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Abstract

White (1980) marked the beginning of a new era for inference in econometrics. It
introduced the revolutionary idea of inference that is robust to heteroskedasticity of
unknown form, an idea that was very soon extended to other forms of robust inference
and also led to many new estimation methods. This paper discusses the development of
heteroskedasticity-robust inference since 1980. There have been two principal lines of
investigation. One approach has been to modify White’s original estimator to improve
its finite-sample properties, and the other has been to use bootstrap methods. The
relation between these two approaches, and some ways in which they may be combined,
are discussed. Finally, a simulation experiment compares various methods and shows
how far heteroskedasticity-robust inference has come in just over thirty years.
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1. Introduction

White (1980), which appears to be the most cited paper in economics, ushered in a
new era for inference in econometrics. The defining feature of this new era is that
the distributional assumptions needed for asymptotically valid inference are no longer
the same as the ones needed for fully efficient asymptotic inference. The latter still
requires quite strong assumptions about disturbances, but the former generally requires
much weaker assumptions. In particular, for many econometric models, valid inference
is possible in the presence of heteroskedasticity of unknown form, and it is often
possible as well in the presence of various types of unknown dependence, such as
serial correlation and clustered disturbances.

The linear regression model dealt with in White (1980) can be written as

yi = Xiβ + ui, i = 1, . . . , n, (1)

where the 1× k vectors of regressors Xi may be fixed or random, the disturbances ui

are independent but, in general, not identically distributed, with unknown variances
σ2
i that may depend on the Xi, and certain regularity conditions must be imposed on

the pairs (Xi, ui). The paper proved a number of important asymptotic results, of
which the key one is that

V̂n ≡ 1−
n

n∑

i=1

û2

iXi
⊤Xi

a.s.−−→ 1−
n

n∑

i=1

E(u2

iXi
⊤Xi), (2)

where ûi ≡ yi −Xiβ̂ is the ith OLS residual.

In 1980, this was a startling result. The rightmost quantity in (2) is an average of
n matrix expectations, and each of those expectations is unknown and impossible to
estimate consistently. For many decades, despite a few precursors in the statistics
literature such as Eicker (1963, 1967) and Hinkley (1977), econometricians believed
that it is necessary to estimate each expectation separately in order to estimate an
average of expectations consistently. The key contribution of White (1980) was to
show that it is not necessary at all.

The result (2) makes it easy to obtain the asymptotic covariance matrix estimator

(X⊤X/n)−1V̂n(X
⊤X/n)−1, (3)

and it is shown in White (1980) that (3) consistently estimates the asymptotic covar-
iance matrix of

√
n(β̂−β0). As the author remarks in a masterpiece of understatement,

“This result fills a substantial gap in the econometrics literature, and should be useful
in a wide variety of applications.”

The finite-sample covariance matrix estimator that corresponds to (3) is

(X⊤X)−1

( n∑

i=1

û2

iXi
⊤Xi

)
(X⊤X)−1, (4)
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in which the factors of n have been removed. This estimator, which later came to be
known as HC0, was the first heteroskedasticity-consistent covariance matrix estimator,
or HCCME, in econometrics. Estimators that look like (4) are generally referred to as
sandwich covariance matrix estimators.

Although White (1980) uses the notation
∑n

i=1
û2

iXi
⊤Xi to denote the filling of the

sandwich, most discussions of HCCMEs use the notation X⊤Ω̂X instead, where Ω̂

is an n × n diagonal matrix with typical diagonal element û2
i . The latter notation is

certainly more compact, and I will make use of it in the rest of the paper. However, the
more compact notation has two disadvantages. It tends to obscure the fundamental
result (2), and it can lead to very inefficient computer programs if they are written in
a naive way, because it involves an n× n matrix.

The key result that averages of expectations can be estimated consistently even when
individual ones cannot has had profound implications for econometric theory and prac-
tice. It did not take long for econometricians to realize that, if heteroskedasticity-
robust inference is possible, then so must be inference that is robust to both het-
eroskedasticity and autocorrelation of unknown form. Key early papers on what has
come to be known as HAC estimation include Hansen (1982), White and Domowitz
(1984), Newey and West (1987, 1994), Andrews (1991), and Andrews and Mona-
han (1992). New estimation methods, notably the generalized method of moments
(Hansen, 1982) and its many variants and offshoots, which would not have been pos-
sible without HCCMEs and HAC estimators, were rapidly developed following the
publication of White (1980). There were also many important theoretical develop-
ments, including White (1982), the key paper on misspecified models in econometrics.

This paper discusses the progress in heteroskedasticity-robust inference since White
(1980). Section 2 deals with various methods of heteroskedasticity-consistent covar-
iance matrix estimation. Section 3 deals with bootstrap methods both as an alternative
to HCCMEs and as a way of obtaining more reliable inferences based on HCCMEs.
Section 4 briefly discusses robust inference for data that are clustered as well as het-
eroskedastic. Section 5 presents simulation results on the finite-sample properties of
some of the methods discussed in Sections 2 and 3, and Section 6 concludes.

2. Better HCCMEs

The HC0 estimator given in expression (4) is not the only finite-sample covariance
matrix estimator that corresponds to the asymptotic estimator (3). The matrix (4)
depends on squared OLS residuals. Since OLS residuals are on average too small,
it seems very likely that (4) will underestimate the true covariance matrix when the
sample size is not large. The easiest way to improve (4) is to multiply it by n/(n− k),
or, equivalently, to replace the OLS residuals by ones that have been multiplied by√

n/(n− k). This is analogous to dividing the sum of squared residuals by n − k
instead of by n when we estimate the error variance. This estimator was called HC1
in MacKinnon and White (1985).
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MacKinnon and White (1985) also discussed two more interesting procedures. The
first of these, which they called HC2 and was inspired by Horn, Horn, and Duncan
(1975), involves replacing the squared OLS residuals û2

i in (4) by

ù2

i ≡ û2

i /(1− hi),

where hi is the ith diagonal element of the projection matrix PX ≡ X(X⊤X)−1X⊤,
which is sometimes called the hat matrix. Because E(û2

i ) = (1 − hi)σ
2 when the

disturbances are homoskedastic with variance σ2, it is easy to see that HC2 will be
unbiased in that case. In contrast, for HC1 to be unbiased under homoskedasticity,
the experimental design must be balanced, which requires that hi = k/n for all i, a
very special case indeed.

The final procedure discussed in MacKinnon and White (1985) was based on the
jackknife. In principal, the jackknife involves estimating the model n additional times,
each time dropping one observation, and then using the variation among the delete-1
estimates that result to estimate the covariance matrix of the original estimate. For
the model (1), this procedure was shown to yield the (finite-sample) estimator

n− 1

n
(X⊤X)−1

( n∑

i=1

ú2

iXi
⊤Xi −

1−
n
X⊤úú⊤X

)
(X⊤X)−1, (5)

where the vector ú has typical element

úi = ûi/(1− hi).

Notice that, since ùi is unbiased when the disturbances are homoskedastic, úi must
actually be biased upwards in that case, since úi = ùi/(1−hi)

1/2, and the denominator
here is always less than one.

MacKinnon and White (1985) called the jackknife estimator (5) HC3, and that is how
it is referred to in much of the literature. However, Davidson and MacKinnon (1993)
observed that the first term inside the large parentheses in (5) will generally be very
much larger than the second, because the former is Op(n) and the latter Op(1). They
therefore (perhaps somewhat cavalierly) redefined HC3 to be the covariance matrix
estimator

(X⊤X)−1

( n∑

i=1

ú2

iXi
⊤Xi

)
(X⊤X)−1, (6)

which has exactly the same form as HC0, HC1 when the individual OLS residuals
are rescaled, and HC2. The modern literature has generally followed this naming
convention, and so I will refer to (6) as HC3 and to (5) as HCJ.

Another member of this series of estimators was proposed in Cribari-Neto (2004). The
HC4 estimator uses

ü2

i = û2

i /(1− hi)
δi , δi = min(4, nhi/k),
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instead of the û2

i in (4). The idea is to inflate the ith residual more (less) when hi is
large (small) relative to the average of the hi, which is k/n. Cribari-Neto and Lima
(2009) provide simulation results which suggest that, for the set of models they study,
the coverage of confidence intervals based on HCj for j = 0, . . . , 4 always increases
monotonically with j. However, HC4 actually overcovers in some cases, so it is not
always better than HC3. Poirier (2010) provides an interpretation of HC2 through
HC4 in terms of the Bayesian bootstrap. There is also an HC5 estimator, which is
quite similar to HC4; see Cribari-Neto, Souza, and Vasconcellos (2007).

All of the HCj series of estimators simply modify the (squared) residuals in various
ways, but a few papers have taken different approaches. Furno (1996) uses residuals
based on robust regression instead of OLS residuals in order to minimize the impact
of data points with high leverage. Qian and Wang (2001) and Cribari-Neto and Lima
(2010) explicitly correct the biases of various HCCMEs in the HCj series. The formu-
lae that result generally appear to be complicated and perhaps expensive to program
when n is large. Both papers present evidence that bias-corrected HCCMEs do indeed
reduce bias effectively. However, there appears to be no evidence that they perform
particularly well in terms of either coverage for confidence intervals or rejection fre-
quencies for tests. Since those are the things that matter in practice, and bias-corrected
HCCMEs are more complicated to program than any of the HCj series, there does not
seem to be a strong case for employing the former in applied work.

The relative performance of test statistics and confidence intervals based on different
HCCMEs depends principally on the hi, which determine the leverage of the various
observations, and on the pattern of heteroskedasticity. There are valuable analytical
results in Chesher and Jewitt (1987), Chesher (1989), and Chesher and Austin (1991).
When the sample is balanced, with no points of high leverage, these papers find that
HC1, HC2, and HCJ all tend to work quite well. But even a single point of high
leverage, especially if the associated disturbance has a large variance, can greatly
distort the distributions of test statistics based on some or all of these estimators.
Thus it may be useful to see whether the largest value of hi is unusually large.

The papers just cited make it clear that HCJ is not always to be preferred to HC2,
or even to HC1. In some cases, tests based on HCJ can underreject, and confidence
intervals can overcover. The results for HCJ must surely apply to HC3 as well. Similar
arguments probably apply with even more force to HC4, which inflates some of the
residuals much more than HC3 does; see Section 5.

3. Bootstrap Methods

There are two widely-used methods for bootstrapping regression models with indepen-
dent but possibly heteroskedastic disturbances. Both methods can be used to estimate
covariance matrices, but they do so in ways that are computationally inefficient and
have no theoretical advantages over much simpler methods like HC2 and HC3. In most
cases, this is not very useful. What is much more useful is to combine these bootstrap
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methods with statistics constructed using HCCMEs in order to obtain more reliable
inferences than the latter can provide by themselves.

The oldest of the two methods is the pairs bootstrap (Freedman, 1981), in which the
investigator resamples from the entire data matrix. For a linear regression model, or
any other model where the data matrix can be expressed as [y X], each bootstrap
sample [y∗ X∗] simply consists of n randomly chosen rows of the data matrix. We
can write a typical bootstrap sample as

[y∗ X∗] =




y1∗ X1∗

y2∗ X2∗

...
...

yn∗ Xn∗


,

where each of the indices 1∗ through n∗, which are different for each bootstrap sample,
takes the values 1 through n with probability 1/n. Thus if, for example, 1∗ = 27 for
a particular bootstrap sample, the first row of the data matrix for that sample will
consist of the 27th row of the actual data matrix. Technically, the pairs bootstrap data
are drawn from the empirical distribution function, or EDF, of the actual data. This
is very similar to bootstrap resampling for a single variable as originally proposed in
Efron (1979, 1982).

Since the regressor matrix will be different for each of the bootstrap samples, the pairs
bootstrap does not make sense if the regressors are thought of as fixed in repeated
samples. Moreover, to the extent that the finite-sample properties of estimators or test
statistics depend on a particular X matrix, the pairs bootstrap may not mimic these
properties as well as we would hope because it does not condition on X. Moreover,
the pairs bootstrap as just described does not impose any restrictions. However, a
modified version for regression models that does allow one to impose restrictions on
the bootstrap DGP was proposed in Flachaire (1999).

The original idea of bootstrapping was to estimate standard errors, or more generally
the covariance matrices of estimates of parameter vectors, by using the variation among
the estimates from the bootstrap samples. If β̂∗

j denotes the estimate of β from the
j th bootstrap sample and β̄∗ denotes the average of the β̂∗

j over B bootstrap samples,
the bootstrap estimate of the covariance matrix of β̂ is simply

V̂ar∗(β̂) =
1

B − 1

B∑

j=1

(β̂∗

j − β̄∗)(β̂∗

j − β̄∗)⊤. (7)

Although bootstrap covariance matrix estimators like (7) can be useful in some cases
(for example, complicated nonlinear models or nonlinear functions of the coefficient
estimates in regression models), the matrix (7) is actually just another HCCME, and
not one that has any particular merit in finite samples. In fact, Lancaster (2006) shows
that the covariance matrix of a delta method approximation to the distribution of the
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β̂∗

j is simply HC0. In practice, when B is large enough, the matrix (7) is probably
somewhat better than HC0, but no better than HC2 or HC3.

The main advantage of the pairs bootstrap is that it can be used with a very wide
variety of models. For regression models, however, what is generally acknowledged
to be a better way to deal with heteroskedasticity is the wild bootstrap, which was
proposed in Liu (1988) and further developed in Mammen (1993). For the model (1)
with no restrictions, the wild bootstrap DGP is

y∗i = Xiβ̂ + f(ûi)v
∗

i , (8)

where f(ûi) is a transformation of the ith residual ûi, and v∗i is a random variable
with mean 0 and variance 1. A natural choice for the transformation f(·) is

f(ûi) =
ûi

(1− hi)1/2
. (9)

Since this is the same transformation used by HC2, we will refer to it as w2. Using
(9) ensures that the f(ûi) must have constant variance whenever the disturbances are
homoskedastic. Alternatively, one could divide ûi by 1−hi, which is the transformation
that we will refer to as w3 because it is used by HC3. The fact that v∗i has mean 0
ensures that f(ûi)v

∗

i also has mean 0, even though f(ûi) may not.

There are, in principle, many ways to specify the random variable v∗i . The most
popular is the two-point distribution

F1 : v∗i =

{
−(

√
5− 1)/2 with probability (

√
5 + 1)/(2

√
5),

(
√
5 + 1)/2 with probability (

√
5− 1)/(2

√
5).

This distribution was suggested in Mammen (1993). Its theoretical advantage is that
the skewness of the bootstrap error terms is the same as the skewness of the residuals.
A simpler two-point distribution, called the Rademacher distribution, is just

F2 : v∗i =

{
−1 with probability 1

2
,

1 with probability 1

2
.

This distribution imposes symmetry on the bootstrap error terms, which it is good to
do if they actually are symmetric.

In some respects, the error terms for the wild bootstrap DGP (8) do not resemble
those of the model (1) at all. When a two-point distribution like F1 or F2 is used,
the bootstrap error term can take on only two possible values for each observation.
Nevertheless, the wild bootstrap mimics the essential features of the true DGP well
enough for it to be useful in many cases.
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For any bootstrap method,

β̂∗

j − β̄∗ = (X⊤X)−1X⊤y∗

j − β̄∗

= (X⊤X)−1X⊤(Xβ̂ + u∗

j )− β̄∗

= (X⊤X)−1X⊤u∗

j + (β̂ − β̄∗),

(10)

where y∗

j and u∗

j denote, respectively, the regressand and the vector of error terms
for the j th bootstrap sample. If we use the wild bootstrap DGP (8), and the OLS
estimator is unbiased, then the expectation of the bootstrap estimates β̂∗

j will just
be β̂, and so the last term in the last line of (10) should be zero on average.

The first term in the last line of (10) times itself transposed looks like a sandwich
covariance matrix, but with u∗

ju
∗

j
⊤ instead of a diagonal matrix:

(X⊤X)−1X⊤u∗

ju
∗

j
⊤X(X⊤X)−1.

It is particularly easy to see what this implies when the bootstrap errors are generated
by F2. In that case, the diagonal elements of u∗

ju
∗

j
⊤are simply the squares of the f(ûi).

The off-diagonal elements must have expectation zero, because, for each bootstrap
sample, every off-diagonal element is a product of the same two transformed residuals
multiplied either by +1 or −1, each with probability one-half. Thus, as B becomes
large, we would expect the average of the u∗

ju
∗

j
⊤ to converge to a diagonal matrix with

the squares of the f(ûi) on the diagonal. It follows that, if the transformation f(·)
is either w2 or w3, the bootstrap covariance matrix estimator (7) must converge to
either HC2 or HC3 as B → ∞.

So far, we have seen only that the pairs bootstrap and the wild bootstrap provide
computationally expensive ways to approximate various HCCMEs. If that was all these
bootstrap methods were good for, there would be no point using them, at least not
in the context of making inferences about the coefficients of linear regression models.
They might still be useful for calculating covariance matrices for nonlinear functions
of those coefficients.

Where these methods, especially the wild bootstrap, come into their own is when they
are used together with heteroskedasticity-robust test statistics in order to obtain more
accurate P values or confidence intervals. There is a great deal of evidence that the
wild bootstrap outperforms the pairs bootstrap in these contexts; see Horowitz (2001),
MacKinnon (2002), Flachaire (2005), and Davidson and Flachaire (2008), among oth-
ers. Therefore, only the wild bootstrap will be discussed.

Consider the heteroskedasticity-robust t statistic

τ(β̂l − β0

l ) =
β̂l − β0

l√[
(X⊤X)−1X⊤Ω̂X(X⊤X)−1

]
ll

, (11)
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in which the difference between β̂l, the OLS estimate of the l th element of β in (1)
and its hypothesized value β0

l is divided by the square root of the l th diagonal element
of any suitable HCCME, such as HC2, HC3, or HC4, depending on precisely how Ω̂

is defined. This test statistic is asymptotically distributed as N(0, 1) under quite weak
assumptions. But its finite-sample distribution may or may not be well approximated
by the standard normal distribution. Because (11) is asymptotically pivotal, bootstrap
methods should provide an asymptotic refinement, that is, more rapid convergence as
the sample size increases.

To calculate a wild bootstrap P value for the test statistic (11), we first estimate the
model (1) under the null hypothesis to obtain restricted estimates β̃ and restricted
residuals ũ. We then generate B bootstrap samples, using the DGP

y∗i = Xiβ̃ + f(ũi)v
∗

i . (12)

As in (8), there are several choices for the transformation f(·). We have already defined
w2 in equation (9) and w3 just afterwards. Another possibility, which we will call w1,
is just

√
(n/(n− k + 1) ũi. The random variates v∗i could be drawn from F1, F2, or

possibly some other distribution with mean 0 and variance 1.

For each bootstrap sample, indexed as usual by j, we calculate τ∗j (βl), the bootstrap
analog of the test statistic (11), which is

τ∗j (β̂
∗

lj − β0

l ) =
β̂∗

lj − β0

l√[
(X⊤X)−1X⊤Ω̂∗

jX(X⊤X)−1
]
ll

. (13)

Here β̂∗

lj is the OLS estimate for the j th bootstrap sample, and X⊤Ω̂∗

jX is computed
in exactly the same way as X⊤Ω̂X in (11), except that it uses the residuals from the
bootstrap regression.

Davidson and Flachaire (2008) have shown, on the basis of both theoretical analysis
and simulation experiments, that wild bootstrap tests based on the Rademacher dis-
tribution F2 can be expected to perform better, in finite samples, than ones based on
the Mammen distribution F1, even when the true disturbances are moderately skewed.
Some of the results in Section 5 strongly support this conclusion.

It is somewhat easier, especially if one is calculating bootstrap P values for several
tests, to use unrestricted rather than restricted estimates in the bootstrap DGP. In
that case, we would use (8) instead of (12) to generate the bootstrap data, and we
would compute bootstrap statistics τ∗j (β̂

∗

lj − β̂l) instead of τ∗j (β̂
∗

lj − βl
0
), which just

means replacing β0

l by β̂l in (13). It is essential to do the latter, since the bootstrap
DGP (8) does not impose the null hypothesis, and we need the bootstrap test statistics
to be testing a hypothesis that is true for the bootstrap data.

In general, it is almost always better to use restricted estimates in the bootstrap DGP,
because the DGP is estimated more efficiently when true restrictions are imposed; see
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Davidson and MacKinnon (1999). The advantage of using restricted estimates can be
substantial in some cases; see Section 5.

Once we have computed τ̂ = τ(β̂l − β0

l ) and B instances of τ∗j , which be either
τ∗j (β̂

∗

lj − β0

l ) or τ
∗

j (β̂
∗

lj − β̂l), the bootstrap P value is simply

p̂∗(τ̂) = 2min

(
1

B

B∑

j=1

I(τ∗j ≤ τ̂),
1

B

B∑

j=1

I(τ∗j > τ̂)

)
. (14)

This is an equal-tail bootstrap P value, so called because, for a test at level α, the
rejection region is implicitly any value of τ̂ that is either less than the α/2 quantile or
greater than the 1−α/2 quantile of the empirical distribution of the τ∗j . It is desirable
to choose B such that α(B + 1)/2 is an integer; see Racine and MacKinnon (2007).

For t statistics, it is generally safest to use an equal-tail P value like (14) unless there
is good reason to believe that the test statistic is symmetrically distributed around
zero. For any test that rejects only when the test statistic is in the upper tail, such
as a heteroskedasticity-robust F statistic or the absolute value of a heteroskedasticity-
robust t statistic, we would instead compute the bootstrap P value as

p̂∗(τ̂) =
1

B

B∑

j=1

I(τ∗j > τ̂). (15)

In this case, it is desirable to choose B such that α(B + 1) is an integer, which must
of course be true whenever α(B + 1)/2 is an integer.

In many cases, we are interested in confidence intervals rather than tests. The most
natural way to obtain a bootstrap confidence interval in this context is to use the
studentized bootstrap, which is sometimes known as the percentile-t method. The
bootstrap data are generated using the wild bootstrap DGP (8), which does not impose
the null hypothesis. Each bootstrap sample is then used to compute a bootstrap
test statistic τ∗j (β̂

∗

lj − β̂l). These are sorted, and their α/2 and 1 − α/2 quantiles
obtained, which is particularly easy to do if α(B+1)/2 is an integer. If q∗α/2 and q∗

1−α/2

denote these empirical quantiles, and s(β̂l) denotes the (presumably heteroskedasticity-
robust) standard error of β̂l, then the studentized bootstrap interval at level α is

[
β̂l − s(β̂l)q∗

1−α/2, β̂l − s(β̂l)q∗α/2
]
. (16)

As usual, the lower limit of this interval depends on the upper-tail quantile of the
bootstrap test statistics, and the upper limit depends on the lower-tail quantile. Even
if the true distribution of the τ∗j happens to be symmetric around the origin, it is
highly unlikely that the empirical distribution will be. Therefore, the interval (16) will
almost never be symmetric.

Another way to find confidence intervals is explicitly to invert bootstrap P values.
The confidence interval then consists of all points for which the bootstrap P value
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(14) is greater than α. Solving for such an interval can be a bit complicated, since the
null hypotheses that correspond to each end of the interval must be imposed on the
bootstrap DGP. However, this technique can be more reliable than the studentized
bootstrap method; see Davidson and MacKinnon (2010, 2011).

The discussion so far may have incorrectly given the impression that the only reason
to use the wild bootstrap is to reduce the size distortion of tests, or the coverage
errors of confidence intervals, that are associated with HCCMEs which are not entirely
reliable in finite samples. In cross-section regressions with samples of several hundred
observations or more, those errors are often quite modest. But there may well be other
sources of much larger size distortions or coverage errors that can also be reduced by
using bootstrap methods. Even though the primary reason for bootstrapping may not
be heteroskedasticity of unknown form, it is often wise to use a technique like the wild
bootstrap together with heteroskedasticity-robust covariance matrices.

An important example is two-stage least squares (or generalized IV) estimation with
possibly heteroskedastic disturbances when the instruments are not strong. Davidson
and MacKinnon (2010) proposed a wild bootstrap procedure for this case. When there
are just two endogenous variables, the model is

y1 = βy2 +Zγ + u1 (17)

y2 = Wπ + u2. (18)

Equation (17) is a structural equation, and equation (18) is a reduced-form equation.
The n--vectors y1 and y2 are vectors of observations on endogenous variables, Z is
an n × k matrix of observations on exogenous variables, and W is an n × l matrix
of exogenous instruments with the property that S(Z), the subspace spanned by the
columns of Z, lies in S(W ), the subspace spanned by the columns of W. Typical
elements of y1 and y2 are denoted by y1i and y2i, respectively, and typical rows of Z
and W are denoted by Zi and Wi.

Davidson and MacKinnon (2010) discusses several wild bootstrap procedures for test-
ing the hypothesis that β = β0. The one that works best, which they call the wild

restricted efficient (or WRE) bootstrap, uses the bootstrap DGP

y∗
1i = β0y

∗

2i +Ziγ̃ + f1(ũ1i)v
∗

i (19)

y∗
2i = Wiπ̃ + f2(ũ2i)v

∗

i , (20)

where γ̃ and the residuals ũ1i come from an OLS regression of y1−β0y2 on Z, π̃ comes
from an OLS regression of y2 on W and ũ1, and ũ2 ≡ y2−Wπ̃. The transformations
f1(·) and f2(·) could be any of w1, w2, or w3.

This bootstrap DGP has three important features. First, the structural equation (19)
uses restricted (OLS) estimates instead of unrestricted (2SLS) ones. This is very
important for the finite-sample properties of the bootstrap tests. Note that, if 2SLS
estimates were used, it would no longer make sense to transform the û1i, because 2SLS
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residuals are not necessarily too small. Second, the parameters of the reduced-form
equation (20) are estimated efficiently, because the structural residuals are included as
an additional regressor. This is also very important for finite-sample properties. Third,
the same random variable v∗i multiplies the transformed residuals for both equations.
This ensures that the correlation between the structural and reduced-form residuals is
retained by the structural and reduced-form bootstrap error terms.

Davidson and MacKinnon (2010) provides evidence that bootstrap tests of hypotheses
about β based on the WRE bootstrap perform remarkably well whenever the sample
size is not too small (400 seems to be sufficient) and the instruments are not very weak.
What mostly causes asymptotic tests to perform poorly is simultaneity combined with
weak instruments, not heteroskedasticity. The main reason to use the WRE bootstrap
is to compensate for the weak instruments.

Ideally, one should always use a heteroskedasticity-robust test statistic together with
the wild bootstrap, or perhaps some other bootstrap method that is valid in the pres-
ence of heteroskedasticity. However, it is also asymptotically valid to use a nonrobust
test statistic together with the wild bootstrap, or a robust test statistic together with
a bootstrap method that does not take account of heteroskedasticity. The simulation
evidence in Davidson and MacKinnon (2010) suggests that both of these approaches,
while inferior to the ideal one, can work reasonably well.

4. Cluster-Robust Covariance Matrices

An important extension of heteroskedasticity-robust inference is cluster-robust infer-
ence. Consider the linear regression model

y ≡




y1

y2

...
ym


 =




X1

X2

...
Xm


β +




u1

u2

...
um


 ≡ Xβ + u.

Here there are m clusters, indexed by j, the observations for which are stacked into
the vector y and the matrix X. Clusters might correspond to cities, counties, states,
or countries in a cross-section of households or firms, or they might correspond to
cross-sectional units in a panel dataset. The important thing is that there may be
correlation among the disturbances within each cluster, but not across clusters.

If we know nothing about the pattern of variance and covariances within each cluster,
then it makes sense to use a cluster-robust covariance matrix estimator. The simplest
such estimator is

V̂ar(β̂) = (X⊤X)−1

( m∑

j=1

Xj
⊤ûjûj

⊤Xj

)
(X⊤X)−1, (21)

where ûj is the vector of OLS residuals for the j th cluster. This has the familiar sand-
wich form of an HCCME, except that the filling in the sandwich is more complicated.
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It is robust to heteroskedasticity of unknown form as well as to within-cluster correla-
tion. The estimator (21) was proposed by a number of authors, including Froot (1989),
introduced into Stata by Rogers (1993), and extended to allow for serial correlation of
unknown form, as in HAC estimation, by Driscoll and Kraay (1998). It is widely used
in applied work. See Cameron and Miller (2011) for a recent survey.

Cameron, Gelbach, and Miller (2008) recently proposed a wild bootstrap method for
clustered data. As in the usual wild bootstrap case, where the bootstrap disturbance
for observation i depends on the residual ûi, all the bootstrap disturbances for each
cluster depend on the residuals for that cluster. The wild bootstrap DGP is

y∗ji = Xji β̂ + f(ûji)v
∗

j , (22)

where j indexes clusters, i indexes observations within each cluster, and the v∗j follow
the Rademacher (F2) distribution. The key feature of (22) is that there are only
as many v∗j as there are clusters. Thus the bootstrap DGP preserves the variances
and covariances of the residuals within each cluster. This method apparently works
surprisingly well even when the number of clusters is quite small.

5. Simulation Evidence

Simulation experiments can be used to shed light on the finite-sample performance of
various HCCMEs, either used directly for asymptotic tests or combined with various
forms of the wild bootstrap. This section reports results from a number of experiments
that collectively deal with a very large number of methods. Most of the experiments
were deliberately designed to make these methods perform poorly.

Many papers that use simulation to study the properties of HCCMEs, beginning with
MacKinnon and White (1985) and extending at least to Cribari-Neto and Lima (2010),
have simply chosen a fixed or random X matrix for a small sample size— just 10 in
the case of Davidson and Flachaire (2008)—and formed larger samples by repeating
it as many times as necessary. When X matrices are generated in this way, there will
only be as many distinct values of hi as the number of observations in the original
sample. Moreover, all of those values, and in particular the largest one, must be
exactly proportional to 1/n; see Chesher (1989). This ensures that inference based
on heteroskedasticity-robust methods improves very rapidly as n increases. Since very
few real datasets involve X matrices for which all of the hi are proportional to 1/n,
this sort of experiment almost certainly paints an excessively optimistic picture. Some
evidence on this point is provided below.

In contrast, the model employed here, which is similar to one used for a much more
limited set of experiments in MacKinnon (2002), is

yi = β1 +

5∑

k=2

βkXik + ui, ui = σiεi, εi ∼ N(0, 1), (23)
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where all regressors are drawn randomly from the standard lognormal distribution,
βk = 1 for k ≤ 4, β5 = 0, and

σi = z(γ)
(
β1 +

5∑

k=2

βkXik

)γ
. (24)

Here z(γ) is a scaling factor chosen to ensure that the average variance of ui is equal
to 1. Thus changing the parameter γ changes how much heteroskedasticity there is
but does not, on average, change the variance of the disturbances. In the experiments,
0 ≤ γ ≤ 2. Note that γ = 0 implies homoskedasticity, and γ >> 1 implies rather
extreme heteroskedasticity.

The DGP consisting of equations (23) and (24) was deliberately chosen so as to make
heteroskedasticity-robust inference difficult. Because the regressors are lognormal,
many samples will contain a few observations on the Xik that are quite extreme, and
the most extreme observation in each sample will tend to become more so as the sample
size increases. Therefore, the largest value of hi will tend to be large and to decline
very slowly as n → ∞. In fact, the average value of hmax

i is nearly 0.80 when n = 20
and declines by a factor of only about 3.5 as the sample size increases to 1280, with
the rate of decline increasing somewhat as n becomes larger. It is likely that few real
datasets have hi which are as badly behaved as the ones in these experiments, so their
results almost certainly paint an excessively pessimistic picture.

Figures 1 and 2 show the results of several sets of experiments for asymptotic tests of
the hypothesis that β5 = 0 based on test statistics like (11) and the standard normal
distribution. The figures show rejection frequencies as functions of the parameter γ.
They are based on 1,000,000 replications for each of 41 values of γ between 0.00 and
2.00 at intervals of 0.05.

Rejection frequencies for five different HCCMEs when n = 40 are shown in Figure 1.
As expected, tests based on HC1 always overreject quite severely. Perhaps somewhat
unexpectedly, tests based on HC4 always underreject severely. This is presumably
a consequence of the very large values of hmax

i in these experiments. Tests based
on the other estimators sometimes overreject and sometimes underreject. In every
case, rejection frequencies decline monotonically as γ increases. For any given value
of γ, they also decline as j increases from 1 to 4 in HCj. It is reassuring to see that
the results for HC3 and HCJ are extremely similar, as predicted by Davidson and
MacKinnon (1993) when they introduced the former as an approximation to the latter
and appropriated its original name.

Note that, as Davidson and Flachaire (2008) emphasized, restricting attention to tests
at the .05 level is not inconsequential. All the tests are more prone to overreject at the
.01 level and less prone to overreject at the .10 level than they are at the .05 level. In
other words, the distributions of the test statistics have much thicker tails than does
the standard normal distribution. Even HC4, which underrejects at the .05 level for
every value of n and γ, always overrejects at the .01 level for some small values of γ.
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Figure 2 focuses on HC3, which seems to perform best among the HCj estimators for
n = 40. It shows results for seven values of n from 20 to 1280. The surprising thing
about this figure is how slowly the rejection frequency curves become flatter as the
sample size increases. The curves actually become steeper as n increases from 20 to
40 and then to 80. The worst overrejection for γ = 0 and the worst underrejection
for γ = 2 both occur when n = 80. As n increases from 80 to 160, 320, 640, and
finally 1280, the curves gradually become flatter, but they do so quite slowly. It seems
likely that we would need extremely large samples for rejection frequencies to be very
close to the nominal level of 0.05 for all values of γ. This is a consequence of the
experimental design, which ensures that hmax

i decreases very slowly as n increases.

An alternative to generating the entire regressor matrix for each sample size is simply
to generate the first 20 rows and then repeat them as many times as necessary to
form larger samples with integer multiples of 20 observations. As noted earlier, hmax

i

would then be proportional to 1/n. Figure 3 contains the same results as Figure 2,
except that the matrix X is generated in this way. The performance of asymptotic
tests based on HC3 now improves very much faster as n increases. In particular, the
rejection frequency curve changes dramatically between n = 20 and n = 40. It is
evident that the way in which X is generated matters enormously.

The remaining figures deal with wild bootstrap tests. Experiments were performed
for 12 variants of the wild bootstrap. There are three transformations of the residuals
(denoted by w1, w2, or w3, because they are equivalent to HC1, HC2, or HC3), two
types of residuals (restricted and unrestricted, denoted by r or u), and two ways of
generating the v∗j (F1 or F2, denoted by 1 or 2). The 12 variants are

w1r1 and w1r2: u∗

i =
√

n/(n− k + 1)ũi

w1u1 and w1u2: u∗

i =
√

n/(n− k)ûi

w2r1 and w2r2: u∗

i =
ũi

(1− h̃i)1/2

w2u1 and w2u2: u∗

i =
ûi

(1− hi)1/2

w3r1 and w3r2: u∗

i =
ũi

(1− h̃i)

w3u1 and w3u2: u∗

i =
ûi

(1− hi)

In the expressions for w2r1, w2r2, w3r1, and w3r2, h̃i denotes the ith diagonal of the
hat matrix for the restricted model.

The experimental results are based on 100,000 replications for each of 21 values of γ
between 0.0 and 2.0 at intervals of 0.1, with B = 399. In practice, it would be better
to use a larger number for B in order to obtain better power, but 399 is adequate in
the context of a simulation experiment; see Davidson and MacKinnon (2000). There
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are five different HCCMEs and 12 different bootstrap DGPs. Thus each experiment
produces 60 sets of rejection frequencies. It would be impossible to present all of these
graphically without using an excessively large number of figures.

Figures 4 and 5 present results for HC3 and HC1, respectively, combined with eight
different bootstrap DGPs for n = 40. Results are shown only for w2 and w3, because
the diagram would have been too cluttered if w1 had been included, and methods
based on w1 usually performed less well than ones based on w2. HC3 was chosen
because asymptotic tests based on it performed best, and HC1 was chosen because
asymptotic tests based on it performed worst. Note that the results for HC0 would
have been identical to the ones for HC1, because the former is just a multiple of the
latter. This implies that the position of τ̂ in the sorted list of τ̂ and the τ∗j must be
the same for HC0 and HC1, and hence the P value must be the same.

In Figure 4, we see that only two of the wild bootstrap methods (w3r2 and w2r2) yield
tests that never overreject. The size distortion for w3r2 is always less than for w2r2.
The curve for w1r2, not shown, lies everywhere below the curve for w2r2. The other
six wild bootstrap methods do not perform particularly well. They all overreject for
all or most values of γ. For small values of γ, the four worst methods are the ones
that use unrestricted residuals. But w2r1 and w3r1 also work surprisingly poorly.

Figure 5 shows results for the same eight wild bootstrap methods as Figure 4, but this
time the test statistic is based on HC1. The results are similar to those in Figure 4, but
they are noticeably better in several respects. Most importantly, w3r2 and, especially,
w2r2 underreject less severely, and all of the tests that use unrestricted residuals
overreject somewhat less severely.

The remaining figures focus on the effects of sample size. Figure 6 shows rejection
frequencies for tests based on HC1 for six sample sizes, all using the w3r2 wild boot-
strap. In striking contrast to the asymptotic results in Figure 2, the improvement as
n increases is quite rapid. Except for the largest values of γ, the rejection frequencies
are very close to .05 for n = 640.

Figure 7 shows that using unrestricted residuals harms performance greatly for all
sample sizes. Although there is much faster improvement with n than for the asymp-
totic tests in Figure 2, overrejection for small values of γ is actually more severe for
the smaller sample sizes. Both overrejection for small values of γ and underrejection
for large ones remains quite noticeable even when n = 640.

Figure 8 is similar to Figure 6, except that the matrix X consists of the first 20 rows
repeated as many times as necessary. Results are presented only for n = 40, 60, 80,
120, and 160. Results for n = 20 are omitted, because they may be found in Figure 6,
and including them would have required a greatly extended vertical axis. Results for
sample sizes larger than 160 are omitted for obvious reasons. To reduce experimental
error, these results are all based on 400,000 replications.

The performance of all the bootstrap tests in Figure 8 is extremely good. Simply
making the bottom half of the X matrix repeat the top half, as happens when n = 40,
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dramatically improves the rejection frequencies. Results would have been similar for
tests based on HC2, HC3, HCJ, or HC4. It is now very difficult to choose among
bootstrap tests that use different HCCMEs, as they all work extremely well.

Although Figure 8 only shows results for the w3r2 variant of the wild bootstrap, other
bootstrap methods also perform very much better when the regressor matrix consists
of the first 20 rows repeated than when the entire matrix is generated randomly.
But there still seem to be clear benefits from using restricted residuals and the F2

distribution, at least for smaller values of n.

Like most of the work in this area, the experiments described so far focus exclusively on
the performance of tests under the null. However, test power can be just as important
as test size. The remaining experiments therefore address two important questions
about power. The first is whether the choice of HCCME matters, and the second is
whether there is any advantage to using unrestricted rather than restricted residuals in
the bootstrap DGP. These experiments use the w3 bootstrap and the F2 distribution.
The sample size is 40, there are 100,000 replications, and B = 999. The number of
bootstrap samples is somewhat larger than in the previous experiments, because power
loss is proportional to 1/B; see Jöckel (1986).

Figure 9 shows power functions for wild bootstrap (w3r2) tests of the hypothesis that
β5 = 0 in equation (23) as a function of the actual value of β5 when γ = 1. Experiments
were performed for 71 values of β5: −0.70, −0.68, . . ., 0.68, 0.70. This figure has two
striking features. First, the power functions are not symmetric. There is evidently
greater power against negative values of β5 than against positive ones. This occurs
because of the pattern of heteroskedasticity in equation (24). For γ > 0, there is more
heteroskedasticity when β5 > 0 than when β5 < 0. This causes the estimate of β5 to
be more variable as the true value of β5 increases. When γ = 0, the power functions
are symmetric.

The second striking feature of Figure 9 is that power decreases monotonically from
HC1 to HC2, HC3, and finally HC4. Thanks to the bootstrap, all the tests have
essentially the same performance under the null. Thus what we see in the figure is
a real, and quite substantial, reduction in power as we move from HC1, which pays
no attention to the leverage of each observation, to robust covariance matrices that
take greater and greater account thereof. At least in this case, there appears to be
a real cost to using HCCMEs that compensate for leverage (they overcompensate, in
the case of HC3 and HC4). It seems to be much better to correct for the deficiencies
of HC1 by bootstrapping rather than by using a different HCCME.

Although there is still the same pattern for similar experiments in which the X matrix
is generated by repeating the first 20 observations (results not shown), the loss of power
is much less severe. Thus it may well be that the power loss in Figure 9 is just about
as severe as one is likely to encounter.

It is widely believed that using unrestricted residuals in a bootstrap DGP yields greater
power than using restricted residuals. The argument is that, when the null is false,
restricted residuals will be larger than unrestricted ones, and so the bootstrap error
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terms will be too big if restricted residuals are used. Paparoditis and Politis (2005)
show that there is indeed a loss of power from using restricted residuals whenever a
test statistic is asymptotically nonpivotal. However, their theoretical analysis yields no
such result for asymptotically pivotal statistics like the robust t statistic (11) studied
here. Using restricted residuals does indeed cause the bootstrap estimates to be more
variable, but it also causes the standard errors of those estimates to be larger. Thus
there is no presumption that bootstrap critical values based on the distribution of the
bootstrap t statistics will be larger if one uses restricted residuals.

Figure 10 shows two power functions, one for the w3r2 bootstrap, which is identical to
the corresponding one in Figure 9, and one for the w3u2 bootstrap. Using unrestricted
residuals causes the test to reject more frequently for most, but not all, values of β5,
including β5 = 0. Ideally, one would like to adjust both tests to have precisely the
correct size, but this is very difficult to do in a way that is unambiguously correct;
see Davidson and MacKinnon (2006). If one could do so, it is not clear that the w3u2
bootstrap would ever have greater power than the w3r2 bootstrap, and it is clear that
it would actually have less power for many positive values of β5.

It can be dangerous to draw conclusions from simulation experiments, especially in a
case like this where the details of the experimental design are evidently very important.
Nevertheless, it seems to be possible to draw several qualified conclusions from these
experiments. Many of these echo previous theoretical and simulation results that may
be found in Chesher and Austin (1991), Davidson and Flachaire (2008), and other
papers, but others appear to be new.

• The best HCCME for asymptotic inference may not be the best one for bootstrap
inference.

• When regressor matrices of various sizes are created by repeating a small number
of observations as many times as necessary, both asymptotic and bootstrap tests
perform very much better than they do when there is no repetition and hmax

i

decreases slowly as n increases.

• Rejection frequencies for bootstrap tests can improve much more rapidly as n
increases than ones for asymptotic tests, even when hmax

i decreases very slowly
as n increases.

• Although well-chosen bootstrap methods can work very much better than purely
asymptotic ones, not all bootstrap methods work particularly well when hmax

i

decreases slowly as n increases.

• There can be a very substantial gain from using restricted residuals in the wild
bootstrap DGP, especially when hmax

i decreases slowly as n increases.

• There can be a very substantial gain from using F2 rather than F1 to generate
the bootstrap error terms, especially when hmax

i decreases slowly as n increases.

• The power of bootstrap tests based on different HCCMEs can differ substantially.
The limited evidence presented here suggests that HC1 may yield the greatest
power and HC4 the least.
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• There is no theoretical basis for, and no evidence to support, the idea that using
unrestricted residuals in the bootstrap DGP will yield a more powerful test than
using restricted residuals when the test statistic is asymptotically pivotal.

All the experiments focused on testing rather than confidence intervals. However,
studentized bootstrap confidence intervals like (16) simply involve inverting bootstrap
t tests based on unrestricted residuals. Thus the poor performance of tests that use
unrestricted residuals in the bootstrap DGP when hmax

i decreases slowly suggests
that studentized bootstrap confidence intervals may not be particularly reliable when
the data have that feature. In such cases, it is likely that one can obtain bootstrap
confidence intervals with much better coverage by inverting bootstrap P values based
on restricted residuals; see Davidson and MacKinnon (2011).

The base case for these experiments, in which the regressors are randomly generated
from the lognormal distribution, is probably unrealistic. In practice, the performance
of heteroskedasticity-robust tests may rarely be as bad for moderate and large sample
sizes as it is in these experiments. But the other case, in which the rows of the regressor
matrix repeat themselves every 20 observations, is even more unrealistic. The many
published simulation results that rely on this type of experimental design are almost
certainly much too optimistic in their assessments of how well heteroskedasticity-robust
tests and confidence intervals perform.

6. Conclusion

White (1980) showed econometricians how to make asymptotically valid inferences in
the presence of heteroskedasticity of unknown form, and the impact of that paper
on both econometric theory and empirical work has been enormous. Two strands of
later research have investigated ways to make more accurate inferences in samples of
moderate size. One strand has concentrated on finding improved covariance matrix
estimators, and the other has focused on bootstrap methods. The wild bootstrap is
currently the technique of choice. It has several variants, some of which are closely
related to various HCCMEs. The wild bootstrap is not actually a substitute for a
good covariance matrix estimator. Instead, it should be used in conjunction with one
to provide more accurate tests and confidence intervals. This paper has discussed both
strands of research and presented simulation results on the finite-sample performance
of asymptotic and bootstrap tests.
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Figure 1. Rejection frequencies for heteroskedasticity-robust t tests, n = 40

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................... 20



...................................................................................... 40

....................................................................................................................................................................................

..................... 80



.......................................................................................... 160

............................................................................................................................................

................. 320


.......................................................................................... 640



...................................................................................................................................................................... 1280

γ

Figure 2. Rejection frequencies for asymptotic HC3 t tests, various sample sizes
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Figure 3. Rejection frequencies for asymptotic HC3 t tests, 20 rows of X repeated
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Figure 4. Rejection frequencies for bootstrap HC3 t tests, n = 40
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Figure 5. Rejection frequencies for bootstrap HC1 t tests, n = 40
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Figure 6. Rejection frequencies for w3r2 bootstrap HC1 t tests
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Figure 7. Rejection frequencies for w3u2 bootstrap HC1 t tests
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Figure 8. Rejection frequencies for w3r2 bootstrap HC1 t tests, 20 rows of X repeated
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Figure 9. Power of wild bootstrap (w3r2) heteroskedasticity-robust t tests, γ = 1, n = 40

−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90


............
..........
...........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
........
.........
..........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
.........
..........
.........
..........
..........
..........
...........
..........
...........
..........
............
............
...........
............
.............
............
..............
..............
..................
...............
....................
.....................
.............................

.....................................
...................

...................................................................................................................Restricted


........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
..........
...........
..........
.............
...........
................
................
........................

.......................
.................

................................................................................ Unrestricted

β5

Figure 10. Power of wild bootstrap HC1 t tests, γ = 1, n = 40
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