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Abstract

We take up a growth model with both skilled and unskilled labor, and
a steady migration of some unskilled workers, who undertake apprenticing,
to the skilled group of workers. Apprenticing involves a period of observing
and thus labor output foregone. The time-out for observing represents a
cost to the economy and this results in the rate of balanced growth being
endogenous. We examine the balanced growth path and report on the
stability of our dynamic system.
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1. Introduction

An uncomplicated extension of the Solow [1956] growth model has two types of

labor, skilled and unskilled, and two perpetual �ows of labor, one "up" from un-

skilled to skilled in volume proportionate with current net investment in durable

capital and the other "down" and proportionate with current numbers of skilled

workers. This Solow variant becomes interesting when the transition of an un-

skilled worker to skilled is costly. We model this cost as a simple time-out (one

period in discrete time) during which the unskilled worker is observing or appren-

ticing. Apprenticing represents two costs: one is simply that some labor is foregone

while the trainee is observing or apprenticing and the other is that trainees end
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up reproducing with a lag, the time-out for apprenticing. These two costs result

in the the growth rate of the economy becoming endogenous and somewhat less

than the rate of population growth along a balanced growth path. Thus the in-

troduction of a simple time-out for apprenticing becomes a parsimonious route to

endogenizing the growth rate in a Solow-type model. We work in discrete time

and establish conditions for the existence of a balanced growth path and remark

on stability in an Appendix.

We have in mind the emergence of a middle class of families headed by a skilled

person. For Britain, Mokyr [2009] remarks: "The period under discussion here,

1700-1850, saw the rise of many other "white collar professions" that would be

classi�ed today in the service industries. In 1700, very few Britons were engaged

in such occupations as land agents, dentists, architects, surveyors, apothecaries,

or even attorneys. Apart from the very top, most of these specialists were trained

through an apprenticeship system rather than through the universities." (p. 250)

Earlier, he observes "The great English engineers of the Industrial Revolution

learned their skills by being apprenticed to able masters, and otherwise were

largely self-taught. James Brindley, the canal engineer, was taught by his mother

and, like many other pivotal �gures in the Industrial Revolution, never went to

a formal school. Many of the others were educated in Scotland." (p. 232) In

addition to the Industrial Revolution being led by skilled, but often not formally

schooled individuals, the apprenticeship system itself was evolving over this crucial

interval. Mokyr remarks: "The regulations that set up the strict requirements for

craftsmen to undergo many years of appreticeship were enforced less and less

during the eighteenth century and more and more exceptions to them could be

found. As was noted earlier, the mandated length of the period of apprenticeship

changed, and outdoor apprenticeship became more prevalent. Domestic industry

expanded a great deal into low-skill full-time occupations, and permitted young

couples to set up shop in a small cottage." (p. 288) In our closing remarks we

note the signi�cant increase in the investment rate during the middle years of the



Industrial Revolution.

2. The Model

Time is decrete, t = 0; 1; 2; :::: At the beginning of period t, there are Mt po-

tentially skilled persons, and Nt potentially unskilled persons. In the middle of

period t, the number of skilled workers is Mt� �Mt+Lt�1 � St where Lt�1 is the
number of apprentices in period t � 1, and � is the fraction of nominally skilled
persons who fail to realize their potential (�Mt workers are sliding back from the

skilled to the unskilled cohort). Also, in the middle of period t, the numbers of

unskilled workers is Nt + �Mt � Lt � Ut, where Lt are the apprentices (drawn

from Nt).

The volume of unskilled workers currently transitting into apprenticing and

then, with a one period lag, into the skilled worker cohort is proportional to the

current volume of investment in durable capital (there is no decay in durable

capital Kt in the model). That is,

Lt = 
It;

where by de�nition

Kt+1 �Kt = It:

We assume that theMt��Mt+Lt�1 skilled workers give birth to � nominally

skilled workers in the next period, so that

Mt+1 = (1 + �) (Mt � �Mt + Lt�1) :

It is as if skilled parents are able to raise children who costlessly enter the cohort

of skilled workers. Note that it is apprentices who "departed" from the unskilled

cohort one period back that now reproduce as skilled people. These apprentices

thus reproduce with a one period lag compared with other people. This repro-

duction lag is then a central cost to the economy of having apprenticing workers

on the sidelines for a period.



Similarly, we assume

Nt+1 = (1 + �)(Nt + �Mt � Lt):

Unskilled workers reproduce at the same rate as the skilled workers.

Output, denoted by Qt, is produced using Kt; St and Ut :

Qt = K
a
t (ASt)

� (Ut)
1����:

A constant fraction � of output is saved, and is invested:

It = �Qt:

Consider the system of 4 di¤erence equations

Mt+1 = (1 + �) (Mt � �Mt + 
It�1) (1)

Nt+1 = (1 + �)(Nt + �Mt � 
It) (2)

It = �K
a
t A

� (Mt � �Mt + 
It�1)
� (Nt + �Mt � 
It)1���� (3)

Kt+1 �Kt = It: (4)

We proceed to de�ne

xt �
It
Kt

;mt �
Mt

Kt

and nt �
Nt
Kt

;

and also we have xt�1 = It�1=Kt�1 etc., and Kt+1 = Kt + xtKt = (1 + xt)Kt, and

Kt = (1 + xt�1)Kt�1. Divide each of the three equations (1)-(3) by Kt to get

(1 + xt)mt+1 = (1 + �)

�
mt(1� �) + 


xt�1
1 + xt�1

�
(5)

(1 + xt)nt+1 = (1 + �) (nt + �mt � 
xt) (6)

xt = �A
�

�
K�
t

K�
t

�
(Mt � �Mt + 
It�1)

�

K�
t

�
(Nt + �Mt � 
It)1����

K1����
t

�



or

xt = �A
�

�
(1� �)mt +


xt�1
(1 + xt�1)

��
[nt + �mt � 
xt]1���� (7)

Is there a steady-state triple (m�; n�; x�) where m� > 0; n� > 0 and x� > 0 ?

We turn to this question.

Given x�, equation (5) gives

m� =
(1 + �)
x�

(1 + x�)(�(1 + �)� � + x�) . (8)

Then eq (6) gives

(x� � �)n� = (1 + �)(�m� � 
x�) = 
x�(1 + �)
�
�m�


x�
� 1
�

n� =
(1 + �)�m�

(x� � �) � (1 + �)
x
�

(x� � �)

=
(1 + �)
x�

(x� � �)

�
(1 + �)�

(1 + x�)(�(1 + �)� � + x�) � 1
�

=
(1 + �)
x�

(x� � �)

�
(1 + �)�

(1 + x�)(�(1 + �)� � + x�) � 1
�
;

which implies n� =
(1 + �)
x�

(x� � �)

�
�(1 + x�)(x� � �)� �(1 + �)x�
(1 + x�)(�(1 + �)� � + x�)

�
:

Assume that (�(1+�)��+x�) > 0. Then, for n� > 0 and x� > 0, the term (��x�)
must have the same sign as the term x��(1 + �) + (1 + x�)(x� � �), ie,(� � x�)
cannot be negative. Hence, for (� � x�) > 0; we have

n� =

x�(1 + �)

(� � x�)

�
x��(1 + �) + (1 + x�)(x� � �)
(1 + x�)(�(1 + �)� � + x�)

�
> 0: (9)

Consider

xt = �A
�

�
(1� �)mt + 


xt�1
1 + xt�1

��
[nt + �mt � 
xt]1���� (10)



Suppose that we are in the hypothetical steady state version of the model. Then

routine substitution into (10) yields the following equation in x� :

1

�
= (x�)��A�

�
(1� �)(1 + �)


(1 + x�)(�(1 + �)� � + x�) +



(1 + x�)

��
��

(1 + x�)

(x� � �)

�
�(1 + �)


(1 + x�)(�(1 + �)� � + x�)

�
� (1 + �)

(x� � �) � 


�1����
: (11)

We turn to simplifying
�
(1+x�)
(x���)

�
�(1+�)


(1+x�)(�(1+�)��+x�)

�
� (1+�)


(x���) � 

�
� (1+�)


(x���) � 
 =

�

h
1+x�

(x���)

i
:

We have
(1 + x�)

(x� � �)

�
�(1 + �)


(1 + x�)(�(1 + �)� � + x�)

�
� (1 + �)

(x� � �) � 
 =

(1 + x�)


(x� � �)

�
�(1 + �)

(1 + x�)(�(1 + �)� � + x�) � 1
�
=

(1 + x�)


(� � x�)

�
x��(1 + �) + (1 + x�)(x� � �)
(1 + x�)(�(1 + �)� � + x�)

�
=




(� � x�)

�
x��(1 + �) + (1 + x�)(x� � �)

�(1 + �)� � + x�

�
:

If (x���) < 0 (the balanced growth rate less than the common population growth
rate) then we need

�(1 + �)

(1 + x�)(�(1 + �)� � + x�) � 1 < 0;

ie �(1+ �) < (1+x�)(�(1+ �)� �+x�) = �(1+ �)+x��(1+ �)+ (1+x�)(x�� �);

or 0 < x��(1 + �) + (1 + x�)(x� � �): (12)

For � = 0:2; � = 0:4; � = 0:2; A = 1:5; � = 0:05; 
 = 0:04; � = 0:02; one

obtains x� = 0:019564 in (11), slightly less than the population growth rate, 0:02:

This value of x� and parameter values � = 0:05 and � = 0:02 satisfy (12). At

this solution (x�; and the corresponding m� and n�) the positive �ow of skilled

workers "down" (0.00033825) is slightly smaller than the corresponding �ow of

unskilled workers "up" (0.00042929). In the Appendix we report on the stability

of our illustrative balanced growth path.



3. Concluding Remarks

Our model admits balanced growth paths with distinct population growth rates for

each type of worker and this suggests using such a model to characterize a path of

development for say England over the period 1701 to 1875. We might start with a

balanced growth path with the savings rate "low" and the growth rate of unskilled

workers "high". Development would be the path of transition to a new balanced

growth path with a higher savings rate and a lower rate of population growth

for unskilled workers (the demographic revolution). The principal outcome of the

transition would be the emergence of a relatively large middle class comprising

skilled workers and a "high" ratio of durable capital to the number of unskilled

workers. Maddison [2007] emphasizes high ratios of capital per worker as a central

mechanism of income improvement for workers. Mokyr [2009] reports "... the best

numbers we have today about the proportion of gross investments in GDP indicate

that it increased from 8.6 percent in the 1760s to 13.3 percent in the 1840s... the

increase in the investment ratio is consistent with the acceleration in the growth of

the labor force (new workers needed more equipment and houses to live in)..." (p.

260) Maddison has rates of accumulation of non-residential capital of about 5.5%

for the US from 1820 to 1913 (Table 8.3). Comparable rates for the UK are about

one half the US rates. Maddison has Japan accumulating capital at rates twice

those in the US from 1913 to 2003. (The capital he is considering is the machine

and structures type, net of human capital.) Other observers emphasize fertility

decline after 1850 being a major factor in contributing to the rise in the wage

of workers in England. Galor [2005] argues that fertility decline in England was

linked to parents aiming for quality in their o¤spring (educated children) instead

of quantity. This of course links labor-augmenting technical progress to fertility

decline.
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4. Appendix: Stability analysis

Consider the system

mt+1 =
(1 + �)

(1 + xt)

�
mt(1� �) + 


xt�1
1 + xt�1

�

nt+1 =
(1 + �)

(1 + xt)
(nt + �mt � 
xt)

xt = �A
�

�
(1� �)mt + 


xt�1
1 + xt�1

��
[nt + �mt � 
xt]1����

De�ne

yt+1 = xt

Then we have the system

F (yt+1;mt+1; nt+1; yt;mt; nt) = (1+yt+1)mt+1�mt(1��)(1+�)�
(1+�)
yt

1 + yt
= 0

G(yt+1;mt+1; nt+1; yt;mt; nt) = (1+yt+1)nt+1�(1+�)nt��(1+�)mt+
(1+�)yt+1 = 0

H(yt+1;mt+1; nt+1; yt;mt; nt) = yt+1 � �A�
�
(1� �)mt + 


yt
1 + yt

��
[nt + �mt � 
yt+1]1����

= 0:

And

F (yt+1;mt+1; nt+1; yt;mt; nt)� F (y�;m�; n�; y�;m�; n�) = 0

G(yt+1;mt+1; nt+1; yt;mt; nt)�G(y�;m�; n�; y�;m�; n�) = 0

H(yt+1;mt+1; nt+1; yt;mt; nt)�H(y�;m�; n�; y�;m�; n�) = 0:

Linearization gives

(yt+1 � y�)F �1 + (mt+1 �m�)F �2 + (nt+1 � n�)F �3+

(yt � y�)F �4 + (mt �m�)F �5 + (nt � n�)F �6 = 0



etc., where

F1 =
@F

@yt+1
= mt+1 and F �1 = m

�

F2 =
@F

@mt+1

= (1 + yt+1) and F �2 = 1 + y
�

F3 =
@F

@nt+1
= 0 and F �3 = 0

F4 =
@F

@yt
= �
(1 + �)

(1 + yt)2
and F �4 = �


(1 + �)

(1 + y�)2

F5 =
@F

@mt

= �(1� �)(1 + �); F6 =
@F

@nt
= 0

G�1 = n
� + 
(1 + �); G�2 = 0;G

�
3 = (1 + y

�); G�4 = 0;

G�5 = ��(1 + �); G�6 = �(1 + �)

H�
1 = 1 +

y�(1� �� �)

n� + �m� � 
y� ;H

�
2 = H

�
3 = 0;

H�
4 = �

�y�

(1� �)m� + 
y�

(1+y�)

�



(1 + y�)2

�

H�
5 = �(1� �)

�y�

(1� �)m� + 
y�

(1+y�)

� � (1� �� �)y
�

n� + �m� � 
y� ; H
�
6 =

�(1� �� �)y�
n� + �m� � 
y� :

The linearized system can then be expressed as24 yt+1 � y�
mt+1 �m�

nt+1 � n�

35 =
24 a11; a12; a13a21; a22; a23
a31; a32; a33

3524 yt � y�
mt �m�

nt � n�

35
for 24 a11; a12; a13a21; a22; a23

a31; a32; a33

35 =
24 F �1 ; F �2 ; F �3
G�1; G�2; G�3
H�
1 ; H

�
2 ; H

�
3

35�1 24 F �4 ; F �5 ; F �6
G�4; G�5; G�6
H�
4 ; H

�
5 ; H

�
6

35
For the following parameter values: � = 0:4; � = 0:2; � = 0:2; � = 0:02; A = 1:5;

� = 0:05; and 
 = 0:04; we obtain y�= 0.01956404816, m�= 0.01548326470, and

n�= 0.01965048531 and the aij matrix is:



24 �0:009575826535; �0:2560197266; �0:3921611416
�0:03835067024; �0:9465182502; 0:005955422587
0:0005677557603; �0:03484183591; �0:9771761469

35
The three eigen values for this matrix are

[�2:590730592� 10�12;�0:9457593519;�0:9875108718];

all less than unity in absolute value. Hence the system of three di¤erence equa-

tions is locally stable. This stability result accords with our brute force forward

recursions.


