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Abstract: We apply agency theory to the payroll records of a copper mine
that paid a production bonus to teams of workers. As with most incentive pay
used by firms, the bonus was simpler in form than the optimal contract that
balances incentives, insurance, and free-riding. We explore whether transac-
tions costs help explain this discrepancy. We estimate an agency model for the
payroll data using the method of maximum likelihood and find that incentives
and free-riding within teams accounted for two-thirds of the bonus system’s
inefficiency relative to potential full information profits. The remaining one-
third of the inefficiency is attributed to the form of the incentive contract as
constrained by transactions costs. We discuss alternative explanations and the

general empirical content of agency theory.
JEL Classification: L2, D2, J3, C4
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1. Introduction

A growing literature uses firm-level data to study whether incentives play
an important role in the design and performance of contracts. Examples in-
clude Jensen and Murphy (1990), Margiotta and Miller (1993), and the papers
contained in Ehrenberg (1990) and Blinder (1990). A discrepancy exists be-
tween the practice and theory of compensation that requires no empirical anal-
ysis to uncover. Firms typically use compensation schemes that are simpler in
form than the optimal contract arising from principal-agent models. In agency
models, the optimal contract balances two elements of compensation: insur-
ance and incentives. Team production adds the third element of free-riding
(Holmstrom 1982). Insurance and incentive concerns lead to an optimal con-
tract that is typically non-linear and that rarely has a closed form (Grossman
and Hart 1983, Gibbons 1987). The optimal contract also involves all observ-
able characteristics that are informative about agent behavior (Holmstrom

1979).

Yet compensation schemes based upon mathematically complicated for-
mulas involving all relevant information are typically not observed (Stiglitz
1991). To explain why firms use simple incentive schemes such as piece rates
or bonuses, factors other than incomplete information and risk aversion must
be introduced into the economic environment. The payment scheme could be
supported by implicit arrangements that achieve the same result as the opti-
mal scheme in standard agency theory. Alternatively, transactions costs may
limit the degree of complexity of payment schemes. Holmstrom and Milgrom
(1987) argue that linear rules are robust to variations in the productive en-
vironment. Linear rules may therefore require less costly tinkering than the

“optimal” contract of standard agency theory.

This paper considers whether a particular type of transaction cost, namely
the cost of implementing payment schemes, can explain why incentive con-

tracts, whether linear or not, often are “too simple.” Allowing for implemen-
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tation costs can assume away the discrepancy between practice and theory
unless a structure is imposed on implementation costs based on observed fea-
tures of contracts. We posit that mathematically complicated contracts are
more costly to implement than simpler contracts. Examples of implemen-
tation costs include the resources required to communicate the contract to
agents, to keep track of the required information, and to compute payments
under the contract. We measure empirically the relative importance of incom-
plete information, implementation costs, and free riding within teams using
the payroll records of a copper mine. We also test for the presence of implicit
arrangements which the firm may have used to make the explicit pay system

as efficient as the optimal agency contract.

During the 1920s, the Britannia Mining and Smelting Company of British
Columbia paid teams of workers a production bonus. Teams whose output
exceeded a minimum standard received a bonus proportional to output beyond
the standard. If y is team output, z is the production standard, and « is the
bonus rate, then the bonus equals zero when y < z and oy — z) when y > =.
We call this contract a linear bonus. From the payroll records we observe the
payments made under the linear bonus, but we do not observe the values of «

and z used by the firm in any pay-period.

We develop, solve, and estimate a principal-agent model that captures
essential elements of technology and information inside a mine: worker risk
aversion, team production, and asymmetric information between workers and
the firm about working conditions. Using Britannia’s payroll records, we com-
pute maximum likelihood estimates of the model’s parameters. OQur estimation
strategy is similar to that of Pakes (1986), Rust (1987), Eckstein and Wolpin
(1990), and Margiotta and Miller (1993) in the sense that estimating the model
requires a nested solution algorithm. There is no closed-form solution for opti-
mal values of a and z, let alone the fully optimal contract. The firm’s problem
must be solved numerically on each iteration-of the estimation procedure. As

with Rust’s application of dynamic control theory, we use multiple realizations
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of production shocks within a single firm to identify the model. As with the
equilibrium search model estimated by Eckstein and Wolpin, our algorithm
solves the problems for two sides of the contract or market. Margiotta and
Miller estimate an agency model using data on executive compensation. Their
model concerns incentives and dynamics. Our model concerns incentives and
transactions costs, which is perhaps a more appropriate focus when studying
production workers with no long-term commitments to the firm.

One of our results concerns the empirical content gained by solving the
principal’s problem numerically. Intuitively, it is unlikely that technology and
preference parameters can be disentangled unless the choices of both the prin-
cipal and agent are modeled. Without separately identifying the parameters
of the agency model, little can be inferred about the performance of the bonus
system. We provide a proof that formalizes this intuition. By numerically
maximizing the firm’s profit function, we can identify parameters that deter-
mine the cost of incomplete information and indirectly the implementation
costs that rationalize the use of the linear bonus system. Our identification
results are specific to our model, yet they illustrate that numerical methods
are typically necessary for analyzing payroll data in light of principal-agent
theory.

Our estimates indicate that there were larger costs associated with in-
complete information in the Britannia mine than a more casual analysis might
suggest. We estimate that the percentage of full information profits lost under
the linear bonus system was between 70 and 80 percent, even though workers
received less than 5 percent of their wages in the form of incentive pay. Two
thirds of the efficiency loss, or about 50 percent of full information profits,
would occur under the optimal contract with incomplete information that ig-
nores implementation costs. The remaining 25 percent of the inefficiency is
due to the error in approximating the fully optimal contract under incomplete
information with the optimal linear bonus.

In the next section we describe our notion of implementation costs. In
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section 3 we describe the agency model, and as a baseline we characterize the
optimal contract under full information. Then we describe the response of
workers to the linear bonus system under asymmetric information, and we de-
rive the firm’s objective function for choosing the optimal linear bonus. Section
4 discusses identification of the model with and without modeling firm behav-
ior. Section 5 describes the data and reports estimates of the model. Section 6
uses the estimates to consider implications, limitations, and extensions of the

results. Section 7 concludes.

2. Preliminaries: Implementation Costs

Agency theory provides a framework for modeling the costs of incomplete
information, but we lack a good model of implementation costs. We avoid
the assumption that simple contracts are used because agents or the firm act
sub-optimally or that they incur costs to calculate optimal choices. Instead we
restrict our notion of implementation costs to the time and effort required to
communicate the contract to workers and to the costs of calculating payments
under the scheme. Some authors have studied the choice between methods
of pay by comparing contracts with simple functional forms. Lazear (1986)
and Brown (1990) compare salaries to piece rates, while Lazear and Rosen
(1981) and Green and Stokey (1983) compare piece rates to tournaments.
The restriction to simple contracts can be based on the assumption that more

complicated payment schemes are very costly to implement.

We assume that implementation costs of paying workers according to
contracts of the same functional form are equal, and that mathematically more
complicated forms are more costly. For instance, the implementation costs of
a piece rate scheme do not depend on the piece rate itself. And contracts that
contain, say, logarithms are assumed to be more expensive than piece rates,
both to communicate to workers and to calculate on a regular basis. Contracts

that depend on more variables, such as both past and current performance,
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require more bookkeeping and are therefore more expensive to implement than
contracts based on fewer variables.

Conceptually, we break the firm’s choice into two steps:

max Lrélc%) (9, z)] —¢(2).

Here Z denotes the family of all possible enforceable compensation contracts.
An element z € Z is a form of payment, with specific contracts in z described
by a set of parameters g. G(z) denotes the set of possible values of g. For
example, if z is the linear bonus scheme used by our firm, then an element
of z is defined by the two parameters (a,z), and G(z) = {(e,z) : (o, z) € RZ}.
C(z) denotes the implementation costs of contracts in z and =(g,z) denotes
the profits associated with a particular fully specified contract, (g,z). By
construction C(z) is a fixed cost when choosing g € G(z). The profit function
7(g,2) incorporates the agency relationship with workers, namely incentive
compatibility, individual rationality, and free-riding within teams. The firm
can be viewed as choosing the optimal parameters g*(z) and then choosing the
optimal contract form z*. The classic principal-agent problem, in Grossman
and Hart (1983) for example, would be the case C(z) = 0 for all forms of
payment z. A prior restriction to piece rates would be the case that the cost of
implementing any non-linear contract outweighs any gain in the profit function
r(g,z).

We do not attempt to estimate C(z) directly. Rather, by estimating g*(z*)
given the firm’s payment scheme 2*, we can potentially identify the main pa-
rameters that determine the profit function (g, z): worker risk aversion, cost
of effort, and the distribution of production shocks. We then compare costs
of incomplete information with the implementation costs needed to rationalize
the choice of z*. For our application, we compute expected profits under sim-
pler and more complicated compensation schemes than the linear bonus used
by the firm. We also approximate numerically the optimal agency contract

ignoring implementation costs.



3. Team Production and Incentives in Mining

Several aspects of mining make it an ideal industry to which to apply
agency theory. Productivity varies substantially due to working conditions,
space constraints make complete monitoring difficult, and the production pro-
cess is simple. Two primary occupations, miners and muckers, were involved
in ore extraction at Britannia. Miners drilled and blasted rock from the face
of the tunnel while muckers shoveled the blasted rock (or muck) into ore carts.
We assume that each team was composed of one miner and two muckers, be-
cause the ratio of shifts worked by muckers to miners varies between 1.5 and 2
in all pay periods. Let the subscript a denote miners and let b denote muckers.
Since muckers can only muck rock blasted by the miner, output from a tunnel

can be approximated by a Leontief production function,
y= 0min{/\,,, Ab,l + Ab,2} (1)

where y is the amount of ore produced, A, is the effort of the miner, X;; is the
effort of mucker i, and 6 is a random shock to productivity in the tunnel lasting
one pay period. Effort can be interpreted as the amount of ore processed by
the worker. Below we also account for permanent differences in productivity
across areas of the mine as well transitory differences captured by 4.

Workers observe the realization of 6 before choosing their level of effort.

Each worker has a utility function of the form
ki 2 .
U(W-353)  iefab

where W is the wage earned in a period, ) is effort, and (k:/2)A? is the quadratic
cost of effort for workers in occupation i. U is a von Neumann-Morgenstern
utility function satisfying U’ > 0 and U” < 0; that is, workers are risk averse
and they are willing to pay for insurance against production shocks. Since
workers observe shocks before choosing effort, the functional form of U does

not affect the choice of effort or the firm’s problem with full information. U
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does, however, determine the firm’s choice over incentive contracts, so later

we specify its form.

Assumption Al.
(i) 6 is log-normally distributed: In6 ~ N(p,0?).
(u} ke < k.

We denote the density and cumulative distribution functions of ¢ as f(6)
and F(9), respectively. From AL.i, £(8) = £¢((In8—p)/c) and F(6) = ®((Ins -
p)/o) where ¢ and ® are the standard normal density and distribution func-
tions. We assume that that miners have lower effort costs than muckers (Al.ii),
because most workers started as muckers, and because miners were paid a
higher base wage than muckers. These facts suggest that workers assigned
to mining were more skilled than muckers. Furthermore, efficient production
under (1) requires the miner to process twice as much ore as each mucker, so
within the model it is optimal to assign the task of mining to higher skilled
workers.

To establish a baseline, consider the case when the firm can also observe
9 before \; is chosen. The optimal full-information contract specifies a wage

and effort level for each occupation and each value of 6.

Definition D1. The optimal full information contract (when 6 can be 0b-
served) is described by two wage functions, W, and W, and two effort func-

tions, A\, and Xy, that solve:

/0 ” (o min {A,(8),2(8)} — Wa(6) — 2W,,(a)) £(6)ds

max
W¢ ;Wb,)\a;Ab

subject to

for i€ {a,b} /0 ” U(W.-(o) - %/\.-(0)2> £(0)do = u;

where u; is the reservation utility level for members of occupation i.
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Theorem T1. The optimal full information contract takes the form

20
2ks + ks

'\b(e) = '\4(0)/2 = ma-i-—kb

Aa(0) =

Wa(0) = U (5) + g v

ky
12k, + k) ©
Proof: All proofs are provided in the Appendiz.

wi(0) = U~ () +

With full information, optimal wages consist of a piece rate combined with
a base wage or, if the constant term U~1(;) is negative, a base fee to enter the
mine. The contract does not have a constant wage because production shocks
affect the productivity of effort, so it is optimal for worker effort to vary with
9. To provide insurance against this variation, wages vary with output. The
full insurance wage is linear in output because the cost of effort is quadratic.
This is an attractive feature of the model, since we apply it to data generated
by a wage contract that is not linear but rather piecewise linear in output. A
non-linear contract is only useful if an incentive problem exists. A non-linear
contract does not approximate a more complicated full information contract

which might be costly to implement.

Corollary C1. Under Assumption Al, ezpected output and profits per team

under the full information optimal contract equal

2l = [ 001000 = - ep{ou+ 20}
E[r] = E[y]/2 - U1 (@) - 20~ (w).
Corollary C1 shall be used to assess the costs of incomplete information
in terms of production efficiency.

Asymmetric Information on ¢ and the Linear Bonus System

It is reasonable to assume that directly observing worker effort or pro-

duction conditions in each area of a mine requires significant monitoring costs.
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Now consider contracts when the firm only observes team output, y, and there-
fore can only enforce wage payments that depend on output and occupation.

The optimal contract now respects incentive compatibility constraints:

Definition D2. Under asymmetric information on 8, the optimal team con-

tract solves

max /0 " (0 min{Xs(6),23(6)} — Wa(6) - 2W,,(o)) £(6)do

Wa,Ws,Aa,A0
subject to
for i € {a,b} Xi(6) € arg max U(w;(6) - -I;iAz)
for i € {a, b} Ji ” u(w,-(a) _ EA,-(e)Z) £(0)d0 = i
) 0 2

The form of the optimal wage contract is unknown, but the solution is
not a piece rate as with full information, nor is it the pay system that the
firm used. For one thing, the two occupations should be paid different rates
because their costs and productivities differ.! In section 6 we compute for
purposes of comparison a numerical approximation to the optimal contract.

The firm used what we call a linear bonus. Workers in each occupation
were paid base wages, denoted 8, and 8. A team working in some area j of
the mine split equally a bonus of the form

o= o) i35 2
where z; is the standard and o; is the bonus rate for sector j. A team member in
occupation i therefore received a total wage equal to §;+w;/3. The production

standards and piece rates differed across areas. The standard was also adjusted

1 Early on, the firm experimented with different bonus rates for different
occupations. There appears to have been resistance to this and by 1926 the
pay system was changed so that workers split a team bonus equally. We return
to this issue in section 6.



for the number of shifts worked in the area during the pay period.? It is
straightforward to augment the production function in (1) to take into account

differences across sectors. That is, let output in sector j take the form
yj = d;jf; min{Aa, Ay 1 + XA 2} + 3)

where the d; and v; determine the observable rock quality and other elements of
production in sector j. Let d; and v; be the realization of two random variables,

d and v. We make three technical assumptions about the productivity shocks.

Assumption A2.
(i) d, v and 0 are independently distributed;
(ii) Bld] =1;
(iii) E[v] > 0.
The firm can set the standards and piece rates to cancel out fixed differ-

ences across sectors by choosing values o and z such that

=2

J d]

z; = d;z + v;.
This system of bonuses and standards equalizes opportunities across areas of
the mine prior to the realization of §. Company reports suggest that balancing
outcomes across sectors was important to the firm, perhaps for the following
reason: If work in one area is especially difficult, because of bad rock or equip-
ment malfunctions, then the mine cannot easily shut the area down and shift
work to other areas. The marginal product of placing extra workers in other
tunnels is small due to space constraints, and only by making progress in a
bad area can miners reach better rock. Risk averse workers should be sheltered
from the risk associated with placement within the mine. Given a system of
equalizing bonuses defined by (,z), we drop for the time being the sector

index j from equation (3) and return to the simpler production function (1).

2 Workers might work in different areas during a pay period, and they were
rewarded a share of the bonus in each area in proportion to the number of
shifts they had worked in that area.
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Effort Levels Within Teams

Figure 1 sketches the output of a team that arises from a Nash equilibrium
response to the linear bonus system (2). Each worker chooses his effort level to
maximize utility conditional on ¢, the parameters of the bonus system (ay2),
and the behavior of the other members of his team. A bonus system gives
workers no incentive to provide effort when the value of ¢ falls below some
value ¢*. For 8 < 6%, all members of the team set effort and output to zero,
because working conditions make it too difficult to earn a bonus. For ¢ > 6*
each worker wants to equate the marginal return to effort to marginal cost.
The nature of the production function, however, implies that any effort one
occupation supplies above and beyond the effort of the other occupation is
wasted. Therefore, in equilibrium, miners will always supply twice the effort

level of muckers.

Theorem T2. Given a bonus system (e, z), there ezists a continuum of Nash
equilibria effort functions for miners and muckers, denoted \,(6) and xs(6).
In each case, M(8) = Xa(0)/2. Define 6% = \/Bkaz/a and 6§ = \/2ksz/a. Then
in the unique Pareto efficient Nash equilibrium, the effort function for miners
takes the form

b ifO> 0%
(i) if ka < ks < 2k, then Xa(0) = { 3 ¢

0 otherwise

206 g [, 3H=
(ii) if 2k4 < ky < 4kq then Aa(8) = { 3k 2a(ks—ka)

0 otherwise

200

if 0 > 6%

(iii) if 0 < 4kq < ky then Ai(8) = { 3k b

0 otherwise.

If workers cooperate with each other to mazimize total team wages (net of effort

costs), then the miner’s effort function takes the form

220 ifg > 6%
(iv) x(0) = {ﬁ_ °
0 otherwise
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where 0% = 1/ L&k“i—k")i

There are multiple Nash solutions because the effort levels of the two
muckers enter y additively, creating a range of 8 for which the two muckers
may stop shirking simultaneously. The range depends on the effort level of
the miners, but the lower bound equals 6. For 6 < 6} each mucker would set
effort to zero in response to any effort level chosen by the miner and the other
mucker. In turn, 6% is the lowest value ¢ for which miners choose to shirk even
if the muckers are willing to work hard enough to earn a bonus. In each of
the cases in Theorem T2, one of the occupations constrains the effort level
of the whole team. Which occupation constrains team effort depends on the
utility parameters k, and ks, leading to the cases T2.(1)-T2.(iii). Define 6*
to equal the value of 9 at which the team stops shirking in the efficient Nash

equilibrium:
0% if kg <k < 2k,
o* = 3k2z .
m._—k:; if 2ka < ky < 4ka
9: if 0 < 4k, < k.

The equilibrium in which shirking stops at ¢* is Pareto efficient because the
utility of all team members is highest in this equilibrium, holding constant the
bonus system.

The cooperative effort function A¢(9) given in T2.(iv) is the solution when
implicit aspects of compensation are somehow used to overcome the problem
of free-riding within teams. The firm or the workers themselves may support
the cooperative outcome by punishing workers in the future who act in the
non-cooperative fashion. We do not attempt to model the mechanism that
might support this cooperative solution, but presumably the team could only
be induced to consider the team’s share of output under the explicit contract.
Later we show that under certain cases this cooperative outcome can be dis-
tinguished from the non-cooperative solution. This provides a test for the

presence of implicit compensation that supports the explicit bonus system.
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The Optimal Linear Bonus

Theorems T1 and T2 hold for any U that is concave and increasing. To
solve the firm’s problem, we specify U to have constant absolute risk aversion

equal to » > 0.3 For occupation i € {a, b},

U= —exp{—r(ﬂg +w(y)/3 - lc.-)\,-z/2)}. (4)
The firm chooses the bonus system (e,z) to maximize expected profit per
team, subject to individual rationality and incentive compatibility constraints
for each occupation embodied in the Nash effort functions in Theorem T2.
Normalizing the price of output to one, expected team profit from the bonus
is

E[r] = E[revenue] — E[cost] = / [02a(6) — w(0)]£(6)d6 — fu — 26.
0
With U there are no wealth effects in the choice of effort, so the firm can set
B; to solve the individual rationality constraints with equality:
1 In(—u;
b= Lin(r(0) + Hif2)) - 2, (5)

r

where

Hi(o,z) = / exp{—r(%(ﬂ)\a(ﬂ)—z)— %)\;(0)2)} £(8)d6, i€ {a,b}
o*
is the component of occupation i’s base wage that compensates for utility

generated when the team provides effort, that is when 6 > ¢*.

Corollary C2.1. The optimal linear bonus solves
max (1-a) / ” 0xa(0)£(0)do
a,r o
+ az[l - F(6*)] - %[m(p(a*) + Ha(a, )

+21n(F(s) + Hb(a,z))] (6)

3 From a computational standpoint, exponential utility is perhaps the only
feasible functional form when solving the principal’s problem. Margiotta and
Miller (1993) also maintain this assumption, and most of the simulations of
the Grossman and Hart (1983) model performed by Haubrich (1994) use ex-
ponential utility.
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where \(0) and 6 correspond to the appropriate case of ks and ky in Theorem
T2.

Corollary C2.2. Given A1 and the production function (1), ezpected output
under the linear bonus (o,z) expressed as a percentage of output under the

optimal full information contract in T1, equals

1 —tytqt3, (7)
where
1=«
t (hethe) if b, < by < 2k,
2 =

Each of the three components in equation (7) has an economic interpre-
tation as a source of inefficiency under incomplete information. First, output
under the linear bonus is scaled by the bonus rate o because the team sets
effort in response to its share of output rather than to total output.

The second term, t,, captures the effects of free riding within teams. That
is, 1 — t, is the proportion of output lost due to free riding. At any value of
8, each team member chooses effort conditional on ¢ while ignoring the effect
it has on the productivity of the other team members. The resulting loss in
output relative to efficient full information output is constant across values of 6,
however, the inefficiency is larger when 4k, < ks, the case of Theorem T2 when
mucker effort constrains team effort. Since muckers have higher costs of effort
than miners, free riding is larger when their effort is the binding constraint on
team effort. It is straight forward to show that t, lies in the interval [4,3] if
ko < ks < 2k, and it lies in [4, 3] if 4k, < k5.

The third term in (7) captures the effects of team shirking. That is, 1-¢3

is the proportion of output lost due to teams completely shirking and providing
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zero effort. Under the linear bonus, teams with 8 < ¢* produce nothing and fail
to meet the production standard z, while under the full information optimal
contract they produce 1 —t3=® (ln 6% /o — 20).

Because Corollary C2.2 is based on the production function (1), it only
compares output that is sensitive to incentives. In other words, if output actu-
ally takes the form (3), the expression (7) only cofnpa.res the values of E[)6;].
The conditions under which (7) over-estimates the expected productivity lead
to:

Corollary C2.3. Given the production function (3) and assumptions Al and
A2, (7) over estimates the expected output lost under the linear bonus relative

to the full information output if:
E[v] > rVar(d)

where

(2k23-k,,5t2 [1 -9 (ln—'“:_ - 2”)] e2ut20”

1_at2[1-<1>(1£$u_2a>]

T =

The condition C2.3 holds when the average additive shock dominates the

variation in the multiplicative effect d, including the case Var(d) = 0.

4. Identification

In this section we discuss estimating the agency model using payroll data
generated by the model. We assume the data to consist of bonuses received by
a random sample of workers paid under the linear bonus. The agency model
contains five parameters of primary interest: (ks, ks, 7,4, o). These parameters
determine worker effort levels and the firm’s choice of the bonus parameters
(a,z). The reservation utilities u, and u; are of secondary interest because they

determine only the base wages g, and f,. First we consider the response of
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workers to the bonus parameters which they take as given. To the econome-
trician, (e, z) are unknown (and unrestricted) parameters to be estimated. We
call this the unrestricted model. Next we add the restriction that through the
maximization of the profit function in Lemma 2 (a,z) are implicit functions
of the structural parameters and call this the restricted or structural model.
Finally, we consider how data from several pay periods aids in identifying the

structural model.

Lemma 3. Define

ye 252" if ko < by < 2kq
9

—ka- ifkb > 2k,.

a

[N

and
1 if ka < ks < 2k

n=1 Eocke) if Ok, < by < dka

3 Zf 4ka < kp.
Then, from assumption Al and the Nash equilibrium effort functions in The-
orem T2, the distribution of realized bonuses satisfies the following three prop-
erties:

(i) Positive bonuses are bounded away from zero with a lower bound w(f*) =

az
3

(i) No bonus is received with probability ® [(l/a) (1/2 In[y(w(6*) +az/3)] —u)].

(iii) For w> w(6*) the density and cumulative distribution functions equal:

fultw) = (2VEro(w +a2/3)) ™" exp{ gLy In(v(w + 5) - 2
Fy(w) = [(1/0) (1/2In[p(w + az/3)] - u)] .

The parameter n depends on which occupation is the binding constraint
on team effort. The value of 5 is monotonically related to t;, the free-riding
component t, of lost output (7). Therefore, n measures the free-riding within

teams induced by differences in marginal costs of effort. The bounds on 7 arise
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from the assumptions of Leontief technology and quadratic costs of effort. In
particular, the Nash equilibrium effort functions are unaffected by the relative
values of k, and ks when k, < ks < 2k, and 4k, < k;. In the density function the
parameter ¢ scales positive bonuses. Its value determines how effective the
bonus rate is in providing team incentives.

All three statements in Lemma 3 follow from inserting the Nash equilib-
rium effort functions into the bonus equation (2). The economic reason for
the first statement is that no team finds it worthwhile to earn small bonuses.
Instead, the team sets effort to zero for values of § < ¢*. If not for the lower
bound on positive bonuses, the distribution of log bonuses would essentially
form a censored regression similar to a Tobit model. The structural param-
eters determine the mean and variance of the disturbance term. Unlike an
ordinary Tobit, however, the support of positive bonus also depends upon the
model’s parameters. Identifying the parameters in this circumstance is a non-
standard problem since the maximum likelihood estimator for the boundary,
w(6*), is the smallest positive bonus in the data. Flinn and Heckman (1982),
Christensen and Kiefer (1991), and Donald and Paarsch (1993) discuss the

properties of boundary estimators.

Theorem T3. (i) The following four parameters can be identified from the
bonus distribution defined in Lemma 3: the standard deviation of production
shocks o, the incentive parameter ¢ normalized by e2#, the minimum bonus
w(6%), and the free-riding term n. Using L3.(i), the value az can be recovered
from w(6*) and 1, but a and z are not separately identified. (it) The coopera-
tive solution to team effort is observationally equivalent to the non-cooperative

solution when n=1.

Theorem T3.(i) states that the bonus parameters are not separately iden-
tified directly from the distribution of bonuses. At best, only their product, oz,
is identified. Furthermore, point estimates of k, and k; are also not available

based solely on the response of workers to the linear bonus. Using Lemma 3,
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we can determine intervals in which k, and k, must lie to be consistent with
the estimate 5. Combined with Corollary C2, Theorem T3 also shows that
the bonus distribution contains limited information about the linear bonus’s
efficiency relative to the potential full information case. The ratio of expected
output under the bonus to full information output is given in (7), and it con-
tains the three terms t;, t5, and t3. The first component, ¢; = a, lies between
0 and 1 but is unidentified without imposing profit maximization. The next,
t,, lies in the interval [}, 2] and is also unidentified because it is a function of
k, and k. The estimate of n can be used to tighten the bounds on t3. Only
t3 can be estimated from the distribution of bonuses without maximizing the

firm’s problem, because ¢3 can be calculated from the values listed in T3.

T3.(ii) states that it is possible to test for effective cooperation among
team members. In particular, if the restriction n =1 can be rejected, then the
data provide evidence that the free-riding was not completely eliminated by
some implicit aspect of compensation.

By adding the restriction that the firm chooses (@,z) to maximize prof-
its, these parameters become implicit functions (without closed forms) of the
structural parameters. From Theorem T3, only four parameters are identified
from the bonus distribution defined theoretically by five structural parame-
ters. One normalization that in principle identifies the structural model is to
fix the mean of log production shocks u for one pay period. Since u does not
enter (7), output under the linear bonus relative to full information does not
depend on p, making it a natural parameter to fix during estimation.4

Either k, or k; enters the firm’s objective function only through H,(a,z)
or Hy(a,z) because on the margin team effort is determined by the occupation
with the higher relative cost of effort. The other occupation’s preferences only

affect the level of pay required to compensate for effort. If the value of the cor-

4 If (a,z) were known, numerical solutions to the firm’s problem would still
be useful for analyzing the data. Numerical solutions would be required to
determine whether (or to impose the condition that) (e,z) maximized profit.
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responding H;(a,z) is insensitive to structural parameters near their estimated
values, then k; has a small effect on the firm’s choice of (a,z). Therefore, one
of the cost of effort parameters may not be well identified in a given sample.
By using data from several pay periods during which the bonus parameters
were changed, we can identify relative movement in mean production shocks.
That is, we assume that the preference parameters, (r, k4, k3), are constant over
time periods and the firm changed the bonus parameters (a,z) in response to
changes in the technology parameters (o, ) over time as tunnels are extended.
By re-solving the firm’s problem in each period, a separate value of ¢ can be
estimated for each period and a separate value of y can be estimated for all but
one period. Three parameters vary across periods in the unrestricted model:
¥, w(6*), and o. Since it depends only upon preferences, 7 is constant across
periods. Each additional period of data therefore adds one degree of freedom
in the restricted model that imposes profit-maximizing behavior relative to

the unrestricted model based on team behavior alone.

5. Data and Results

Data

We have entered the payroll records of the Britannia mine for the years
1927 and 1928.5 For each pay period we observe the number of shifts each
employee worked, the job he performed (miner or mucker), and the bonus
he received. While there were two pay periods per month, bonus rates were
changed at most once per month. We therefore combine the data into monthly
periods.

Table 1 summarizes the data by month. The ratio of mucker shifts to

miner shifts is generally between 1.5 and 2. The proportion of workers receiving

5 The records are located in the Special Collections section of the University
of British Columbia Library. We transferred the records onto microfiche and
from the microfiche coded the data into machine-readable form.
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a bonus in each month fluctuates between 0.4 and 0.7 with no obvious trend
across periods. Workers were paid bonuses according to the number of shifts
they worked during the pay period, so the Table reports bonuses per shift.
When estimating the model we restrict the sample to workers who worked 25
or more shifts in the month. Base wages per shift were $4.25 for miners and
$4.00 for muckers, positive bonuses were on average 4 or 5 percent of base
wages. The maximum positive bonus per shift fluctuates a fair amount across
periods with outliers in months 7 and 16. On average it is $0.99, or over 23
percent of the base wage. The minimum positive bonus per shift is less than
$.02 with outliers in months 1 and 20.

In each period roughly 6 percent of workers received a total bonus equaling
$0.50. While the model predicts that positive bonuses are bounded away
from zero, it seems unlikely that the theoretical bound was exactly $0.50.
Furthermore, in periods where the smallest positive bonus is below $0.50,
bonuses of $0.50 still appear regularly. We have found no explanation for this
in company records. It appears that either the firm guaranteed a minimum
bonus of $0.50 for certain jobs, or it may be that the firm usually rounded
smaller bonuses up to $0.50. Our formation of the likelihood function proceeds

from the latter explanation.

Likelihood Function

Recall that the distribution of bonuses identifies the free-riding term 5 and
three time-varying parameters: the standard deviation of production shocks
o, the minimum observed bonus w(6*), and the effort coefficient % normalized
by e2#. If the firm did not round small bonuses, it would be possible to
estimate w(6*) consistently using the the smallest observed positive bonus per
shift in each period, denoted wpin. However, wmin is not a consistent estimate
of w(¢*) when small bonuses are rounded. With rounding, the probability of
receiving a positive bonus is unchanged, but all bonuses between nw(6*) and

0.50 are rounded to 0.50, where n equals the number of shifts worked by an
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individual during the pay period. The probability that a bonus equals 0.50
equals F,(6%*) — F,(6*), where 65 = \ﬁp(O.50/n+az/3). The log-likelihood

function for N workers with (ny,ny,...,ny) shifts worked and per-shift bonuses
(wy,wy,...,wy) during one pay period equals
L(ka, ks rp,0) = Y In(Fu(6%)) + > In(Fu(65%) — Fu(6*))
{$:w;=0} {i:0<n;w;<0.50}
+ . In(fu(w)) (8)
{§:nw;>0.50}

Whether or not rounding occurred, estimates based on maximizing (8) are
consistent. If rounding did not occur estimates based on (8) are not efficient.
We found parameter estimates based on estimating w(6*) with wmin to be very
sensitive to changes in wmin across periods so we report estimates based on
(8).

To compute L under the restricted model, requires solving (6) numerically
for the optimal values of (e,z) given current estimates of (ka, ks, 7, p,0).8 To
reduce the number of estimated parameters, we let the technology parameters,
(u,0), change at most every two months. We tested this restriction by esti-
mating the non-structural model over all 24 periods, with 7 free, and allowing
o,p and ¢ to change in each period. We then estimated the model under the
restriction that o, and ¢ change every two periods. The likelihood-ratio test
statistic equals 58.4 with 36 degrees of freedom, which is not significant at the
1% level.

Unrestricted Estimates

Table 2A presents the estimates for the unrestricted model, allowing 7, to

be estimated freely. The estimate of 5 of 10.49 lies beyond the region defined

6 The profit function was maximized using Newton’s method. The con-
vergence criterion was very tight since the results must be passed on to the
algorithm maximizing L. In particular, all elements of the gradient vector for
r had to have absolute values below 1.0e-7. Starting values for L were found
using the simplex method, as described in Press et al. (1987), then Newton’s
metélod was used to achieve convergence. All numerical work was performed
in Gauss.
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by the model. We also estimated the unrestricted (i.e. without profit maxi-
mization) model setting n = 3. These results are presented in Table 2B. Table
9B also reports Chi-squared goodness of fit tests of the unrestricted estimates.
The details of the test statistic are given in the Appendix. The distributional
assumption appears satisfactory. Only in period 4 (the period in which there
are unusually large bonuses) is the fit rejected at the .01 significance level.
The estimates of output lost by pure shirking under the bonus system,
1—t3 in (7), are presented in the fourth row of Table 2B. In all periods less than
10 percent of potential full information output was lost due to workers shirking.
The percentage of teams shirking is much higher than 10 percent, however,
teams earning no bonus received poor draws of ¢ so their forgone output is
well below average productivity. The estimated proportion of output lost due
to free riding on other team members, 1—t; in (7), lies in the range [3,%]. Free
riding within teams accounts for more lost output than whole teams shirking.
The relatively large base wages paid to workers suggests that the output
produced in the absence of any incentives was quite large. Corollary C2A
suggests that Table 2B overestimates the percentage of expected output lost
under the bonus system. The numbers are merely suggestive, since we are
only estimating one part of (7), and Corollary C2A pertains to the whole
expression. Measuring the complete expression requires separate identification
of « and z, which is accomplished by imposing profit maximization on the

bonus parameters.

Structural Estimates

Since 5 is pushed past its theoretical bound of 3, we estimate the structural
model for case T2.(iii), 4kq < k5. Team effort is determined by the muckers so
k. only enters the profit maximization problem through the expected utility
constraint for the miners. We found that k, was poorly identified in the data,
so we estimated the model for two extreme cases: (A) k, = 0.24k; and (B)

k. = 0.01k;. The results are presented in Table 3. The results are not sensitive
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to the normalization.

The estimated values of the standard deviation o are quite close to the
values reported in Table 2. The values of y are generally not significantly
different from zero, indicating little movement in the average production shock
across periods. Most of the variation in the pay system across periods is
through the production standard z. The value of a varies between 0.55 and
0.62, while the value of z varies between 11.01 and 20.29. The risk aversion
parameter was estimated on a monthly basis and then converted to a per shift
value by dividing by 25, the number of shifts worked in a month.

The goodness of fit test was also performed on the structural model.
Since certain parameters are constant across periods, we report the sum of the
statistics for each period. There are 71 degrees of freedom-the number of cells
in each period minus the number of estimated parameters minus one. The
results are significant at the .01 significant level (row 5 of Tables 3A and 3B).
The rejection is caused almost entirely by period 4, the same period for which
the unrestricted model fit poorly. The test statistic excluding period 4 equals
84.0 in both cases which with 65 degrees of freedom has a p-value of 0.06.

The structural model restricts the cost of effort parameters and the risk
aversion parameter to be constant across periods; changes in the bonus distri-
bution are attributed to changes in the profit-maximizing choice of the (a,z)
due to varying conditions in the mine. These restrictions are tested by per-
forming a likelihood ratio test. The total likelihood in the unrestricted model
is 7310.44. The likelihood for the structural model is 7329.21. The model
is estimated over 12 periods, implying 11 degrees of freedom (36 parameters
in the unrestricted model, 25 parameters in the structural model). The like-
lihood ratio of 38 rejects the restrictions placed on the unrestricted model.
When period 4 is ignored, the ratio falls to 26 with 10 degrees of freedom
but the hypothesis can still be rejected (p-value equals 0.003). The problem
appears not to originate with the assumptions of exponential utility and profit

maximization required to solve the firm’s problem, which still fit the data rea-
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sonably well. Rather, the major problem in applying the model to the data is
that the unrestricted estimate of 5 lies above its theoretical range based upon
the production function (2) and the quadratic cost of effort. Other convex cost
functions do not alter the basic form of the effort function illustrated in Fig-
ure 1, but they generate implicit solutions for either 6* or the effort functions
themselves, creating a third level of numerical solutions required to estimate
the model (beyond maximizing the profit and likelihood functions). Alterna-
tive cost functions were therefore deemed impractical, and the quadratic cost
function should be considered a feasible approximation.

The large value of n leads us to reject the hypothesis that the explicit
linear bonus was supported by implicit arrangements that eliminated the in-
efficiency inherent in the form of compensation. Recall from Theorem T3.(ii)
that cooperation within teams is empirically equivalent to the non-cooperative
case with n = 1, which is strongly rejected by the data. This result does not
rest upon any assumptions about what mechanism was used to enforce coop-
eration, but rather tests for the presence of cooperation in the distribution of

bonuses.

6. Implications

Output Relative to Full Information

Using the parameter estimates in Table 3, we compare the expected out-
put and profits under the linear bonus scheme with alternatives that the firm
may have used. Since the structural parameters are estimated conditional on
the normalization of k,, we present two measures of the profits and output
available under alternative schemes. The extent to which the normalization
affects the estimates depends upon the manner in which k, enters these ex-
pressions.

With estimates of the structural parameters we can calculate all terms

24



in (7), subject to the normalization on k,. We average across the twelve two-
month periods and present the results in Table 4. We estimate the output loss
under the linear bonus to be in the range 73 to 81 percent. The major source
of output lost was free riding within teams (column 3). This is consistent with
the results from the unrestricted model. We estimate the loss of teams with
low 6’s shirking to be small — on average only 4 percent of full information
output is lost in this way, even though the percentage of teams not earning a
bonus is on average 35 percent. The pattern in the data that accounts for this
is the large variation in positive bonuses. Truncating the lowest 35% of output
values is much less costly than losing 35% of average output when production

has high variance.

We have already argued that these estimates of productivity lost are likely
to be overestimates of the true loss of productivity since we so far we have not
taken account of productivity from effort that can be enforced by the level
of monitoring used in the mine. To get an idea of how much production was
independent of incentives, we draw on some additional information contained
in the payroll records. In the late 1920s, Britannia linked the base wage of its
workers to the price of copper, which was then fluctuating much more than in
the two years our data covers. We combine the size of the copper bonus with

three additional assumptions:

Assumption A3.

(i) Var[d]=0;

(it) —In(—w;) = r(PE[v]/3 + s:), where P is the price per unit of copper.
(111) sa > 0,5, <0, and s, +2s, = 0.

Assumption A3.(i) strengthens Assumption A2 by forcing all the variation
in average productivity across areas of the mine to be additive. A3.(ii) specifies
that certainty equivalent income outside the mine is a function of the price

of copper and occupation. That is, if @; is occupation i’s certainty equivalent

25



income, then

Taking logs gives, —In(—%;) = rw;. We then let w; = PE[v]/3 + si. In ef-
fect A3.(ii) assumes that worker productivity at Britannia was typical of the
industry. Assumption A3.(iii) allows reservation utility to vary across occupa-
tions.

A3.(ii) and (5) imply 2 = E[v]/3 or E[v] = 355. With fluctuating copper
prices, the copper bonus adjusts compensation to solve the individual rational-
ity constraints. Under the copper bonus, every $0.01 increase in the price of
copper per ton increased base wages by $0.25 per-shift. We therefore approx-
imate 2% by %% = %%? = 25 tons per shift, and leads us to estimate E[v] =75

tons per shift.” The percentage loss in expected output now equals

1 —tytq9t3 (9)

1+ 75(ka + ks/2)e=2(s+?)
and decreases to between 58 and 69 percent (column 5 of Table 4). After
correcting for productivity that is insensitive to incentives, the estimates of

productivity lost relative to full information remain substantial.

Comparisons with Other Incentive Contracts

Comparing output under full information and the linear bonus is only
a partial comparison because it does not include the wage costs associated
with producing the output. Furthermore, the costs of incomplete information
would have increased or decreased if the firm had paid workers using a contract
other than the linear bonus. We now compare profits per-team under several
different contracts, listed in descending order of expected profits before taking

into account the cost of implementing the contract.

7 Production levels recorded in the company reports suggest that this es-
timate is reasonable. For example, in June 1925 the average tons broken per
miner shift was 20.5.
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1. Full Information Optimal Contract: Profits under the contract described
in Theorem T1, averaged over all pay periods at the estimated parameter

values.

2. Incomplete Information Optimal Contract: Profits computed using a dis-
crete approximation to the production shock 6 and a flexible-form contract
defined by 240 parameters. The parameter values for period 12 were used to

form the profit function. The details are described in the Appendix.

8. Incomplete Information Two-Rate Linear Bonus: Profits computed when
separate bonus rates o, and o, are paid to each occupation. The parameters

are chosen to maximize
Elr] = (1 - g - 2a1) /o " 02a(0)(0)d0 - L. (30e,2) + 28(3e,2)] (10)

for all 12 periods where 6* is determined by the solution by the efficient Nash

equilibrium within the team.

4. Incomplete Information Linear Bonus: Profits computed for the parame-

ters estimates and the contract actually used by the firm.

5. Incomplete Information Simple Piece Rate: Profits computed under a

simple piece rate a that maximizes
E[r]=(1-a) /0 02q(6)£(0)do — -}.-[Ha(a, 0) + 2H;(a, 0)]. (11)

As with the two-rate system, (11) was maximized numerically for each pay

period.

In terms of implementation costs as we defined them in section 2, the
incomplete information optimal contract is the most costly. Next in order of
implementation costs is the two-bonus rate system, then the linear bonus, and
finally the simple piece rate and full information optimal contract, which is also

a piece rate. To implement the full information contract would presumably

27



require other costly measures including hiring more foremen, collecting more
data about local conditions, and so forth. These fall under the costs of having
incomplete information on worker action rather than the costs of implementing
the contract given the information available. Before comparing profits under

these contracts, we state and discuss two results concerning their performance.

Theorem T4. Under assumptions A1-A3, estimates of ezpected profits do
not depend upon E[v], average team productivity without incentives, under full

information or any contract that nests the linear bonus system.

Assumption A4. v~ N(p,,02).

Theorem T5. Under assumptions A1-A4, estimated profits under a piece

rate are overestimated by the factor tra’s?.

Theorem T4 says that the correction for the level of team productivity
required when comparing output levels is not necessary when comparing profits
as long as reservation utilities reflect average productivity and the payment
scheme is flexible enough to control for variation in productivity across areas
in the mine. In the case of a simple piece rate, the mine cannot use z; to
cancel out fixed productivity differences v; across areas of the mine. The
productivity differences do not cancel out of expected profits (11). A simple
piece rate creates a lottery across areas of the mine, and the expression in T5 is
the worker’s risk premium associated with this lottery. Without knowing how
variable the observable component of productivity was across areas, expected
profits under the simple piece rate overstate actual profits.

Table 5 summarizes the performance of the five different contracts. The
percentage of full information profits lost under the linear bonus is estimated
to be between 72 and 81 percent on average across periods. We estimate a large
inefficiency in the incomplete information outcomes even though only about
5% of compensation was in the form of incentive pay. (Standard errors on the
estimates of expected profit computed based on the delta method were found

to be quite small relative to the magnitude of the estimates.) A difference
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between casual and structural estimates of the cost of moral hazard has been
noted elsewhere, in particular for executives of U. S. corporations. Using
the sensitivity of executive pay to shareholder wealth as a measure of the
importance of incentives, Jensen and Murphy (1990) find a sensitivity of less
than 1 percent. Using estimates of a dynamic agency model, Margiotta and
Miller (1993) estimate the effect of moral hazard to be of the same order as
total assets controlled by the firm. (See also Haubrich 1994).

The key to both ours results and those of Miller and Margiotta is risk
aversion. With risk averse agents, the cost to the principal of incomplete
information is not proportional to the amount of variation in pay generated
by the optimal incentive scheme. To obtain a measure of the economic impact
of incomplete information requires an estimate of risk aversion as well as other
aspects of technology and preferences.

We divide the loss in profits associated with the linear bonus into a part
attributed to incomplete information and a part attributed to implementation
costs using the profits under the approximate optimal contract with incomplete
information (row 2 of Table 5). Profits under this contract are about 50% of
that with complete information, accounting for two-thirds of the inefficiency
of the linear bonus. The remaining one-third is due to the inefficiency in
producing incentives under the linear bonus compared to optimal incentive
contract.

Now we consider marginal changes in the form of the incentive contract
away from the linear bonus, in particular the two-rate and simple piece rate
schemes that maximize (10) and (11). Net profits under the two-rate system
increase between 16 and 40 percent compared to the single-rate system actually
used. Paying miners and muckers different piece rates would have increased
efficiency substantially. Profits are smaller under the simple piece rate than
under the linear bonus system, since the bonus system nests the piece rate. The
average increase in profits under the linear bonus is small. On average, profits

increased by a minimum of about 2.3 percent with a production standard. The
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fact that the estimated difference in profits (ignoring productivity differences
across areas of the mine) is small suggests that the main benefit to the firm in
introducing the production standard was its ability to cancel out observable

productivity differences.

Extensions and Limitations

Our estimates are based on the assumption that workers know the condi-
tions in the area they work before choosing effort. More realistically, workers
only receive a signal of productivity when choosing effort. The opposite ex-
treme would be the case of symmetric incomplete information: neither workers
nor firms know the value of 4. In this case, team effort is constant relative
to the realization of 4. At any set of model parameters, expected profits are
smaller when workers do not see and respond to § than when they do, be-
cause there is less information about the production process. In this sense,
our estimates of the cost of incomplete information are conservative. However,
our estimates of the model’s parameters are biased in some unknown way if

workers do not observe § and we assume they do.

To gauge the effect of the bias, we used the parameter estimates for period
12 to re-solve the model when workers also do not observe 8. We calculated
the Nash equilibrium within teams, re-maximized the firm’s profit function,
and generated an artificial data set on bonuses based on 1000 draws of 6. Us-
ing this data, we then re-estimated the model under our original assumption
that workers know 6. As expected, the parameter estimates were quite differ-
ent than the estimates we started with, illustrating the bias in assuming the
wrong amount of information in the mine. The computed values for expected
profits, however, were 54% of the full information result under the (incorrect)
assumption that workers know 6, a value similar in magnitude to the 75%
figure from the estimates. This suggests that the effect of misspecifying the

amount of information available to workers may not have a qualitative effect
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upon the estimated cost of incomplete information.?

The comparison of profits in Table 5 suggests that paying two rates would
have cut inefficiency considerably. Britannia’s Annual Reports indicate that
prior to 1926 the firm experimented with separate piece rates for different
members of the team. The reports made at the time indicate that the two-
rate system was dropped in favor of the team bonus primarily to improve
harmony within teams. While the reduced-form estimates reject the presence
of cooperative behavior, we have assumed that teams operate at the Pareto
efficient Nash equilibria defined in Theorem T2. Each team member, however,
can move the team into another Nash equilibria by simply shirking for some
values of ¢ greater than ¢*. In effect, this raises the value of ¢* appearing in
the firm’s objective (6). So while we use a non-cooperative solution to the
team’s problem, we can approximate the notion of cooperation by considering
the firm’s interest in getting teams to select the efficient Nash equilibrium.
Differentiating (6) with respect to *

OE~w 1 .
o = () ((1 ~ )T Fom Y T Bl a) T rF ) H»(a,e*)))
- e ) (12)
PAF(@?) + Ha(a,0%) " F(0) + Ho(ex, %)
where
6H.-§:; 6*) _ _exp{_r(g((rxa(a*) -z) - %i,\?(o*))} f(6*) <0.

The second term of (12) is positive. It represents the amount the firm
could adjust the base wage to offset change in the amount of shirking. As
long as the effect of the first term outweighs the second, profits are maximized

at the Nash equilibrium where shirking stops at 8 = ¢*. Indeed, this holds

8 It would be preferable to re-estimate the model parameters under the as-
sumption of symmetric incomplete information. This was deemed impractical.
It requires three levels of numerical solutions (worker, firm, econometrician)
since worker effort must maximize expected utility rather than state-contingent
(6-contingent) utility.
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at each set of parameter estimates, because H, and H; are not responsive to
g<. Contracts in which workers receive different bonuses may have caused
envy that resulted in break downs in the coordination required to reach the
efficient Nash equilibrium. Equation (12) demonstrates that the firm has a
vested interest in avoiding these break downs. Workers ultimately receive their
reservation utility of u; and occupations were paid different base wages, so this
argument requires that utility functions be augmented with some element of
envy or peer pressure. At the least, our results suggest that applying models
of endogenous cooperative behavior in teams (e.g. Kandel and Lazear 1992)
to payroll data may be fruitful.

While we control for heterogeneity in tasks and skills across occupations,
skills may differ within occupations as well. In particular, workers may develop
skills on the job. Shearer (1994) has matched the payroll data from Britannia
with personnel files that include when the worker joined the firm. Using the
same framework, he estimates the return to tenure within the firm controlling
for the incentives induced by the bonus system.

We specify the environment as a static principal-agent problem. An im-
portant issue in the dynamics of incentive pay is the ratchet effect (Gibbons
1987 and Kanemoto and MacLeod 1990). The ratchet effect arises when a firm
uses a worker’s past performance to determine the parameters of the compensa-
tion scheme, and workers recognize this feedback. We ignore the ratchet effect
for two reasons. Workers at Britannia changed location within the mine, and
as tunnels progress rock conditions evolve over time. Both these facts reduce
the extent to which a worker’s past performance affects his future compensa-
tion even if past performance is used to rate an area relative to other areas.
Ickes and Samuelson (1987) argue that worker rotation mitigates the ratchet
effect because it reduces the correlation between a worker’s performance today
and the compensation scheme he expects to face in the future.

Despite opening in late 1800s, Britannia did not begin experimenting

with productivity-based pay until 1923. The system remained in effect un-
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til 1930. The agency model can help explain the timing of these changes in
the compensation system. First, we estimate substantial variation in average
conditions over the sample period. Conditions before our sample period may
have made monitoring cheaper and random elements of production less impor-
tant. Second, the firm abandoned the system when world copper prices and
labor costs declined in the early 1930s. These trends may have made both
direct monitoring of workers using cheaper foremen and termination contracts
(Macleod and Malcomson 1989) more cost-effective than incentive contracts.
When other costs such as implementation costs are considered, trends in forms

of compensation may be better understood.

7. Conclusions

This paper has explored the empirical content of agency theory in a case-
study of the Britannia copper mine which used a simple incentive scheme
during the 1920s. Firms use simple incentive systems even though agency
theory does not sanction them as optimal. We have explored a transactions
cost explanation for this discrepancy between practice and theory. We estimate
that up to one-third of the loss in profits in the mine was due to such costs
limiting the shape of the pay contract. The remaining two-thirds of the loss
is associated with incentives and free-riding within teams. We test and reject
the possibility that implicit aspects of compensation enforced the outcome
under the optimal contract that ignores the cost of implementing complicated

contracts.

Our results demonstrate that payroll data are informative about agency
theory, in the sense that an agency model serves as the data-generating pro-
cess for an estimation procedure using payroll data. We also demonstrate the
reverse: agency models are informative about payroll data, in the sense that
casual estimates of the cost of incomplete information differ considerably from

estimates arising from the model itself. The non-standard nature of the prin-
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cipal’s objective function with risk averse agents requires numerical solutions,

but in return a better understanding is gained of both the data and the theory.
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Appendix

Proof of Theorem T1

We first note that maximizing (2) implies A, = 2),. With risk averse
workers and a risk neutral firm, the optimal wage contract provides complete

insurance. Using this condition to invert U for occupation i
k; 2 ~1/-
Wi(6) = S((0)) + U7 ). (11)

Productive efficiency requires that the marginal product of team effort equal
the sum of worker marginal effort costs

ky

0=kaAa+ 2
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or,
2 6
Ag = ——m—~ A= ———.
ket k) " (2kat k)

Subsitituting these expressions back into (1.1)
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Proof of Corollary C1

In general, if in(8) ~ N(p,02), and @ is the standard cumulative normal

distribution, then

/ " 621(0)do = 242" [1 _® (-——’"(") "k 2° )] .

z

1 2
To see this note that 62f/(8) = 715;55277('"0_") . Using the change of variables
y = Inf — p, it is straightforward to show that

_ 9,2
825 () = e2u+202¢(y 3‘7 ),
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where ¢ is the standard normal density function. See for example Olkin, Gleser
and Derman (1980, p.300). It follows directly that

1 2 1 2u+202
0% f(6)d(0) = ———e“+T47 .
kot 3ks 1040 = 3T

Elyl = /0 ” 82,(0)£(6)do = /0 ”

Therefore

E[x] = E[y] - E[W.] - 2E[Wi] = %”] - U7 (ua) - 205 (m). QED

Proof of Theorem T2

(i) Utility of mucker i, conditional on both the miner’s effort, A, and

mucker j’s effort, A ;, is
a,, . ks \2
Us,i(8)Aa, Xs,) = §(0mzn{z\a, Xoi + A i} —z) — R

Mucker i equates the marginal cost of his effort to the marginal return at effort

level
L
%7 3k’

which is independent of mucker j’s actions. This defines the maximum level

A

of effort that the mucker will supply for each value of 6.
Define 6; ; to be that value of ¢ at which mucker i is just indifferent between

supplying effort and shirking. Then 6;; solves
Us,i (65 :12a, 2s,) = 0.

Since mucker effort enters the production function additively, there are a con-

tinuum of possible values 6 ; € [0} ; nin0%; mas)- Noting that

0
A,j € [0, ;—kb],
0% i min SOlVES

. af k 2
%(Omzn{z\a, Ap,i + -371:} - -"’) - “22(’\5#) =0,

36



and 65 solves

g- (Gmin{/\a, /\b ,'} - :c) - ﬂ()a ,')2 = 0
3 ' 2\
It follows directly that for < 65 ; min, mucker i’s dominant strategy is to

shirk. Alternatively, for 6 > 6; mucker i’s dominant strategy is to provide

4,maz?
positive effort. For 6 € (6%, min: 0} mas)» mucker i will either provide effort or
shirk, depending on his belief over mucker j’s actions.

Conditional on ),, we can characterize the symmetric best response func-
tion for the muckers

Xy = {min{é’%,%} if 0> Uifandz\a >z/0
0 otherwise,
where 6% solves: Us(Xs(6})|As) = 0. Similarly, the best response function of the
miner can be written
A, = {min{ff;,zz\b} if 6> 0: and2X, > z /0
0 otherwise,
where 6% solves: Us(A4(6%)|2s) = 0.

Solving for an intersection of best response functions will give a symmet-
ric Nash equilibrium. There are a continuum of these equilibria, due to the
continuum of possible values of §5. We now show that the Nash equilibrium
with 65 = 6} Pareto dominates all other symmetric Nash equilibria, Let

6: = {0|0 € [9:’,".-", a:,maa:]}
Furthermore, let
0;€OF and 6} -ecOf; ¢>0.
Finally, define
D(63,€;0) = Us(X16; — ;8) — Us(Ml65; 6).

D(6%,¢;0) is the difference in mucker utility between the two Nash equilibria

conditional on 4.
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We divide states of nature into 3 possible cases and sign D(65,¢; ) in each

state.

=0 ifo>6;
D(6%,€;0) is >0 ifop—e<0<6;.
=0 ifg—e>0

The first case follows since the value of 6* does not affect the level of effort
chosen for 8 > ¢*. The second case follows directly from the definition of 63,
and in the third case D(6,¢;0) = 0 since shirking will be the optimal strategy
for whenever 6 < 0} —e.

Since this holds for all values of 6* > 6} .., it follows that the Nash equi-
librium with 6% = 65

bmin)

dominates all other Nash equilibria for the muckers.
Miners cannot be made worse off by reducing 6% since these reductions broaden
the range of 6 over which the miner can supply effort with positive utility. It
therefore follows that the Nash equilibrium with 6f = 65 ,;, Pareto dominates

all other Nash equilibria.
To complete the proof we use the following Lemma.

greater}
less

Lemma. Conditional on 6, the miner’s equilibrium utility level is
than the utility level of the muckers whenever kb{z}llka.

Proof: First note that in equilibrium miner effort will be twice
mucker effort. Since costs are quadratic, it follows that

2
k a
G =50 =5 (3) = 000
Therefore
24k, <= Co(M)>Ca(Aa) <= Us~U, QED.
< a < a a > a

Consider now case (i) of the Nash equilibrium. If ks < ks < 2k,, then
£L < %22, Solving for Us(6*) = 0 gives 6* = VOkaz/a. Uy(6*) > Ua(6*) follows
from the Lemma.

Next consider case (ii). If 2k, < kb < 4k, then %;‘—f < ﬁ": It is clear from
the Lemma, that the binding minimum level of utility will be the miner’s.

Solving for ¢* from the miner’s indirect utility function gives

3k
o = ,/—"——.
2a(ks — ka)

38



Finally consider case (iii). If ks > 4k, then 222 < 22, Solving for Us(¢*) =
0 gives 0* = \/2ksz/a. From the Lemma, Us(6*) > U(6*) QED.
(ii) If team members cooperate with each other, they choose ;. and A

to maximize

we + 2wy — ca(’\a,c) - 2cb(>\b,c)-

As before, the Leontief production function function requires A, . = 2Xp,. Sub-
sitituting this expression and the form of payment into the objective function
gives

kq ks

a(Aa,c0 — z)— 7)\3,0 - Z’\E@'

Maximizing this with respect to As,c gives an interior solution A, = ﬁz—"_f—h It

is straightforward to solve for the value of ¢ for which net team compensation
is zero, which results in 6% in the text. QED

Proof of Corollary C2.1

Normalizing the price of output to one, the expected profit per team from

the bonus scheme is E[r] = E[revenue] — E[cost]
- /0 " [02a(6) — 3w(0)] £()d6 — B — 265 = /0 °° 03a(8) — a(02a(6) — 2) £(6)d8 — Ba — 2B

Using (3), the individual rationality constraints can be written
= —e P [F(o*) + Hi(e, z)].

Solving for #; and ignoring that part of g; that depends on u; gives the expres-
sion for expected profits. QED

Proof of Corollary C2.2

Substituting the Nash equilibrium effort functions from Theorem 3 into
the equation for expected output and using the properties of the log normal

distribution gives the following.
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3g—¢e2(#+v2) [1 -0 (%:E - 20‘)] if kg < kp < 2ka;

Ely]= | ox(8)f(0)dd =
(4] /0 (6)£(6) 3%62(,“,,2)[1_4,(11%;&_20)] if 2k, < ks,

Dividing this expression by full information expected output, derived in

Corollary C1, gives ttst3 as defined in the text.

Proof of Corollary C2.3

We present the proof for the case ks < ky < 2ka; extension to the other
cases are straightforward. We estimate the percent difference in expected

output between full information and the bonus system by

(‘k,+11u/25 - 3 [1 -2 (‘i—)_h oo == - 2")]

1
(katke/2)

If instead the production function was as in (3), let y* denote the expected

output under a linear bonus
yb — E[d]3%62“+202 [1 _ Q (ﬂg*l — 20-)] + E[y]

Under full information, the firm does not use a piece rate to cancel out fixed
differences d;. The marginal benefit of effort to the firm is therefore d;0;,
and the sum of the marginal costs to workers is ksAq + ks/2Xq. Let y/ denote

expected output
o E#)
(ka+ )

The percentage difference in expected outputs is

_Bla? —E[d]f,;:[l - q)('l‘lf;tﬁ -26)]

e2“"'2"2 + FE [V] .

(ka+)

E[d2 - 02
Gy T Eb] et

Agebraic manipulation shows that we overestimate the percentage decrease if

- [1 o (:_,.g_u _ 2,,)] J2(uto?) sl - £id)

QAT I CCE)
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Under Assumption A2, E[d] =1, so that

E[d?) - E[d] = E[d?] - (E[d])? = Var(d). QED

Proof of Lemma L3

Direct substitution of the Nash equilibrium effort functions into the bonus
equation (2) gives

wo)={F-% i 0>
0 otherwise

L3.(i) follows from direct substitution of the expression for ¢* into the bonus
equation. L3.(ii) follows from the fact that

Pr(w=0) = Priw<uw(0")) = Pr(0 <\ fo(w(0) + ),

and the log-normality of 4. To derive the density function in L3.(iii) note that
since In(8) ~ N(g,02), in(62) ~ N(2p,402) and

1 1 -1

2\ __ 2) _ 2
f2(0%) = Z T e:cp{ 32 (In(6%) — 2p) }
Using the change of variables from 62 to w gives

0= e+ ) -0}

The expression for the cumulative distribution function follows the same steps

as in part two. QED

Proof Theorem T3

(i) The contribution to the likelihood of a limit observation is

(I)(’"( '/’%?(1:7 +1)) - u).

Similarly, the contribution to the likelihood of a non limit observation is

1

T el ) -2}
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As a function of structural parameters, the lower bound on the wage distribu-
tion is w(6*) = $2. Using results in Donald and Paarsch (1993) on boundary
estimators, consistency follows from the fact that w(6*) is monotonic and in-

vertible in 4, and that the inverted equation

E?)f = NWmin
is a smooth function of 5 and wmin, Wwhere wpi, equals the minimum observed
positive bonus in the sample.
The parameters ¢ and u are not separately identified, because the con-
tributions of both limit and non limit observations depend only on the ratio
¥/e2#. For limit observations:

q,(zn({wezﬂ}ﬂf(l/n +1),

o

and similarly for non limit observations:

————1 ex —-1— n 2} (wi + 22))
T e

Replacing w(6*) by its estimate wmin We can consider the concentrated

likelihood function

1= W'Z;o In [q) (’"(Wez“wzm;n(l + n)))]

1 2
+ > —in(o) — In(w; + wmin) - 3.2 [ln(i/;/ez"(w; + nwm.-,,))] .

w.->0
The values v/e2#, 5 and o enter | independently and can be consistently esti-
mated by maximizing .
(ii) Define 4. = ﬂ%}'ﬂ Positive wages are then of the form

+_0 e
%3

w
The minimum observed wage will then be
w(8) = cg_:c'
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Thus when workers cooperate with each other the unrestricted distribution of

wages in identical to that for the Nash solution when n=1. QED

The Chi-squared test Statistic

The Chi-squared test is based on the comparison between the predicted
and actual proportion of workers receiving different values of bonuses. To
conduct the test, the bonus distribution was partitioned on the basis of bonus

received and the number of shifts worked. For each period the partitions are
Wy = {wlw=0} W,={w0<w<$50} W;={w$50<w<§1.50}
Wy = {w|$1.50 < w < $2.50} W5 = {w]$2.50 < w}
and

S; ={5|126 < s <27} Sy ={s|27 < s},

creating 10 cells each period. The test statistic is calculated for each period

as

~ 2
Q= EZ (ns.',w,- - "Si.Wj)

w; i ns;, Wi

where
ns,w; equals the observed number of workers with w € W; and shifts € S;;
fs,w; equals the predicted number of workers with w € W; and shifts € S;.

s, w; =nPr(weW;,s€S)=n Z Pr(w e Wj,s)
8€ES;

=n 25: Pr(w € Vles)Pr(s) = Z; Pr(w € W}Is)n,,
8€S; S€ES;

where n, equals the number of workers working s shifts. In each period
there are 10 cells but only 8 are estimated freely since the conditional
probabilities must sum to one. Furthermore, there are three parameters

estimated in each period resulting in 5 degrees of freedom for the test.
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Approximation to the Optimal Incomplete Information Contract

The continuous distribution of production shocks is discretized into 80

points of the form:

o = F71(( = 1)/80) + F~1(3/80)
I 2

for j = 1,2,...80. These are midpoints of intervals defined by percentiles of
the true distribution. The probability of 6; is set to a constant 1/80.
. ) 80
Next, we posit a flexible-form contract defined by 240 values {(u, of,a})},—;
and two base wages S, and 8, such that the wage paid to workers in occupation

i is a step function:
Wi(y) = Bi + ofy when y <y <41

where yg; = co. The values of y are points at which wage payments jump
to new values, and of are the shares of output paid to workers in occupation
i at step I. Given that the base wages can be chosen to meet the individual
rationality constraints, three of the contract’s parameters are normalized: y; =
ad = o} = 0. This contract uses the fact that with 80 values of 9 there are at
most 80 different values of output in equilibrium. As the number of discrete
values is increased, the distribution of ¢ converges to the actual distribution
and the step-function converges to a completely flexible wage contract.

In equilibrium, teams only compute the utility of producing values of
output conditional on the draw §;. The team effort required to produce y

given 0; is A\j; = w/0;. The utility to miners in doing this is
Uaji = afyr — %“,\?,.
Since muckers each process half the output their utility is
Usjg =oajy — k2—b (%1)2 .

The efficient Nash equilibrium within the team is defined as the greatest value

of y such that both occupations receive higher utility from producing y than
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any lower output:
*(j) =max{l: for i=a,b Uiji>Uijm m=12,...,1}.

This definition of equilibrium uses the symmetry of the muckers and the per-
fect complementary of effort across occupations, since each occupation’s effort
determines the maximum amount of output. In equilibrium, the probability

of y being produced equals

80 1
" z:1 g0 u=r()
J=

where I;43 is the indicator function for event A.

The firm’s objective function can now be written:

80 1 80 4
max > p(l - s —200)y - —In > 30 &P{-"Ua 1)}
{(y"“?"’f)}mz =1 j=1

80
1
+21n (2:1 @-exp{—rUb,j,,,(j)}) .
J=

This function was maximized using the NMSIMP algorithm described in Press
et al. (1987). Experiments were done raising the number of points from
80 to several thousands. These experiments confirmed that expected profits
under the full information contract converged in the number of points to the
theoretical value given in Corollary Cl. For 80 points, which was near the
limit of computational possibilities for maximizing the firm’s profit function,

the difference in full information profits was less than 5%.

Proof of Theorem T4

(i) Bonus System:
The bonus system uses z; to cancel out fixed differences v;, ie. z; = z+v;.

Expected output is E[y] = E[#2:(8)] + E[v] and expected profits per team are

E[r] = E[00s(0)] + E[v] - E[wa(6) + 2ws(6)] - Ba - 26s,
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Under assumptions A1-A3

B S e

and expected profits reduce to

In(F(6*) + Ho(e,)) _2ln(F(0"‘) + Hu(a, 1:)).

r

E[x] = E[03a(6)] - E[wa(6) +2ws(8)] -

(i1) Full Information
Under full information 6,» and X are observable. The firm chooses effort,
xi(6,v) and wages, w;(9,7) to maximize expected profits subject to the workers

expected utility constraint. Expected profits per team are

/o /., OX(0,v) + v — wa(8,v) — 2wy (6,v) £(0)g(v)dbdv.

Expected utility for occupation i is

/,/,“("'-'(9’") —ci(M(8,v))£(0)9(v)dodv.

As in Theorem T1 the optimal contract implies that A, = 2X;, and is char-
acterized by the optimal risk sharing and efficiency conditions. Because the
marginal benefit of worker effort is independent of fixed effects, v does not

affect the efficiency of effort condition. That is

Aa and )\, = '\7"

-0

T kot kp/2

Optimal risk sharing implies full insurance for the worker, that is
U(w,-((), V) - c,-(,\,'(e))) =u; O w,-(B,u) = c;(z\.-(0)) + U—l(’l_t,').

Assumptions A1-A3 imply

_ 2k,0? E[v]

Wq — (2k’a + kb)z + 3 + Sa
_ k02 E[v]

wy = 2(2ka + kb)2 + 3 + Sb
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and expected profits are independent of fixed effects v
92
E[x] = /0 s /(O®. QED

Proof of Theorem T5

Expected profits of the firm are

/v /0[0’\(0) +v](1 - @) £(8)g(v)dbdv — B, — 2B,

where B, and g, solve the participation constraints of the miners and muckers

respectively. To solve for 3,

/ /0 —ea:p{—r[ﬂa (o,\ +v)- )\2]} (0)g(v)dbdv = ug.
Using the inltliependence of 6 and v gives :
Ba = %{In [ / e 8 g(v)dv| + In [ /0 RUCUSS 25 f(o)do] - In(—ﬁa)}
Given the normality of » we use the result

E[e®] = g~ kmt 2ol
Furthermore, using
/ ~r(80%="2)£(9)do = H,(a,0)
oand —In(-u;) = r(E[v]/3 + s4)

gives
g, = In[Ha(a 0))

The same procedure for ﬂ;, gives
H
5, = In| b1('a,0)]

Actual expected profits are

Elr] = / o7(0)(1 — o) £(0)do
[}
but we estimate profits under the piece rate as

E[r] = /9 oA(8)(1 — ) £(6)do — ’"[Hafa’o)] _ 2in[H(a,0)]]

.
Clearly this over—estimates profits under the piece rate by the amount }ra?o?

QED

2
+ (1 )E[u]+%%a§+sa.

1 2
+35(1-o)E[] + %%as + 5.

3 in[Ha(a,0)] 2In[Hy(a,0)]] 3; a? 4

=02,
r 9
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TABLE 1.
BONUS PAYMENTS TO MINERS AND MUCKERS: 1927-1928

SHIFTS WORKED TOTAL BONUS POSITIVE BONUSES PER SHIFT

MINER MUCKER PROP PROP=
MONTH | TOTAL TOTAL RATIO| RECD $0.50 | AVG STDEV__MIN _ MAX

1 1422 2389 1.68 048 004 016 0.19 0.01 1.04
2 1349 2241 1.66 059 008 009 010 002 046
3 1462 2236 1.53 0.71 006 0.12 - 0.11 0.02 0.51
4 991 1769 1.79 067 004 0142 014 0.02 0.60
5 1120 1852 1.65 070 010 0143 0.5 0.02 059
6 1433 2098 1.46 072 005 013 0.14 002 064
7 1212 2091 1.73 079 006 022 042 002 238
8 1127 1996 1.77 082 008 012 012 002 0.2
9 1169 1961 1.68 068 005 019 023 0.02 095
10 1414 1874 1.33 074 006 0.11 0.12 0.02 0.61
11 1082 1824 1.69 056 004 018 020 002 074
12 946 1500 1.59 053 004 019 017 0.02 063
13 1103 1886 1.71 0.61 002 019 o021 0.02 0.84
14 838 1833 2.19 0.81 004 023 028 0.02 1.40
15 872 1749 2.01 068 008 020 024 0.02 1.43
16 759 1503 1.98 068 009 019 039 0.02 206
17 923 1616 1.75 059 007 047 022 0.02 1.02
18 850 1823 2.14 0.61 009 014 0.16 0.02 0.83
19 569 1327 233 067 007 017 023 0.02 1.03
20 790 1492 1.89 0.61 0.01 017 019 000 0.70
21 779 1648 212 052 006 023 031 0.02 1.16

22 1090 1793 1.64 065 007 020 027 002 1.03
23 1288 1882 1.46 059 006 022 025 002 1.52
24 885 1490 1.68 064 008 023 028 0.02 1.14

AVG 1061 1828 1.77 065 006 0.17 021 0.02 0.99

Notes: Month 1 = January, 1927. Bonues are expressed in dollars, and are
based on workers with 25 or more shifts in each month.



TABLE 2.
MAXIMUM LIKELIHOOD ESTIMATES OF UNRESTRICTED MODEL

TABLE 2(A): eta estimated eta
10.49
(0.00)
PERIOD: 1 2 3 4 5 6 7 8 9 10 11 12

(1) psi* 0.13 0.08 0.10 0.12 0.10 0.08 0.07 0.12 0.14 0.17 0.16 0.11
(0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)

(2) alphx/3 6.54 7.63 5.80 3.13 5.40 9.88 8.55 4.59 5.05 3.27 417 5.78
(0.00) (0.00)  (0.00)  (0.00) (0.00)  (0.00) 0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)

(3) sigma 0.46 0.36 0.42 0.53 0.46 0.46 0.45 0.59 0.56 0.69 0.71 0.62
(0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)

In like -7297

TABLE 2(B): eta = 3.0
(1) psi* 0.22 0.13 0.14 0.13 0.13 0.16 0.10 0.16 0.21 0.23 0.22 0.17
(0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)

@ aphx/3 299 351 28 218 306 365 385 245 252 176 237 264
(0.00)  (0.00)  (0.00)  (0.00) (0.00)  (0.00) 0000  (0.00) (0.00) (0.00)  (0.00)  (0.00)

(3) sigma 0.60 0.47 0.52 0.57 0.54 0.67 0.57 0.69 0.68 0.80 0.81 0.78
(0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) 0.00)  (0.00)  (0.00)  (0.00)  (0.00) (0.00)
Inlike -7310

(4) 143 0.06° 0.09 0.08 0.06 0.07 0.04 0.06 0.04 0.04 0.02 0.02 0.03
(5) 4nlike 657.5 6729 6778 7382 6968 5288 6684  549.1 510.1 4553 5480 607.7

(6) CHI~2 5239 11.49 7.663 30.11 * 4743 7.252 3.13  4.531 4157 1042 4675 7.141
Notes: p-values for t-statistic are in brackets;

chi~ 2 refers to the chi squared test statistic for fitting the bonus distribution. psi* is the estimate of psi/exp(2*mu).

psi is defined in Lemma 3; t3 is defined in Corollary 2.

* indicates value of test statistic is significant at 1% level.




TABLE 3.

MAXIMUM LIKELIHOOD ESTIMATES OF STRUCTURAL PARAMETERS

(1
)

©)
(4)

(5)

1
()

(3)
(4)

(®)

Table 3(A): k_a = .24k_b k b r
0.01 0.10
(0.00) (0.00)
Period 1 2 3 4 5 6 7 8 9 10 11 12
sigma 0.78 0.50 0.53 0.52 0.54 0.73 0.56 0.66 0.73 0.74 0.80 0.74
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
mu -0.12 0.04 0.00 0.03 0.04 0.05 0.16 0.01 -0.07 -0.12 -0.08 0.00
(0.20) (0.60) (0.97) (0.72) (0.57) (0.57) (0.02) (0.95) (0.43) (0.23) (0.44) -
alpha 0.55 0.62 0.61 0.61 0.61 0.56 0.60 0.57 0.56 0.56 0.55 0.56
x 11.62 1494 1345 1433 1495 1738 2028 1422 1228 11.04 1351 1542
Chi~2 1195 *
In like -7329
Table 3(B): k_a = .01k_b k b r
0.01 0.10
(0.00) (0.00)
Period 1 2 3 4 5 6 7 8 9 10 11 12
sigma 0.78 0.50 0.54 0.52 0.54 0.73 0.56 0.66 0.73 0.74 0.80 0.74
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
mu -0.12 0.04 0.00 0.03 0.04 0.05 0.16 0.01 -0.07 -0.12 -0.08 0.00
(0.20) (0.59) (0.97) (0.72) (0.57) (0.57) (0.02) (0.95) (0.43) (0.23) (0.43) -
alpha 0.55 0.62 0.60 0.61 0.61 0.56 0.60 0.57 0.56 0.56 0.55 0.56
x 1166 1487 1338 1427 1492 1746 2029 1423 1229 11.01 13.54 15.46
Chi~2 119.4 *
In like -7329

Note: p-values for t statistics in brackets. * indicates test significant at 1% level.

r was estimated on a monthly basis and then converted to a per shift value by dividing by 25 (shifts).



TABLE 4.
EXPECTED OUTPUT UNDER LINEAR BONUS RELATIVE TO FULL INFORMATION

FREE RETURNTO TOTAL
TOTAL SHIRKING RIDING EFFORT ADJUSTED

(141%2%3)  (143) (142) (141)  FORE[V]
Case A (k_a=0.24k b) 073 0.04 0.51 0.42 0.58
Case B (k a=0.01k b)  0.81 0.04 0.66 0.42 0.69

Note: Output under full information optimal contract equals 1.
Values are averages over twelve two-month periods. t1, t2, and t3 defined in
Corollary 2. Adjustment in final column defined in Equation (9).



TABLE 5.
EXPECTED PROFITS UNDER ALTERNATIVE COMPENSATION SCHEMES

PROFITS CASEA PROFITS CASE B
ENVIRONMENT/METHOD [ ACTUAL RELATIVE| ACTUAL RELATIVE|

(1) F.l. Optimal Contract 134.96 1.00 197.68 1.00
(2) Ll Optimal Contract 72.80 0.54 78.24 0.40
(3) Ll Two Bonus Rates 44.14 0.33 53.52 0.27
(4) Ll Linear Bonus 37.86 0.28 38.11 0.19
(5) Ll Piece Rate 37.01 0.27 37.31 0.19
Note: F.l.=Full Information, I.l.=Incomplete Information. Values

are averages over twelve two month periods, except row (2) is computed
using period 12 estimates. Case A and B defined in Table 3.



