
QED
Queen’s Economics Department Working Paper No. 1307

A fast fractional difference algorithm

Andreas Noack Jensen
University of Copenhagen

Morten ÃŸrregaard Nielsen
Queen’s University and CREATES

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

4-2013

A fast fractional difference algorithm∗

Andreas Noack Jensen
University of Copenhagen

Morten Ørregaard Nielsen†

Queen’s University and CREATES

First version April, 2013.
This version March 7, 2014.

Abstract

We provide a fast algorithm for calculating the fractional difference of a time se-
ries. In standard implementations, the calculation speed (number of arithmetic op-
erations) is of order T 2, where T is the length of the time series. Our algorithm allows
calculation speed of order T log T . For moderate and large sample sizes, the differ-
ence in computation time is substantial.

JEL Codes: C22, C63, C87.

Keywords: Circular convolution theorem, fast Fourier transform, fractional differ-
ence.

1 Introduction
In the estimation or simulation of fractionally integrated (or fractional) time series mod-
els, the computational cost is almost exclusively associated with the calculation of frac-
tional differences. Indeed, the computational cost of these calculations can be so great
that estimation or simulation of fractional time series models is infeasible when the sam-
ple size is very large.

In this paper, we derive an algorithm for the calculation of fractional differences based
on circular convolutions. The advantage of our algorithm is that it is designed to exploit
very efficient implementations of the discrete Fourier transform, i.e. the fast Fourier
transform (Cooley and Tukey, 1965). The number of arithmetic operations required,
and hence the calculation speed, of standard implementations of the fractional differ-
ence operation is of order T 2, see e.g. Palma (2007, p. 73), where T is the length of the

∗We are grateful to the editor, Rob Taylor, two anonymous referees, Jurgen Doornik, Uwe Hassler, Søren
Johansen, James MacKinnon, Rocco Mosconi, Peter Robinson, and participants at the 3rd Long Memory
Symposium at CREATES for comments. We thank the Canada Research Chairs program, the Social Sci-
ences and Humanities Research Council of Canada (SSHRC), and the Center for Research in Econometric
Analysis of Time Series (CREATES, funded by the Danish National Research Foundation) for financial sup-
port.

†Corresponding author. Postal address: Department of Economics, Dunning Hall, Queen’s University,
94 University Avenue, Kingston, Ontario K7L 3N6, Canada. Email address: mon@econ.queensu.ca

1

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 2

time series, i.e. the sample size. Note that we use “order” to denote the tight (asymp-
totic) bound, that is, f (T) is of order g (T) if for some T0 and Ku > Kl > 0 it holds that
Kl |g (T)| ≤ | f (T)| ≤ Ku |g (T)| whenever T > T0. In contrast, our algorithm is able to
achieve order1 T log T . For large sample sizes, the difference in computation time is
substantial.

As an example, suppose we observe a sample of size T = 100 000, which is not at all
unreasonable for applications in, e.g., finance. As illustrated below, in a standard MAT-
LAB implementation (other languages provide similar timings), calculating the fractional
difference just one time requires about 2.7 seconds of CPU time on an Intel Core i5-2400
3.1GHz desktop. In comparison, a MATLAB implementation of our algorithm is able to
calculate the same fractional difference in only 0.02 seconds of CPU time. In the esti-
mation of even the simplest fractional time series model, based on, e.g., a conditional-
sum-of-squares criterion, one would expect to calculate several fractional differences
for each iteration in the numerical optimization (one to evaluate the objective func-
tion and at least one more for each parameter to evaluate the gradient numerically).
If 15-20 iterations are required to locate an optimum of the objective function, that sug-
gests that roughly 100 fractional differences would need to be calculated, although of
course this would depend on the number of parameters in the model estimated. Thus,
for T = 100 000, the difference in estimation time for the standard implementation ver-
sus our implementation of the fractional difference algorithm could very well be of the
order of 4.5 minutes versus two seconds. The computational costs with standard imple-
mentations seems prohibitive for bootstrap or simulation procedures with large sample
sizes. On the other hand, such procedures remain quite feasible with our implementa-
tion of the fractional difference operator.

In a related strand of literature on the so-called “type I” (or untruncated2) fractional
processes, there has been some focus on fast algorithms for simulation of fractional pro-
cesses. An early algorithm by Davies and Harte (1987), see also Craigmile (2003), Chen,
Hurvich, and Lu (2006), and Doornik (2006), applies the circulant embedding method
and the fast Fourier transform to generate a time series with given autocovariances, say
γ0,γ1, . . . ,γT−1, and specifically type I fractional processes with d < 1/2 such that the au-
tocovariances are well-defined. Also, an idea similar to our Theorem 1 appears in Sowell
(1992, p. 170), using the continuous rather than the discrete Fourier transform, as an
approximation device for the untruncated fractional difference operator for type I pro-
cesses. Related approximate approaches for type I processes are the Whittle estimator,
which can use the fast Fourier transform, e.g. Beran (1994, p. 116) or Palma (2007, p. 78),
and truncation of the fractional filter at a fixed lag, e.g. Hasslet and Raftery (1989).

The remainder of the paper is laid out as follows. In the next section we describe
the fractional difference operation in more detail and derive our proposed algorithm.

1All logarithms in this paper are to base two. However, since we only derive asymptotic orders, any
factor of proportionality, and hence the base of the logarithms via the change of base formula, is irrelevant,
and we therefore suppress the base number in the notation.

2The convention applied in this paper, see (1) below, is that of a “type II” (truncated) fractional process,
see e.g. Marinucci and Robinson (1999). While that is certainly not the only relevant type of fractional pro-
cess, these definitions are not essential to this paper, since our focus is on fast calculation of the fractional
difference of a time series of finite length as in (1).

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 3

Section 3 provides numerical results, and some further discussion and conclusions are
given in section 4.

2 Fast fractional difference algorithm
Consider the time series X t , which is observed for t = 1, . . . , T . Suppose we want to cal-
culate the fractional difference

Yt =∆
d
+X t =

t−1
∑

j=0

π j (−d)X t− j , t = 1, . . . , T , (1)

where the fractional coefficients π j (u) are defined as the coefficients in an expansion of
(1− z)−u , which are

π j (u) =
u (u +1) · · · (u + j −1)

j !
, j = 0, 1, (2)

Note that the summation in (1) is truncated at t −1 because we only observe X t starting
at time t = 1. The subscript “+” on the fractional difference operator thus indicates that
only observations on X t with a positive time index are included in the summation. If
we had pre-sample observations (initial values) on X t that we wanted to include, then
the summation would be extended to include those as well; see Johansen and Nielsen
(2012, 2013). However, such considerations are not essential to the developments in this
paper, and therefore we do not consider this possibility further.

The standard calculation of the fractional difference in (1) is done as a linear convolu-
tion of the two series X = (X t)Tt=1 and q = (πt−1(−d))Tt=1. That is, the time series Y = (Yt)Tt=1
with t ’th element given in (1) can be written as

Yt =
t
∑

j=1

q j X t− j+1, t = 1, . . . , T . (3)

Because the number of arithmetic operations required in each sum in (3) is of order t ,
the whole linear convolution operation for t = 1, . . . , T is of order T 2.

Our algorithm for the fractional difference operator takes advantage of a frequency-
domain transformation, and we therefore define the discrete Fourier transform f = (f j)Tj=1

of a series a = (at)Tt=1 as the solution to the equation a = T −1F f , where F is the Fourier

matrix with (j , k)’th element (F) j k =w (j−1)(k−1)
T and wT = e i2π/T with i=

p
−1 denoting the

imaginary unit. Each element of a can therefore be expressed in terms of the Fourier co-
efficients f j and powers of wT as

at =
1

T

T
∑

j=1

f j w (t−1)(j−1)
T , t = 1, . . . , T . (4)

Since F is symmetric and F F = T IT , where the bar denotes complex conjugation, the
inverse operation is (T −1F)−1 = F , i.e. the complex conjugate of each element in F , such
that f j =
∑T

t=1 at w −(t−1)(j−1)
T . Thus, the matrix F represents the discrete Fourier transform

whereas T −1F is the inverse transform.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 4

The circular convolution of two series a and b of length T is denoted a þ b and de-
fined as

(a þ b)t =
T
∑

j=1

a j bt− j+1, t = 1, . . . , T , (5)

where the sequences are extended periodically such that a j+nT = a j and b j+nT = b j for
all n = 0,±1,±2,

In Theorem 1 below, we state the finite version of the circular convolution theorem,
which shows how the circular convolution of finite sequences in (5) can be calculated
by application of the discrete Fourier transform. For periodic integrable functions this
result can be found in, e.g., Zygmund (2003, Theorem 1.5, p. 36). The finite version has
appeared in various forms in the engineering literature as an important application of
the fast Fourier transform, see e.g. Stockham (1966, p. 230), Cooley, Lewis, and Welch
(1969, p. 32), and Oppenheim, Schafer, and Buck (1999, Chap. 8). The version in The-
orem 1 allows a simple proof of our main result. Because the notion of circular convo-
lution of finite sequences seems less known in the econometrics literature we provide a
brief proof of the theorem.

Theorem 1 Let a = (at)Tt=1 and b = (bt)Tt=1 be two sequences. Then

a þ b = T −1F (F a ◦ F b), (6)

where the symbol “ ◦” denotes element-wise multiplication.

Proof. Let f = F a and g = F b denote the discrete Fourier transforms of a and b , re-
spectively. It then needs to be shown that a þ b = T −1F (f ◦ g). To do this, insert the
expressions for a and b in terms of their discrete Fourier transforms,

(a þ b)t =
T
∑

j=1

a j bt− j+1 =
T
∑

j=1

�

T −1
T
∑

s=1

fs w (j−1)(s−1)
T

��

T −1
T
∑

u=1

gu w (t− j)(u−1)
T

�

= T −2
T
∑

s=1

T
∑

u=1

fs gu

T
∑

j=1

w (t−1)(s−1)+(j−1)(s−u)
T

= T −2
T
∑

s=1

T
∑

u=1

fs gu w (t−1)(s−1)
T

T
∑

j=1

w (j−1)(s−u)
T = T −1

T
∑

s=1

fs g s w (t−1)(s−1)
T ,

where the last equality follows because of the well-known result
T
∑

j=1

w (j−1)k
T =

¨

T if k ≡ 0 (mod T),
0 if k 6≡ 0 (mod T).

This shows that the Fourier coefficients of a þ b are given by the elementwise product
of the Fourier coefficients of a and b .

The next theorem presents our main result, which is to show how the finite circular
convolution theorem can be used to calculate the fractional difference in (1), or equiva-
lently in (3), by the discrete Fourier transform. For any T ×1 vector a , let

ã = [a ′, 0′T−1]
′ (7)

denote the (2T −1)×1 vector consisting of a extended with T −1 zeros.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 5

Theorem 2 The fractionally differenced time series Y in (3) can be calculated as the first
T elements of the (2T −1)×1 vector

T −1F (F q̃ ◦ F X̃). (8)

Proof. By equation (6) it holds that the t ’th element of (8) is equal to (q̃ þ X̃)t . Further-
more, for t = 1, . . . , T , we have from definition (5) that

(q̃ þ X̃)t =
2T−1
∑

j=1

q̃ j X̃ t− j+1 =
t
∑

j=1

q̃ j X̃ t− j+1+
2T−1
∑

j=t+1

q̃ j X̃2T+t− j =
t−1
∑

j=0

π j (−d)X t− j (9)

because q̃ j = π j−1(−d) for j = 1, . . . , T and q̃ j = 0 for j ≥ T + 1, while X̃ t− j+1 = X t− j+1 for
j = 1, . . . , t and X̃2T+t− j = 0 for t +1≤ j ≤ T by definition (7).

The significance of Theorem 2 lies in the fact that the discrete Fourier transform can
be calculated very efficiently by means of the fast Fourier transform algorithm, where
the number of arithmetic operations required is proportional to T log T , see Cooley and
Tukey (1965). Because the operation in (8) only applies three discrete Fourier transforms
and one element-wise multiplication of two vectors (which is of order T), the fractional
difference algorithm (8) in Theorem 2 is itself of order T log T .

Note that our result in Theorem 2 provides an exact calculation of the fractional dif-
ference in (1), and that no approximation is involved. Finally, also note that, depending
on the particular implementation of the fast Fourier transformation applied, it may be
necessary in practice to extend the series X and q to a length greater than the 2T − 1
used in (7). Specifically, some implementations of the fast Fourier transform require the
length to be a power of two, and in that case X̃ and q̃ should be extended with zeros to
length equal to the smallest power of two that is at least 2T −1.

3 Numerical results
In this section we illustrate numerically the difference in computational cost between
the standard implementation in (1) or (3) and the algorithm (8) in Theorem 2 for a range
of sample sizes, T .

The baseline algorithm computes the linear convolution (3) directly, where the num-
ber of required arithmetic operations is of order T 2. The computation time is expected
to be proportional to the number of arithmetic operations, and consequently also of or-
der T 2. These timings are compared to our algorithm which is of order T log T based
on the fast Fourier transform. The algorithms differ in the number of arithmetic oper-
ations required and therefore the results should be independent of programming lan-
guage. However, in practice this may not be true because of, e.g., different implemen-
tations of the fast Fourier transform. We present results in the three popular languages:
MATLAB (MathWorks, 2013), Ox (Doornik, 2007), and R (R Core Team, 2013) in order to
exemplify the time gains in practical application.3

3A distinction between interpreted and compiled routines could be made, suggesting that, in some
cases, the comparisons are not really fair. In this light, the comparisons made here could be viewed as
conservative, since this point actually goes in favor of our proposed algorithm. We thank a referee for
pointing this out.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 6

MATLAB does not ship with a function for fractional differencing. Instead we have
written the function fracfilter that computes the fractional difference by direct linear
convolution through the MATLAB function filter. The function fracdiff uses the
fast Fourier transform to compute the convolution as in Theorem 2, and the time series
is padded with zeros such the total length of the series is a power of two. Ox, on the
other hand, has the built-in function diffpow for fractional differencing, see the arfima
package v1.04 by Doornik and Ooms (2003), and we use that as the benchmark. The
function for the fast Fourier transform in Ox automatically pads the input with sufficient
zeros, and hence we do not need to do so in our code, although we still have to pad
the series as in (7). Finally, R also has a package for analyzing fractionally differenced
data, namely fracdiff by Maechler (2012) (not to be confused with our algorithm of
the same name), which has the built-in function diffseries for fractional differencing.
We compare that with our implementation, which again uses the fast Fourier transform
and padding with zeros such that the length of the time series is a power of two. All these
algorithms are presented in Listings 1, 2, and 3, for MATLAB, Ox, and R, respectively, and
are downloadable from the authors’ websites.

Listing 1: Matlab code
function [dx] = fracfilter(x, d)

T = size(x, 1);
k = (1:T-1)';
b = [1; cumprod ((k-d-1)./k)];
dx = filter(b, 1, x);

end

function [dx] = fracdiff(x, d)
T = size(x, 1);
np2 = 2.^ nextpow2 (2*T-1);
k = (1:T-1)';
b = [1; cumprod ((k-d-1)./k)];
dx = ifft(fft(x, np2).* fft(b, np2));
dx = dx(1:T, :);

end

Listing 2: Ox code
fracdiff(const x, const d)
{

decl T, k, b, dx;
T = rows(x);
k = range(1, T-1)';
b = 1| cumprod (((k-d-1)./k));
dx = fft(cmul(fft(b'~ zeros(1, T-1)), fft(x'~ zeros(1, T-1))) , 2);
return dx[:T-1]';

}

Listing 3: R code
fracdiff <- function(x, d){

iT <- length(x)
np2 <- nextn (2*iT - 1, 2)

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 7

Figure 1: Computation times in seconds against sample size

(a) MATLAB

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size

Se
co

n
d

s

fracfilter
fracdiff

(b) Ox

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size
Se

co
n

d
s

diffpow
fracdiff

(c) R

102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Sample size

Se
co

n
d

s

diffseries
fracdiff

Note: The figure displays computation times in seconds for a range of sample sizes. Panels (a), (b), and

(c) show the timings for MATLAB, Ox, and R, respectively. In each panel, both axes are logarithmic.

k <- 1:(iT -1)
b <- c(1, cumprod ((k - d - 1)/k))
dx <- fft(fft(c(b, rep(0, np2 -iT)))*

fft(c(x, rep(0, np2 -iT))), inverse=T)/np2;
return(Re(dx[1:iT]))

}

The computations are run on a desktop with an Intel Core i5-2400 3.1GHz processor
running Ubuntu 13.10. The software versions are MATLAB 2013b, Ox Professional 7.0,
and R 3.0.0. The timings are computed for sample sizes ranging from 100 to 100 000.
For each sample size the fractional difference is repeatedly computed for approximately
ten seconds and the average computation time is calculated. A minimum of ten repeti-
tions has also been imposed to improve the precision for the largest sample sizes.4 The
resulting computation times are plotted with logarithmic axes in Figure 1. This clearly
shows the different orders of the algorithms. The graphs for the benchmark algorithms
are nearly straight lines with slope two except for the shortest samples. For ourfracdiff
algorithm, the graphs appear like step functions with jumps at each power of two, due
to the application of the fast Fourier transform and the padding with zeros to a length of
powers of two. Overall, Figure 1 clearly shows the advantage of the algorithm in Theorem
2 in terms of computation speed, especially when recalling that the axes are logarithmic.

In Table 1 we give some examples of the actual computing time in milliseconds re-
quired to calculate one fractional difference for sample sizes ranging from T = 100 to
100 000 using both the standard implementations as well as our fast fractional difference
algorithm, fracdiff, presented in Listings 1, 2, and 3.

For samples of T = 100 the computation times are all very small, at least in MAT-
LAB and Ox, and even though the new fracdiff algorithm is actually slower than the
benchmark in MATLAB and Ox, they are all very fast and in practice there will hardly be

4To avoid differences in computation time caused by parallelization or multi-threading, the computa-
tions in MATLAB and Ox are done with a single-thread flag. Since R is single-threaded no special flags are
used for the calculations.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 8

Ta
b

le
1:

E
xa

m
p

le
s

o
fc

o
m

p
u

ti
n

g
ti

m
e

Sa
m

p
le

si
ze

10
0

25
0

50
0

10
00

25
00

50
00

10
00

0
25

00
0

50
00

0
10

0
00

0

M
AT

L
A

B
f
r
a
c
f
i
l
t
e
r

0.
01

71
0.

02
88

0.
05

94
0.

16
1

0.
97

0
4.

86
1

20
.0

0
13

4.
21

64
6.

12
26

83
.3

f
r
a
c
d
i
f
f

0.
05

15
0.

05
98

0.
07

86
0.

11
4

0.
32

9
0.

63
5

1.
28

3.
22

8.
36

19
.6

O
x

d
i
f
f
p
o
w

0.
00

76
0.

05
21

0.
20

07
0.

79
5

4.
73

6
19

.6
69

79
.1

0
50

3.
49

20
18

.2
4

81
80

.8
f
r
a
c
d
i
f
f

0.
01

94
0.

03
57

0.
06

74
0.

13
7

0.
53

5
1.

26
0

3.
06

6.
57

14
.8

4
34

.4

R
d
i
f
f
s
e
r
i
e
s

1.
45

84
3.

81
73

8.
80

22
22

.8
61

97
.5

80
33

4.
63

8
11

80
.7

9
69

56
.0

0
29

17
8.

90
11

8
60

3.
5

f
r
a
c
d
i
f
f

0.
07

13
0.

09
16

0.
15

18
0.

29
1

1.
18

4
2.

54
2

6.
59

12
.4

0
28

.2
4

73
.2

N
o

te
:E

n
tr

ie
s

ar
e

co
m

p
u

ti
n

g
ti

m
es

in
m

ill
is

ec
o

n
d

s
fo

r
th

e
ca

lc
u

la
ti

o
n

o
fo

n
e

fr
ac

ti
o

n
al

d
if

fe
re

n
ce

fo
r

a
va

ri
et

y
o

fs
am

p
le

si
ze

s
an

d
fo

r
th

e
al

go
ri

th
m

s

gi
ve

n
in

Li
st

in
gs

1,
2,

an
d

3
as

w
el

la
s

th
e

b
en

ch
m

ar
k

al
go

ri
th

m
s.

T
h

e
re

p
o

rt
ed

ti
m

es
ar

e
av

er
ag

es
o

fr
ep

ea
te

d
ca

lc
u

la
ti

o
n

s
o

ft
h

e
fr

ac
ti

o
n

al
d

if
fe

re
n

ce

fo
r

ap
p

ro
xi

m
at

el
y

te
n

se
co

n
d

s
o

r
at

le
as

t1
0

re
p

et
it

io
n

s.

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 9

any noticeable difference between the implementations. In MATLAB, our algorithm be-
comes faster than the traditional method for samples of size approximately T = 750, and
for Ox the crossover between the two methods is approximately T = 180. The traditional
implementation in R is very slow and our method is much faster even for T = 100.

Because the algorithms scale differently, our method rapidly becomes much faster
as the sample size grows, and even though the crossover in MATLAB is around T = 750,
our method is already three times faster for T = 2500. For the other two languages the
relative differences are even larger. For a sample size of T = 100 000, the differences
in computation times are enormous: compared to the benchmark algorithms, our pro-
posed fracdiff algorithm is about 137 times faster in MATLAB, about 239 times faster
in Ox, and about 1620 times faster in R.

Of course, the most important reason for having a fast fractional differencing algo-
rithm is its repeated application in, for example, estimation, simulation, or bootstrap
procedures. Clearly, the relative timings of our algorithm compared with the bench-
mark algorithms may differ in such settings, but the crossover points remain the same
as those given above for the calculation of the fractional difference itself. The reason, of
course, is that the proposed algorithm is exact, so that everything else is identical to the
benchmark case; e.g. in the estimation procedure, the same number of iterations will be
required in the numerical optimization, and within each iteration the same number of
fractional differences and other calculations will be performed.

4 Discussion and conclusions
In this paper we have provided a fast algorithm for calculating the fractional difference of
a time series based on the circular convolution theorem and the fast Fourier transform.
The required number of arithmetic operations for our algorithm is of order T log T com-
pared to T 2 for standard implementations, and similarly for the computation time. For
large sample sizes, the difference in computation time is very substantial and can eas-
ily be the difference between feasible and infeasible estimation with moderate to large
sample sizes. Moreover, the much faster calculation of the fractional difference achieved
by our algorithm opens up new possibilities for bootstrap or simulation methods to be
applied to fractional time series models with moderate to large sample sizes.

Of course, large data sets are common in many fields such as meteorology and fi-
nance. For example, in Carlini, Manzoni, and Mosconi (2010) and Bollerslev, Osterrei-
der, Sizova, and Tauchen (2013), the authors apply the fractional cointegration model
of Johansen and Nielsen (2012) to large data sets in finance. More specifically, Car-
lini et al. (2010) analyze supply and demand imbalances on stock prices using high-
frequency observations. In the estimation, the authors use only a small subset consisting
of T = 110 000 observations from a data set with a total of T = 5.8 million observations,
citing the “extreme computational burden” of the estimation. Indeed, we found that the
time required to compute just one fractional difference with T = 5.8 million using the
standard fracfilter implementation in MATLAB is about seven hours. On the other
hand, with our fracdiff algorithm, the same calculation of one fractional difference
takes only 1.7 seconds. Thus, the computation time of our algorithm is about 15 000
times faster, which is likely sufficiently fast to allow estimation with the full sample.

We note that the computationally intensive part in our method is the calculation of

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 10

the discrete Fourier transform. When the fractional differencing is applied to multi-
ple times series, the series coefficients only need to be transformed once and in con-
sequence our algorithm scales well with the number of variables. In addition, the fast
Fourier transform can be computed in parallel. In our simulations, we have explicitly
not taken advantage of this feature, so as to obtain more reasonable comparison with
the traditional implementation. However, in practice computing the fast Fourier trans-
form in parallel will make our algorithm even faster on most modern computers since
they are typically equipped with several cores.

Finally, we note that “smoother” lines, compared to the step function-type lines in
Figure 1, could be achieved by padding the series such that the total length is a prod-
uct of small prime numbers, i.e. 2k 3m 5n , as long as the particular implementation of the
fast Fourier transform supports this feature. In the calculation of the fast Fourier trans-
form, this prevents the steps when 2T −1 is slightly greater than a power of two. Indeed,
in unreported MATLAB calculations, we found that additional (very modest) decreases
in computation time were attained with this procedure compared to the fracdiff algo-
rithm in Listing 1 above. However, to keep focus on the (fast) calculation of the fractional
difference, rather than efficient calculation of the fast Fourier transform, we have not in-
cluded an in-depth discussion of the benefits of padding the series to a length given as
a product of small primes.

5 List of references
1. Beran, J. (1994). Statistics for Long-Memory Processes, Chapman and Hall, London,

England.
2. Bollerslev, T., D. Osterreider, N. Sizova, and G. Tauchen (2013). Risk and return:

long-run relations, fractional cointegration, and return predictability. Journal of
Financial Economics 108, 409–424.

3. Carlini, F., M. Manzoni, and R. Mosconi (2010). The impact of supply and demand
imbalance on stock prices: An analysis based on fractional cointegration using
Borsa Italiana ultra high frequency data. Working paper, Politecnico di Milano.

4. Chen, W.W., C.M. Hurvich, and Y. Lu (2006). On the correlation matrix of the dis-
crete Fourier transform and the fast solution of large Toeplitz systems for long-
memory time series. Journal of the American Statistical Association 101, 812–822.

5. Cooley, J.W., P.A.W. Lewis, and P.D. Welch (1969). The fast Fourier transform and its
applications. IEEE Transactions on Education 12, 27–34.

6. Cooley, J.W. and J.W. Tukey (1965). An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation 19, 297–301.

7. Craigmile, P.F. (2003). Simulating a class of stationary Gaussian processes using
the Davies-Harte algorithm, with application to long memory processes. Journal
of Time Series Analysis 24, 505–511.

8. Davies, R.B. and D.S. Harte (1987). Tests for Hurst effect. Biometrika 74, 95–101.
9. Doornik, J.A. (2006). Efficient ARFIMA modelling when the sample size is large.

Unpublished manuscript, University of Oxford.
10. Doornik, J.A. (2007). Object-Oriented Matrix Programming Using Ox, 3rd ed., Tim-

berlake Consultants Press, London, England.
11. Doornik, J.A. and M. Ooms (2003). Computational aspects of maximum likelihood

A.N. Jensen & M.Ø. Nielsen: A fast fractional difference algorithm 11

estimation of autoregressive fractionally integrated moving average models. Com-
putational Statistics and Data Analysis 41, 333–348.

12. Haslett, J. and A.E. Raftery (1989). Space-time modelling with long-memory de-
pendence: assessing Ireland’s wind power resource (with discussion). Journal of
the Royal Statistical Society Series C 38, 1–21.

13. Johansen, S. and M.Ø. Nielsen (2012). Likelihood inference for a fractionally coin-
tegrated vector autoregressive model. Econometrica 80, 2667–2732.

14. Johansen, S. and M.Ø. Nielsen (2013). The role of initial values in nonstationary
fractional time series models. QED working paper 1300, Queen’s University.

15. Maechler, M. (2012). The fracdiff package for R, version 1.4-2. URL: http://
cran.r-project.org/web/packages/fracdiff/.

16. Marinucci, D. and P.M. Robinson (1999). Alternative forms of fractional Brownian
motion. Journal of Statistical Planning and Inference 80, 111–122.

17. MathWorks (2013). MATLAB 2013b, The MathWorks, Inc., Natick, MA.
18. Oppenheim, A.V., R.W. Schafer, and J.R. Buck (1999). Discrete-Time Signal Process-

ing, 2nd ed., Prentice Hall, New Jersey.
19. Palma, W. (2007). Long-Memory Time Series: Theory and Methods, John Wiley and

Sons, New Jersey.
20. R Core Team (2013). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. URL:http://www.R-project.
org.

21. Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fraction-
ally integrated time series models. Journal of Econometrics 53, 165–188.

22. Stockham, T.G. (1966). High-speed convolution and correlation. Proceedings of the
Spring Joint Computer Conference 28, 229–233.

23. Zygmund, A. (2003). Trigonometric Series, vol. I and II, 3rd rev. ed., Cambridge Uni-
versity Press, Cambridge, England.

