated; see Section 4.
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3. Estimation with a Nonlinear Bias Function

Bias functions are not always approximately linear. Therefore, the
LBC estimator cannot be expected to remove all of the bias in all cases. In
this section, we consider techniques for handling arbitrary nonlinear bias
functions.

The key to determining 6 in the last section was equation (6), in which
6 was set equal to 6 minus an estimate of the bias evaluated at . In the
nonlinear case, the analogue of (6) is

(14) 6 =8 —b(6).

If we can solve (14), we can find the nonlinear-bias-correcting, or NBC,
estimator 6. However, there are two problems that do not arise in the
linear case. First of all, § will not be unbiased. Secondly, we must find
some way to solve (14) numerically.

It is easy to see that when b(6) is nonlinear, § is, in general biased.

When we take expectations of both sides of (14), as we did in (8), the
nonlinearity of b() implies that E(b(a)) # b(8p). Although 6 will, in
general, be biased, there is reason to hope that the bias will often be small.
If we take a second-order Taylor series expansion of (14) around 6y, we
obtain

(15) 66— bo—by(6— 60) — 5b5(6— 60)?,
where by denotes b(6p), and bj and by denote the first and second derivatives

of b(6), evaluated at 6y. Taking expectations of both sides of (15), dividing
through by 1 + bj, and rearranging, we find that

E(6 — 6,)*.

o ~ 1 bg
(16) R

This suggests, but does not guarantee, since (16) is only an approximation,
that there will be no bias if the second derivative of b(6) is zero near 6,. It
also suggests that there will be bias if b is not zero, and that the sign of
the bias will be opposite to that of by . ThlS bias will be of the same order
as the square of the difference between 6 and 6. Thus, assuming that 6,
and hence 6, is root-n consistent, the bias will be of order 1/n.

The second problem is how to solve (14) without requiring very many
evaluations of b(#). Any technique for finding the roots of an equation in
one variable could potentially be used. One ad hoc technique that seems to
work well in many cases is the following. A key advantage of this technique
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is that it does not require the calculation of any derivatives of the bias
function. First, find b as in (3). Then compute the sequence of estimates

(17) 69 = (1 = )89 4 (8 — b)),

where §(©) = § and 0 < v < 1, and stop when |6 — §(=1)| is sufficiently
small. It is easy to see that, if this sequence converges, it will converge
to a value @ that satisfies (14) However, it is certainly not guaranteed to
converge. Whether or not it does so will depend on the shape of the bias
function and on the parameter v. Larger values of v are likely to result in
a lower probability that the sequence will converge, but faster convergence
if it does so. In practice, it may be desirable to try v = 1 first and then try
lower values of v if the procedure does not seem to be converging.

This procedure has recently been used by Smith, Sowell, and Zin (1993)
to obtain almost unbiased estimates of the order of integration in a frac-
tionally integrated time-series model. In that application, where the bias
function was very flat, it worked well. It also seems to work well for the
examples dealt with in Sections 5 and 6.

There is some similarity between what we are doing here and what
Andrews (1993) recently did for a class of autoregressive models. Another
way to write (14) is § = h=1(@), where h(8) = 0+ b(6). What we are doing
is to invert the “mean function” h(f), in much the same way that Andrews
inverted the “median function.” Because the median of f(z) is equal to
f(mg) for any function f(-), where m, is the median of z, Andrews was
able to obtain median-unbiased estimators. It is because this is not true for
expectations that the NBC estimator is, in general, biased. Of course, our
technique could easily be used to obtain a median-unbiased estimator. We
would simply have to replace the bias function b(6) in (14) by the difference
between the median of § and 6.

4. The Vector Case

In the preceding two sections, we have obtained three different bias-
correcting estimators. These were all based on the assumption that 6 is a
scalar. This is not quite as restrictive as it might seem, since our analysis
will still be valid when there are other parameters in the model, provided
that the bias of 6 does not depend on their values. In this section, we relax
this assumption by considering the case in which 8 is a k£ X 1 vector.

First of all, the CBC estimator @ can be computed in exactly the
same way as before. We generate N samples of size n from the DGP with
parameters 6 and define 6 as the mean of the estimates obtained from these
samples. Then 6 = 20 — 0.

When the bias function is flat, 8 will be unbiased and will have the
same variance as the initial estimator 8. More generally, suppose the bias
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function is linear, so that it can be written as
(18) b(O) = Q1 + (120,

where a; is a k—vector and a3 is a k X k matrix. Then, by almost the
same algebra as (11), the bias of 8 is seen to be

(19) —az(ay + a28y),

Wh1ch is the vector analogue of the scalar result (11). Because, under (18),
=(I- a2)0 a1, the covariance matrix of 8 is easily seen to be

(20) (I- )V (I~ e),

where V(6) is the covariance matrix of §. This is the vector analogue of
the scalar result (12).

The LBC estimator is also fairly easy to obtain when 6 is a vector. We
simply have to evaluate b(@) at k 4+ 1 points in order to solve (18) for ay
and a;. Which points are used will not matter if the bias function really is
linear, but it may matter when it is not. As before, the LBC estimator will
be unbiased if the bias function is linear. Since 6 = (I + a2)™ (8 — o),
the covariance matrix of 8 is evidently

(21) I+ a2) ' V() (A +a))
which is the vector analogue of (9).
The NBC estimator 8 can be computed by solving

(22) 6 =6-1b9),

which is the vector version of (14). There are at least two ways to do this.
One is to modify the iterative procedure (17) as follows:

(23) GO = (1 - 7)%6UD 4+ yx (6 — B(EGD)),

where “¥’ denotes direct product and - is now a k—vector, each element of
which is between 0 and 1. In practice, of course, it may be easier to make
all elements of 4 the same. As before, this procedure is not guaranteed to
converge.

Another approach is to use Newton’s Method. A typical Newton step
would be

(24) §UHD = §O) _ (14 BE@ED)) ™ (b(69) + 69 — §),

where B(8\)) is a k x k matrix of the derivatives of (@) with respect to
0, evaluated at 6. This matrix of derivatives would have to be evalu-
ated numerically. For the first Newton step, 6 would equal 6, and this
step would yield an estimator similar to the LBC estimator, although not
identical to it when the bias function is nonlinear.
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5. Monte Carlo Results for an AR(1) Model

The three bias-correcting estimators proposed in Sections 1, 2, and 3
were applied to the estimation of p in the AR(1) regression model (2). Be-
cause the bias function had already been computed numerically for various
sample sizes (see Figure 1), it was not necessary to do any simulation to
obtain it. This made it feasible to use quite a large number of replications
in the Monte Carlo experiments. There were 400,000 replications for each
of three sample sizes (25, 50, and 100) and each of the following 83 different
values of p:

p=—1.20,-1.18,...,—1.06,—1.05,—1.04,...,—.90, —.85,
...,.90,.91,...,1.05,1.06,1.08,...,1.20 .

Different seeds were used for each experiment, and no control variates were
employed.

Figures 2 and 4 show the biases of the OLS estimator p, the CBC
estimator g, the LBC estimator g, and the NBC estimator p as a function
of p for n = 25 and n = 100, respectively. The biases of p are essentially the
same as those in Figure 1. In contrast, for most values of p, g exhibits only
a little bias and the other two estimators exhibit almost no bias. There is
a fair amount of bias for values of p near £1, however. Of course, this is
where the bias functions are severely nonlinear.

In Section 3, we showed that for a linear bias function, p will be less
biased than p, provided the condition |az| < 1 is satisfied. This condition
is not satisfied for some values of p greater than 1. We see from the figures
that, for values of p in this region, the bias of p is opposite in sign and only
somewhat smaller in magnitude than the bias of 4.

Interestingly, the curves for the LBC estimator p and the NBC estima-
tor p are almost indistinguishable, although the latter does seem to have a
bit less bias in the worst cases when p is very close to 1. Thus, in this case,
there seems to be little to gain by using the NBC estimator rather than the
simpler LBC one.

Figures 3 and 5 show the root mean squared errors of the four estima-
tors as a function of p for n = 25 and n = 100, respectively. Despite the
success of the bias-correcting estimators in reducing or eliminating bias, the
OLS estimator has lower RMSE than any of the bias-correcting estimators
for p between about —0.9 and 0.5. Only for values of p greater than about
0.8 do the bias-correcting estimators produce a marked reduction in RMSE.
The CBC estimator, which performs least well at removing bias, has lower
RMSE than the other bias-correcting estimators except for |p| > 0.8.

The reason why the bias-correcting estimators have larger RMSE than
the OLS estimator for most values of p is easy to find. Since p and p perform
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almost identically, as the near linearity of the bias function suggests that
they should, equations (9) and (12) should be applicable. According to
equation (9), the variance of p should be equal to (1 + az)~2 times the
variance of p. Similarly, equation (12) implies that the variance of g should
be equal to (1—az)? times the variance of . Since a; is always negative, this
implies that the variance of all the bias-correcting estimators will exceed
the variance of the OLS estimator. Only for large values of p, where the
bias of p is large, does the reduced bias of the bias-correcting estimators
outweigh their increased variance.

It is worth pointing out that equations (9) and (12) do a remarkably
good job of explaining what we see in Figures 3 and 5 for most values of
p. Figure 6 plots the observed standard errors of p and p for n = 50. It
also plots what those standard errors should be according to equations (9)
and (12), which assume that the bias function is linear. Only for values
of p between about 0.8 and 1.1 are there substantial discrepancies between
what we observe and what the theory predicts. Even for values of p near
—1, where the bias function is decidedly nonlinear, the predicted standard
errors are reasonably close to the true ones. This suggests that, when
deciding whether to use a bias corrected estimator, and which one, it may
often be reasonable to rely on equations (9) and (12).

Another interesting feature of the experiments is that the iterative
procedure based on (17) worked extremely well. For most values of p, the
procedure converged in eight or fewer iterations (using a tolerance of 107%),
with v = 1. Only for values of p around 1 was it ever necessary to use values
of v less than 1.

6. Monte Carlo Results for a Logit Model

The methods of this paper may be particularly attractive in the case
of binary response models such as the logit model. The logit model may be
written as

(25) E(y) = P(XeB) = (1 + exp(—X:B)) ',

where y; is either 0 or 1, X; is a 1 X k vector of regressors, and B isa k x 1
vector of unknown parameters. Although maximum likelihood estimation
of this model is usually quite straightforward, the ML estimates tend to be
biased away from zero; see Amemiya (1980). This bias is similar to the bias
of the ML estimate of o2 in least squares estimation, which arises because
the residuals tend to underestimate the error terms. In a logit model, larger
absolute values of 3 correspond to a model that fits better, so the tendency
of the ML estimates to overfit the data results in their being biased away
from zero.
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Amemiya (1980) developed an approximation to the bias of the ML
logit estimator that is valid to order 1/n. For the logit model (25), this
approximation can be written as

(26) b*(8) = (X'2X)7' X'd,

where §2 is an n X n diagonal matrix which has typical diagonal element
Pi(1 — P;) and d is an n x 1 vector which has typical element

(27) d: = (2P, - 1) [91/2X(X'QX)_1X’.{21/2]“_

Here [-]i+ denotes the ¢** diagonal element of the matrix within the brack-
ets. Because only the diagonal elements of the n x n matrix in (27) need
to be calculated, the approximation (26) is quite easy to compute. The
notation b?(3) emphasizes the fact that bias depends on the value of 3
through the P;’s.

It is much more attractive to obtain bias-corrected estimates by using
the approximate bias function b%(3) defined in (26) and (27) than by using
a bias function obtained by simulation. This is true for several reasons.
First, simulation would be very much more computationally expensive than
evaluating b%(3). Second, when simulation is used, the estimated bias
function b(9) will not be a smooth, or even a monotonic, function of 3.
The problem is that a small change in B may not change the values of the
y¢’s in the simulated samples at all. When this happens, the estimates will
not change, and the slope of the simulated bias function will be precisely
—1. This will not seriously affect the CBC estimator, but experience has
shown that it does cause serious problems for the other two estimators.

A third reason not to use simulation to obtain the bias function is that
ML estimation of logit models has a fundamental difficulty which may be
encountered during the simulation. The problem is that ML estimates do
not exist when every value of y; in the sample can be predicted correctly.
This is especially likely to happen when the sample size is small and the
model fits well. Even though this problem is rarely encountered with real
data, it might well be encountered during the many ML estimations needed
to simulate the bias function. Indeed, it is because we encountered this
problem quite often when doing experiments with samples of size 25 and
50 that we used n = 100 in the experiments reported here.

Figure 7 shows the actual and approximate bias of the slope coefficient
B1 as a function of itself in a two-parameter logit model. The constant
term fy is equal to either 0 or 2, and the only regressor is distributed as
N(0,1). These bias functions were obtained by simulation using 100,000
pairs of antithetic variates for 61 values of $; ranging from —3.00 to 3.00 by
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increments of 0.1. Using antithetic variates yielded somewhat more accu-
rate estimates of bias than simply doing 200,000 independent replications,
except for values of 3; close to zero when Sy = 0, where the efficiency gain
was enormous. No smoothing was done, and different random numbers
were used for each replication.

During the course of our experiments, there were a few cases in which
the ML estimates failed to exist, always for values of By and/or 8; that
were relatively large in absolute value. For the experiments that were used
to graph the bias functions in Figure 7, there were 8 failures in 12.2 million
replications when By = 0 and 196 failures in 12.2 million replications when
Bo = 2. Replications for which ML estimates could not be obtained were
discarded and replaced. This seems to be the appropriate thing to do, since
bias correction will only be used if the original ML estimates exist.

Figure 7 has several interesting features. The bias function for the ML
estimate of the slope coefficient B3 slopes upwards, the absolute value of
the bias of ,[31 increases with the absolute value of fy (the curve for fy = —2
is not shown because it is indistinguishable from the curve for 8y = 2), and
the approximate bias is always smaller in absolute value than the true bias.
Moreover, only a modest amount of nonlinearity is evident in the figure.

Figure 8 shows actual and approximate bias functions for the ML esti-
mate of the constant term ,Bo as a function of #; in the same two-parameter
logit model. The bias functions for fy as a function of itself are not graphed
because they look very similar to the ones in Figure 7. From Flgure 8, we
see that the bias of ,30 has the same sign as ; and increases in absolute
value as the absolute value of 3y increases. Once again, the approximate
bias is always smaller in absolute value than the true bias, but it does seem
to provide a fairly good approximation. Note that, when By = 0, the bias
function for fy as a function of B1 is essentially flat at zero; this function
was not graphed to avoid cluttering the figure.

The bias functions in Figures 7 and 8 suggest that bias correction
should work very well for this logit model. This is in fact the case, as
can be seen from Figures 9, 10, 11, and 12, which are based on 200,000
independent replications. The first two ﬁgures show the bias and RMSE
of ,31, B, and ,31 as a function of f; for the case in which By = 2. The
LBC estimator § here is calculated by taking one Newton step from B,
and since it is visually indistinguishable from the NBC estimator £, only
the latter is shown. The last two figures show the bias and RMSE of Bo,
Bo, and ,Bo, again for By = 2 as a function of #;. The principal impression
we obtain from these figures is that bias correction works extremely well,
in terms of both bias and RMSE.

The bias functions in Figures 7 and 8, and thus the results in Figures
9 through 12, depend on the distribution of the regressor as well as on
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the parameters. The theoretical results of Chesher and Peters (1994) and
Chesher (1995) suggest that, when regressors are symmetrically distributed,
bias functions may have rather special properties. We therefore ran some
additional experiments in which the regressor was distributed as x2(5) and
then recentered and rescaled to have mean 0 and variance 1. Results are
shown in Figures 13 and 14, which are otherwise similar to Figures 9 and
10. The shape of the bias function for 3 is considerably more complicated
than it was previously, but it still slopes upward and it is still not severely

nonlinear. Once again, it appears that bias correction works extremely well,
in terms of both bias and RMSE.

One aspect of these figures may at first seem a little strange. It is that
the mean squared error of the CBC estimator 3 is consistently less than the
mean squared errors of the LBC and NBC estimators, which are practically
identical. There are two reasons for this. The principal reason is that, as
can be seen from (9) and (12) for the scalar case, the variance of the CBC
estimator is always less than the variance of the other two estimators when
the bias function is linear and not flat. This explains most of the difference.

A second, but quantitatively less important, reason for the smaller
RMSE of the CBC estimator is that bias correction here is based on the
approximate bias function b%(3), not on the true bias function b(8). As a
result, the LBC and NBC estimators exhibit somewhat more bias than the
CBC one. We saw in Figures 7 and 8 that b%(3) always underestimates the
absolute bias. At the same time, because the bias function slopes upwards
for both parameters as functions of themselves, the result (11) suggests
that the CBC estimator will tend to subtract an overestimate of the true
absolute bias. In the case of the CBC estimator, these two sources of error
largely offset each other. In contrast, the LBC and NBC estimators work
almost exactly as they should if the true bias function were b%(3). The
slight bias they exhibit is a result of the discrepancy between b*(3) and

b(8).

These results suggest that using Amemiya’s approximate bias function
(26) in conjunction with the CBC estimator works very well indeed for the
logit model. We are not aware of a similar approximate bias function for
the probit model, and so simulation would presumably have to be used if
we wished to obtain bias-corrected probit estimates.
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7. Conclusions

It seems clear that using methods based on evaluating the bias function
to reduce bias is feasible and can be effective. Whether such methods
will be useful in practice depends on the shape of the bias function and
the variance of the initial estimator. If the bias function is approximately
flat, bias correction is easy to do and should generally work well. If it is
approximately linear, bias correction is still fairly easy to do, but it may
not work well. In particular, if the bias function slopes down, the bias-
correcting estimators will have larger variances than the initial estimator,
and they may therefore have larger mean squared errors. On the other
hand, if the bias function slopes up, the bias-correcting estimators will have
smaller variances than the initial estimators. If the bias function is severely
nonlinear, bias correction is harder to do and generally cannot eliminate
all bias. Since the problems encountered in the linear and nonlinear cases
arise from the variance in the initial estimator, bias correction is likely to
be most effective when the bias is large relative to the variance of that
estimator.
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Figure 9. Bias of Logit Slope Coefficient, n = 100, By = 2
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Figure 10. RMSE of Logit Slope Coefficient, n = 100, Gy = 2
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Figure 12. RMSE of Logit Constant Term, n = 100, By = 2
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Figure 14. RMSE of Logit Slope Coefficient, n = 100, 8y = 2
Asymmetric Regressor Case

- 95—



