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Abstract

This paper applies Canova JAE 1994 methodology to perform a thorough sensitivity analysis

for the Aiyagari QJE 1994 economy. This is a calibrated GE model with incomplete markets

and uninsurable income risk, designed to quantify the size of precautionary savings and the

degree of wealth inequality. The results of this global robustness analysis are broadly consistent

with Aiyagari’s findings. Even when considering priors for the parameters uncertainty which

are highly dispersed, the size of the precautionary savings is modest: at most, they account for

an 11% increase in the saving rate. However, the results show that the parameter representing

the exogenous borrowing limit seems to lead to relatively large changes in measures of wealth

inequality. The Gini index increases by 15 points when considering values of the borrowing limits

that lead to empirically plausible shares of households with a negative net worth. The parameters

that quantitatively have the largest effects on determining the wealth Gini index are the capital

share, the borrowing limit, and the depreciation rate. The parameters affecting most significantly

precautionary savings are the risk aversion and the standard deviation of the income shocks.
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1 Introduction

What is the size of precautionary savings? What accounts for the degree of wealth inequality observed

in the data? These questions are hard to address relying solely on data regarding income, asset levels

and consumption. A quantitative theory is a useful approach to understanding how uncertainty and

limited insurance opportunities affect aggregate savings and the shape of the wealth distribution.

Several contributions after the seminal paper by Aiyagari (1994) have tried to measure the size

of precautionary savings, typically finding that it is small and that the standard incomplete markets

model cannot account for the high degree of wealth concentration found in the data.1

A possible source of criticism on the results obtained in this literature is the limited scope of the

robustness checks that are usually carried out in quantitative macroeconomics analyses. In order to

tackle these kind of objections, this paper applies Canova (1994) methodology to perform a thorough

sensitivity analysis for the Aiyagari (1994) economy and makes two contributions. On the one hand

it confirms Aiyagari (1994) findings, which suggest that the size of precautionary savings is small and

that uninsurable income risk is not enough to explain wealth inequality. On the other hand it shows

that with today’s computational power, global sensitivity analysis of the type proposed by Canova

(1994) in the simple Real Business Cycle framework are also feasible for richer Heterogenous-Agent

(HA) economies.

This type of exercise is important for two reasons.

First, there is often no natural empirical counterpart to the model’s parameters, hence some

relevant calibration targets (e.g. the capital/output ratio, or the labor share) have to be chosen for

the model to match. In the absence of aggregate uncertainty, the researcher is confronted with two

possible choices. The first one focuses the attention on a single year, making the measurements for

all variables consistent with the steady-state of the model, whereas the second choice takes long-run

averages of the statistics of interest instead. Moreover, selecting the moments relevant for the analysis

together with their weighting matrix can be a delicate step. Either way, sampling variability and

parameter uncertainty for the parameters that are taken from related empirical studies (such as the

ones characterizing the exogenous stochastic processes for labor income, or the degree of risk aversion)

can cast doubts on how general the quantitative findings are.

Second, a carefully executed global robustness analysis can deliver bounds and distributions for

the measurement of the economic outcomes under study, showing how likely these outcomes are. A

more widespread implementation of this methodology can give the calibration approach to empirical

research sounder evidence for its findings.

1See, for example, the surveys by Cagetti and De Nardi (2008), Heathcote, Storesletten and Violante (2009) and

Quadrini and Rios-Rull (1997).
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The results of our global robustness analysis are consistent with Aiyagari’s findings. Even when

considering priors for the parameter uncertainty which are very different from each other (Uniform Vs.

Symmetric and Asymmetric Beta distributions) and highly dispersed, the size of the precautionary

savings is modest and the degree of wealth concentration falls short of the empirical observations.

However, the results show that the parameter representing the exogenous borrowing limit seems to lead

to relatively large changes in measures of wealth inequality. The (median) wealth Gini index increases

by more than 10 points when considering values of the borrowing limits that lead to empirically

plausible shares of households with a negative net worth, moving from 0.45 to up to 0.61. This

number, however, is still well below its empirical counterpart of 0.8, as found for the U.S. by Budria

Rodriguez, Diaz-Gimenez, Quadrini, and Rios-Rull (2002).

Finally, the simulated data make it possible to study which parameters affect the outcomes most

significantly. As for the wealth Gini index, the parameters that quantitatively have the largest effects

are the capital share, the borrowing limit, and the depreciation rate. As for the precautionary savings,

the parameters affecting them the most are the risk aversion and the standard deviation of the income

shocks.

The rest of the paper is organized as follows. Section 2 presents the theoretical model. Section

3 is devoted to the description of the Monte Carlo experiments. Section 4 presents the main results,

while Section 5 concludes. A series of appendices provide more details on the methodology together

with some additional results.

2 The Aiyagari (1994) HA Economy

This is a GE model with incomplete markets and uninsurable income risk, designed to quantify the

size of precautionary savings and the degree of wealth inequality.2 Time is discrete. The economy is

populated by a measure one of infinitely lived ex-ante identical agents.

2.1 Preferences

Agents’ preferences are assumed to be represented by a time separable utility function U(.). Agents’

utility is defined over stochastic consumption sequences {ct}
∞
t=0: their aim is to choose how much to

consume (ct), and how much to save in an interest bearing asset (at+1) in each period of their lives,

2 In the interest of space, just a sketch of the model is presented. For more details see Appendix A, Aiyagari (1994)

and Rios-Rull (1999).

3



in order to maximize their objective function. The agents’ problem can be defined as:

max
{ct,at+1}∞t=0

E0U(c0, c1, ...) = max
{ct,at+1}∞t=0

E0

∞∑

t=0

βtu(ct)

where E0 represents the expectation operator over the stochastic efficiency units of labor εt. β ∈ (0, 1)

is the subjective discount factor. We assume that u (ct) =
c1−σ
t

−1
1−σ : the per period utility function is

strictly increasing, strictly concave, satisfies the Inada conditions, and has a CRRA= σ.

2.2 Endowments

Agents are all born with the same asset endowment a0. There is a stochastic process for the effective

units of labor ε a worker is going to supply in the labor market. This process is assumed to be an

exogenous continuous first order Markov process, specified as an AR(1): εt+1 = ρyεt + ηt+1, ηt ∼

iid N(0, σ2y).

2.3 Production

The production side of the model is represented by a constant returns to scale technology of the

Cobb-Douglas form, which relies on aggregate capital Kt and labor Lt to produce the final output

Yt. Yt = F (Kt, Lt) = Kα
t L

1−α
t . The labor input Lt is the sum of the workers’ efficiency units

Lt =

∫
εtdµt (ε), where µt (ε) is the distribution over the labor endowments implied by the markov

process.

2.4 Other market arrangements

All markets are competitive. Capital is supplied by rental firms that borrow from workers at the

risk-free rate r and invest in physical capital, which depreciates at rate δ.

There are no state-contingent markets to insure against income risk, but workers can self-insure

by saving into the risk-free asset. The agents also face a borrowing limit, denoted as b ≥ 0.

3 Aiyagari QJE 94 meet Canova JAE 94

Can we complement standard calibration methods by undertaking more robust (i.e. global) sensitivity

analysis in equilibrium HA models? The answer is yes.

This paper applies the methodology proposed by Canova (1994) in order to parametrize the model

economy.
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[Table 1 about here]

Table 1 provides a list of the parameters in the Aiyagari (1994) economy, together with their upper

and lower values that are going to be used in the simulations. The economy under study has seven

independent parameters: α, β, δ, σ, ρy, σy, and b. Canova (1994) provided a very simple procedure

to implement global robustness checks for fully parametrized quantitative macroeconomic models,

which has not been fully exploited by the applied general equilibrium calibration community. The

essential feature of Canova’s approach is to acknowledge parameter uncertainty. This uncertainty

can come from uncertainty on the moments to be matched, or from the intrinsic uncertainty of the

estimation studies whose results are used to pin down exogenously some parameters. Rather than

computing the quantitative implications of a theory for a unique set of calibrated parameters, the

methodology assumes prior distributions for them, and solves repeatedly the model for many, many

different calibrations obtained by drawing each parameter vector from the prior distributions.

Notice that this type of exercise is not meant to be a substitute for more traditional calibration

studies. Once a quantitative theory is proposed and a set of empirically relevant values for the

parameters are available, one can provide more robust evidence on the original quantitative findings,

possibly suggesting in which cases and, more importantly, for which economic channels some results

are more likely to be observed.

3.1 Monte Carlo Calibration as a Global Sensitivity Analysis

The calibration procedure consists of performing a series of Monte Carlo experiments, which rely on

two steps.

In the first step, the prior distributions from which the parameters are going to be drawn are

postulated. In the second step 2,500 economies are simulated and solved. These economies differ

only in the parameters’ vector that is drawn at each iteration m. For every economy, two equilibria

are computed: the equilibrium of the incomplete markets economy (IM) and the equilibrium of the

corresponding complete markets one (CM). Notice that the computation of the equilibrium in the IM

economy requires an iterative procedure on the interest rate until the asset market clearing is achieved,

while the equilibrium in the CM economy is easily found by exploiting the condition 1 = (1 + r) βm.

In the CM economy the equilibrium interest rate is pinned down by the discount factor, hence it will

depend on the actual realization of this parameter in each Monte Carlo replication: every iteration m

will deal with a different βm, hence it will involve a different equilibrium interest rate rm = 1
βm

− 1,

and different allocations. Substituting the equilibrium rm into the firms’ first order conditions gets
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the aggregate capital in the CM economy for each simulated combination of parameters (which in

turn is going to be affected by the draws of αm and δm, that determine the marginal productivity and

the user cost of capital, and by the draws of ρmy and σmy , that determine the total labor input L
m).

Finally, the size of precautionary savings is quantified as the difference between the aggregate

savings in the IM economy and the aggregate savings in the CM one.

These experiments are repeated several times: with different prior distributions for the parame-

ters, and, as an additional robustness check, with different assumptions on the degree of market

incompleteness (i.e. how tight the borrowing constraint is).3

[Table 2 about here]

Table 2 reports the list of prior distributions that are going to be used. More in detail, independent

Uniform and Beta priors are specified.

The choice settled on these specific distributions for two reasons: 1) with the priors centered

around the typical calibration values, it is possible to assess if there is a tendency for the model to

"compress" the outcomes around a set of results; 2) by comparing the results of the Uniform and

Beta calibrations, it is possible to appreciate the effect of relying on symmetric vs. asymmetric priors,

which, at the same time, differ in their dispersion.

The first set of experiments, denoted by U1-U4, assume that all parameters are uniformly dis-

tributed. The average of such distributions corresponds to the values that are used in the typical

calibrations of these models: αavg = 0.35, βavg = 0.96, δavg = 0.075, σavg = 2, ρavgy = 0.9 and

σavgy = 0.145.4 These values are chosen to match some macroeconomic facts and to be consistent with

the available empirical evidence. The first three parameters match the capital share of income, the

capital/output ratio, and the investment/output ratio, while the remaining three are borrowed from

related applied studies.5 In order to check if the findings are robust to relatively large changes in the

parameters, and if they are well behaved with respect to them, the parameters’ bounds are chosen to

allow for a wide range of possible calibrations. At the same time, an attempt is made to prevent the

3 In order to minimize the effect of sampling variability, for the same values of ρmy and σmy , all simulations share

the same sequence of income shocks. The solution algorithm, some computational aspects and simulation details are

explained in Appendices B and C.
4The length of the model period is set to one year. Appendix E reports the results for another specification, with

ρy = 0.5. The results related to the precautionary savings are very similar, while the ones related to inequality are

slightly different. However, the empirical studies on income risk tend to provide evidence dismissing values for the

persistence parameter below 0.8.
5See, among others, Attanasio, Banks, Meghir, and Weber (1999), Guvenen (2009) and the papers cited therein.
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model to grossly miss some quantitative implications. This would happen in several replications, if

the parameters’ ranges were to be too wide.

The four uniform experiments differ in only one aspect, which is related to the borrowing constraint

b. The case U1 is going to assume for the Monte Carlo simulations that agents cannot borrow, namely

an economy for which the parameter b is fixed at its most stringent value, b = 0. This is the case that

is most often considered in the literature, including Aiyagari (1994). The other three Uniform prior

cases, U2-U4, relax this aspect, allowing for borrowing constraints that vary from one experiment to

the other (while keeping the sequence of realizations for all the remaining parameters the same in all

replications). These additional cases rely on a uniform prior, whose upper bound is the no borrowing

case (i.e. b = 0), while the lower bound is less and less stringent, being equal to b = −1.0,−2.0,−2.5.

These three values were chosen because they imply agents with a negative net worth on average equal

to 8%, 11% and 15%, respectively. The first and last values are consistent with the data reported in

Cagetti and De Nardi (2008) and Wolff (1998).

Table 2 reports the second set of prior distributions as well. In these experiments, denoted by

B1-B7, more flexibility is allowed for. It is assumed that all the parameters are distributed according

to a Beta distribution. This distribution has four parameters: two shape parameters together with

two location parameters. The location parameters allow to define the support of the distribution in an

interval different from the [0, 1] one, and are kept constant across all experiments. For comparability

with the Uniform cases, these coincide with the upper and lower bounds reported in the last two

columns of Table 1. Notice that we kept exactly the same bounds for all parameters as in the uniform

case that was matching the average share of households in debt across simulations found by Wolff

(1998), that is case U4, with b = −2.5. As for the other two (shape) parameters that are needed

to fully characterize the Beta distribution, two different set-ups are considered. Four cases, B1-B4,

rely on the priors Beta(2, 2), Beta(10, 10), Beta(5, 2), Beta(2, 5) for all the parameters. The first two

specifications deal with a Beta distribution which is symmetric around its mean, because the two shape

parameters are equal. The pair (10, 10) implies a distribution which is substantially more concentrated

around its mean, when compared to the (2, 2) one. The other two cases deal with asymmetric priors.

The Beta(5, 2) is a left skewed distribution, while the Beta(2, 5) is a right skewed one. Figure (1)

shows the shape of the four Beta priors over the [0, 1] interval.

[Figure (1) about here]

The last three cases, B5-B7, introduce an empirically motivated mix of Beta priors. All parameters,

but ρy and σy, rely on the Beta(10, 10) prior, i.e. the most concentrated case. As it will be discussed
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below, this assumption was found to minimize the number of implausible quantitative implications

of the model. However, for the two parameters describing the earnings process, we rely on eitehr a

Beta(5, 2) or aBeta(10, 10) prior. The reason is simple: the bulk of the available econometric evidence,

discussed for example in Guvenen (2009), tends to find highly persistent processes, with many studies

estimating ρy > 0.95. However, depending on the specification of the transitory component of the

income shocks and whether income profile heterogeneity is included as well in the econometric model,

this estimate can be as low as 0.8. These results suggest what is a reasonable range for the earnings

persistence parameter, and that one should try to analize several priors that give different importance

to some subset of the parameter’s support. Similar comments apply to the standard deviation of the

innovation σy.

4 Results

This Section presents the main results. First we show how allowing for very flexible calibrations does

not alter considerably typical measures of precautionary savings. Second we discuss how measures of

wealth inequality behave in this global robustness exercise.

[Table 3 about here]

Table 3 reports a set of statistics for the two outcomes that are the focus of our analysis. The

minimum, maximum, mean, median and standard deviation are listed for all priors.

Moreover, in order to provide a more intuitive summary of such a rich analysis, several figures are

included. All figures show eleven panels. Each panel represents the non-parametric kernel density

estimate of a variable for a particular prior. The first four panels deal with the Uniform experiments,

while the remaining seven deal with the Beta ones.

[Figures (2), (3) and (4) about here]

4.1 Precautionary Savings

Figure (2) displays a measure of precautionary savings, the percentage increase in the aggregate saving

rate of the IM economy compared to the CM one. The results are striking. When considering a set

of eleven Monte Carlo calibrations of size 2,500, each coming from a different prior, the percentage
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increase in the aggregate saving rate is always modest. There are virtually no cases in which the

increase is as high as 6%, with the bulk of the replications being included in the 0.5%− 3% increase

range.

In Table 3 we see that the maximum increase in the saving rate is 11%, which is, not surprisingly,

found in experiment U1 (the no borrowing case), while the minimum increase is always very close to

zero. The median increase is less than a percentage point in eight out of the eleven priors. According

to this quantitative theory, precautionary savings are small indeed.

These results could be potentially driven by an odd behavior of the saving rate, or by the model

failing to account for some other features of the data related to the saving behavior, such as the

capital/output ratio. As figures (3) and (4) display, generally this is not the case. The saving rate

falls in reasonable ranges, as the capital/output ratio does. There are indeed some replications that

imply values that are grossly over or understated, just like the extreme cases in panels 1 to 4, namely

the Uniform priors. In order to tackle this potential issue, we provide some additional robustness

checks below. However, when focusing on the Beta cases, on B2 in particular (which has the least

counterfactual quantitative implications), we see that precautionary savings are highly concentrated

around the 1% value.6

Interestingly, relaxing the borrowing constraint does not have any major impact on precautionary

savings. This is shown in the first four panels of figure (2). Even when agents can borrow a substantial

amount of resources (up to three times their average income, as displayed in figure 7), allowing them

to better smooth consumption, this does not affect much precautionary savings: they do decrease,

but not spectacularly so. At the same time, we can appreciate the effect of a highly left skewed prior:

for the Beta(2, 5) case reported in panel B4 precautionary savings become a fraction of 1%. Income

shocks that are not very persistent and with a very low variance, together with relatively impatient

and not very risk averse individuals, explain the result.

[Figures (5), (6), and (7) about here]

6This very set of comments apply when we consider another measure of precautionary savings, the percentage increase

in the economy‘s capital stock when moving from the CM economy to the IM one. See figures (15) and (16) in Appendix

D.
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4.2 Inequality and Exogenous Borrowing Constraints

It has generally been found that the Aiyagari (1994) model (and many of its variants) cannot generate

high levels of wealth inequality, as described by the Gini index.7 This result is confirmed by our global

sensitivity analysis, with some caveats.

As for our model economy, figure (5) shows that wealth tends to be more concentrated than in the

calibrations reported by Aiyagari (1994). The first panel shows that, without access to borrowing, the

Gini index does not vary much from its average value of 0.45, a value above the calibrations provided

by Aiyagari (1994). In Table 3 we see that for the U1 case the minimum is 0.24, the maximum is

0.55, and the s.d. is 0.03.

However, Aiyagari (1994) did not provide any robustness checks related to the borrowing limit.

Panels 1 to 4 in figure (5) present such an analysis. They consider the equilibrium effects of relying

on a less strict exogenous borrowing constraint. When moving from the no borrowing case to a case

where people can borrow, we can appreciate a first order effect on the Gini index. The average of the

index increases, together with its dispersion, being equal to 0.56 in case U4. The minimum is now

0.25, the maximum is 0.88, and the s.d. is 0.09.

Related to this, there is an important caveat. When allowing for negative assets, the Gini coefficient

need not be between zero and one. In order to deal with a variable that can take negative values

while giving a well-behaved Gini index which is comparable to non-negative variables, we apply the

adjustment proposed by Chen, Tsaur and Rhai (1982). Without correcting the index this way, the

same panels would show an unpleasant feature: for some economies the Gini index would be above

one.8

Overall, the median wealth Gini index now ranges from 0.49 to 0.64, depending on the prior being

considered. The first order effect of relaxing the borrowing constraint notwithstanding, these figures

are still far below from what is observed in the data, approximately 0.8. Hence, apart from a handful

of calibrations in experiments U3, U4, B1 and B4, the model cannot match the observed degree of

wealth inequality in the U.S.

Figure (6) reports the percentage of households that have a negative net worth. As discussed

above, the average (and median) values are consistent with what is observed in the data. Finally, the

amount of resources that can be borrowed compared to the average income appear to be plausible

numbers, as the graphs in figure (7) show.

7We do not comment the results on another inequality measure, the coefficient of variation. The estimated densities

had the very same shape as the ones for the corresponding Gini index. See figures (18), (19) and (20) in Appendix D.
8See figure (25) in Appendix E, which considers a similar graph without implementing the adjustment for an alter-

native case.
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4.3 (Global) Comparative Dynamics

With the results of the simulations in our hands, we can perform a surrogate of comparative dynamics

analysis. Rather than taking the analytical derivative of our outcomes with respect to a parameter,

we can run a regression, with either precautionary savings or the Gini index on the left hand side,

and the corresponding simulated parameters on the right hand side.9

[Table 4 about here]

Table 4 shows the standardized beta coefficients of such regressions. It is interesting to notice

that the same parameter has different effects on the two outcome variables. As for the wealth Gini

index, the parameters that quantitatively have the largest impact on this inequality measure are the

capital share α, the borrowing limit b, and the depreciation rate δ. The intuition goes as follows.

The higher α, the higher the marginal product of capital and the higher the interest rate. This

price change induces an income effect, which is going to kick in more likely for wealthier agents,

hence the reduction in inequality. The depreciation rate has a similar, but opposite, mechanism.

The intuition for the borrowing limit is simple: the less resources people can borrow, the higher the

precautionary savings and (possibly) the lower the range of wealth. This reduces the degree of wealth

concentration. Although their effect is quantitatively less important, a higher discount factor β and a

higher risk aversion σ tend to compress inequality, by inducing all agents to save more. Surprisingly,

the parameters driving the uncertainty in the economy, ρy and σy, have a relatively low impact on

the Gini index.

As for precautionary savings, the parameters that affect them the most are the relative risk aversion

σ and the s.d. of the income shocks σy.10

9This is a well posed exercise, because the parameters are changing randomly across replications. As a result, the

source of variation is exogenous. However, when drawing the parameters, the independence of the distributions is not

imposed, hence some spurious correlation is detected in our artificial dataset. We ran a 2SLS estimation procedure as

well, and the results changed very little. All regressions include a constant term, not reported in the table.
10A non-linear relationship is found for most parameters. The square of the parameters is significant in almost every

experiment, while including them as additional regressors increases only marginally the explanatory power (usually

by less than a percentage point). The point estimates of the square terms are positive only for α and σ in the Gini

regressions, and for α, σ, σy and b in most of the precautionary savings ones. Higher order polynomials, as usual,

introduce multicollinearity for most specifications.
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4.4 Robustness2

This subsection considers a robustness check for our global robustness analysis. With some abuse of

language, it could be said that we are going to perform robustness squared.

A possible source of criticism can come from the relatively naive way in which parameter vectors are

selected, and their potentially counterfactual quantitative implications. Unfortunately, before solving

the model it is very complicated to guess which replications are going to "fail" in some economic

dimension. Restricting ex-ante the parameters’ space and the set of plausible priors is somewhat

challenging.

However, in order to tackle this conceivable issue, the simulations can be restricted ex-post. Af-

ter having solved the model for 2,500 times relying on a specific prior, the simulations that imply

implausible values for some simulated moments are dropped.

More precisely, the following restrictions on the capital/output ratio, the saving rate, and the

percentage of people in debt are imposed: 1) 1.5 ≤ KIM

Y IM ≤ 3.5, 2) 0.125 ≤ δKIM

Y IM = SIM

Y IM ≤ 0.275,

and 3) 0.05 ≤ %NNW ≤ 0.2. Only the simulations that satisfy all three criteria at the same time

are kept. This means that we are discarding between 595 replications for the case B2 and 2,066

replications for the case B3. It goes without saying that the benchmark case U1 does not satisfy the

third requirement.

[Table 5 about here]

Table 5 displays the new ranges of the parameters once the restrictions are implemented. With the

uniform priors, most parameters’ bounds are not affected. The changes tend to be small, and affect

mostly α, b and b. Differently, with the Beta experiments, most parameters’ bounds do change. Some

changes are relatively minor. For example, β is not affected much, its most stringent value now being

0.946 for case B3. Others are larger. For example σ becomes 2.965 for case B4, σ becomes 1.162 for

case B3, ρy becomes 0.957 for case B2, and σy becomes 0.190 for case B4.

Figures (8), (9) and (10) display the new distributions of the three moments that are now subject

to the restrictions above.

[Figures (8), (9), (10), (11) and (12) about here]

Estimating the densities only on the cases that meet the above criteria delivers figures (11) and

(12). From the graphs we can conclude that the results presented in the previous sections are not

altered substantially by these additional requirements.

12



Since precautionary savings were already found to be consistently small, table 3 shows the results

for the restricted cases only for wealth inequality. These are reported in parenthesis in the first 5

columns. As expected, the extreme values are eliminated by the restrictions: the minima increase

by up to 19 points and the maxima decrease by up to 23 points. As a consequence, it is possible to

conclude that all the replications that were found to get close to the data were failing in some of the

three moments above. Finally, the median values of the wealth Gini index now range from 0.52 to

0.57.

4.5 Discussion

At least four aspects of the analysis call for further discussion.

It goes without saying that also this empirical methodology is not free of potential issues. On the

one hand, the priors’ choice is somewhat arbitrary: there are no clear indications on how to specify

these distributions. This aspect of the procedure can only be problem-dependent. Hence, in general,

it is not possible to assess how much the results are going to be contingent on the specific priors that

are being used. However, this obstacle can be partially overcome by considering several different cases,

with relatively flexible and general specifications. At the same time, the priors should try to minimize

the number of replications that entail implausible quantitative implications along some dimension.

Finally, relevant empirical studies should be used as an additional guide in this choice. This is the

approach attempted in this paper.

Another complication is the computational burden. The computational time that is needed to com-

plete the procedure can become easily intractable, even with powerful computers. Unless a researcher

has access to a supercomputer, the computational costs are still high: on a moderately fast desktop

computer it takes approximately a week of continuous computer time to complete an experiment.11

Hence, the solution method must strike a balance between the computational complexity, the implied

numerical errors and its reliability. The last point seems to be quite important for non-linear models,

such as the one we are considering here. The solution method has to guarantee that convergence

problems are not going to riddle too many replications, especially for non-random subsets of the pa-

rameters. Otherwise, this could potentially bias the results. However, once a robust solution method

is available, the extension for the Monte Carlo calibration methodology is extremely simple: it boils

down to an additional outer loop where a vector of random parameters is drawn at each replication.

11 Incidentally, this consideration made it unfeasible to rely on 10, 000 replications, as in Canova’s original contribution.

However, for the HA economy under study, when considering only the first 1, 000− 1, 500 cases the results were very

similar to the ones of the full experiment, suggesting that the number of replications is large enough.
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A natural question that arises is whether this method can be applied to models that are currently

used in the quantitative macroeconomics field. The most recent contributions proposing HA models

allow for several different sources of uncertainty and several layers of heterogeneity. It goes without

saying that the more complex the model, the less likely the feasibility and the computational success

of Canova’s methodology. However, recent developments in numerical methods for economics can

prove useful. The relatively simple and powerful endogenous grid method can cut the computational

time substantially, as found by Barillas and Fernandez-Villaverde (2007) and Carroll (2006). The

same objective can be achieved by more efficient simulation methods, as proposed by Nishimura and

Stachurski (2010). Trivially, a supercomputer with (say) 256 nodes would make the computational

burden tractable for several richer models. However, this does not seem to be a reasonable require-

ment. Resource constraints and the added complexity of parallel computing in large clusters make

this option not viable for many quantitative macroeconomists. A more plausible option for sizeable

computational gains could come from GPU computing, as recently discussed in Aldrich, Fernandez-

Villaverde, Gallant, and Rubio-Ramirez (2011), but this opportunity is yet to be carefully explored.

Finally, unlike fully Bayesian methods proposed for example by DeJong, Ingram, and Whiteman

(1996), Canova’s procedure does not allow the model to exploit the information contained in the data,

to achieve a better parameterization while reducing the model’s parameter uncertainty.

5 Conclusions

This paper contributed to the literature on calibration methods for equilibrium HA macroeconomic

models. It showed that global (and more robust) sensitivity analyses are also feasible for such rich

economies. Unless one is willing to rely on supercomputers, the computational costs are still high: on

a moderately fast desktop computer it takes approximately a week of continuous computer time to

complete an experiment. However, once a robust solution method is available, the extension for the

simulation methodology is extremely simple: it boils down to an additional outer loop where a vector

of random parameters is drawn.

It is worth stressing that this type of exercise is meant to complement more traditional calibration

studies (or sophisticated structural estimation ones), not to substitute them. Once a quantitative

theory is proposed and a set of empirically relevant values for the parameters are available, one can

provide more robust evidence on the original quantitative findings, possibly suggesting in which cases

some outcomes are more likely to be observed.

The results of our experiments confirm Aiyagari’s findings: precautionary savings are small indeed,

even when considering priors for the parameter uncertainty that are very different and sometimes
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highly dispersed. Morever, the results show that the exogenous borrowing limit leads to relatively

large changes in the wealth Gini index. However, even with increases in the median of the index of

up to 15 points, the model is still very far from accounting for the one observed in the U.S. economy.

The findings are confirmed even when restricting the calibrations to satisfy some relevant features

of the available macroeconomic data.

The parameters that quantitatively have the largest effects on determining the wealth Gini in-

dex are the capital share, the borrowing limit, and the depreciation rate. The parameters affecting

precautionary savings the most are the risk aversion and the standard deviation of the income shocks.

A similar methodology can be implemented for other HA models, quantifying for example the

welfare effects of eliminating the social security system or the ones arising from changing the tax

code. A positive aspect of this analysis is that, when applied to the evaluation of policy reforms, it

provides distributions and ranges of welfare effects, an approach to empirical research pushed forward

by Manski (1995), among others. We leave these extensions and modifications for future work.
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Parameter Description Min Max

Model Period Yearly

α Capital share α = 0.25 α = 0.45

β Rate of time preference β = 0.94 β = 0.98

δ Capital depreciation rate δ = 0.03 δ = 0.12

σ CRRA σ = 0.5 σ = 3.5

ρy Persistence of the AR(1) earnings process ρy = {0.5, 0.8} ρy = 0.99

σy S.d. of the innovation in the AR(1) earnings process σy = 0.04 σy = 0.25

b Borrowing limit b = {0,−1,−2,−2.5} b = 0

Table 1: Model parameters and their support
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Experiment 1 (U1 ) Experiment 2 (U2 ) Experiment 3 (U3 ) Experiment 4 (U4 )

U
(
p, p
)
; b = b = 0 U

(
p, p
)
; b = −1.0 U

(
p, p
)
; b = −2.0 U

(
p, p
)
; b = −2.5

Experiment 5 (B1 ) Experiment 6 (B2 ) Experiment 7 (B3 ) Experiment 8 (B4 )

Beta(2, 2; p, p) Beta(10, 10; p, p) Beta(5, 2; p, p) Beta(2, 5; p, p)

Experiment 9 (B5 ) Experiment 10 (B6 ) Experiment 11 (B7 )

Beta(10, 10; p, p) Beta(10, 10; p, p) Beta(10, 10; p, p)

Beta(10, 10; ρy, ρy) Beta(5, 2; ρy, ρy) Beta(5, 2; ρy, ρy)

Beta(5, 2;σy, σy) Beta(10, 10;σy, σy) Beta(5, 2;σy, σy)

Table 2: Experiments - Uniform and Beta Prior Distributions over a generic parameter p
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Wealth Gini Prec. Savings: %Change

Min Max Mean Median S.d. Min Max Mean Median S.d.

U1 .24 .55 .45 .45 .03 .001 11.0 1.3 .8 .01

U2 .25 (.41) .76 (.61) .50 (.52) .49 (.52) .06 (.04) .001 10.7 1.1 .7 .01

U3 .25 (.44) .85 (.61) .54 (.53) .53 (.53) .09 (.04) .001 10.7 1.1 .7 .01

U4 .25 (.42) .88 (.61) .56 (.54) .54 (.54) .09 (.04) .001 10.7 1.1 .6 .01

B1 .36 (.44) .82 (.61) .56 (.54) .55 (.54) .07 (.04) .001 6.8 1.0 .8 .01

B2 .46 (.49) .71 (.61) .56 (.56) .56 (.56) .03 (.02) .001 2.9 .9 .9 .01

B3 .39 (.46) .72 (.60) .51 (.53) .50 (.52) .04 (.03) .001 5.3 1.5 1.4 .01

B4 .43 (.47) .84 (.61) .61 (.56) .61 (.57) .06 (.03) .001 3.2 .4 .3 .01

B5 .46 (.47) .72 (.61) .57 (.56) .57 (.56) .04 (.02) .001 4.2 1.7 1.6 .01

B6 .48 (.49) .69 (.61) .57 (.56) .57 (.56) .03 (.02) .001 2.5 .7 .7 .01

B7 .47 (.48) .71 (.60) .57 (.56) .57 (.57) .04 (.02) .001 4.3 1.3 1.2 .01

Table 3: Monte Carlo Results - Wealth Gini (Restricted cases in parenthesis) and Precautionary

Savings
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U1 U2 U3 U4 B1 B2 B3 B4 B5 B6 B7

Wealth Gini

α −0.54 −0.59 −0.58 −0.57 −0.57 −0.60 −0.49 −0.60 −0.58 −0.60 −0.59

β −0.21 −0.20 −0.17 −0.16 −0.16 −0.16 −0.15 −0.18 −0.17 −0.14 −0.14

δ 0.48 0.51 0.49 0.49 0.50 0.52 0.42 0.54 0.50 0.52 0.51

σ −0.31 −0.20 −0.15 −0.14 −0.13 −0.15 −0.15 −0.13 −0.17 −0.13 −0.15

ρy 0.34 0.13 0.06 0.04 0.07 0.12 0.19 0.01 0.11 0.07 0.08

σy 0.30 0.22 0.19 0.18 0.15 0.12 0.06 0.27 0.14 0.15 0.15

b − −0.43 −0.54 −0.56 −0.55 −0.56 −0.68 −0.42 −0.55 −0.53 −0.53

R2 0.83 0.90 0.91 0.92 0.94 0.98 0.94 0.97 0.99 0.97 0.97

Prec. Savings

α −0.16 −0.13 −0.11 −0.10 −0.09 −0.09 −0.10 −0.07 −0.08 −0.08 −0.05

β −0.15 −0.14 −0.14 −0.14 −0.12 −0.13 −0.18 −0.07 −0.11 −0.09 −0.08

δ 0.01 −0.02 −0.04 −0.05 −0.05 −0.07 −0.04 −0.04 −0.06 −0.06 −0.06

σ 0.48 0.49 0.50 0.50 0.49 0.54 0.45 0.50 0.52 0.44 0.42

ρy −0.21 −0.21 −0.20 −0.20 −0.15 −0.13 −0.48 −0.01 −0.13 −0.51 −0.50

σy 0.65 0.65 0.64 0.64 0.73 0.79 0.63 0.79 0.79 0.65 0.66

b − 0.06 0.10 0.11 0.09 0.10 0.10 0.06 0.10 0.07 0.07

R2 0.74 0.74 0.74 0.74 0.83 0.95 0.88 0.86 0.95 0.88 0.89

Table 4: Comparative Dynamics - Linear Regressions, Standardized Beta Coefficients
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Parameter U2 U3 U4 B1 B2 B3 B4 B5 B6 B7

α 0.445 0.445 0.445 0.441 0.408 0.417 0.407 0.408 0.408 0.408

α 0.250 0.250 0.250 0.260 0.287 0.280 0.254 0.291 0.287 0.287

β 0.980 0.980 0.979 0.979 0.973 0.979 0.969 0.972 0.973 0.971

β 0.940 0.940 0.940 0.941 0.946 0.946 0.940 0.946 0.946 0.946

δ 0.120 0.120 0.120 0.118 0.106 0.119 0.100 0.106 0.106 0.106

δ 0.039 0.039 0.039 0.038 0.051 0.054 0.037 0.051 0.051 0.051

σ 3.499 3.499 3.499 3.477 2.968 3.478 2.965 2.978 2.968 2.968

σ 0.501 0.501 0.501 0.602 0.992 1.162 0.505 0.992 0.992 0.992

ρy 0.990 0.990 0.990 0.988 0.957 0.989 0.963 0.958 0.989 0.989

ρy 0.800 0.800 0.800 0.801 0.832 0.841 0.800 0.832 0.836 0.836

σy 0.250 0.250 0.250 0.247 0.207 0.248 0.190 0.248 0.204 0.248

σy 0.040 0.040 0.040 0.040 0.078 0.079 0.042 0.080 0.078 0.080

b −0.008 −0.011 −0.014 −0.087 −0.329 −0.044 −0.293 −0.329 −0.329 −0.329

b −1.000 −1.997 −2.496 −2.402 −2.057 −1.603 −2.453 −1.954 −2.041 −2.004

Table 5: Model parameters and their support - Restricted simulations
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Figure 1: Monte Carlo Experiments: Beta(p, q) priors.

21



0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Uniform 1

kernel = epanechnikov, bandwidth = 0.0021

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Uniform 2

kernel = epanechnikov, bandwidth = 0.0019

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Uniform 3

kernel = epanechnikov, bandwidth = 0.0018

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Uniform 4

kernel = epanechnikov, bandwidth = 0.0017

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 1
kernel = epanechnikov, bandwidth = 0.0014

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 2
kernel = epanechnikov, bandwidth = 0.0007

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 3
kernel = epanechnikov, bandwidth = 0.0015

Kernel density estimate

0
1

0
0

2
0

0
D

e
n

s
it
y

0 .03 .06 .09 .12
Saving Rate %inc - Beta 4 - Diff. Scale

kernel = epanechnikov, bandwidth = 0.0005

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 5
kernel = epanechnikov, bandwidth = 0.0013

Kernel density estimate

0
6

0
1

2
0

D
e

n
s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 6
kernel = epanechnikov, bandwidth = 0.0007

Kernel density estimate
0

6
0

1
2

0
D

e
n

s
it
y

0 .03 .06 .09 .12
Saving Rate %increase - Beta 7
kernel = epanechnikov, bandwidth = 0.0012

Kernel density estimate

Figure 2: Precautionary Savings - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 3: Saving Rates - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 4: Capital/Output Ratios (IM) - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 5: Wealth Gini Index - Estimated Densities for the eleven Monte Carlo Experiments

25



0
2

5
5

0
D

e
n

s
it
y

0 .1 .2 .3 .4
%Neg. Net Worth - Uniform 1 - Diff. Scale

kernel = epanechnikov, bandwidth = 0.0017

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Uniform 2

kernel = epanechnikov, bandwidth = 0.0113

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Uniform 3

kernel = epanechnikov, bandwidth = 0.0150

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Uniform 4

kernel = epanechnikov, bandwidth = 0.0162

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 1

kernel = epanechnikov, bandwidth = 0.0128

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 2

kernel = epanechnikov, bandwidth = 0.0063

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 3

kernel = epanechnikov, bandwidth = 0.0085

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 4

kernel = epanechnikov, bandwidth = 0.0103

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 5

kernel = epanechnikov, bandwidth = 0.0064

Kernel density estimate

0
6

1
2

D
e

n
s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 6

kernel = epanechnikov, bandwidth = 0.0063

Kernel density estimate
0

6
1

2
D

e
n

s
it
y

0 .1 .2 .3 .4
%Negative Net Worth - Beta 7

kernel = epanechnikov, bandwidth = 0.0064

Kernel density estimate

Figure 6: % with Negative Net Worth - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 7: Borrowing Limit/Ouput Ratios - Estimated Densities for the eleven Monte Carlo Experi-

ments
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Figure 8: Capital/Output Ratios (IM) - Estimated Densities for the eleven Restricted Monte Carlo

Experiments
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Figure 9: Saving Rates - Estimated Densities for the eleven Restricted Monte Carlo Experiments
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Figure 10: % with Negative Net Worth - Estimated Densities for the eleven Restricted Monte Carlo

Experiments
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Figure 11: Precautionary Savings - Estimated Densities for the eleven Restricted Monte Carlo Exper-

iments
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Figure 12: Wealth Gini Index - Estimated Densities for the eleven Restricted Monte Carlo Experiments
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Appendix A - The Model and its Recursive Representation

6 Stationary Equilibrium

In this Section we first define the problem of the agents in their recursive representation, then we

define the problem of the firm, finally we provide a formal definition of the equilibrium concept used

in this model, the recursive competitive equilibrium.

The individual state variables are the labor endowment ε ∈ E = [0, ε], and asset holdings a ∈ A =

[−b, a]. The stationary distribution is denoted by µ(ε, a).

6.1 Problem of the workers

The value function of an agent whose current asset holdings are equal to a, and whose current labor

endowment is ε is denoted with V (ε, a). The problem of these agents can be represented as follows:

V (ε, a) = max
c,a′

{
u(c) + βEε′|εV (ε

′, a′)
}

(1)

s.t.

c+ a′ = (1 + r) a+wε

ε′ = ρyε+ η′, η ∼ iid N(0, σ2y)

a0 given, c ≥ 0, a′ > −b

Agents have to set optimally their consumption/savings plans. They enjoy utility from consumption,

and face some uncertain events in the future. In the next period they will still have the same risk

aversion parameter, but their labor income can go up or down, depending on the future realizations

of the earnings shock η. Finally, they are subject to an exogenous borrowing constraint, b ≥ 0.

6.2 Problem of the firm

The production side of the model is represented by a constant returns to scale technology of the

Cobb-Douglas form, which relies on aggregate capital K and labor L to produce the final output Y .
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Y = F (K,L) = KαL1−α.

Capital depreciates at the exogenous rate δ and firms hire capital and labor every period from

competitive markets. From the first order conditions of the firm we obtain the expression for the net

real return to capital r and the wage rate per efficiency unit w:

r = α

(
L

K

)1−α
− δ, (2)

w = (1− α)

(
K

L

)α
. (3)

Notice that the marginal productivity of labor is always positive, hence firms will rely on the total

sum of the efficiency units of labor. It follows that in the steady-state:

L =

∫
εdµ (ε)

where µ (ε) is the stationary distribution over the labor endowments implied by the markov process.

6.3 Recursive Stationary Equilibrium

Definition 1 A recursive stationary equilibrium is a set of decision rules
{
c(ε, a), a′(ε, a), k = K

L

}
,

value functions V (ε, a), prices {r, w} and stationary distributions µ(ε, a) such that:

• Given relative prices {r, w}, the individual policy functions {c(ε, a), a′(ε, a)} solve the household

problem (1) and V (ε, a) are the associated value functions.

• Given relative prices {r, w}, k solves the firm’s problem (2)-(3).

• The asset market clears

K =

∫
adµ(ε, a)

• The goods market clears

F (K,L) =

∫
c(ε, a;σ)dµ(ε, a) + δK

• The stationary distributions µ(ε, a) satisfy

µ(ε′, a′) =
∑

ε

∫

a:a′(ε,a)=a′
π (ε′, ε) dµ(ε, a) (4)
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In equilibrium the measure of agents in each state is time invariant and consistent with individual

decisions, as given by the equation (4) above.12

12Notice that the equation already exploits the Markov Chain representation of the continuous process for ε.
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Appendix B - Computation

• All codes solving the economies were written in the FORTRAN 95 language, relying on the Intel

Fortran Compiler, build 11.1.048 (with the IMSL library). They were compiled selecting the

O3 option (maximize speed), and without automatic parallelization. They were run on a 64-bit

PC platform, running Windows 7 Professional Edition, with an Intel Q6600 Quad Core 2.4 Ghz

processor.

• On average, each replication takes 5 minutes. The actual computing time depends essentially

on the discount factor β that was drawn, and on how far the initial guess on the interest rate

is from the equilibrium one (from 1 to 13 iterations on the interest rate are needed to find each

equilibrium). This means that, for any prior distribution, the whole Monte Carlo procedure takes

between 8 and 13 days to complete. However, the Quad Core processor allows to run at least four

cases simultaneously, with a 100% load, but without losing any computational speed. Obviously,

more recent Quad and Hexa Core CPU’s could handle even more simultaneous simulations, that

would be completed in less time.

• In the actual solution of the model we need to discretize the two continuous state variables ε, a.

As for ε, we rely on Tauchen’s method, which approximates the AR(1) process for the efficiency

units with a Markov chain. We use a seven-state approximation: this is a common number

of points, as it strikes a good balance between approximation error and speed. As for a, we

rely on an unevenly spaced grid, with the distance between two consecutive points increasing

geometrically. In order to keep the computational burden manageable, we use 301 grid points

on the asset space, the lowest value being the borrowing constraint and the highest one being

a value amax > a high enough for the saving functions to cut the 45 degree line (amax = 50).

This is done to allow for a high precision of the policy rules at low values of a, that is where the

change in curvature is more pronounced.

• A collocation method is implemented, that is we look for the policy functions such that the

residuals of the Euler equations are (close to) zero at the collocation points (which correspond

to the asset grid). It follows that for all possible combinations of state variables we need to

solve a non linear equation. A time iteration scheme is applied to get the policy functions, i.e.

we compute the first order conditions with respect to a′ and through the envelope condition

we obtain a set of euler equations, whose unknowns are the policy functions, a′(ε, a). We start

from a set of guesses, a′(ε, a)0, and keep on iterating until a fixed point is reached, i.e. until two
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successive iterations satisfy:

Sup
a
|a′(ε, a)n+1 − a′(ε, a)n| < 10−8,∀ε

Between 115 and 1,500 iterations are needed to reach a fixed point.

• The stationary distributions µ(ε, a) are computed by simulating a large sample of 10,000 indi-

viduals for 3,000 periods, which ensure that the statistics of interest are stationary processes,

and that they do not vary substantially when considering more individuals. For more details,

see Rios-Rull (1999). This stage is particularly time consuming (approximately 30 seconds per

iteration on the interest rate). Notice that in order to minimize the effect of sampling variability

affecting our results, we do not rely on the simulation method used by Aiyagari (1994) (the

simulation of only one long history). For each statistic of the simulated sample, we consider

the time average of their cross sectional values for the last 1,000 periods, rather than the value

obtained from one long simulated history. As for the approximation method, we rely on a linear

approximation scheme for the saving and consumption functions, for values of a falling outside

the grid.

• If the numerical procedure fails to converge in some of his steps, the related results are dis-

regarded. This happens when the time iteration procedure gets stuck in a cycle, rather than

converging to the true policy functions.
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Appendix C - Monte Carlo Algorithm

The computational procedure used to solve the Monte Carlo experiments can be represented by

the following algorithm:

1. Draw 2,500 combinations of parameters from their prior distributions and store them.

2. Calibrate the model by reading the first vector of simulated parameters and begin the model

solution.

3. Generate a discrete grid over the asset space [−b, ..., amax] .

4. Generate a discrete grid over the efficiency units space [εmin, ..., εmax] .

5. Get the aggregate labor supply L.

6. Guess on the interest rate r0.

7. Get the capital demand k.

8. Get the wage rate per efficiency units w.

9. Get the saving functions a′(ε, a).

10. Simulate the stationary distributions µ(ε, a).

11. Get the aggregate capital supply.

12. Check asset market clearing; Get r1.

13. Update r′0 = -r0 + (1−-) r1 (with bisection).

14. Iterate until market clearing.

15. Get the consumption functions c′(ε, a).

16. Check final good market clearing.

17. Save the output and repeat from step 2 for all the 2,500 combinations of simulated parameters.
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Appendix D - Additional Figures: Baseline and Restricted Experi-
ments
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Figure 13: Income Gini Index - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 14: Consumption Gini Index - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 15: Precautionary Savings - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 16: Capital/Output Ratios (CM) - Estimated Densities for the eleven Monte Carlo Experiments
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Figure 17: Borrowing Limit/Labor Earnings Ratios - Estimated Densities for the eleven Monte Carlo

Experiments
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Figure 18: Wealth Coefficient of Variation - Estimated Densities for the eleven Monte Carlo Experi-

ments
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Figure 19: Income Coefficient of Variation - Estimated Densities for the eleven Monte Carlo Experi-

ments
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Figure 20: Consumption Coefficient of Variation - Estimated Densities for the eleven Monte Carlo

Experiments
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Figure 21: Borrowing Limit/Ouput Ratios - Estimated Densities for the eleven Restricted Monte

Carlo Experiments
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Appendix E - Additional Figures: ρy = 0.5 Case
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Figure 22: Precautionary Savings - Estimated Densities for the eight Monte Carlo Experiments
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Figure 23: Saving Rates - Estimated Densities for the eight Monte Carlo Experiments
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Figure 24: Capital/Output Ratios (IM) - Estimated Densities for the eight Monte Carlo Experiments
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Figure 25: Wealth Gini Index - Estimated Densities for the eight Monte Carlo Experiments

53



0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Uniform 1

kernel = epanechnikov, bandwidth = 0.0050

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Uniform 2

kernel = epanechnikov, bandwidth = 0.0050

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Uniform 3

kernel = epanechnikov, bandwidth = 0.0052

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Uniform 4

kernel = epanechnikov, bandwidth = 0.0054

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Beta 1

kernel = epanechnikov, bandwidth = 0.0042

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Beta 2

kernel = epanechnikov, bandwidth = 0.0019

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Beta 3

kernel = epanechnikov, bandwidth = 0.0030

Kernel density estimate

0
2

0
4

0
D

e
n

s
it
y

0 .05 .1 .15 .2
Gini Income - Beta 4

kernel = epanechnikov, bandwidth = 0.0032

Kernel density estimate

Figure 26: Income Gini Index - Estimated Densities for the eight Monte Carlo Experiments
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Figure 27: Consumption Gini Index - Estimated Densities for the eight Monte Carlo Experiments
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Figure 28: % with Negative Net Worth - Estimated Densities for the eight Monte Carlo Experiments
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Figure 29: Borrowing Limit/Ouput Ratios - Estimated Densities for the eight Monte Carlo Experi-

ments
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Figure 30: Wealth Coefficient of Variation - Estimated Densities for the eight Monte Carlo Experiments
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Figure 31: Income Coefficient of Variation - Estimated Densities for the eight Monte Carlo Experi-

ments
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Figure 32: Consumption Coefficient of Variation - Estimated Densities for the eight Monte Carlo

Experiments
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