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Abstract

This paper provides an interpretation of the vast literature on
testing for wunit roots and estimating co-integrating relations.
Emphasis is placed on identifying the particular ways in which methods
of dynamic specification need to be modified in order to take account
of the possible presence of unit roots in the time series being
modelled. The discussion is undertaken in the settings of both
single-equation and systems methods and attention is paid to problems
of estimation and inference. It is argued that the importance of
issues such as exogeneity and rich dynamic specification, developed in
the context of stationary time series, carry over to a very large
extent when dealing with non-stationary series.



1. Introduction

In the field of modelling economic time series, the eighties might
easily be described as the "decade of co-integration". During this
decade, theoretical and applied econometricians alike have invested a
great deal of effort in dealing with the theoretical and empirical
implications of Nelson and Plosser’s (1982) central observation that
time series of important economic variables such as consumption and
per-capita GNP may have statistical properties quite distinct from
those which would warrant the use of standard tools , such as normal,
t-, and F-tables, of inference and estimation.

The results of this research have given rise to an unmanageably
vast literature on almost every aspect of estimation and inference in
the presence of non-stationary series. It is therefore impossible, in
the space available, to provide a complete account of this field. The
case for writing a formal survey is in any case rather limited, given
the several surveys which have already appeared (see, for example,
Stock and Watson (1988), Dolado, Jenkinson and Rivero (1990), Campbell
and Perron (1991)). The purpose of this paper is instead to focus on
specific issues which, in my view, are important in any evaluation of
this literature. In particular, I will attempt to address, at least
partially, the issue of the extent to which our notions of what
constitutes good or appropriate modelling practice have changed as
a result of the research on unit roots.

The mathematical and statistical tools on which the econometrics
literature on unit roots depends, date back at least to the 1920’s,
1930’s and 1940’s, notably to the work of Wiener, Lévy, Doob and many
others. Thus no claim for mathematical or statistical originality can

be made, per se, on behalf of this literature. Rather, I will argue



that econometricians have brought the highly developed theory on
stochastic processes into the realm of every day econometric modelling
and, by applying it to problems particular to econometrics, have added
considerably to our store of knowledge of the very special properties
of non-stationary series and the implications of these properties for
estimation and inference.

However, I will also argue that while a greater realization of
how things can go wrong when dealing with these series has had an
important effect on our econometric consciousness, this does not lead
us necessarily to a fundamental re-evaluation of modelling practice,
in particular of dynamic modelling. For example, it will be shown
that some of the inferential problems which arise may be overcome by
suitable transformations and appropriate augmentation of equations.
These methods will often allow us to return to using standard tables
for inference.

In the next section, two examples are presented which illustrate
the fundamental differences which could arise between the treatments
of unit root and non-unit root processes. The differences emerge
particularly because the critical values of standard tests, such as t-
or F- tests, are affected by the presence or absence of unit roots.
In Sections 3.1 and 3.2 it is shown how these differences can, in some
circumstances, be eliminated by a proper reformulation of the model.
However there are cases where such reformulations are not possible and
it therefore becomes very important, before proceeding to the formal
task of econometric modelling, to classify the variables of interest
by their orders of integration. This is a task which is by no means
an easy one to accomplish, even with our fairly advanced understanding

of the asymptotic theory, given the low powers of most available tests



for unit roots. In Section 3.4 I propose a conservative testing
strategy to allow for the possibility of incorrect classification.
Sections 3.3 and 3.4 also deal with the 1issue of estimating
co-integrating relationships in single equations, dealing with, in
particular, the two-step method proposed by Engle and Granger (1987)
and suggesting a simple alternative. This is linked with the issue of
testing for co-integration and unit roots, an area which has generated
considerable interest in the 1literature. Section 4 considers
single-equation vs. systems methods of estimation and shows that the
choice between these two methods can be made and understood within the
familiar concepts of exogeneity. Section 5 concludes. Since frequent
reference is made in the text to the concepts of weak and strong
exogeneity, an appendix contains a discussion, based on Engle, Hendry

and Richard (1983), of these concepts.

2. Spurious and Inconsistent Regressions

2.1 Spurious regressions

While Nelson and Plosser’s paper provided one of the early surprising
insights in the literature on unit roots, Yule (1926) had already
alerted the profession to the potential dangers of undertaking
stationary inference in an environment with non-stationary variables.
He termed the phenomenon "nonsense" regressions and showed how
regressing one variable which followed a random walk on another
totally unrelated random walk 1led to findings of significant
correlations between the two series. Granger and Newbold (1974)

returned to the Yule example and their formulation of the problem



forms the starting point for our analysis. Granger and Newbold called
such regressions "spurious" and this has come to be regarded as the
more commonly accepted terminology.

Granger and Newbold considered the following data generation

process (DGP) for the data series {xt}I=1, {yt}:=f
Yy = Viq * U u ~ IID(O, o2, (1)
Xy =X,y + Vv, v ~ IID(0, 02), (2)
E(uv)) =0V t*s; E(wu, ) = E(viv, ) =0Vk=o.

Thus xt and y, are uncorrelated random walks. Before proceeding to
the formal details of the example some important features of the data
generation process may be noted. The process generates two
variables, each with a unit root. This terminology can be understood
more readily by rewriting the DGP in lag polynomial operator form:

(1 - plL)yt = u,, (1’)

1 - sz)xt = Ve (2°)
where the processes generating {ut} and {vt} remain unchanged and L is

., LY

the lag operator such that ij = xt_J

t Ye = Yoy

The "unit foot" in the {xt} and {yt} processes refers to the
value of unity for the coefficients Py and Py- Values of Py and P,
such that |p1| < 1, and |p2| < 1 correspond to "stationary roots". In
the terminology of Engle and Granger (1987), (1) and (2) are called
processes "integrated of order 1", denoted I(1), i.e. they need to be
differenced once to achieve stationarity.2

It is interesting to compare the properties of the series {xt}
and {yt} when Py =Py = 1 with the properties of the series generated
by values of |p1| < 1 and |p2| < 1. In the former case both series
have unconditional variances which grow with time (at rate t) while

the series have time-invariant finite variances in the latter. The
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autocorrelation  function r, = E(ztzt_i)/[var(zt)var(zt_i
z =y, X ,is an exponentially declining function of i when |p1| <1,
|p2| < 1, i.e. the past of the series becomes increasingly less
important. When the processes have unit roots however, the
correlations persist at significantly large values even when the
observations are substantially far apart.

It is this property of persistence which drives many of the
properties of spurious regressions. Each time series is growing but
for entirely different reasons and by increments that are
uncorrelated. Hence a correlation, induced simply by persistent but
independent growth, cannot be interpreted in the way that it could be

if it arose among stationary series.

Granger and Newbold showed that if standard normal tables were

used to conduct tests of significance on the E—ratio, EB =0’ in the
1
regression

the tests would reject the null of Bl = 0, on average, between 50% and
70% of the time (at a nominal significance level of 5%)! Thus the use
of standard tables would be grossly misleading in the presence of
integrated processes.

A question that might well be asked is whether the misleading
inferences arise simply because the two integrated series are
unrelated with each other and if we considered two integrated but
related series whether the problem would disappear. Unfortunately,
this too happens to be untrue. In a regression such as (3) the
finite and asymptotic distributions of both BO and Bl are non-normal

even when Yi and x, are linked by some hypothesized equlibrium
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relationship (say, y is income and x is consumption). The tools of
inference are, in general, non-standard. However, as we shall show in
a later section, it is possible to reparameterize and extend (3) such
that at least some of the inferences can be undertaken using standard
tables.

A detailed theoretical analysis of the spurious regression
problem was undertaken by Phillips (1986). He showed that the
t-statistic diverged asymptotically. Thus the inferential problem
would become worse as the sample size increased and therefore, in the
limit, to avoid making spurious inferences, infinitely large t-values
would be needed to reject the null Bl = 0. The asymptotic
distribution of the R2 of the regression would also have substantial
weight at the ends of its support (-1 and 1) and values well away from
zero would therefore be very likely. For stationary series however,
none of these problem would arise. In particular, Bl would tend in
probability to zero.

It is possible to provide a good intuition for some of the rather
dramatic results described above. In (3), both the null hypothesis
31 = 0 and alternative Bl # 0 lead to false models, since the true DGP
is not nested within (3). It is therefore not surprising that the
null hypothesis, implying that Vi = € in other words that {yt} is a
white-noise process, 1is rejected: the persistence in {yt} is
projected onto {xt}, also a random walk and therefore also highly
persistent, and spurious correlations arise. Further, the use of the
normal table asymptotically is based on the assumption that {st} is a
white-noise process under HO' This is clearly false and it follows
then that the t-statistic is not asymptotically normally distributed.

Phillips (1986) also demonstrated an important feature of the



Durbin-Watson statistic (DW) calculated from the residuals of (3).
When the regression is spurious, DW -» 0 in probability. This is a
consequence of precisely the property discussed in the previous
paragraph. Under Ho, {et} far from being a white-noise process is
instead highly correlated and this is revealed in a low value of DW.
When the two series are genuinely related, the DW statistic converges
to a non-zero value and the behaviour of the DW statistic therefore
provides a way of discriminating between genuine and spurious

regressions. We will return to this issue in a later section.

2.2 Inconsistent Regressions

Another example of the dangers involved in using standard
distributions for inference when there are non-stationary variables
present was highlighted by Mankiw and Shapiro (1985, 1986) in their
discussion of what have come to be called "inconsistent" or
"unbalanced" regressions.

In this terminology, a regression 1is said to inconsistent
(unbalanced) if the regressand is not of the same order of integration
as the regressors, or any linear combination of the regressors. The
inconsistency (imbalance) refers to the disparity in the orders of
integration of the variables on the two sides of the regression. Thus
the problem occurs if, say, the regressand is an I(0) variable while
the regressors, individually and in combination, are I(1). The
problem also appears if the regressors are only near-integrated, i.e
p1 is close to, but not equal to, one in absolute value. Mankiw and
Shapiro’s analysis which we describe below concentrates on

these near-integrated cases but their results apply equally well to



integrated series.

The difficulty with these inconsistent regressions can be
understood in the context of spurious regressions. An I(0) variable
cannot be related in any meaningful sense to an I(1) variable (where
the I(1) variable may be taken to be a linear combination or composite
of several I(1) variables), given their very different statistical
properties and behaviour over time. Thus an inconsistent or
near-inconsistent (if only near-integrated variables appear)
regression may be regarded as a special kind of spurious regression.
The use of standard tables will therefore 1lead to misleading
inferences on the significance of estimates of parameters.

This discussion has considerable economic interest since tests
for rational expectations, in consumption (Flavin, 1981) or the stock
market (Fama and French, 1989), typically give rise to such
regressions. For example, Flavin’s (1981) test of Hall’s (1978)
random walk hypothesis for consumption takes the form of regressing
differenced consumption ((1-L)ct = Act) on lagged income (yt—l)' If
both consumption and income are I(1) variables this regression is
inconsistent. Under the null hypothesis, that consumption follows a
random walk, the coefficient on the lagged income term should not be
significantly different from zero. However, given the form of the
regression, the t-statistic for the coefficient estimate on lagged
income does not have the standard t-distribution and use of the
t-table will lead to spurious findings of significance and hence
rejections of the random walk hypothesis.

Mankiw and Shapiro consider the following DGP for hypothetical

{ct} and {yt} series:



Ac, = Vi

Ve = iq * &y

E._(v) =E_,(e) =0, (4)

corr(vt, et) = p,

corr(et+j, vt) =0V j=o0.
Et—l is the expectation, conditional on information available at time
t-1, of the value of variables dated in the future. The model is
given by:

Bcy =d, +dyy, , +u,. (5)
The null hypothesis is given by HO: d2 = 0 and Mankiw and Shapiro use
Monte Carlo simulations to tabulate the actual rejection frequencies
of HO: d2 = 0, when standard t-critical values are used, for a range
of specified values for O, p, and T (the size of the samples
generated). Table I below gives some of their results for model (5)

and also for a model with a linear time trend,

Act = d1 + dzyt_1 + d3t +u,. (6)
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Table I Percentage rejection frequencies in standard t-tests at

nominal S% level4

DGP: (4); Sample size = T; No. of replications = 1000

6\Np>
4 Model (5) Model (6)
1.0 0.9 0.8 0.5 0.0 1.0 0.9 0.8 0.5 0.0

(a) T =50
0.999 30 24 20 11 7 60 45 36 16 6
0.99 26 20 15 10 7 54 40 33 15 6
0.98 22 17 15 8 7 S0 37 30 14 5
0.95 17 12 10 7 6 38 30 25 12 6
0.90 12 9 8 6 6 28 22 19 10 6
0.00 S 6 6 ) S 6 7 7 5 6
(b) T = 200
0.999 29 23 20 10 5 61 48 38 18 5
0.99 18 15 13 8 4 41 32 27 13 5
0.98 13 10 9 7 S 29 24 20 11 6
0.95 9 7 7 6 S 17 14 12 7 6
0.90 7 6 6 6 6 10 9 8 6 7
0.00 5 4 4 S5 5 S 5 4 S 5

Table I has several interesting features. First, the size distortions
are an increasing function of the value of the autoregressive
parameter. Critical values given by Mankiw and Shapiro show that this
arises from a leftward (from zero) shift of the t-density for values
of 6 close to 1. The closer @ is to 1 the greater the shift and the
more likely the occurrence of values in excess of - 2, leading to a
higher probability of rejection of the true null and hence giving rise
to greater size distortions. Because of the nature of the alternative
hypothesis H,: d, < 0, rejections of the null hypothesis all take

A 2

place in the lower tail. In fact, because d2 > 0 implies an explosive
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(or exponentially growing) process, two-sided critical values are not
significantly different from one-sided critical values, giving the
scarcity of rejections in the upper tail of the density. For values
of 8 well within the unit circle, the size distortions disappear.

Second, the distortions are a decreasing function of T although
this only holds when the series are near-integrated. For 8 = 1 there
will be no reductions in size distortions when the sample size
increases.

Finally, the distortions are an increasing function of the number
of nuisance parameters (such as constant or trend) estimated. Thus
the distortions in model (6) are higher than those in model (5). This
is again a characteristic feature of such densities.

In summary, the results in this section again show the dangers of
conducting inference using standard tables when wunit roots are
present. This leads naturally to the conclusion that tests of
economic hypotheses of interest, such as the excess sensitivity of
consumption to income, crucially depend on a pre-classification of the
variables of interest by their orders of integration, as this
determines what critical values should be used for inference.
Incorrect pre-classifications will lead to an inappropriate choice of
critical values and thus lead to incorrect inferences.

For most of the next section we duck this issue of possible
incorrect classification and proceed conditionally upon a
classification of the orders of integration of the variables. We ask
the question whether, given that some of the variables have been
classified as I(1), it is possible under any circumstances to return
to using standard tools of inference and whether such a return has any

other practical benefits such as unbiased or efficient estimation. We
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then return briefly to the issue of ameliorating the consequences of
incorrect classification by being conservative in our testing

strategy.

3. Dynamic Regressions

3.1 Overview

The fundamental point, which is the first major theme of this survey,
emerging from the discussion above is the striking difference which
may arise between the critical values required to conduct inference in
a stationary environment and those required when unit roots are
present, and, as a corollary, the mistakes which can occur if
incorrect critical values are used.

The classification of time series by their integration
properties, say, into I(0) and I(1), is an area fraught with
difficulty. There is a vast literature Jjust on testing for unit
roots, with a wide variety of tests proposed. Each of these tests may
have satisfactory power properties against a given set of alternative
hypotheses but may be powerless against a range of other alternatives.

However, given that the classification has been properly made,
series integrated, say, of order one and related to each other seem to
offer a special advantage to the applied econometrician. The
asymptotic property which confers this advantage 1is called
"super-consistency" and discussion of this property takes us to the
second important theme of the literature on I(1) processes, namely the
modelling of long-run economic relationships by means of static
regressions.

Engle and Granger (1987) introduced the notion of

"co-integration" to the mainstream of applied and theoretical
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econometric research. The idea is simple yet very powerful and can be

understood by looking at a simple DGP (taken from Engle and Granger):

Yy *Bxp = uy (7a)
Ve T ax, = e, (7b)
uo=u . e, (7¢)
e, = Pey_; * &y, with |p| < 1; (74d)

(elt’ 82t)’ is distributed 1identically and independently as a

bivariate normal with 2zero means, finite variances, and =zero

covariance.
From (7a) - (7b), Xy and y, can be expressed as linear
combinations of the error processes u, and e, (where the weights in

t t

the linear combinations are functions of a and B). Thus, both Xy and
y, are weighted sums of an I(1) variable and an I(0) variable and are
therefore both I(1). Yet a linear combination of Xy and Yy given by
(7b), is I(0). In the terminology of Engle and Granger the two series
Xy and y, are said to be co-integrated with each other. In slightly
more formal terms, two I(d) series are said to be co-integrated with
each other if a linear combination of these two series is integrated
of order d - b, where b > 0; i.e. linearly combining the two series
leads to a series of a lower order of integration. In the example
above Xy and y, are said to be co-integrated of order 1 and 1, denoted
CI(1, 1), where the first 1 gives the order of the component series
and the second the reduction in the order of integration. Thus two
series are CI(d, b) if each series is individually I(d) while the
linear combination is I(d-b).

For the most part in this chapter we will focus on reductions

from I(1) to I(0). The concept of co-integration applies to

multivariate (greater than two) systems of variables where the
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non-uniqueness of the co-integrating relationship becomes an important
issue.

The concept of co-integration gains importance from the fact that
the statistical properties of the composite variable (which is I(0))
are so dramatically different from the properties of the component
series (both of which are I(1)). Thus series growing stochastically
over time are said to be 1linked together in the long-run or
co-integrated if a linear combination of these series remains bounded
in a statistical sense.5 Co-integration captures the notion of
long-run relationships in economics, such as consumption being a
fraction of permanent income or purchasing power parity, which are
testable on data sets albeit with non-standard tools. Co-integration
allows for possibly extensive divergences in the short-run but because
a stable relationship among variables cannot be meaningfully said to
exist if these divergences persist in the long-run, it uses the
criterion of stationarity in a series such as {et} in (7b), or its
estimated counterpart {;t}, to define the existence of a long-run or
“equilibrium” relationship. Tests for co-integration therefore reduce
to testing for unit roots in the estimated series {;t}, introducing
all the difficulties in testing for unit roots into the literature on
testing for co-integration.

In an important sense, the concept of co-integration is the
natural opposite to the concept of spurious regressions. If,
say, a bivariate static regression is spurious, there does not exist a
stationary linear combination of the variables. If a stationary
linear combination does exist the regression is the co-integrating
regression.

Looking more <closely at the asymptotic properties of a

15



co-integrating regression, the difficulty of non-standard
distributions remains. However, the non-standardness has several
important implications.

First, consider estimating (7b) as the co-integrating regression.
Then,

-~ T 2 -1~ T
(¢ - &) = [Zx] [ xe]. (8)
=1t zt=1t t

Earlier in the chapter we noted that the variance of Xy if X, is
generated by a unit root process, grows with t. From this, and from

the properties of e it 1is possible to see after some tedious

t’
manipulation that the variance of the numerator of (8) is of order T2
while the denominator has variance of order T4. Thus to prevent
explosive (or degenerate) behaviour of both the numerator and the
denominator, they need to be scaled by T and T2 respectively.6
Simplifying, it is then clear that T(; - a) has a non-degenerate
distribution.

The scaling is one important way in which the presence of unit
roots alters the asymptotic theory of the distributions of estimators
even in models as simple as (8). ; tends in probability to «, denoted
& g o at rate T, instead of the usual Tl/2 7, the rate of convergence of
consistent estimators in stationary asymptotic theory. This is known

as "super-" or "T-" consistency, as distinct from Tl/z-consistency.

The integratedness of the series feeds into the distribution of
the estimator in another important respect. The denominator of (8)
does not tend in probability to a finite limit but has an asymptotic
distribution. Similarly, the distribution of the numerator of (8) is
not asymptotically normal. Standard central limit theorems do not
apply because of the non-stationarity of x

t
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Finally, consider taking the Cochrane-Orcutt transform of (7b).
This yields

yp = ox, + p(yt_1 - axt_l) * €y (9)
Equation (8) differs from (9) only in the former’s omission of
an I(0) term given by (yt_1 - axt_l) (1(0) because Yi and X, are
co-integrated), which thereby enters the residual of the regression in
(8). Nevertheless, a remarkable consequence of T-consistency is that
the omission of 1I(0) terms in the model does not affect the
consistency of the coefficient estimator on an I(1) variable. Thus,
with a long data series, a static regression such as (8) is enough to
obtain a consistent estimate of the long-run relationship between the
variables. However, the finite-sample and asymptotic distributions of
the coefficient estimator is affected by the presence of un-modelled
terms, an observation which is of some importance in our later
discussion. This is also a point taken up by Zivot in his comment
which follows this chapter.

Engle and Granger’'s paper emphasized the value of static

regressions in an environment where the processes are integrated of

order 1 and recommended modelling such integrated processes in two

stages. In the first stage, the long-run relationship is estimated
via static regressions. At the second stage, the dynamics of the
model, all parameterized as I(0) variables, are estimated.

Thus in an I(1) environment, static regressions formed, according to
this line of argument, an important part of good modelling practice.
How much of this recommendation still holds true, in the 1light of
subsequent research, is a matter of some debate. Several interlinked
issues are important in any evaluation of this point. These include,

in particular, issues concerning the distributions of the coefficient
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estimators, biases in these estimates and tests for co-integration

based on these estimates. We address all these issues in turn.

3.2 Asymptotic Theory

The non-standardness of the distributions, both in spurious and
non-spurious regressions, arises, in the main, from the coefficient of
interest being a coefficient on a variable integrated of order 1 (or
higher). From this follows a central observation, due to Sims, Stock
and Watson (1990) inter alia (for related analysis, see Banerjee and
Dolado (1988) and Stock and West (1988)) that if the coefficients of
interest can be written as coefficients on 1(0) variables, by means of
suitable 1linear transformations of the variables in the original
regression equation, then standard asymptotic tools can be used to
conduct inference. In essence this implies that the regression
equation is rich enough to allow transformations such as differencing
of the variables and linearly combining lagged levels of the variables
- i.e. a sufficiently rich dynamic specification is required.

Consider a test of the permanent income hypothesis of the form
t’ where ¢ is

consumption in period t and Yi is disposable income. If the permanent

given by (5) but augmented to include lags of Vi and c

income hypothesis is correct, Yi is co-integrated with Cy and since ct

has a unit root, so does Yy Further, in the regression equation

Act = Bct_1 TVt Y, +...+1tpyt_p +u, (10),
the permanent income hypothesis, which is taken to be the null
hypothesis implies, first, that B = 0 and, second, that o= 0
(i=1 ...p). Take the latter as the main hypothesis of interest, and

to simplify matters further, suppose that B is correctly imposed at
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its true value of 0. Thus, as in (5), we are interested in testing
for the excess sensitivity of consumption to income. Then a rewriting
of (10) yields

Ac, = (m, +m, + ... + )k + (n, +m, + ... + np)ct_

t 17 "2 p 1 ™2 1

+ nl(yt_1 ~Ciq "~ k) + ... + np(yt -c - k) +u

-p t-p t’

m + ¢ct_1 + nl(yt_1 = Ciq ~ k)

+ ... 0+ np(yt_p = Cip T k) +u,,

where k 1is the intercept of the long-run consumption function,

possibly equal to 0, m = kziq"i’ and ¢ = Ziﬂni. In this rewriting,
the coefficients on all the disposable income variables, nl,...,np,

have been expressed as coefficients on I(0) variables (given that Vi
and c, are co-integrated). Because it is possible to achieve this

rewriting, the distributions of the coefficient estimators of

- -

nl,...,np, denoted nl,...,np, are individually and jointly
asymptotically normally distributed. Thus standard normal tables can
be used to test for significance of the individual ;is while F-tables
can be used to conduct tests of joint significance (asymptotically).
This therefore represents a considerable simplification of the process
of inference although it 1is based, importantly, on a proper
classification of the integration and co-integration properties of the
variables concerned. This analysis alone is enough to reinstate the
use of dynamic regressions and should lead to a focus away from static
regressions. But there are at least two other important reasons,
the first concerning biases in estimates of the co-integrating

relation and the second 1linked with the issue of testing for

co-integration.
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.3 Biases

The discussion in this section is based on the important, but clearly
not always realistic, assumption that single-equation methods are
statistically valid (and efficient) for estimating the parameters of
interest. The parameters of interest 1include those describing
short-run behaviour and also those giving the long-run relationships
among the variables. The claim in this section is that, even when
single-equation estimation methods suffice,8 both the long-run and the
short-run parameters are better estimated using dynamic methods. Thus
the important notion, that the errors should form a martingale
difference sequence9 in a well-specified model, continues to hold true
when dealing with non-stationary series. Therefore, in finite
samples, the biases in the estimates of the long-run parameters,
introduced by not explicitly modelling the dynamic I(0) terms, which
thus enter the residuals of a static regression, are considerable.10

We illustrate the argument with an example taken from Baner jee,
Dolado, Galbraith and Hendry (1993) (referred to henceforth as
Banerjee et al. (1993)). While an important charge that can be made
against any example is that the DGP is too special, the results here
are representative of a large number of Monte Carlo results (Hendry
and Neale (1987), Stock (1987), Phillips and Hansen (1990)).

Suppose the series {yt} and {xt} are generated by the following

process:
Yo T ¥qYioq Y%y Y g%t € (11a)
Xp = X gt &5 (11b)
2 2 _ )
€14" NID(O, 01), €0 ~ NID(O, 02), cov(elt, Czs) =0, Vt, s;

71+72+73=1.
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Thus, both {yt} and {xt} are I(1) series and are CI(1, 1), with a
long-run multiplier of 1 linking the two series.11 Further, {xt} is
strongly exogenous for the regression parameters.

Consider now estimating the long-run by means of the static

regression:
The omitted dynamic I(0) terms are given by (y - X)t-l and Axtlz and
are included in the residual u, which, in general, is therefore

t

serially correlated. The data are generated using the specification

in (11) above. The strong exogeneity of x, is ensured by drawing the

t
{elt} and {ezt} series from uncorrelated pseudo-normal distributions.
The 7is are chosen to preserve homogeneity and sample sizes ranging
from 25 to 400 are considered. The ratio of the standard deviations
of €t and €,, are also varied and each parameter configuration is
run 5000 times and the results noted. Table II below, taken from

Baner jee et al. (1993) summarises the estimated mean biases in the

static model:
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Table II Biases in Static Models®’'P

DGP: (11a) + (11b); 5000 replications

Sample size (T)

25 50 100 200 400
v, = 0.9, ¥, = 0.5
¢1/¢2 =3 -0.39 -0.25 -0.15 -0.07 -0.04
¥ = 0.9, 7, = 0.5
01/02 =1 -0.32 -0.22 -0.14 -0.08 -0.04
¥ = 0.5, ¥, = 0.1
ol/¢2 =3 -0.23 -0.13 -0.07 -0.03 -0.02
71 = 0- 5’ 72 = o- 1
01/02 =1 -0.21 -0.12 -0.06 -0.03 -0.02

Source: Banerjee et al. (1993), Table 7.3.

®Standard errors of these estimates vary widely, but the estimated
biases are in almost all cases significantly different from zero. The
b%ﬁfes do not decline at rate T but they do decline more quickly than
T"". The simulations used GAUSS.

000
=1 ( i
the index for the replications for each parameter configuration.

®The mean biases are computed as [(5000)_1ZT 1)] where i is

The significance of the results reported in Table II become clear when
these are compared with the biases arising from estimating a dynamic
model corresponding to (12), say, regressing Yi not only on Xy but
also on Yi-q and Xi_q which, expressed in error-correction form13, is
given as (13) below:

By, =bAx, + cly, , - %, _4) +dx, _, +v,. (13)

The extra lagged term is included to avoid imposing homogeneity
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on the relation between y and x. Although homogeneity would be a
valid restriction in this case, i.e. d = 0, the extra term allows
for the possible ignorance of the investigator and, as results
reported in Banerjee, Galbraith and Dolado (1990) show, does not
affect the estimate of the short-run adjustment coefficient c. The
estimate of the 1long-run multiplier is deduced from (13) as
(1 - &/8).14 For the same configuration of parameters given in
Table II, the biases in the estimate of the long-run parameter derived
from (13) are all insignificantly different from zero.

It is possible to extend this set of experiments to allow for

weakly exogenous X The results carry through in this case.

t
However, as we show in a later section, if weak exogeneity fails to
hold, the usefulness of estimates from dynamic single equations is
reduced substantially and the comparison between static and dynamic
estimates becomes ambiguous. Systems estimation is the main route to
consider in the absence of weak exogeneity and Monte Carlo evidence
here (see, for example, Gonzalo (1994)) again supports the claim of
substantial inferiority, in general, of estimates derived from static
regressions.

Finally, it is important to note that it is possible to derive
analytical expressions which explain the difference in the accuracy of
the estimates using alternative methods. From these analytical
expressions, it is possible to derive the parameter configurations or
DGP specifications for which, say, static regressions are likely to

out-perform (or perform as well as) dynamic regressions or vice versa

(see Kremers, Ericsson and Dolado (1992)).
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3.4 Testing for Co-integration

This paper has taken as its main theme the importance of dynamic
regressions in a non-stationary environment. This theme has been
emphasized via several sub-themes discussing the particular benefits
of conducting estimation and testing in a dynamic setting. This
section discusses the third sub-theme of this 1line of argument,
testing for co-integration and discusses, first, using a specific
simple example and then more generally, tests of co-integration in
dynamic models.

A large class of tests for co-integration (Phillips and
Ouliaris (1990)) takes as its starting point a static regression such

-~

as (12) and tests for unit roots in the estimated residual series u, .
A popular test 1in this category is known as the Augmented

Dickey-Fuller test and consists of estimating the regression

~ l

Aug = (c) + B(t) + pu,_, +) &8y . + 0w

t t-i ~ “¢ (14)
i=1

and testing for the significance of the estimate of p. A significant
;, according to appropriate critical values, constitutes a rejection
of the null of a unit root in the residual series and hence
provides prima facie evidence of the existence of co-integration.

The critical values used for this test are essentially modified
Dickey-Fuller critical values. The unmodified critical values, given
in Fuller (1976), apply to testing for unit roots in raw series.
These critical values have to be adjusted for size when the series to
be tested for a unit root is constructed or derived from a regression

such as (12). Naturally this implies that the critical values are

sensitive to the number of variables in the co-integrating regression
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and to the existence of a constant or a trend in the regression.15 An
extensive set of tables is provided by MacKinnon (1991), while Granger
and Engle (1987) and Engle and Yoo (1987) provide a more limited set.
Return now to the experiment described in (11). The parameter
configuration given by ¥, = 1, ¥, =¥y = 0 generates the case where Y
and x, are not co-integrated. Equation (11a) can be written in error
correction form as
by, = 7,8x, + (71 - Dy, - Xe_q) * £y (15)
Thus a test for co-integration can be based on the t-statistic for ;
in (13) ©because under the usual null hypothesis of "no
co-integration", ¢ = 0 from (15). The distribution of this test

statistic is non-standard because under H ) is I(1)

0 Wi 7 ¥
while both differenced terms are 1I(0) and the regression, in
the terminology discussed above, is inconsistent. However the test is
straightforward and would be useful if it had good power properties.

It is interesting to remark that under the alternative hypothesis
of co-integration, £c=0 is asymptotically normally distributed. This
follows from the property that in this case c is a coefficient on an
I1(0) variable and the arguments discussed in section 3.2 apply.

The Ec test is a simple example of what Boswijk and Franses

=0
(1992) call a Wald test for co-integration and is based on a dynamic
regression model. It is instructive to compare the power properties
of this test with an ADF(l)16 test based on the residuals of the static
model (12). The critical values for both these tests are derived by

simulating the model under the null (i.e. 71 =1, =0, s =

7 =%
c /o, = 1 in (11a)-(11b)) for 5000 replications. These critical
values are then used for deriving the test powers, when the null

hypothesis of no co-integration is false, of the £c=0 test and the
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ADF(1) test. Critical values are reported in Table IIIa below while
powers of the tests are given in Table IIIb. Both tables are taken
from Banerjee et al. (1993) and the simulations used PC-NAIVE (Hendry,

Neale and Ericsson (1990)).17

Table IIIa Fractiles of £c=0 in (13) and ADF(1) in (14)
DGP: (11a) + (11b) with ¥ = 1, ¥, = ¥y = 0, s = ¢1/¢2 =1
5000 replications

Fractiles of Ec Fractiles of ADF(1)

=0
T 0.10 0.05 0.01 0.10 0.05 0.01
25 -2.99 -3.42 -4.22 -3.15 -3.51 -4.30
50 -2.95 -3.33 -4.06 -3.10 -3.41 -4.08
100 -2.93 -3.28 -3.95 -3.09 -3.39 -4.00
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Table IIIb Test rejection frequencies in ECMs and ADFs

DGP: (11a) + (11b); Model:
5000 replications

(13),

(14)

Estimated power at given fractile

0.10 0.05 0.01
£C=0/ADF £C=O/ADF £C=O/ADF

(a) 7 = 0.9, v, = 0.5, 01/02 =3

T =25 0.13/0.13 0.06/0. 06 0.01/0.01
50 0.21/0.17 0.10/0.10 0.02/0. 02
100 0.44/0.31 0.26/0.20 0.07/0.05

(b) ¥, = 0.9, ¥, = 0.5, 01/02 =1

T =25 0.14/0.11 0.06/0. 05 0.01/0.01
50 0.21/0.15 0.10/0.09 0.02/0.02
100 0.49/0.30 0.30/0.19 0.08/0.04

(c) 7 = 0.9, v, = 0.5, 01/02 = 1/3

T =25 0.13/0.10 0.07/0.05 0.02/0.01
50 0.24/0.13 0.12/0.07 0.03/0.01
100 0.59/0.24 0.40/0. 14 0.13/0.03

(d) ¥, = 0.5, ¥, = 0.1, ol/cz =3

T =25 0.66/0. 35 0.45/0.20 0.16/0.05
50 0.99/0.84 0.97/0.72 0.78/0.34
100 1.00/1.00 1.00/1.00 1.00/0.97

(e) ¥, =0.5, 7, =0.1, ¢, /0, =1

T =25 0.79/0.31 0.66/0.18 0.29/0.04
50 1.00/0. 80 1.00/0.67 0.94/0.28
100 1.00/1.00 1.00/1.00 1.00/0.96

(f) ¥ = 0.5, 7, = 0.1, @1/02 = 1/3

T =25 0.94/0.23 0.87/0.12 0.64/0.03
50 1.00/0.75 1.00/0. 60 1.00/0. 22
100 1.00/1.00 1.00/1.00 1.00/0.94

Several 1issues may now be noted. First, the most significant

divergences in the powers of the two tests appear in the last three

blocks of Table IIIb and may be understood

common-factor restriction imposed by an ADF(1) type of test.

in terms

ADF(1) test involves testing v = 1 in the regression
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A(yt - axt) = (71 - 1)(yt_1 -ax, ,) + SAly, , -ex, ) tw (16)

t’
where «, which here has a true value of unity, may be replaced by its

-~

estimate a from the first-step regression of Yy, on X In (16)

-
therefore the dynamics of the model implicitly impose the short-run
elasticity to equal its long-run value of 1. In (13) however, the
coefficient on Axt is unrestricted. When the common-factor
restriction is far from being satisfied (72 is very different from 1),
as in the last three blocks of the table, the performance of the ADF

statistic, relative to £c= is very poor.

0’

Second, calculations in Baner jee et al. (1993) provide estimates
of the non-centrality of both test statistics for fixed alternatives.
For T = 25, these are given in Table IIIc below and show that the

non-centralities of the ECM test are substantially greater, in most

cases, than the corresponding non-centralities for the ADF(1) test.

Table IIIc Non-centrality (NC) of £c=0 and ADF(1)
DGP: (11a) + (11b), 5000 replications

Case (a) (b) (c) (d) (e) (f)
NCADF -1.15 -1.16§ -1.15 -2.89 -2.89 -2.89
NCECM -1.19 -1.28 -1.52 -3.25 -3.88 -5.32

The relative magnitudes of the non-centralities help further to
explain the performances of the two tests and again provide reasons
for not modelling dynamics restrictively, both in general and where

common factor restrictions are likely to be violated.

28



Third, to 1illustrate the 1issue of a conservative testing
strategy, consider the choice of «critical values to test for
significance of ; in (13) using the ECM test. In Table IIla we
require t-statistics greater than, roughly, 3.5 in absolute magnitude
to reject the null of no co-integration at the 5% confidence level.
Let us call these the I(1) critical values. If the variables in the
regression had been integrated of order 0, t-values in excess of 2.0
in absolute value would have sufficed. An I(0) critical value is
therefore given by 2.0. Four possible situations are evident,

labelled S1 to S4, when HO: c =0 is true:

Table IV

Order of integration Critical values used Rejection of HO(%)

S1 I(1) I(1) 5
s2 I(1) 1(0) >3
S3 1(0) 1(0) 5
sS4 1(0) I(1) <5

A conservative strategy would be one which sets the maximum of the
rejections probability of the true null equal to the nominal
confidence level of the test (here 5%). Looking at Table IV, this
requires the wuse of the 1I(1) critical values, although this
may entail a loss of power (if the variables are I(0)).

The conservative strategy may be adopted as a crude device to
minimise the consequences of incorrect classifications. However it is
not a strategy which attacks the pre-classification issue directly.
Papers by Elliott and Stock (1992), Stock (1992) and Phillips and
Ploberger (1991) propose Bayesian methods of classification and
inference in models when the orders of integration of the variables

are unknown. A description of these methods is beyond the scope of
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this paper.

Finally, the 1logic of the argument in favour of the ECM
test generalises to cases where the regressors are only weakly
exogenous for the parameters of interest. Boswijk and Franses (1992)
propose a Wald test for co-integration identical in spirit to the one
developed above. In the simplest case, they consider the case where

there is at most one co-integrating vector and the vector X, is weakly

t
exogenous for the co-integration parameters. Boswijk and Franses’
test involves writing a conditional error correction model for the

dependent variable Yi given x (where linearity of the conditional

t
model follows from the assumption of normality of the joint

distribution of z, = (ytzgt ) ):

-1
Ayp = ¢+ gobhxy + Alyyy — 872, 4) * E Wihye_5 * 258%_5) + My

J=1
E—l
= ’ ’ ’
c+ gibx, +mz o+ J=1(ijyt_j + QJAEt_j) + g, (17)
where n’= Aa(1,-6'). (17) is a generalisation of the test given in

(15). As before, A = 0 implies that there is no co-integration while
if A # 0, (17) can be reparameterised as an autoregressive distributed
lag model of order p with Yi and X, co-integrated. If 6 were known, a
test for co-integration could be based on a t-test of A = 0. In
general, this test is not implementable because 6 is not known but
must be estimated. Thus the regression must either be reparameterised

as
Byp =+ $ohxy + Alyg g — L% 4) + §'%y
-1

+ (y.A .+ @ Ax ) + R (18)

E wJ V-3 Sé.} ~t-J M

where t is a vector (of dimension equal to the dimension of §t) whose

elements are all equal to 1 and &’ = A(L’- @’), and the t-test now
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based on the Efstatistic for i in (18), or, using the result that
A =0 implies m = 0, based on a Wald-type statistic of the form

wald = n’ [V(m)1 'm, (19)
where i is the OLS estimator of m in (17), with estimated variance
matrix Q(i). Boswi jk and Franses’ results suggest that a test of the
form (19) is likely to have better statistical properties than the one
given by (18).

Boswijk and Franses present power calculations comparing the
power of the Wald test with an ADF test based on the residuals of the
static regression. In this framework, selection of lag length becomes
an issue of some importance. For underparameterised models, relative
to the DGP, the Wald test may have incorrect size (too many rejections
of the true null hypothesis at any nominal confidence level) while
over-parameterisation leads to loss in power of the test. Using
various "optimal" lag length selection criteria, Boswijk and Franses
show that the Wald test is superior to the ADF test (and to a test
based on Johansen’s (1988) procedure discussed below). Also, because
both A and 6 can be retrieved from the estimate of m, after suitable
transformation, the evidence from the simpler DGP (11(a) - (11b))
suggests that the long-run is also likely to be better estimated in a

dynamic model such as (17).

4. Systems Estimation

It is natural to ask, given that the discussion above has focused

exclusively on single-equation estimation techniques, how the
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arguments generalise to estimation in systems. In essence, this is
equivalent to asking what happens when the regressors are not weakly
exogenous for the co-integrating parameters. Based on our discussion
so far, it should not be surprising to observe that the long-run
relation is poorly estimated not only in static regressions but that
single-equation dynamic models in general do not perform much better.

There are at least four interrelated issues in single-equation
estimation which are worth highlighting. First, the presence of unit
roots introduces non-standard distributions of the coefficient
estimates. Second, the errors may be processes which are
autocorrelated. Thirdly, in a multivariate setting, there can exist
several co-integrating relations and there is no longer a natural
ordering of the variables (which dependent and which independent) in a
static regression.18 Finally, the explanatory variables in the single
equation may not be weakly exogenous for the parameters of interest.

In some of the discussion above, we have provided examples of how
dynamic regressions can overcome some of the problems posed by the
first two effects. However, for most purposes of empirical modelling
the question wultimately boils down to a discussion of the
circumstances in which only systems-estimation provides efficient and
unbiased estimates.

The answer in this non-stationary world is not dramatically
different from the answer one would have given, say, fifteen years ago
- when weak-exogeneity is violated, estimating only the conditional
model is suboptimal, leading to biased, inconsistent and inefficient
estimates. Thus the debate which raged in the seventies on the need
to have at least weakly exogenous regressors to conduct estimation and

inference in single-equation models remains an issue of considerable
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importance.
A discussion of estimating co-integrated systems requires us

first to provide a formal statement of a co-integrated system:

Definition (Engle and Granger 1987). The components of the vector x,

are said to be co-integrated of order d, b, denoted x. ~ CI(d, b) if

t

(i) each component of x.  is I(d) and (ii) there exists a non-zero

t
vector a such that g’gt ~ I(d-b), d > b 2 0. The vector a is called

the co-integrating vector.

As we have stated before, if Et has n > 2 components then it is
possible for r linearly independent (equilibrium) relationships to
govern the evolution of the variables. It may be shown that
O=r =n-1. The r linearly independent co-integrating vectors can
be gathered into an n x r matrix a with rank r.

The Granger Representation Theorem (Engle and Granger (1987))
shows that a co-integrated system can be written in several equivalent
forms (see Engle and Granger (1987), Banerjee et al. (1993)). We
focus on one of these forms, the ECM form, to illustrate the
importance of estimation in systems. In ECM form, the system can be
written as

A(L)(1 - L)Et = “2Zi_q t 9 (20)
where Wy is a stationary multivariate disturbance, A(L) 1is a
stationary lag-polynomial matrix, with A(0) = ln and A(1) finite,
z, =g’§t and y is a non-zero matrix with rank r.

Thus, because « is also a reduced-rank matrix of rank r, the

reduced rank (r) of m = ga’ is the restriction implied by

co-integration in the system given by (20).
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Consider the case where n = 2 and r = 1, let &’ = (1, -«x), and
let the system be given by

X = KX = u

1t 2t 1t’
szt = u,,, (21)
where (ult’ u2t)’ follow a jointly stationary process. Then, in ECM
form, the system can be written as
Bxpp = dpp(LIAxy, +dy g (LIAX) 4 g + ¥y (Rgppe ~ FXpp) * &qp
Bx,, = dy (L)AR,, + dpy (L)AX,, 4 + 2,00 0~ KX, ) + e,
(22)

Weak exogeneity will be violated in (22) if, say, ¥,%, # 019 and thus
the error-correction term (which Engle and Granger proposed estimating
at the first step by a static regression) enters both equations. The

X, process therefore contains information about the process generating

2

X, and therefore, in the absence of a priori information of the form,
say, 7172 = 0,20 systems-based methods of estimation are essential.
Hendry (1992) provides several examples of how violations of
weak-exogeneity leads to problems of bias in single-equation based
estimators.

It is impossible, in the space available, to provide an account
of the various methods proposed of estimating co-integrated systems.
Two main methods of estimation have been proposed, one due to Phillips
(1991) which uses the triangular or canonical form of the system given
by (21) and the other due to Johansen (1988) which estimates the model
in the ECM form given by (22)21. Estimation focuses on several issues,

especially the co-integrating rank given by the rank of = (or

equivalently the number of co-integrating vectors), the economic
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interpretability of the 1linear equilibrium relationships and the
testing of any special economic hypotheses of interest, where the
latter are given by restrictions on the parameters of the equlibrium
relationships. As in the usual analysis of simultaneous equation
systems, it is also necessary to take account of restricfions which

serve to identify the system.

5. Conclusion

We have taken as our main theme of this paper the observation that the
fundamental methods per se of econometric modelling, for specification
and estimation, remain unaltered in the new world of non-stationary
econometrics. Some of the dramatic simplifications which appeared
possible, in terms of, say, modelling the long-run and short-run
separately, or focusing primarily on the long-run properties of and
inter-relationships between series, seem eventually to be fraught with
difficulties of tests having low powers and estimators having large
biases.

We have also argued that, even for modelling the long run or
testing for co-integration, dynamic models provide the most effective
way of obtaining information. Where weak exogeneity 1is violated,
single-equation estimation techniques are, in general inadequate and
systems-based methods are optimal. Thus the importance of this
literature lies rather in the new awareness we have of the properties
of common time series and of the consequent need to take account of
these properties in estimation and to modify, wherever necessary, the

tools required to conduct inference.
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Appendix: Concepts of Exogeneity
Econometric analysis often proceeds by using a single-equation model
of a process of interest. In basing inference on single- equation
methods, we 1implicitly assume that knowledge of the processes
generating the explanatory variables carry no information relevant to
the parameters of the process of interest. Engle, Hendry and Richard
(1983) provide conditions (concepts of exogeneity) relating to the
circumstances in which this assumption is valid. Rather than refer to
particular variables as exogenous in general, however, Engle et al.

refer to a variable as exogenous with respect to a particular

parameter if knowledge of the process generating the exogenous
variable contains no information about that parameter.

Three different concepts are introduced by Engle et al.
and correspond to three different ways in which a parameter estimate
may be wused: inference, forecasting based on forecasts of the
exogenous variables, and policy analysis. These different uses
require that increasingly stringent conditions be met for exogeneity
(that is, for the irrelevance of the regressor process to a parameter
of interest). These conditions can be examined with the following

definitions.

' y
Let Et t

be generated by the process with

%t

conditional density function D(g X A), where X denotes the

t'~t—1’~ ~t-1
history of the variable X: X, , = (x,_,, Xi_p» ---%X5). Let the set of
parameters A be partitioned into (ﬁl,ﬁz) such that

The first element of the product on the right hand side of the
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equality is known as the conditional density (or model) while the
second element is the marginal density. 1In the simple case where X,
is bivariate normal, the conditional model leads to a bivariate
regression with y, as the dependent variable and z, the
regressor.

Suppose our parameter of interest is given by ¢ (in the
conditional model). Weak exogeneity of z, for Y requires, (i) ¥y is a

function of A, alone, and (ii) that there are no cross-restrictions

1
between 51 and 52. The essential element of weak exogeneity is that
éz contains no information relevant to discovering 31. Inference
concerning ¥ can be made conditional on z, with no loss of information

t
relative to that which could be obtained using the joint density of Yi

and z,.

t
Strong exogeneity requires that zy is weakly exogenous for Yy and

so that Y does not Granger-cause Z (i.e. Y does not enter the process
generating Z. In a simple regression model this implies that the
equation generating z, does not contains any lags of yt). Strong
exogeneity is necessary for forecasting which proceeds by forecasting
future z’s and then forecasting y’s conditional on the predicted z’s.

Finally, N is super-exogenous for Y if and only if z, is weakly

t

1/dé2 = 0. Super-exogeneity is necessary where

models will be used for policy analysis, in which the investigator is

exogenous for ¥ and dA

interested in predicting the derivative of the dependent variable with
respect to a change which can be made in an explanatory variable; a
change made to the value of the explanatory variable by an external
actor is in effect a change in the parameters of the process governing

that variable’s evolution.
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2 This definition can be extended to cover variables integrated of

order d > 1. Roughly speaking, a series is said to be integrated of
order d if it is stationary after differencing d times, but is not
stationary after differencing only d - 1 times.

3 An issue of some interest is which of model (5) or (6) is

appropriate. The advantage of using a model such as (6) lies,
generally, not in its plausibility but rather in making the critical
values appropriate for testing the null HO: d2 = 0 invariant to the
presence or absence of a constant in the process generating Cy- If
this DGP has a constant, say, Act =d + Vs the critical values of the
t-test in (5), used for testing H., are sensitive to the value of d

whereas this is not the case in model (6). A related problem concerns

what critical values should be used. West (1988) shows that ifd =0,

Ed =0 is asymptotically normally distributed in (5) while it has a
=

non-standard distribution in (6). In the absence of a priori

knowledge of whether or not there is a constant in the DGP, invariance
of the critical values is a useful property and I would argue in
favour of wusing the more general model, and hence non-standard
critical values, given by (6).

Source: Table 2 in Mankiw and Shapiro (1986). The standard errors
of each of the entries aij’ expressed as a fraction, is given by

[(aij)(l - aiJ.)/N]I/2 where N is the number of replications in the

Monte Carlo (N = 1000 for this table).

S Work on non-linear co-integration, although mathematically

more complex, shares this main idea of some function of the component
series being bounded statistically

6 By order T* we mean that the variance grows at rate TK For
example, for a random walk process such as (1), it may be shown that
variance(yT) = To“ and thus k = 1 in the terminology given above.
Thus if we define a variable zT = T-hqu, variance(zT) = oi

which is finite, bounded away from zero and remains constant with
time. Scalings such as these are important in deriving the asymptotic
theory because it ensures that the asymptotic distributions of
the scaled expressions are neither non-degenerate (do not collapse on

a single value) nor explosive (have infinitely large variances).
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i.e. it is T(a - @) which has a non-degenerate, non-explosive

distribution asymptotically rather than T?(¢ - «). The latter is

the scaling appropriate for estimators based on stationary processes.

8 It is important to make this qualification in order not to

mislead the reader. There are many circumstances, some described
below, especially under failure of weak-exogeneity, when
single-equation dynamic models also provide badly biased estimates.
However, this does not run counter to our main assertion here that
static regressions are hardly ever desirable and thus two-step methods
based on first estimating the long-run and then modelling the
short-run have severe limitations. For estimation and inference, the
two steps are best accomplished together.

9 A martingale difference sequence (MDS) generalises the concept of

an 1identically and independently distributed sequence of random
variables, by allowing for some amount of dynamic dependence among the
elements of the sequence. An MDS is defined with respect to an
information set ¥ of data realised by time t-1. A sequence {yt, t

t-1
=1, 2,...} is defined to be a MDS with respect to {9t, t=1, 2,...}
if E{|y;|} < o V t and that E{y,|#,_4} =0V t. In words, we require
that the expectation of the absolute value of Yi be finite and that

the expectation of Y conditional on the past be zero. For the

purposes of the analysis which follows, the reader will not lose by
thinking of the simpler special case of serially uncorrelated, mean
zero, variables.

10 There is a literature on correcting, non-parametrically, the

estimates derived from a static regression in order to account for the
effects of the omitted dynamic terms (see, for example, Phillips and
Hansen (1990)). Provided single equation estimation is valid, dynamic
specification and non-parametric correction of the estimates from a
static regression are asymptotically equivalent procedures.
Comparisons in finite samples are usually ambiguous and depend on the
particular specifications of the DGP.

11 _*
t—x V*t

and €,, to its expected value of 0. Thus, y = 7y + (72 + 73)x ’

L 3
The long-run multiplier is derived by setting Y=Y, X
* *

»* *
which implies that (1 - 71)y = (72 + 73)x . Under the restriction
* *»*
that 71 + 72 + 73 =1, it follows that y = x 1in the long-run.

12 This may be seen by rewriting (11a), using the homogeneity

restriction, as Vi =% ¢ 71(y - X)t—l + (72 - 1)Axt * €y
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13 Error-correction models (ECMs) are the focus of an extensive
literature, starting wih Sargan (1964), Hendry and Anderson (1977) and
Davidson, Hendry, Srba and Yeo (1978). They are a way of capturing
adjustments in a dependent variable which may depend not only on the
level of some explanatory variable, but also on the extent of the
deviation of the explanatory variable from an equilibrium relationship

with the dependent variable. Thus, if the equilibrium relationship is
given by y* = 6x*, the error-correction term is given by (yt - ext).

In (13) e = 1. The estimate of the coefficient on the
error-correction term, given above by c, provides an estimate of the
short-run adjustment to equilibrium.

14 If it is necessary to have estimates of the standard error of
this multiplier estimate, (13) can be estimated more conveniently in a
linearly transformed form which gives the long-run multiplier
directly. This is known as the Bewley transform and the estimates
derived from this transform are numerically equivalent to those
obtained from (13).

15 See footnote 3.

16 ADF(1) refers to an augmented Dickey-Fuller test with & = 1 in
(14).

17 Critical values for the £c=0 test for the case where (13)

includes a constant and x, is a vector (at most of dimension 5) are

t
given by Banerjee, Dolado and Mestre (1993). These critical values
depend on the dimension of the system (number of regressors). Hansen
(1992) provides an ECM test which is invariant to dimension but the
test imposes a common factor restriction. Where this restriction is
violated, the losses of power involved are important. Baner jee,
Dolado and Mestre (1993) provide a full discussion of this issue.

18 Techniques which rely on rotating the dependent variable in

sequence are in general unsatisfactory.

19 Naturally, this 1is only a sufficient condition for such a

violation. To derive all the necessary conditions for weak exogeneity
would require us to look at the properties of the error process
(1> ep¢)"

20 To emphasize the point made in the earlier footnote, this is
clearly only a necessary condition for weak exogeneity since the
parameters of the two equations may be linked in other ways.

21 For details of the first method, see Phillips and Hansen (1990),
Phillips and Loretan (1991) and Phillips (1991). For the second
method, in addition to the original account contained in Johansen
(1988), also see Banerjee and Hendry (1992) and Baner jee et al.

(1993).
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