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Abstract

The purpose of this paper is to investigate the tests of Hansen (1991)
to detect structural breaks in cointegrated relations using Monte Carlo
methods . The evaluation takes place within the linear quadratic model. The
evidence for a single regressor suggests that the tests have proper size and
that the power is good provided the cost of adjustment is low. In addition
to the tests of Hansen, we consider the sensitivity of the augmented
Dickey-Fuller (ADF) test for cointegration in the presence of a structural
break. Our Monte Carlo experiments show that the ADF test suffers a
substantial loss of power (a failure to reject the null of no cointegration).
As a practical example we consider the stability of the long-run coefficients
in annual U.S. money demand.
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Testing for Structural Breaks in Cointegrated Relations

1. Introduction

Recently a series of researchers have developed tests for a single
structural break with unknown break point in dynamic models. These include
Andrews (1990), Banerjee, Lumsdaine, and Stock (1990), Bates (1990), Chu
(1989), Hansen (1990 and 1991), Krémer, Ploberger and Alt (1988), Perron
(1990a, b), Perron and Vogelsang (1991), and Zivot and Andrews (1990)1.
Except for the Ha[nsen (1991) paper, these tests are designed to test for a
structural change in regression coefficients with stationary series or to
test for a unit root (possibly with a break point) against a stationary
alternative with a single (unknown) break point. The tests for unit roots
are well suited to analyze break points in such variables as real GNP, -real
exchange rates and other integrated processes (see Banerjee, Lumsdaine, and
Stock, 1990; Christiano, 1988; Banerjee, Dolado and Galbraith, 1990, Perron
and Vogelsang, 1991 and Zivot and Andrews, 1990). The Hansen (1991) paper is
the only one to date to consider structural breaks in cointegrating relations
with unknown break points. This is clearly an important advance and permits

a much wider range of economic application.

The purpose of this paper is to investigate using Monte Carlo methods

the tests of Hansen (1991) to detect structural breaks in cointegrated

l;fhis list reflects only the more recent econometric contributions excluding
such important papers as Brown, Durbin and Evans (1975), Chow (1960) and
Quandt (1960). The interested reader is directed to the surveys by
Krishnaiah and Miao (1988) and Zacks (1983) and the discussion in  Andrews

(1990) for a more complete list of references.



relations. The evaluation takes place within the class of linear quadratic
models that has been extensively employed in modelling labor demand, the
permanent income hypothesis, money demand, and investment (see Sargent,
1987). These models give rise to linear decision rules (in the variables)
and hence have well understood properties for the integrated variables.

For a single regressor the evidence from the Monte Carlo work suggests
that Hansen’s tests have proper size (when there are no structur‘al breaks in
the cointegrating relation) and that the power is good provided the cost of
adjustment is low. Power falls dramatically as the stable root becomes large
(high cost of adjustment); a fact that is somewhat disturbing given the slow
adjustment speeds obtained in application. As. a practical example we return
to a problem that has received a great deal of attention in the applied
literature over .the years, namely the stability of the long-run coefficients
in annual U.S. money demand (for recent discussions see Lucas, 1988 and Stock
and Watson, 1991).

In addition to the tests of Hansen we consider the sensitivity of the
augmented Dickey-Fuller (ADF) test for cointegration in the presence of a
structural break. Perron (1989) demonstrates that when there is a trend
break in a trend stationary regression, standard tests of the null hypothesis
of a unit root are biased towards the null. We examine whether breaks in the
cointegrating vector have similar effects on the ADF tests. Our Monte Carlo
work shows that the ADF test exhibits a considerable fall in power (a failure
to reject the null of no cointegration) when there is a single structural

break in the cointegrating relation’. This may in part explain the low

2

This should not be interpreted as a flaw In the ADF test since one would
expect a fall In power in the presence of a structural break. In fact Hansen
(1991) has suggested using his tests for structural breaks as a test of the



rejection rates of no cointegration observed in the applied literature.

The organization of this paper is as follows. Section 2 reviews the
linear quadratic model, discusses tests for cointegration in the context of
this model and describes Hansen’s tests for structural change. Section 3
describes the Monte Carlo design and presents the results. Section 4
estimates and tests the stability of the U.S. money demand using annual data.

Section 5 closes with some final thoughts and suggests some extensions.

2. Linear Quadratic Models, Cointegration and Tests For Structural Breaks
(i) Linear Quadratic Model

The linear quadratic model is a popular and tractable dynamic model in
which agents minimize a dynamic quadratic objective function. Agents are
assumed to track the long-run target variable y: as given by a static
equilibrium theory and choose the actual ys to minimize the present
discounted value of deviating from equilibrium (ys - y%) and the costs of
adjustment (ys - Ys-1). The problem is to minimize the infinite horizon
objective function over the uncertain stream {ys):

-t

o s 2 2
minE, L B [8(ys - y8) + (ys - ys-) 1, (2.1)

{ys} s=t
for s = t, where the expectation is taken with respect to inf ormation
available to the agenf at time t (F.), B € (0,1) is the discount factor and
8> 0 is a weighting factor (see Kennan, 1979).

The static equilibrium relationship is y¥=6x, + e, where e, is a mean

A}
null of cointegration  against  the alternative of no cointegration. The idea
is that a lack of cointegration (a spurious regression) leads to coefficient

estimates that appear to be non-constant.



zero, independently and identically distributed error with variance o2, and
x, is a (kxl) vector of forcing variables. We assume that e, is in F. but
unknown to the investigating econometrician whose information set is
G, c F; hence there is no stochastic singularity.

The forward solution to (2.1) is:

[+ ]
Ve =AY + (1 -2) (1 -BA)E X (BA)St yt (2.2)

s=t

where A < 1 is the stable root of the Euler equation obtained from the
first-order conditions.

This model has been used to explain, for example, the demand for labor
by firms (Sargent, 1978, and Hansen and Sargent, 1980), the deménd for labor
and capital by firms (Meese, 1980), the demand and supply of labor (Kennan,
1979, 1988), natural resource extraction (Hansen, Epple, and Roberds,
1985), the demand for money (Cuthbertson and Taylor, 1987, Domowitz and
Hakkio, 1990, and Gregory, Smith, and Wirjanto, 1990), the supply of money
(Mercenier and Sekkat, 1988), optimal inventory holdings (West, 1986b) and
the permanent income hypothesis (Nason, 1991). Hansen and Sargent (1990)
have also analyzed and developed software for computable general equilibrium
linear quadratic models.

The Wiener-Kolmogorov prediction formula can be used to replace the
expectations in (2.2) given the law of motion for the forcing variables (see
Sargent, 1987). In this paper we shall be concerned with the case where X
is a kxl vector of integrated processes of order 1 denoted I(1):

(I-L) RLxe = e, (2.3)
where {g;} is independently and identically distributed with a mean of O and
variance of ¥ and the roots of R(.I.)=I—R,L-...—R;,l_p lie outside the unit

circle. To simplify the solution of the model, consider the example of a



scalar x¢ (k=1). Given the stochastic process for x: in (2.3), equation
(2.2) can be solved. For instance, if Axy=g¢€: (k=1), the error correction

model (ECM) can be obtained as:
Ayy = (A = 1(yeoy = 6Xeoq) + (1 = A) 82Xy + (1 = BANL - Aes. (2.4)
Alternatively with Axy = pAx.-y + € and |p| < 1, then:

Ay = (A=1)(Y4-1-6%¢-1) + (1-2) 64, /(1-pAB) + (1 - BA)(1 - A)es. (2.5)

In general, the solution will depend upon the serial correlation properties
of Axy. However regardless of the exact nature of (2.3), the following
relation always holds:

Yo = 06Xt + My, t=1...,T (2.6)
where m. is a stationary error. Hence y. and x, are cointegrated and 6 is
the cointegrating vector.’

The general form for n. (k=1) is:
ne = (W(L) A/(1-AL)] €¢ + [8 A/(1-AL)]} ey, (2.7)
where V(L) depend upon the nature ‘of x. in (2.3). For instance Ax: =g,
¥(L) = -6 and for Ax. = pAXi-1 + €, V(L) = -8(1-pB)/[(1-pBA)(1-pL)].
The stable root A < 1 satisfies:
AZB+1 = A+AB+AS,
where A > 1 as 8 » 0. That is, as the cost of adjustment gets large (a small

8) the stable root approaches 1 and = in (2.6) is nearly integrated.

-

3
Single equation estimation of the linear  quadratic  model with integrated

processes have been considered by  Dolado, Galbraith and  Banerjee (1991) and
Gregory, Pagan and Smith (1990).



Applied work has yielded point estimates for the root that have typically
been 0.9 or greater (see for example, Nason, 1991; Meese, 1980; Mendis and

Muellbauer, 1982; Nickell, 1984, 1986 and Sargent, 1978).

(ii) Testing For Cointegration in the Linear Quadratic Model

The most widely used cointegration fcest is the augmented Dickey-Fuller
(ADF) t-ratio test (see Said and Dickey, 1984), recommended by Engle and
Granger (1987). The test is based on the residuals from a cointegrating
regression and is constructed to test the null hypothesis of no
cointegration. Hence the null of a unit root in the residuals is tested
against the alternative that the root is less than unity. One first
estimates equation (2.6) by ordinary least squares (OLS) and tests the null
hypothesis of no cointegration using a scalar unit root test t(a) on the

residuals:

~

Any = Q& Ney +
1

'3

1& ANe-; + Ve, (2.8)

where the lag length m is chosen sufficiently large in order for Ve to be
serially uncorrelated. The distribution of t(a) depends upon the number of
regressors in (2.6); critical values are found in MacKinnon (1990) and
Phillips and Ouliaris (1990).

Gregory (1991) has examined the finite sample properties of a number of
tests for cointegration under a variety of parameter. settings for the linear
quadratic model. The results indicate sharp differences in the various tests
to detect cointegrating relations especially when the cost of adjustment term
becomes large (8+0) and the number of regressors is large. The Monte Carlo
evidence suggests that the ADF test as well as Phillip’s (1987) Z, test have

proper size compared to their asymptotic values and possess the best power.



(iii) Testing For Structural Breaks in the Cointegrating Vector
We will give a brief description of the tests proposed by Hansen (1991);
see that paper for further details. Since the critical values for Hansen's
test include a constant in the cointegrating regression, we rewrite equations
(2.6) and (2.3) as:
Yo = ¥R + M (2.9)
and
Xt = X1 + €4, (2.10)
where §t=(l,xtT)T is a (k+#1) x 1 vector, 7=(u,6) (with pn=0) and
« = R(L) e, Define the vector ut=(m,£tT)T and the following matrices

(the long-run variance matrices):

3|
g ]

Q=1lim
T

T
Z E[UJ UtT] (2.11)

lT
A=1lim ?Z
T2

partitioned in conformity with u:

Q'n'n Q‘nE and A = A A'n( .
Qen Qex USTIRINY:

Q= (2.12)

Also define Qp¢ = Qnn~QneQin and Ang = Agn=Nge Qe

The test procedure requires an estimator of 8 which has a mixture normal
asymptotic distribution. As in Hansen (1991) the fully modified (FM)
estimator of Phillips and Hansen (1990) is used. This estimator which has
t?een studied in Monte Carlo experiments by Gregory, Pagan and Smifh (1990),
Phillips and Loretan (1991) and Stock and Watson (1991) appears to have good

finite sample properties in terms of bias and coverage probabilities.



To begin, we estimate (2.9) by OLS and obtain the residuals 7. = yi-7Xt
and define uy = (ﬁt,AxI)T. With the u,, form estimates of Q and A, denoted
by § and A. The estimators of these long-run matrices used in this paper are
" due to Andrews (1991) and Andrews and Monahan (1990). They are obtained from
a prewhitened quadratic spectral kernel with a vector autoregression of order
one for the prewhitening. The automatic bandwidth estimator is also a vector
autoregression of order one; see the Appendix for details.

Partition O and A as Q and A with: Q= QpnQneQiile, and
Aye= Agn-AeeQ5i€y. Define the transformed dependent variable:

Y=Y - anﬁzé Ax,.

The FM estimator of 7 is:

7[

with the associated residual vector:

T -
(Y:it.r'(o 7\21,7))] [Z ititT] 1, (2.13)

1

-1

ay . ay ~
M=yt - 7 Xt .

Form the "score" sy:

S = |Reht [0]
t = thit = A+ .
AE'n

Two properties of the OLS regression function are:

1 - 0 ‘ u
~ A+ - " ~ =
?Z XNt = [Azn] and Z sy = 0.
= . t=1

To allow for possible parameter instability, we modify (2.9):
Ve =7 Xe + e (2.14)
In this paper we investigate the four tests for parameter instability in

cointegrating relations suggested by Hansen (1991). For each test the null



hypothesis is that 7. is constant. The tests differ in the treatment of the
(implicit) alternative. For the first two tests the alternative hypothesis

is:

71 t = [TT]
Tt = ;  te(0,1),

Y2, t > [TT]

where [+] denotes the integer part. Thus we ére testing for a single break
point at time [Tt]. The null hypothesis is:
Ho: 71=72 -
The first test assumes T is known under the alternative:
Hi: 71 # 725 T known.

A test of H, against H, is given by the statistic:

-1
F = F(1) = St(1) V(1) Sil1) Q3% , (2.15)
where:
[T<)
ST(T) = S[T'l:] = Z gt ’
t=1
and

VT(T) = M'r('l’) - MT(T)MT(I)-1MT(T),
[T<)

MT(T) = Z ;(t;(t.r .
t=1 _
The F test (2.15) for known (fixed) T is asymptotically distributed under H,
as 2 with k+1 degrees of freedom.
The second test treats the timing of the break point as unknown:
Hx 12725 7€7,

where 7 is some compact subset of (0,1). The test is:

Feup = sup F(T). (2.16)
Ted



The third and fourth test treat . as a martingale process:

7o =7t * W E[ we|Fer] = O, E[thtT] = k%G,
where ¥, is some increasing sequence of o-fields to which ¥, is adapted and
G, is some known covariance array which measures the parameter stability in
the t’th period. A convenient choice for G, is some constant so that there
is a constant hazard of‘ parameter instability over the sample (see Hansen,

19%0).

The null hypothesis may be written as the restriction that the variance of

the martingale differences is zero:

He: k=0
One possible alternative is:
’ -1
Hi: K2 > 0, G[T-:] = [Q-,,_z ® VT(T)] :
The test statistic is:
1 &
Fmean = T z F(T). (2.17)

Another alternative is:
-1
Ha: Kz >0 G[T-:] = [QT)~5 ® MT(I)] ’

with the test statistic:

T
L. =1 tr{MTu)"Z S; Q7% sf} : (2.18)
T i=1

The limiting distributions and critical values for (2.16)-(2.18) can be found
in Hansen (1991).

The F test for fixed (known) T is simple but has the disadvantage that
power may be low when T is chosen in an arbitrary way. This test is
asymptotically equivalent to the usual Wald statistic for testing ¥:=72 on
two subsamples with the full sample used to estimate the variance. Stock and
Watson (1991) use a similar test to evaluate the stability of U.S. money

demand for a fixed break point. As has been demonstrated in a related

-
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context by Zivot and Andrews (1990), if a break point is arrived at by a
"data search" over ‘the sample, say by choosing the highest F (Fs,) as in
(2.16), then the usual x°? critical values are smaller than the appropriate
critical values for Fe,p so that inference is biased against the null
hypothesis.

A test similar in spirit to the Fg, test has been used in ia number of
studies for breaks in I(1) variables (see Chu, 1989; Hansen 1990; and Perron
and Vogelsang, 1991 and Zivot and Andrews, 1990). In the present context of
testing for breaks in cointegrated relations, the principal advantage of the
Fsup Over the other tests is that it provides an estimate of T, which may be
useful for model respecification in the event that the null hypothesis of no
structural break is rejected. A drawback is in implementation a region for g
must be specified (otherwise at the endpoints O and 1, the test statistic
diverges almost surely). Following Andrews (1990) we choose J =[.15,.85].
One would expect power loss from structural breaks that occur outside this
region.

The Fmean test and the L. test differ in their treatment of the variance
in the martingale process. The L. test may be viewed as a Lagrange
multiplier-like test (see Andrews, 1990 and Hansen, 1990) and requires no
trimming. | Although the Fmean test requires no trimming, Hansen (1991)
advises that some trimming be done. In the Monte Carlo analysis we follow
this advice and choose the same rule as used in the supF test: J = [.15,.85]4.

This completes the discussion of the various tests. In the next section

4.In private correspondence Bruce Hansen has suggested that this kind of trim-
ming will have a small effect on the the asymptotic size of the Fmean: He
has also found in Monte Carlo experiments that the size biases in finite
samples from using critlcal values iIn Hansen (1991) based on no trimming are

small.
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we develop a simple Monte Carlo experiment to evaluate these stability tests

as well as the sensitivity of the ADF tests to structural breaks. The data

generating process is the linear quadratic model.

3. Monte Carlo Design and Results

There is some conceptual diff iculty in allowing for structural change in

any optimizing model. For instance, what beliefs do we endow agents with in

forming expectations of a possible structural break in the future and how

does such information influence their current behavior? Since the break

point T € (0,1) is itself nonrandom in the testing procedures, it seems

sensible to treat the occurrence (if T = 1)

of a structural break as

unanticipated and not reoccurring. Thus for example, if we analyze a change

in the cointegrating vector (k=1) from say 6, to 6> at time <tT, the

cointegration relation (2.6) would be specified as’:

8. =6y, t = [TT]

Yr = 60Xt + M, N
6, = 6;, t > [TT]

The Monte Carlo experimental design is

Gregory, Pagan and Smith (1990) and West (1986a).

t=1,...T . (3.1)

similar to Gregory (1991),

The computer package used

in the analysis is GAUSS386 and the programs are available from the authors

upon request. For each experiment we do 1000 replications with observation

set T =100, 200 and 500 and record the rejection frequencies of the tests

(2.15)-(2.18) using the five percent asymptotic critical values®.

5

Is set to zero in the data generating process.
\
6

For all the Monte Carlo experiments the regressions include a constant  which

We have also calculated the rejection frequenciles based on the one and ten

percent significance levels. These are qualitatively similar to the five

percent values and are available upon request.
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Fria (2.15) is the F-test at the midpoint and the other tests are
labelled as in Section 2. We set t=1, .25, .5 and .75. When T=1 there
is no structural break in the cointegrating relation (for these 'experiments
@=1) and rejection frequencies will provide information regarding the size
of the tests in finite samples. For c#] there is a structural break and we
set ;=1 for t = 7T and g,=.5 for t > TT. We have done some
experimentation with other values for @ and as would be expected the larger
the change the better the tests are at detecting the structural break.

In Table 1 we vary the stable root Aa=.l, .7 and .9 (1abelled
experiments 1, 2 énd 3). The other parameter settings are: k=1, B=.97,
e, and €y are normally and independently distributed with mean zero,
COVley,ell=0 for all t and s, VARI(1-A)(1-A) ed=1  and VAR[g,] = 1.
Thus we start with the situation in which Ax, is exogenous and is serially
uncorrelated. The variance for e; has been scaled up in order to avoid
singularities which would be caused by A’s approaching unity in the
cointegrating relation (see equation (2.7).

In Table 1 for T=1 over the various values for A, we see that the test
sizes for Fmia and L. are close to their asymptotic values for the sample
sizes considered; there is a slight tendency for overrejection for Fmean and
underrejection for Fsup (for the latter this is particularly true when
A=.9). Since there are so few instances of substantial overrejection for
the size calculations, there appeared to be little need to size-correct the
power calculations. Moreover using asymptotic critical values better mimics
the actual situation applied researchers face.

For cases with T # 1 we see that power falls substantially as A gets
large. For instance, with a=.l, T=200, and t=.5 all of the tests

reject stability more than 80 percent of the time; with A=.9 and the same

13



setting the rejection frequency falls to at most 7 percent. As might be
expected when T =.5, the Fmia has the best power compared to the others;
however when T # .5 we see poorer test performance with Fmiq relative to the
others. The Fmean appears to have the best power of the other three (with
the poorest results from Fgyp).

Unfortunately there is a considerable fall in the ability of all of the
tests to detect structural breaks in modest size data sets (T =200) as the
cost of adjustment rises (a high A)7. In fact it is apparent from these
results that if A=.9, t=.25 and unknown, it would be very unlikely to
find the break even with as many observations as 500 since the rejection
frequency is only .14 for the best test (Fmean). On the other hand, if

= .25 were known for the same experiment Fs has a 27 percent re jection
frequencys. This result holds in all experiments: when we calculate the
appropriate F test at the true break point F. always has the highest power.
Thus in situations where the researcher has strong a priori reason to expect
a structural break, our Monte Carlo evidence suggests it may be advisable to
use it. Nevertheless if the chbsen T is a long way away from the true one,
the loss of power is sizeable. Further from Table 1, for the larger A it
also seems that the structural breaks are easier to detect when they occur at
the end of the sample rather than at the beginning.

In Table 4 we provide the average estimated value of T from the Fg,
over the 1000 replications together with its standard deviation (the numb‘ers

for the experiments refer to experiments with the same number in Table 1).

|7 The same test feature emerged In Gregory (1991) where there was a dramatic
fall 1in power of the tests for colntegration when the stable root is near
unity.

8

These results are not shown in the table but are available from the

authors upon request.
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For T =1, the average estimated T is around .5 with a standard deviation of
around .23. When <=1, the average estimated T from the Fg test is
extremely close to its true value for A=.1 at T=100 and given the
standard deviations appears to be tightly estimated. Not surprisingly, given
the power results, as A increases the average estimate of T is close to .5
with a standard error of a similar magnitude to the value qbtained when
t=1. In Figure 1 we estimate the density of T, i=1,...1000 for experiment
2 with A=.5 and T=.5 using a normal kernel (see Silverman, 1986) for
T =100, 200 and 500. As is clear from the figure with a sample size of 100
the estimates are widely distributed over the interval [.15, .85]. At
T =200 the estimate is more tightly distributed around .5 but still has
fairly large tails. By T =500 the estimator is reasonably precise with
negligible tails.

In Table 3 we present the results from testing for cointegration us'ing
the ADF tests in the presence of structural change. The tests are performed
with a lag length of one and six in the test regression (see equation (2.8)).
For A=.1 and .7 with T=1 (no structural break) we see that by T =200 the
ADF tests with one and six lags reject 100 percent of the time (the exception
is for A=.7 and six lags where it is .94). For A=.9 we see a substantial
fall in the power of the ADF tests (for instance T =1, T =200 the rejection
frequency of the ADF with one lag is 50 percent). The eff'ec.t of a structural
break in the cointegrating relation is to lower the rejection frequency for
all the ADF tests in all experiments, particularly when the break is not at
the beginning of the sample. For example, the ADF rejection frequency falls
‘to about 72 percent (from 100 percent) for the lag length of one and to 17
and 38 percent (from 100 and 94 percent) for a lag length of six at T=.5

with A=.1 and A =.7 respectively. The numbers with six lags are probably

N
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more relevant given that in practice the lag length is likely chosen on the
basis of some statistical test for serial correlation and that the breaks are
likely to manifest themselves as correlated errors. Clearly structural
breaks result in dramatic reductions in rejection frequencies of the ADF
tests.

In Table 2 we consider several other experiments involving stfuctural
breaks. Except for the changes indicated, the parameter settings are
identical to those in Table 1 experiment 2 (A =.7). In experiment 4 and .S
there is positive (p=.8) and negative (p=-.5) correlated  Ax.
respectively. In experiment 6 we allow for an endogenous regressor with
Ax, = €, being correlated with e (Cec = .8). We know from several papers
(see for example Phillips and Hansen, 1990 and Stock and Watson, 1991) that
this correlation creates additional nuisance parameters for estimation. In
Table 2 we see the rejection frequencies are similar to those in experiment 2,
except experiment 4 where there is positive serial correlation. With large
positive serial correlation in Axs, the rejection frequency for all the tests
drops sharply (compare T =.5 and T =500 for experiment 2 against experiment
4). For experiment 4 it is interesting to note that power is larger for
z=.75 than for T=.5 . In Tables 3 and 4 the ADF and estimated T results
are given for experiments 3-6. Again special attention should be given to
experiment 4 where for the ADF test with six lags the rejection frequency for
T =500 is only 3 percent (compared to 100 percent when there is no break).

Lastly in Table 5 we investigate the sensitivity of the F tests, ADF and
estimated T to structural breaks in the short-run parameters like the cost of
adjustment term in (2.1). For the first part of the sample A =.7 and for
the second part A=.5 or .9, with 6=1 over the whole sample. The various

F tests have some power to detect this kind of structural change. However,
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for the A=.5 and .9 at T =100, the results are close to what would "be
expected from size alone. By T =500 most tests are rejecting around the 10
percent mark for T=.5.  For this kind of structural change, the ADF tests
are hardly changed with results very close to those obtained in experiment 2
with T=1. The estimated T from Fg, (A changing to .5 in the second half
of the sample) is poorly estimated with a average value around .5 regardless
of the true value of T. In contrast with A=.9 in the second part of the
sample, the estimated value of < rises on average with higher sample sizes

especially at T=.5

4. Stability Of U.S. Money Demand

As an application of the tests for structural stability, we examine the
stability of the coefficients in the long-run money-demand equation. The two
most recent discussions of this issue are in Lucas (1988) and Stock and
Watson (1991). The long-run cointegrating relation that is at the center of
the debate is:

In (my) =In(py) =g + 6; In (y¢) + 62 ry + Ny, (4.1)
where m is Ml, p is the implicit price deflator, y is real net national
product and r is the & month commercial paper rate. This specification is
identical to Lucas (1988) and Stock and Watson (1991). The data (the same as
used in Lucas, 1988) are annual from 1901-1985 giving 86 observations.

In Table 6 part A we estimate the coefficients over the entire sample
using the Phillips and Hansen (1990) fully modified (FM) procedure discussed
in Section 2. The estimates are quite similar to the OLS estimates found in
I‘_.ucas (1988) and virtually identical to Stock and Watson’s FM estimates
(they use a different estimator for the long-run covariance matrices). Also

in this table are the tests for structural breaks in the cointegrating
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relation. All of them indicate a rejection of the null hypothesis of
structural stability at the -five percent level of significanceg. The Feup
test estimates the break around 1966. The ADF test with one lag rejects the
null of no cointegration at the 5 percent level.

The results in Table 6 conflict with the conclusions reached by Stock
and Watson (1991) who have argued that the U.S money demand is stable over
the same period. They perform a Wald test of structural change with a fixed
(known) break point at 1946 and find no significant structural break. Our
results and those of Stock and Watson can be reconciled using Figure 2 where
we graph the F(tt). In the figure we have also placed the appropriate
critical values (at the S5 percent level) fo;' the F test with known (fixed)
break point and those from Feup- It is evident that there are two spikes in
the F test over the sample (1928-1931 and post 1956) that are higher than the
critical value appropriate for the Fggp. On the other hand, with a fixed
alternative there is a local minimum right around the period Stock and Watson
calculate their statistic (1946) and this value |is close to the critical
value for fixed T.

To help us better interpret our applied results, we conduct a simple
Monte Carlo experiment which is calibrated to the U.S. money demand data.
The set up for this is given in Table 6 part B. The estimated A from the
data is .72 with a standard error of (.02) (see Gregory, Pagan and Smith,
1990) for details on how to estimate the short-run parameters of the linear
quadratic model). For the experiment we set A=.7, B=.97 and the

variances and covariances for the disturbances e:, €3t and &,y are estimated

1

9
A puzzling feature of the results 1s that If we recast ry In natural

logarithms and rerun (4.1), we find that all of the F tests retain the null
of no ;tructural change at the flve percent level of significance.
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from Alln(m¢)-In(py)], Aln(y.), and A(ry) respec’;ively. For the case where
there is no structural break T=1, we use ihe estimates of 6 obtained in
part A of Table 6. When T # 1 we use estimates of the .split sample
(1903-1945, 1946-1987) givenv in Table 3 labeled PHFM in Stock and Watson
(1990). All other features of the exercise are identical to the Monte Carlo
experiment 2 in Section 3. Note that this Monte Carlo experiment differs from
the earlier ones because there are two regressors in the cointegrating
relation. |

For the small sample size T=100 and T=1 all of the tests reject the
null of no break too frequently compared to the appropriate asymptotic
critical value. This overrejection disappears by T =200. From this
overrejection, it is clear that for all the experiments with T # 1 and
T =100, the rejection frequencies (roughly 10 percent) merely reflect the
size bias. In fact at T =200 when there is a structural break the rejection
frequencies are very close to the corresponding size results. It is not
until we have sample sizes of T =500 that we obtain much higher rejection
frequencies or better estimates of the break point from the Fg,,. This last
observation is especially true for breaks later in the sample (Tt =.75). In
all cases we find the rejection frequency for the ADF test is virtually the
same regardless of whether there is a break or not.

The Monte Carlo results make it clear that we cannot have much
confidence in a conclusion that there are breaks in the U.S money demand. At
the same time we believe that conclusions of a stable money demand recently
expressed in the literature are premature and need a careful reassessment.
Certainly additional work with larger data sets is likely to shed more light

\

on this issue.
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5. Conclusion

Econometricians have long understood that a structura'l break in a
regression estimated over the entire sample invalidates conventional
significance testing and can produce misleading estimates. Until very
recently, we have been unable to' test for a structural break with unknown
break point in cointegrating relations. Hansen (1991) has developed a series
of tests appropriate to this problem using the fully modified estimators of
Phillips and Hansen (1990). '

The purpose of this paper has been to evaluate these tests in the
environment of the quadratic-adjustment model. In the case of a single
regressor we have found that the tests have size close to their asymptotic
values for reasonably small sample sizes. Power is good provided the stable
root is small. However when the cost of adjustment is high producing a large
stable root, the data set needs to be large before acceptable rejection
frequencies occur. The Monte Carlo evidence for two regressors in the
applied example of U.S. money demand suggests that there is a need for
further research to document the size as well as the power for larger
dimensional problems.

The Monte Carlo evidence indicates that Fmean has the best finite sample
properties among tests with unknown break point. If the break point is
known, then there can be a substantial increase in power from using it in the
standard way against x° critical values. Nonetheless this same test will
have very poor power properties when the chosen break point is far away from
the true point. Given the experience in the Monte Carlo experiment together
v\(ith the applied U.S. money example, we advise against using arbitrary break
points. We also found that the tests have some power in detecting structural

change in short-run parameters like the cost of adjustment.
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One possible avenue to improve power is to correct for (some of) the
serial correlation (see Bewley, 1979) due to the cost of adjustment. This
may be done by estimating the A and constructing a new dependent variable,
y:+[A/(1-1)]Ay, for the cointegrating relation. Gregory, Pagan and Smith
(1990) have found that this transformation, which is appropriate in any
linear quadratic model regardless of the underlying forcing process for Ax,
resulted in better coverage probabilities in Monte Carlo experiments for the
FM estimators. This extension is currently being pursued.

There are many ways to estimate and conduct inference on cointegrating
vectors besides the FM procedure of Phillips and Hansen (1990). These
include the maximum likelihood estimator of Johansen (1988) and (1990), the
full information estimator of Phillips (1991), and the forward and backward
ordinary least squares estimator of Saikkonen (1991) and Stock and Watson
(1991). For these procedures the setup is similar to Hansen (1991),
suggesting structural change tests might also be developed for these
estimators as well.

Another concern of this paper has been to examine tests for
cointegration like the augmented Dickey-Fuller in the presence of a
structural break. Our Monte Carlo work indicates that the re jection
frequency for the ADF test falls considerably when there is a break in the
cointegrating vector (but is not greatly affected by changes in short-run
parameters like the cost of ad justment). A common practice in applied work
is to test for cointegration and proceed to estimate a cointegrating relation
only if the null of no cointegration is rejected. Gregory (1991) has shown
t‘hat these tests suffer a large power loss when the stable root is near unity
and the number of regressors is large. When there is a structural break in

the cointegrating vector, we have shown a similar reduction in power occurs
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in these tests. With this in mind, it would be useful to develop a test of
the null of no cointegration against the alternative of two cointegrating

regimes, say by using the maximal ADF statistic.
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Appendix: Estimating Long Run Covariance Matrices

The approach used throughout the ‘Monte Carlo work for estimating long
run covariance matrices is due to Andrews (1991) with some important
modifications in Andrews and Monahan (1990). Park and Ogaki (1991) have
investigated this vector autoregressive prefiltering procedure in the context
of estimating cointegrated models. They found using Monte Carlo methods that
this estimator of the long run covariance matrix has small bias and mean
square error.

Let V. be a nxl vector whose long-run covariance matrix is given by Q.
Prewhiten V., by a finite vector autoregression. Obtain the residuals from
this and use an automatic bandwidth for a kernel estimator of the
heteroskedastic-autocorrelation consistent (HAC) variance covariance matrix.
Recolor to obtain the estimate of the long-run covariance matrix. The
procedure is as follows:

1. Prewhitening
b

V, = Z A. Vi, + V* t=b+l...T , (A.1)

r=1
where A, are (nxn) parameter estimates and V} are the corresponding residuals
(in the Monte Carlo work b =1).

2. HAC estimation of V%
T

To1 T“Z VE V3T for j=20
o*sn =Y k(iss) G, Py =4 I (A.2)
J==T41 T"i Vi, ;*V; for j<O
t==-j+1

where S; is the data dependent (automatic) bandwidth and k() is the

real-valued quadratic spectral kernel:
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sin ( 6mx/5)-cos(6mx/5) } . (A.3)

- 2,2
k(x) = 25/(127°x*) { emx/S

For the quadratic spectral kernel Sy= 1.3221 (a* T)"® where a* is obtained
by regressing V! on V%, with associated coefficient matrix A nxn and

innovation covariance matrix ¥ and then calculating:

AT ~
o* = 2 vec g Wy vecgk ' , (A.4)
tr WT (l + Knn) f@f
where
f=1/2n (I-FA)'E (1-AT)"' (A.5)
g=1/2n (1-A)73 [A2+A2iAHA?i-sAiAHi(AT)2+A2(AT)2+>‘:AT](I-AT)':‘ .

W; is a n?xn? diagonal weight matrix with 2’s for diagonal elements that
correspond to diagonal elements of Q and l's for diagonal elements that
correspond to non-diagonal elements of Q, vec is the vectorization operator,
® is the Kronecker cross-product and K., is an nxn® commutation matrix that
transforms vec(A) into vec(A”).

3. Recolor
b

_1 ¢
G=D 6*S;) D' and D= [In—z Ar] ) (A.6)
r=1 '

To calculate A for the Stock-Watson test (3.6) we do not prewhiten but
follow Andrews (1991) directly. That is:
T

.
A==V x(iss7) FQ) B =T7Y Do Dol (A.7)

j=o0 t=j+1
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Table 1 Structural Breaks and Cost of Adjustment

64 1,t5[TT]

, t=1,...T
6, = .5, t > [TT]

Yt = 6¢Xy + My, {

Xy T Xg-1 + €4 €y ~ NID(O,I) (k = 1)

1. a=.1 2. A=.7 3. A=.9

Fmia Fsup  Fmean Lc Fmia Fsup  Fmean Lc Fmia Fsup  Fmean Lc
T=1 '
T=100 .06 .03 .07 .04 .03 .01 .05 .04 | .03 .03 .04 .01
T=200 .06 .04 .08 .06 .03 .02 .05 .04 .04 .02 .06 .04
T=500 .05 .06 .06 .04 .06 .03 .07 .05 .0 .02 .06 .03
t=.25
T=100 .25 .60 .52 .38 .04 .01 .06 .06 .02 .02 .03 .01
T=200 .49 .97 .91 .69 .09 .04 .21 .17 .03 .01 .04 .02
T=500 .7S 1.0 1.0 .92 .33 .82 .69 .49 .07 .04 .14 .11
T=.5
T=100 .93 .62 .73 .56 .13 .02 .09 .06 .03 .03 .05 .02
T=200 .98 .90 .91 .81 .58 .08 .36 .27 .06 .03 .07 .04
T=500 .99 .96 .97 .92 .88 .66 .76 .63 .44 .13 .34 .24
T=.75
T=100 .37 .53 .64 .57 .06 .04 .11 .08 .04 .04 .06 .03
T=200 .59 .79 .83 .78 .19 .11 .33 .27 .06 .07 .10 .0S
T=500 .74 .89 .91 .88 .43 .61 .71 .61 .22 .22 .40 .29
Notes:
Rejection  frequencies at the five  percent ' level of significance using
asymptotic critical values 1in 1000 replications. Fmid 1s the F-test at  the
midpoint equation (2.15), Fsup is the largest F over the interval
T = (.15,.85) equation (2.16), Fpean IS the average over the same interval

equation (2.17) and L. is the Lagrange multiplier like test equation (2.18).
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Table 2 Strﬁctural Breaks, Serial

Correlation and Endogenous Regressors

t = [1T]

Yt = 6tXe + My, {et =1, , t=1,...T
6, = .5, t > [TT]
Xt = Xg-1 + €4 €, ~ NID(0,1) (k = 1)
4, Axy = .80X4-q + €y 5. AOAXy = -.58X¢-q + £ 6. Cee = .é

Fmia Fsup  Fmean Lec Fmia Fsup Fmean Lc Fmia Fsup  Fmean Lo
T=1
T=100 .03 .05 .07 .02 .03 .03 .05 .03 .03 .00 .02 .02
T=200 .04 .02 .04 .03 .04 .02 .06 .04 .03 .00 .04 .03
T=500 .06 .03 .07 .04 .05 .03 .06 .04 .04 .01 .05 .04
T=.25
T=100 .03 .06 .08 .03 .03 .01 .05 .03 .06 .03 .12 .07
T=200 .03 .05 .10 .0S .08 .03 .13 .11 .13 .15 .30 .18
T=500 .05 .09 .13 .07 .31 .73 .65 .45 .35 .85 .72 .43
T=.5
T=100 .13 .14 .16 .03 .08 .02 .07 .05 .16 .03 .12 .07
T=200 .14 .13 .18 .0S .50 .07 .27 .23 .57 .08 .34 .22
T=500 .14 .11 .15 .06 .97 .81 .87 .73 .78 .49 .58 .42
T=.75
T=100 .23 .31 .34 .10 .05 .05 .11 .06 .07 .05 .11 .07
T=200 .22 .29 .31 .13 .16 .10 .30 .26 .11 .06 .23 .18
T=500 .18 .28 .29 .13 .51 .73 .81 .74 .26 .40 .47 .37
Notes:
Rejection  frequencies at the  five  percent level of  significance
asymptotic critical values in 1000 replications. Fmid 1is the F-test at
midpoint equation (2.15), Fsup is the largest F over the interval
T = (.15,.85) equation (2.16), Fpean 1Is the average over the same interval

equation (2.17) and L. is the Lagrange multiplier like test equation (2.18).

:
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Table 3 Structural Breaks and Testing For Cointegration

EXPERIMENTS

T = 100 1.0 (.79) .85 (.35) .13 (.08) .34 (.20) .81 (.36) .89 (.44)

200 1.0 (1.0) 1.0 (.94) .50 (.30) .95 (.72) 1.0 (.93) 1.0 (.95)

-]
"

T = 500 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

T = .25
T = 100 .92 (.34) .74 (.33) .17 (.12) .19 (.19) .79 (.36) .52 (.18)
T = 200 .95 (.48) .95 (.67) .49 (.34) .24 (.23) .99 (.82) .78 (.44)
T = 500 .97 (.55) .98 (.82) .96 (.86) .19 (.25) 1.0 (.95) .87 (.61)
T =.5
T = 100 .65 (.11) .48 (.18) .13 (.09) .03 (.05) .60 (.23) .28 (.09)
T = 200 .72 (.17) .72 (.38) .35 (.23) .03 (.05) .85 (.52) .44 (.16)
T = 500 .74 (.19) .78 (.49) .71 (.59) .02 (.o6) .92 (.71) .55 (.25)
T = .75
T = 100 .53 (.09) .45 (.14) .12 (.09) .02 (.03) .52 (.18) .22 (.08)
T = 200 .60 (.13) .61 (.31) .30 (.19) .03 (.04) .76 (.43) .33 (.14)
T = 500 .61 (.77) .65 (.42) .61 (;48) .04 (.05) .82 (.58) .39 (.18)
Notes:

The augmented Dickey-Fuller test (ADF) uses one lag (see equation(2.8)).
Beside these in parentheses are the the ADF test with six lags.
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Table 4 Structural Breaks and Estimating Break Points

EXPERIMENTS
T 1. 3. 4. 5. 6.

T=1

T = 100 .51 (.22) .52 (.22) .54 (.22) .53 (.21) .52 (.22) .52 (.22)

T = 200 .51 (.23) .51 (.22) .51 (.22) .52 (.23) .51 (.23) .50 (.22)

T = 500 .51 (.23) .51 (.23) .52 (.22) .51 (.23) .51 (.23) .51 (.23)
T = .25

T = 100 .28 (.12) .46 (.21) .53 (.22) .37 (.21) .46 (.22) .40 (.19)

T = 200 .24 (.02) .35 (.18) .48 (.22) .33 (.19) .39 (.20) .29 (.12)

T = 500 .25 (.01) .26 (.06) .39 (.20) .32 (.19) .27 (.11) .26 (.05)
T=.5

T = 100 .49 (.07) .49 (.17) .S2 (.22) .50 (.21) .50 (.19) .51 (.15)

T = 200 .49 (.04) .47 (.13) .50 (.20) .48 (.21) .49 (.14) .50 (.12)

T = 500 .49 (.02) .47 (.09) .47 (.16) .48 (.20) .49 (.08) .51 (.09)
T=.75

T = 100 .71 (.09) .62 (.20) .54 (.22) .56 (.24) .58 (.21) .64 (.19)

T = 200 .73 (.06) .65 (.17) .58 (.22) .56 (.23) .64 (.18) .67 (.17)

T = 500 .74 (.03) .69 (.13) .63 (.19) .57 (.23) .71 (.11) .70 (.15)
Notes: .

T is the estimated break point in the supF test (equation (2.16)) and

its standard error (in parentheses).
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Table 5 Testing for Structural Breaks when Cost of Ad justment Changes

Vi = 0 Xy + My, e =1; At -7, t = [1T) , t=1,...T
At Az, t > [TT]

Xt = Xg-1 + €t €y ~ NID(0,1) (k = 1)

Az = .5 Az = .9
Fmia Fsup Fmean Lo ADF T Fmid Fsup Fmean Lo ADF T

T=.25

T=100 .05 .01 .07 .05 .99 .42 (.21) .03 .02 .03 .02 .17 .54 (.21)
T=200 .07 .06 .11 .07 1.0 .35 (.20) .04 .02 .04 .03 .63 .55 (.20)
T=500 .08 .16 .15 .10 1.0 .33 (.20) .05 .03 .06 .04 1.0 .56 (.20)
=.5

T=100 .06 .01 .05 .04 .97 .45 (.19) .04 .02 .04 .03 .32 .59 (.28)
T=200 .11 .03 .09 .06 1.0 .40 (.18) .08 .02 .07 .04 .78 .61 (.16)
T=500 .11 .07 .10 .08 1.0 .39 (.18) .14 .10 .13 .08 1.0 .64 (.15)
t=.75

T=100 .03 .02 .04 .03 .95 .53 (.21) .03 .02 .06 .04 .48 .64 (.19)

T=200 .05 .01 .06 .05 1.0 .48 (.21) .06 .07 .12 .08 .94 .71 (.15)

T=500 .06 .03 .05 .05 1.0 .49 (.22) .10 .30 .25 .13 1.0 .75 (.10)
Notes: )

Re jection frequencies at the five percent level of significance using
asymptotic critical values in 1000 replications. Fmia 1s the F-test at the
midpoint equation (2.15), Fsup is the largest F over the interval
T = (.15,.85) equation (2.16), Fmean is the average over the same interval

equation (2.17) and L¢ is the Lagrange multiplier like test equation (2.18).
ADF is the augmented Dickey-Fuller test with one lag and T is the average
estimated break point in 1000 replications and in parentheses are the

standard deviation.
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Table 6 Testing for Structural Breaks in U.S Money Demand
A. Annual Data 1901-1985*

ln(mt)-ln(pt) =M + 911D(Yt) + 6 I'y + Ny

;1 é1 éz Fmi d l'-‘sv..cp Fmean Lc ADF %
1.75 . 996 -.101 8.61 17.98 8.83 .817 -4.5. .80
(.13) (.03) (.005) (7.81) (14.6) (5.71) (.701) (-3.77)
*Below the coefficient estimates are the standard errors and below the test
statistics are the five percent asymptotic critical values.

B. Monte Carlo Simulations and Structural Breaks (A = .7)

(] = 044, 6 =8 t = [<T
Yt = B1¢Xqet B2t Xoe + My, b " 2t 21, [<T] , t=1,...T
61t = 6842, 82¢ = 622 t > [TT]
Bxie = .38 BXye-q ¥+ € .0075  .0007 -.0286
Axoy = .06 AXo¢-1 + €3¢ Q= .0040 .0165
T .
{etr€1t,€2t} ~ N(O,Q) 1.580
T =1 T = .25
81y = .995, 65, = -.101 6,7 = .911, 65, = -.102
6,, = .205, 6,5, = -.018
Fmid Fsup I'-.mean I-c ADF % ’ F‘m{d Fsup Fmean I--c ADF %
T=100 .08 .11 .13 .10 .95 .51 (.22) .07 .11 .13 .08 .94 .51 (.22)
T=200 .04 .01 .04 .05 1.0 .51 (.21) .04 .01 .05 .05 1.0 .50 (.22)
T=500 .04 .01 .05 .04 1.0 .53 (.22) - .07 .06 .11 .10 1.0 .46 (.22)
T =.5 : T=.7

T=100 .08 .11 .13 .08 .94 .51 (.22) .08 .11 .13 .08 .93 .52 (.22)
T=200 .07 .01 .07 .06 1.0 .51 (.21) .06 .02 .07 .08 1.0 .55 (.21)
T=500 .39 .18 .31 .26 1.0 .50 (.18) .24 .27 .38 .35 1.0 .62 (.20)
Notes:
For part A of the table m 1is M1, p 1is the implicit price deflator, y 1is real
net national product and r is 6 month commercial paper rate (see text for
further details). For part b of the table, see table 1 for an explanation of

the symbols used.

34



1 pejpwiisy
90 S0 +¥O0 €0 ZO0 L0

— o = == o T T T T T ISP FTEITI ITIT NP @)

i 1~
i -4 O
- N

T -1
- Jo
i ano
o

1 -
= , IS
00G=1 ‘£°0=X ‘G'O=L - N

o , 00Z=1 .NO”K .mouk\ ]
- 00L=1 ‘£°0=X ‘G0=1L — 1 |~
: 0o
1 | 1 L 1 1 s 1 . | | . g

1so| AbolYd |1DJN1IONJALS M_Qjm _\@__Clx_ -



G861 9/61 [,96l 8S6l 6¥Y6L Ov6l 1¢61 CZC6L ¢lBlL +¥06I

IR A R A AR AR AR N T A o
= N
- 4
- ———-F--—=-—-—---——-"—-—-—"——-—"—"q-—=—pF-f-"=—===—"=A-=-=- - o)
- -4 OO
B
- 4= W
Oll
Q
_
- I N
- 1
i JUIO {DBIg@ UMOUY ‘BNJDA [003MD %G — — —| | O
, 4dng 'anjop |0ONUD LG — —
B 1S8] DaJg |DIN}ONIIS ‘O1ISIDIS 1S9) 1 00
Lid bttt bbbt rrrerrrrrbaarrp ittty m

G8—¢06| ‘pubweqg Asuop ‘SN g b



