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Abstract

A regime dependent VAR model is suggested that allows long memory (fractional integration) in
each of the observed regime states as well as the possibility of fractional cointegration. The model
is motivated by the dynamics of electricity prices where the transmission of power is subject to
occasional congestion periods. For a system of bilateral prices non-congestion means that electricity
prices are identical whereas congestion makes prices depart. Hence, the joint price dynamics implies
switching between a univariate price process under non-congestion and a bivariate price process
under congestion. At the same time, it is an empirical regularity that electricity prices tend to
show a high degree of long memory, and thus that prices may be fractionally cointegrated.
Analysis of Nord Pool data shows that even though the prices are identical under non-congestion,

the prices are not, in general, fractionally cointegrated in the congestion state. Hence, in most cases
price convergence is a property following from regime switching rather than a conventional error
correction mechanism. Finally, the suggested model is shown to deliver forecasts that are more
precise compared to competing models.
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1 Introduction

Over the past decade or so electricity markets have been strongly liberalized throughout the world.

In particular, the Nordic power market consisting of Norway, Sweden, Finland, and Denmark has

developed remarkably towards liberalization and the establishment of competitive market conditions,

and today this market serves as a model for the restructuring of other power markets. The Nordic

power market is characterized by a grid of physical exchanges of power across geographical regions

where the actual exchange is constrained by the �ow capacity. Naturally, this has implications for

the way prices are formed. When there are no bilateral capacity restrictions, there is a free �ow of

power and prices will be identical. On the other hand, when there is congestion prices tend to depart

to meet the supply and demand conditions subject to restricted access to power from other regions.

In order to model electricity prices it is thus natural to consider regime dependent price processes

re�ecting the presence or absence of �ow congestion. This particular feature of the market has been

addressed in recent work by Haldrup & Nielsen (2006a, b). Another important property of electricity

prices modeled in these works is the presence of long memory. Statistical tests strongly reject the

price series being I(0) and I(1), whereas I(d) processes with d being fractional (see Granger & Joyeux

(1980) and Hosking (1981)) better characterize the data.

The combination of fractional integration and regime switching gives rise to some challenges.

Granger & Ding (1996), Diebold & Inoue (2001), and Granger & Hyung (2004), among others, argue

that under certain conditions time series variables can spuriously have long memory when measured

in terms of their fractional order of integration, when in fact the series exhibit non-linear features such

as regime switching. In the model framework of Haldrup & Nielsen (2006a, b) separate long memory

price dynamics is allowed in adjacent power regions depending upon whether the power exchange is

subject to congestion or non-congestion. The model has some similarities to the Markov switching

model de�ned by Hamilton (1989). However, because the de�ning property of e.g. a non-congestion

state is that prices are identical, the state variable is observable as opposed to being a latent variable.

Thus our model is not of the traditional Hamilton (1989) Markov switching type, but we still refer to

it as a regime switching model since it does include switching between two separate regimes.

An important feature of the model is that the price processes in the di¤erent regimes can have

di¤erent degrees of long memory, which gives rise to a number of interesting possibilities. For instance,

consider the state with non-congestion and assume that the associated bivariate prices are fractionally

integrated of a given order. It follows that prices are fractionally cointegrated in this case, i.e. ex-

tending the notion of Granger (1981, 1986) and Engle & Granger (1987), in the sense that individual

prices are fractionally integrated but price di¤erences are identically zero. Thus, an extreme form

of cointegration occurs in this situation because the prices are identical and hence are governed by

exactly the same price shocks. The price behavior in the congestion state can (and typically will) be

very di¤erent. That is, the bivariate prices can be fractionally cointegrated in a more conventional way

or the prices can appear not to cointegrate. Hence, the model can potentially exhibit state dependent

fractional cointegration. By not appropriately conditioning on the congestion state, i.e. when having

a model with no regime switching, the full sample estimates are likely to be a convex combination of

the behavior in the individual states and hence misleading inference is likely to result.

The modeling approach used in Haldrup & Nielsen (2006b) is limited in the sense that the individual

2



price series and the relative price series are analyzed separately as univariate models. When the focus

of analysis is the potential (fractional) cointegration amongst multiple series a system approach is

more natural, but clearly also more complex in the present context given the particular features the

model should allow. In principle, the full set of price series should be modeled jointly, and, depending

upon the market conditions, should shrink to a limited number of price series re�ecting periods with

non-congestion at some grid points.

We distinguish between price areas and geographical regions. Each geographical region corresponds

to a physical exchange (e.g., West Denmark, South Norway, etc.) and is therefore constant over time.

On the other hand, a price area is de�ned simply as an area with the same price and may therefore

change over time. Thus, West Denmark and South Norway always constitute two geographical regions,

but in the case of non-congestion the same price prevails in both geographical regions and they hence

constitute just one price area in that case.

In this paper we model multiple price series jointly in a vector autoregression (VAR), which allows

for fractionally integrated time series that potentially cointegrate in the congestion state. In the non-

congestion state, prices are identical by de�nition and hence a univariate model for the price process is

applied in this particular regime. Thus, our VAR model for fractionally cointegrated processes allows

for the possibility of regime switching, and in particular di¤ers from other speci�cations o¤ered in the

literature in the sense that our VAR model collapses to a pseudo-univariate model when a speci�c

state arises. Our model is therefore directly motivated by the structure and functioning of the Nordic

power market.

There are di¤erent reasons why the identi�cation of separate price dynamics is important. The

operation of electricity markets is similar to the operation of �nancial markets with electricity power

derivatives being priced and traded in highly competitive markets and hence appropriate modeling

of both means and variances is crucial. Furthermore, the price dynamics is of interest with respect

to competition analysis of electricity markets where market delineation is a central issue, see e.g.

Sherman (1989) and Motta (2004). Even though most power markets are highly liberalized there

is still scope for regulating authorities to closely follow the market behavior, see also Fabra & Toro

(2005). Under non-congestion there is obviously a single price existing in the market and the relevant

market is de�ned as the geographical regions with identical prices. However, when there is congestion

it is of interest to follow the price dynamics closely because suppliers can have a dominating position.

The market delineation thus becomes less straightforward in this case. If the price dynamics appears

to be very di¤erent there is scope for further examination of the market conditions by regulatory

authorities.

In our empirical analysis we �nd that generally the behavior of electricity prices in geographical

price regions are di¤erent across states. The analysis shows that it is important to condition on

congestion/non-congestion as non-switching models can generate misleading conclusions with regard

to the price dynamics. Three leading types of misclassi�cation of the model dynamics may arise. First,

non-switching models may indicate that the price series are fractionally cointegrated, whereas when

conditioning on states this is only the case in the non-congestion state (in which prices are identical by

de�nition). Secondly, the non-switching model could indicate that there is no fractional cointegration

when in fact there is cointegration in the non-congestion state. Finally, there is the possibility of

fractional cointegration in both regimes, but not in the non-switching model. Conditioning on the
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states is also important when looking at the adjustment coe¢ cients as the non-switching models can

lead to wrong conclusions about the convergence of regional prices towards equilibrium. One important

�nding of this paper is that fractional cointegration does not in general occur in the congestion state,

and when it does the mechanism is relatively weak. Hence price convergence of geograhical prices is

a result of regime switching rather than error correction in a more conventional sense.

The remainder of the paper is structured as follows: We next o¤er a brief description of the

structure of the Nordic electricity market. Section 3 introduces the data and argues for the importance

of allowing for long memory, regime switching, and seasonality when building a model to describe the

regional price processes. In section 4 the VAR modeling framework with long memory and regime

switching is presented. In section 5 the empirical results are presented, including some forecasting

results which generally favor the suggested model. Section 6 concludes.

2 The operation of the Nordic power market

Within the Nordic countries (Denmark, Finland, Norway, and Sweden), major electricity reforms

were implemented during the 1990s. The deregulation process started in Norway in 1991, continued

in Sweden 1996, in Finland 1998, and was �nally completed in Denmark in 2000. As part of the

liberalization, the national electricity markets were opened up for cross-border trade by establishment

of a common power exchange, Nord Pool. Today all member countries of the Nordic power market

have adapted to the new competitive environment and the Nordic exchange serves as a model for the

restructuring of other power markets throughout the world.1

The per capita consumption of electricity is very high in Norway and Sweden, slightly lower in

Finland and at EU average in Denmark. The relatively high consumption level in the Nordic countries

is caused by a relatively electricity intensive industrial production, a cold climate, and extensive use of

electric heating in homes and o¢ ces, especially in Norway and Sweden. The sources of electricity power

production are rather mixed in the Nordic area as a whole. The major energy source is hydropower

supplying approximately 65% of total electricity in years with normal precipitation. On the national

level the power generation systems di¤er signi�cantly and are generally dominated by one or two

technologies. In Norway the share of hydropower is close to 100%, in Sweden it is close to 50%,

in Finland around 15% and in Denmark 0%. With respect to nuclear power the share is 50% in

Sweden, 30% in Finland, and 0% in Denmark and Norway. Power generation from fossil fuels is of

major signi�cance in Denmark and Finland, minor in Sweden, and close to non-existent in Norway.

In Denmark 15-20% of the power supply originates from wind power turbines.2

Because hydropower production is mainly found in the northern parts of the Nordic power web

and thermal power plants are located in the south, the relatively cheap hydropower generation is

transmitted to the heavily populated southern regions, which of course requires a well established

power grid transmission capacity to facilitate the �ow. When the reservoir levels are adequate, the

less costly hydropower production causes low spot prices. In these cases national and cross-border

transmission systems will be used to their capacity in order to level out price discrepancies across

1For a detailed description of the Nordic power market, see Nord Pool (2003a) or Amundsen & Bergman (2007).
2 Increasing the relative production of electricity by renewable energy sources has considerable political focus in

Denmark. According to o¢ cial energy plans 50% of the Danish electricity production will come from wind power in
2030.

4



regions. On the other hand, when reservoir levels are low there will be a net �ow from south to north,

and the market will see relatively high prices for thermally generated electricity.

From an institutional point of view there is a common Nordic market for electricity; however, even

though key market institutions are common this does not mean that the Nordic electricity market is an

integrated market in the sense that �the law of one price�applies. The reason is that the transmission

of power is subject to possible capacity constraints. The Nordic electricity market constitutes a number

of distinct geographical regions di¤erent from the countries themselves and several price areas may

coexist. Whenever the relevant interconnector capacity is insu¢ cient, the Nord Pool area is divided

into two or more price areas. The separate power regions consist of Sweden (SWE), Finland (FIN),

West Denmark (WDK), East Denmark (EDK), North Norway (NNO), Mid Norway (MNO), and

South Norway (SNO). Thus Denmark and Norway are each divided into multiple geographical regions

in Nord Pool.3 This division re�ects the grid of physical exchanges of power and the bidding areas

with respect to the pricing of electricity as we shall explain shortly. Not all physical exchanges are

connected to each other and only bilateral connections exist. Figure 1 displays the actual electricity

exchange points and interconnections.

Figure 1 about here

The power spot market4 operated by Nord Pool Spot A/S is an exchange where market participants

trade power contracts for physical delivery the next day. This is referred to as a day-ahead market.

The spot market is based on an auction with bids for purchase and sale of power contracts of one

hour duration covering the 24 hours of the following day. At the deadline for the collection of all buy

and sell orders the information is gathered into aggregate supply and demand curves for each power

delivery hour. From these supply and demand curves the equilibrium spot price - referred to as the

system price - is calculated.5 Therefore, the system price is determined under the assumption that

no transmission constraint is binding, and thus in a situation where no grid congestions exist across

neighboring interconnectors there will be a single identical price across the areas with no congestions.

The actual trade is not necessarily carried out at the system price. When there is insu¢ cient

transmission capacity in a sector of the grid, a grid congestion will arise and the market system will

establish di¤erent price areas across the geographical division of the Nord Pool area. The Nordic

market is then partitioned into separate bidding areas which therefore become separate price areas

when the contractual �ow between bidding areas exceeds the capacity allocated by the transmission

system operators for spot contracts. Within each price area the buyers pay, and the generators are paid,

the corresponding area price. The di¤erence between the area prices in two adjacent and connected

price areas determines the congestion charge. Because separate prices may coexist depending upon

regional supply and demand conditions, the relevant market de�nition will vary with time. In practice,

several price area combinations will occur. Some hours there will only be a single price area (given by

the system price), other hours there will be two or more price areas.

3For the purpose of analysis of the Norwegian regions, only the SNO region is considered in the present paper.
4Since only the spot market will be relevant for the present study, only this market will be described here, see also

Nord Pool (2003b). Nord Pool (2003c) describes the futures and forward markets of the Nordic power exchange which
are used for price hedging and risk management.

5The system price is the reference price in the �nancial power contracts like futures, forwards, and options traded at
Nord Pool.
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3 Data

The data used in this paper are (log transformed) hourly electricity spot prices for the Nord Pool area:

West Denmark (WDK), East Denmark (EDK), South Norway (SNO), Sweden (SWE), and Finland

(FIN).6 The data set is the same as that analyzed in Haldrup & Nielsen (2006a, b) and covers the

period 3 January 2000 to 25 October 2003, including weekends and holidays. For EDK the sample

period starts 1 October 2000. The data series are displayed in Figure 2. Some stylized facts about

the data are reported in Haldrup & Nielsen (2006b).

Figure 2 about here

A pronounced characteristic of electricity markets is the abrupt and generally unanticipated ex-

treme changes in spot electricity prices, suggesting fat-tailed distributions, see Escribano, Peña &

Villaplana (2002), Haldrup & Nielsen (2006a, b), and Koopman, Ooms & Carnero (2007). In Haldrup

& Nielsen (2006b) a range of tests document that prices are neither I(0) nor I(1). Estimating the

memory parameter for fractionally integrated, FI(d), processes shows that the series generally exhibit

long memory with d in the range 0.31-0.52 with the SNO area being most persistent and in fact being

nonstationary. The remaining areas have point estimates of d in the stationary region. It should be

noted, however, that these estimates do not allow for regime dependence.

Another important aspect of electricity prices is the very strong seasonal behavior characterizing

the series. Seasonality is mainly driven from the demand side and appears as seasonal variation within

the day, within the week, and over the year. However, the supply side also contributes to seasonal

variation as electricity production is highly dependent upon weather conditions. In particular, the

seasonal variation in precipitation a¤ects water reservoir levels in the generation of hydropower, and

seasonal variation in wind conditions also plays an increasing role due to the growing number of wind

turbines, especially in West Denmark.

Figure 3 about here

In Figure 3 scatter plots of log prices for connected Nord Pool areas are shown. When there

are no capacity contraints across neigboring regions the prices will be identical, whereas congestion

makes prices di¤er. Observations on the 45� line therefore represent non-congestion hours, whereas

observations o¤ the 45� line represent congestion hours. It is especially this marked di¤erence in

observations that motivates the present analysis.

4 Modeling of regime dependent long memory in spot electricity
prices

In this section, we present our econometric model which is speci�cally motivated by the main properties

and features of the Nordic spot electricity market. In particular, based on the structure of Nord Pool

described in section 2, we include the switching between congestion and non-congestion regimes with

state dependent dynamics. The model should also re�ect the rich dynamic features of the data in the

form of seasonality and long memory.
6Mid and North Norway are also member areas of Nord Pool, but are left out from the present analysis because these

areas coincide with South Norway for most of the year.

6



4.1 A univariate model

We here brie�y discuss the univariate model setup used in Haldrup & Nielsen (2006b). The main

features that the estimation model should allow include seasonality, long memory, and regime switching

of the type described above. Assume that individual electricity prices across connected regions are

fractionally integrated in the non-congestion state. This means that an extreme form of fractional

cointegration will exist in this state because the prices are identical in the two areas and thus price

di¤erences will be identically zero. On the other hand, the behavior of the two individual price series

in the congestion state can be very di¤erent. If prices are compared without considering the di¤erent

regime possibilities it is unclear what to expect from the data. However, the mixing of the two

processes is likely to produce price series with a behavior that is a convex combination of the two state

processes.

Consider the following model speci�cation, which we denote a regime switching multiplicative

RS-SARFIMA7 model

Ast (L)
�
1� astL24

�
�dstyt = "st;t; "st;t � NID

�
0; �2st

�
: (1)

Here, �dst is the fractional di¤erence operator de�ned by its binomial expansion in the lag operator

(see e.g. Hosking (1981)), Ast (L) is a lag polynomial, and st 2 fc; ncg denotes the regime (c:
congestion, nc: non-congestion), determined by a Markov chain with transition probabilities

P =

"
p11 1� p11

1� p22 p22

#
: (2)

Thus, for example, p11 denotes the probability that a congestion state will follow a congestion state,

i.e. Pr (st = cjst�1 = c). Note that because identical prices mean that we are in a non-congestion
state, all regimes are observable, which contrasts the standard Markov switching model of Hamilton

(1989) where the regimes follow a latent Markov process.

The (univariate) series yt may denote one of the two individual log price series or the associated

log relative price. The series yt has been corrected for deterministic seasonality prior to the estimation

whilst allowing interaction with the two observable regimes, that is, the coe¢ cients on the dummy

variables are allowed to di¤er across states. When yt denotes a log relative price, all parameters are

put to zero when st = nc; including �2nc. Estimation of the above model is by conditional maximum

likelihood and is discussed in detail in Haldrup & Nielsen (2006b).

4.2 A bivariate model

A disadvantage of the model described above is that parameters are estimated separately for the three

price series (two individual prices and one relative price), when in fact the three price series to a large

extent are governed by the same price shocks. We therefore consider the following fractional error

7RS-SARFIMA: Regime Switching Seasonal Autoregressive Fractionally Integrated Moving Average.
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correction model speci�cation for a bivariate regime switching vector stochastic process

�dst

 
p1t

p2t

!
=

 
�1

�2

!
�
st (p1;t�1 � p2;t�1) +

kX
i=1

�st;i�
dst�i

 
p1;t�i

p2;t�i

!
+ "st;t; (3)

where st 2 fc; ncg, "c;t � NID2(0;
), "nc;t � (1; 1)0NID1(0; �2), 
nc � 0, 
c is a free parameter, and

�c;i =

"
�c11;i �c12;i
�c21;i �c22;i

#
; �nc;i =

"
�nc11;i �nc12;i
�nc11;i �nc12;i

#
;

such that the lagged fractional di¤erences re�ect whether a particular observation is associated with a

congestion or non-congestion state. Thus, dnc is the common fractional integration order in the non-

congestion state, whereas dc is the common integration order of the two price areas in the congestion

state. Note that correlation between the two shocks in the congestion state is accommodated through

the o¤-diagonal elements of 
. However, "c;t and "nc;t are not correlated since both are never present

at the same time.

Notice that the non-congestion state bilateral prices are identical, p1t = p2t = pt; and hence the

bivariate setup collapses to a pseudo-univariate model, i.e.

�dncpt =

kX
i=1

�
�nc11;i;�

nc
12;i

�
�dst�i

 
p1;t�i

p2;t�i

!
+ "nc;t: (4)

Essentially, the price process switches between being generated from the univariate and bivariate

models, where switching takes place in accordance with the transition probabilities in (2).

We limit our study to the bivariate setup and disregard potential spill-overs from the other areas.

From a theoretical point of view, it appears conceptually possible to extend the present bivariate model

to the multivariate case, and thereby model spill-overs using more advanced dynamics. However, from a

computational point of view this appears infeasible in practice as the number of regimes, and thereby

the number of parameters, grows very fast. Indeed, in a multivariate setup with M geographical

regions, there are 2M�1 di¤erent regimes.

A number of remarks are in order. Consider �rst the non-congestion state. In this regime the two

price series are forced to be governed by the same process (4) and hence any conditional forecast for

this regime will remain identical for both price series. This feature is not captured in the univariate

model of Haldrup & Nielsen (2006b) and indeed requires our multivariate setup. Thus, in particular,

forecasts of each price series in the non-congestion state may appear di¤erent when based on (1),

whereas forecasts based on (3) or (4) will be identical for the two price series in the non-congestion

state. Note that in the non-congestion state the prices are fractionally integrated of order dnc and

fractionally cointegrated in the sense that the two series are identical. This notion of (fractional)

cointegration is somewhat di¤erent than originally suggested by Granger (1981) and Engle & Granger

(1987).

Next, consider the congestion regime. We will discriminate between two situations, i.e. when p1t
and p2t cointegrate or do not cointegrate. (i) Assume �rst the situation with fractional cointegration.

In this case the individual price series are FI(dc), but the log relative price is FI(
c), where 
c < dc:
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(ii) When prices do not cointegrate in the congestion regime, i.e. 
c � dc, (�1; �2)
0 has no obvious

interpretation in terms of adjustment parameters.

Under congestion the adjustment coe¢ cients, (�1; �2)0; may give an indication of whether the

speci�c price areas adjust towards equilibrium. Speci�cally, if �1 > 0 then p1t is moving away from

equilibrium (non-congestion), whereas if �2 > 0 then p2t is moving towards equilibrium. Note that the

full stability of the model requires that the entire system dynamics is included in the calculation, but

in any case the values of �1 and �2 give a rough idea of the system dynamics under a ceteris paribus

assumption. An alternative interpretation of the adjustment coe¢ cients follows from the market setup

and varying costs of electricity production in di¤erent geographical regions. For example, if there is

no congestion between SNO and WDK, prices are identical and electricity �ows from the cheaper area

(usually SNO because of the hydropower) to the more expensive area (WDK). However, if there is

congestion, prices in WDK will be higher re�ecting the higher costs of electricity production. This

increase in price in WDK corresponds to �1 > 0 in the WDK-SNO bivariate model, i.e. a move away

from equilibrium. Importantly, this is not due to system instability but rather re�ects that electricity

is more expensive to produce in WDK compared to SNO. Hence the estimated error correction model

need not be given a standard interpretation.

The model analyzed in this paper is unique in the literature on regime switching and/or (fraction-

ally) cointegrated models since it collapses to a pseudo-univariate model in one of the regimes. The

error correction model speci�cation (3) re�ects the particular structure and features of the market

design. For discussions of representation theory in the context of (non-switching) fractional cointe-

gration, see Granger (1986), Davidson (2002), Robinson & Yajima (2002), Davidson, Peel & Byers

(2006), and Johansen (2008).

4.3 Estimation

In our case, congestion and non-congestion are observed states such that regimes are known, and the

maximum likelihood estimates of the transition probabilities in (2) are

p̂11 =
nc;c

nc;c + nc;nc
; p̂22 =

nnc;nc
nnc;c + nnc;nc

; (5)

where nij is the number of times we observe regime i followed by regime j for i; j 2 fc; ncg :
Estimation of the remaining parameters of the two states is done by quasi conditional maximum

likelihood. The regime-speci�c log-likelihood functions, omitting the constant, are

lc (dc; �c) = �
P
t 1 fst = cg

2
log j
j � 1

2

X
t

trace
�

�1"st;t1 fst = cg "0st;t

�
;

lnc (dnc; �nc) = �
P
t 1 fst = ncg

2
log �2 � 1

2

X
t

�
��2"st;t1 fst = ncg "0st;t

�
;

where 1fAg is the indicator function of the event A. The full-sample log-likelihood function is given
by

l (dc; dnc; �) = �
T

2
log (2�) + lc (dc; �c) + lnc (dnc; �nc) ; (6)
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Table 1: Estimated transition probabilities (mean durations of states in hours)
Link p̂11 (c! c) p̂12 (c! nc) p̂21 (nc! c) p̂22 (nc! nc)

EDK-SWE 0:7848 (4:65) 0:2152 0:0131 0:9869 (76:57)
WDK-SWE 0:8216 (5:60) 0:1784 0:1259 0:8740 (7:94)
WDK-SNO 0:9247 (13:28) 0:0753 0:1221 0:8779 (8:19)
SNO-SWE 0:9478 (19:16) 0:0523 0:0462 0:9538 (21:64)
SWE-FIN 0:8505 (6:51) 0:1495 0:0210 0:9790 (48:78)

Notes: The table presents estimated transition probabilities for each bivariate model based on (5). Numbers in paren-
theses are estimated mean durations of states (in hours).

which is maximized numerically.8

Finally, we remark that our model framework assumes that states are observable and that the

cointegrating vector in the congestion state, � = (1;�1), is given. Therefore, asymptotic distribution
theory for the remaining parameters will be standard under suitable regularity conditions on the

errors "st;t, such as serial independence and moment conditions, see e.g. Tanaka (1999). In particular,

Gaussianity of the errors is not a necessary condition for the asymptotic distribution theory, but is

used only to derive the likelihood function. This property of the estimation methodology is especially

important in dealing with the fat tails present in the data.

5 Empirical results

Prior to estimation, each log price series had deterministic seasonality removed by regression on a

constant, a time trend, dummy variables for hour-of-day, day-of-week, month-of-year, and a holiday

dummy. For the switching models the parameter estimates of the deterministics are allowed to di¤er

across states. We include lags 1; :::; 8, and 12 to capture within-the-day e¤ects, and we also include a

24th lag to capture the daily stochastic seasonality.9

5.1 Estimation of transition dynamics

Since the states are observable, estimates of the transition probabilities for each state are easily

calculated according to (5) and are reported in Table 1. It is clear that some grid points are more

subject to congestion than others. This fact may be explained by demand and supply �uctuations,

but there is also the possibility that congestion may be caused by exploitation of market power and

hence calling for further economic analysis of the sources of congestion.

The estimated transition probabilities indicate a high degree of persistence of the states. The

probability of staying in the congestion regime, p̂11, is highest for the grid point SNO-SWE, i.e.

0:9478, whereas it is lowest for EDK-SWE link, 0:7848. This corresponds to a mean duration of 19:16

and 4:65 hours, respectively. In general, the probability of staying in the non-congestion regime, p̂22,

8We have used the fractional integration estimates from (1) as our starting values. For the remaining parameters,
i.e. autoregressive and variance-covariance terms etc., we �nd the starting values by letting the fractional integration
parameters be �xed and maximizing the log-likelihood with respect to the remaining parameters. We did not notice
signi�cant dependence on the choice of starting values in any of our models.

9Note that for the univariate model (1) we have here chosen a richer dynamics compared to Haldrup & Nielsen
(2006b), and hence the estimation results are not exactly identical.
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Table 2: Estimates of the fractional integration and cointegration parameters
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 
̂ d̂nc1 d̂nc2 
̂nc d̂c1 d̂c2 
̂c

Panel A: EDK-SWE
Univariate 0:42

(0:014)
0:47
(0:015)

0:21
(0:017)

0:47
(0:015)

0:48
(0:014)

0 0:01
(0:016)

�0:02
(0:015)

0:57
(0:046)

VAR 0:57
(0:009)

0:23
(0:047)

0:46
(0:003)

0 0:11
(0:004)

0:00
(0:006)

Panel B: WDK-SWE
Univariate 0:28

(0:018)
0:43
(0:014)

0:30
(0:017)

0:29
(0:021)

0:34
(0:017)

0 0:28
(0:021)

0:51
(0:022)

0:33
(0:019)

VAR 0:61
(0:019)

0:55
(0:009)

0:25
(0:018)

0 0:32
(0:023)

0:10
(0:026)

Panel C: WDK-SNO
Univariate 0:28

(0:018)
0:54
(0:014)

0:30
(0:016)

0:25
(0:035)

0:33
(0:014)

0 0:29
(0:020)

0:56
(0:020)

0:33
(0:017)

VAR 0:65
(0:011)

0:30
(0:005)

0:30
(0:004)

0 0:46
(0:004)

0:30
(0:006)

Panel D: SNO-SWE
Univariate 0:54

(0:014)
0:43
(0:014)

0:31
(0:015)

0:52
(0:017)

0:49
(0:016)

0 0:36
(0:025)

0:22
(0:022)

0:33
(0:018)

VAR 0:67
(0:007)

0:59
(0:010)

0:65
(0:003)

0 0:26
(0:004)

0:24
(0:015)

Panel E: SWE-FIN
Univariate 0:43

(0:014)
0:39
(0:013)

0:30
(0:017)

0:41
(0:014)

0:43
(0:013)

0 0:40
(0:012)

0:39
(0:013)

0:36
(0:022)

VAR 0:61
(0:008)

0:28
(0:014)

0:35
(0:005)

0 0:03
(0:003)

0:02
(0:007)

Notes: The table presents quasi maximum likelihood estimates for the models (1) and (3). Subscripts denote the
geographical region and superscripts denote the state. Note that d1 = d2 = d is assumed in the VAR model (3). Robust
standard errors based on the sandwich formula are given in parentheses.

is higher, estimated at 0:8740� 0:9869, corresponding to mean durations of 7:94� 76:57 hours.

5.2 Estimation of fractional integration and cointegration parameters

Table 2 presents estimates of the fractional integration order d for a number of di¤erent cases. The

models estimated under the heading �No switching�use pooled data, i.e. the data is not separated

by congestion and non-congestion periods. The results presented under the heading �Switching�refer

to the corresponding estimates when data is partitioned into congestion and non-congestion periods,

where we use superscripts c or nc to denote estimates under the congestion and non-congestion regimes,

respectively. �Univariate�and �VAR�refer to the models (1) and (3), respectively. The estimates of

d1 and d2 are the fractional orders for the �rst and second regions, respectively, whereas the estimate


 is the fractional integration order of the log relative price. Note that, for the swiching model,


nc � 0 in the non-congestion state because the individual price series are identical and hence the

series are fractionally cointegrated in an extreme form. Furthermore, observe that in the VAR model

it is imposed that d1 = d2 = d.

Figures 4 and 5 about here
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Kernel spectral density estimates of the residuals from the non-switching and switching models

together with the observed (deseasonalized) price series are presented in Figures 4 and 5, respectively.

Generally, when comparing the residuals for both the non-switching and switching models with the

observed counterparts, the long memory feature of the speci�c area prices appears to be appropriately

captured by the models. For the WDK-SNO connection, however, there seems to be some long

memory left in the residuals of the SNO area price for the switching model. Possibly this stems

from forcing the fractional integration orders to be identical in the congestion regime, and thereby

estimating an integration order that is lower than the individual fractional integration order of SNO.

Another justi�cation for the regime switching model is that there are fewer outliers in the residuals

when compared to the residuals from the non-switching models, but tails are still more heavy than

normally distributed residuals. However, as discussed in section 4.3 this is not critical to the estimation

procedure.

Consider now the East Denmark-Sweden connection exhibited in Panel A of Table 2, and consider

initially the pooled data set without regime switching. For the univariate model the point estimates

of d for the two regions are very similar, 0:42 and 0:47, and the estimate of 
 associated with the

relative price is somewhat lower, i.e. 0:21. When we use the VAR model the point estimate of d for

the individual price series is 0:57 and the estimate of 
 is 0:23. The results indicate that when data

is not classi�ed according to regimes, there is evidence of fractional cointegration between the series.

Now, the question is whether this result is caused by the non-congestion state dominating the sample

or whether both regimes contribute to the cointegration �nding. In the regime switching case, the

non-congestion estimates clearly indicate cointegration (as expected) with point estimates of dnc at

0:46 for the VAR model and similar point estimates for the univariate model. In the congestion case,

the regime switching results for the univariate model do not make sense because 
̂c > maxfd̂c1; d̂c2g.
This �nding may be caused by adopting a univariate modeling approach when joint modeling is more

appropriate. In fact, for the VAR case the point estimate of dc is 0:11 and there is indication of (weak)

fractional cointegration since the relative price is FI(0).

The West Denmark-Sweden link in Panel B is an interesting case where there seems to be no frac-

tional cointegration in the non-switching models. However, looking at the models where we condition

on congestion/non-congestion, we see that there is fractional cointegration in the non-congestion state.

In the VAR model, there is in fact cointegration in both states. That is, the results from the non-

switching models (which are clearly misspeci�ed) are thus some combination of their regime switching

counterparts. It is clear that by not taking regime switching into account we falsely conclude that

there is no sign of fractional cointegration, when in fact regime dependent fractional cointegration

exists.

The West Denmark-South Norway link with estimates in Panel C are similar to the West Denmark-

Sweden link in Panel B, so (weak) fractional cointegration occurs in the congestion state in the VAR

model. Note that there is also evidence of fractional cointegration for the VAR model when not

conditioning on regime switching.

As seen from Panel D, presenting estimates for the link between South Norway and Sweden,

no (or extremely weak) evidence of fractional cointegration is found for the models without regime

switching. However, when conditioning on states, it is seen that it is only in the non-congestion

state that cointegration occurs. Interestingly, based on the VAR model, prices in this state seem

12



Table 3: Estimated adjustment coe¢ cients
No switching Switching

Series �̂1 �̂2 �̂1 �̂2
EDK-SWE 4:5295�

(0:2789)
0:0289
(0:1965)

1:4269�
(0:2267)

�0:1990�
(0:1007)

WDK-SWE �0:3163�
(0:0184)

0:0049
(0:0043)

0:0135
(0:0378)

�0:0277�
(0:0088)

WDK-SNO �0:4309�
(0:0213)

0:0042
(0:0035)

0:1338�
(0:0149)

�0:1053�
(0:0032)

SNO-SWE �0:2373
(0:1375)

3:2256�
(0:1952)

0:6729�
(0:0820)

0:0754
(0:1128)

SWE-FIN 0:3699
(0:4661)

�5:7785�
(0:5639)

1:6996�
(0:0971)

�0:0365
(0:1545)

Notes: Subscripts denote the geographical region. Numbers in bold face refer to situations with indication of fractional
cointegration based on the VAR estimates of d and 
 reported in Table 2. Robust standard errors are given in parentheses.
An asterisk denotes signi�cance at the 5% level.

non-stationary whilst relative prices are stationary.

Finally, for the Sweden-Finland link in Panel E there is some evidence of fractional cointegration

in the non-switching models. For both the univariate and VAR models there is cointegration in the

non-congestion state, whereas there is no cointegration (univariate model) or all series seem to be I(0)

(VAR model) in the congestion state. Hence, the non-congestion state seems to dominate the pooled

data set.

5.3 Estimation of adjustment coe¢ cients

An advantage of the regime switching VAR model (3)-(4) compared to univariate models is that es-

timates of the adjustment coe¢ cients in the congestion state, i.e. the parameters (�1; �2)
0, can be

obtained. The adjustment coe¢ cients indicate (ceteris paribus) the price move directions in response

to a particular gap between the area prices under congestion. An alternative interpretation of the ad-

justment coe¢ cients can be given in our model compared to standard error correction models where

price changes respond to disequilibrium. This follows from the market setup and varying costs of elec-

tricity production in di¤erent geographical regions. For example, if an inexpensive electricity supply

from another geographical region is suddenly stopped due to congestion, prices are expected to be

higher until non-congestion is restored, which may result in adjustment parameters indicating a move

away from equilibrium de�ned as the case where area prices are identical. Parameter interpretation

is of course an issue here, because we force the cointegrating vector to be (1;�1) and the parame-
ters �1; �2, and 
 do not have the usual interpretation in the congestion state if in fact there is no

cointegration present in that state.

In Table 3 the estimated adjustment coe¢ cients (�̂1; �̂2)
0 associated with the VAR models are

reported for the switching and non-switching cases. Numbers in boldface font indicate situations

where, based upon the d and 
 estimates, some degree of fractional cointegration is suggested by the

results in Table 2. In the regime switching models, boldface indicates situations where there appears

to be cointegration in the congestion state.

Consider �rst the East Denmark-Sweden connection. When we do not condition on regime switch-

ing, prices in East Denmark move away from the steady state solution with identical area prices,

whereas Swedish price adjustment appears to be insigni�cant. When we condition on regime switch-
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ing, prices in both East Denmark and Sweden appear to depart from steady state. This contradicts

the standard interpretation of error correction adjustment. Recall that if there is no congestion be-

tween EDK and SWE, prices are identical and electricity �ows from the cheaper area (usually SWE

because of the hydropower and nuclear electricity production) to the more expensive area (usually

EDK because of the majority of electricity production stemming from thermal plants). Therefore,

when congestion occurs, prices in East Denmark will usually be higher and thus re�ect the higher

marginal cost of electricity production in East Denmark compared to Sweden. This increase in price

in East Denmark corresponds to �1 > 0 in the EDK-SWE bivariate model, i.e. a move away from

equilibrium. Importantly, this is not due to system instability but rather due to electricity being more

expensive to produce in East Denmark compared to Sweden.

Next, we look at the West Denmark-Sweden link. In this case, no cointegration was found for

the non-switching model and for the switching case there was cointegration in both states for the

VAR model. Conditioning on regime switching both prices tend to depart and thus further extending

the price gap. However, the adjustment seems weak in this case and only the Swedish adjustment

parameter is signi�cant.

For the West Denmark-South Norway connection we found signs of cointegration for both the

non-switching and switching models. When not conditioning on regime switching the adjustments

parameters have the conventional signs, albeit the adjustment coe¢ cient for the South Norway area

is small and insigni�cant. However, this �nding may be spurious because, when we condition on

regimes, both area prices depart from equilibrium and hence the price gap is widened following the

argument previously given: When congestion occurs, prices in West Denmark will be higher re�ecting

the higher costs of electricity production. If demand continues to increase in West Denmark during

the congestion more expensive generators will be taken into use and thus increasing marginal cost

of production even further. This increase in price in West Denmark corresponds to �1 > 0 in the

WDK-SNO bivariate model, i.e. a further increase in the price gap. Again, this is not due to system

instability but rather due to electricity being more expensive to produce in West Denmark compared

to South Norway.

The South Norway-Sweden and Sweden-Finland cases are similar in the sense that no cointegration

was found in the congestion state, and therefore the interpretation of the adjustment coe¢ cients is

less interesting.

To sum up, appropriate modeling of the regime switching feature is seen to have a major impact on

the electricity price dynamics. In addition to giving estimates of the adjustment parameters speci�c to

particular states, conditioning on congestion or non-congestion allows interpretation of the adjustment

coe¢ cients, which is di¤erent from standard error correction models. In particular, we have found

evidence that, when fractional cointegration takes place, the price gap is widened under congestion.

All in all, what ensures price convergence is in fact the switching mechanism towards non-congestion

where prices are identical rather than error correction in a more conventional sense during congestion

periods.
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5.4 Forecasting spot electricity prices

In this section, we consider forecasting of spot electricity prices for up to 24 hours. Because the

calculation of analytical forecast bands for the k-step ahead forecast requires 2k+1 steps, it is not

computationally possible to do the forecasting exercise analytically (although the formulae are avail-

able, e.g. Davidson (2004)). Therefore, we consider Monte Carlo stochastic simulation forecasting,

see Davidson (2004). The method implemented here di¤ers from the one used by Davidson (2004)

because our states are observable. Our forecast simulation di¤ers from the setup used in Haldrup

& Nielsen (2006b), where the individual price series are estimated separately, and therefore leads to

di¤erent forecasts when in fact the individual prices under non-congestion are governed by exactly the

same price shocks.

The forecasting exercise is implemented by simulating the model 24 periods ahead assuming inde-

pendent draws from the estimated residuals. The states are also simulated 24 periods ahead using the

estimated transition probabilities in Table 1. The median and the 95% forecast error bands for each

period are extracted from 10; 000 simulated forecasts.

Figures 6-10 about here

Figures 6-10 display the forecasting results for both the univariate model and the VAR model.

Each �gure contains 2 panels displaying the results for the non-switching model and 2 panels for the

switching model. In each panel, the diamonds depict the (deseasonalized) observed values covering

the last 24 in-sample observations as well as 24 out-of-sample observations. Each panel also has three

solid and three dotted lines. The three solid lines are median forecasts and 95% error bands for the

VAR model, whereas the three dotted lines are the equivalent forecasts and bands for the univariate

model. Notice that we have displayed the non-switching and switching models in separate panels

because the (deseasonalized) observed values are di¤erent for these two cases. In Table 4 the mean

absolute forecast errors (MAFE) for the di¤erent models are reported where the forecasted values are

the simulated median price forecasts. Mean squared forecast errors were also calculated and yielded

qualitatively very similar results which are not presented.

Figure 6 displays the forecasts for the East Denmark-Sweden physical link. First, considering the

non-switching models, we observe that the forecasts from the univariate model slightly outperform the

VAR model, which is also con�rmed in terms of MAFE when looking at Panel A of Table 4. However,

the con�dence bands for the VAR model are tighter than for the univariate model. Focusing on the

regime switching models, the median forecasts for both models are very close to the actually observed

(deseasonalized) values. The 95% error bands for the EDK log price series are tighter for the VAR

model, and for the SWE log price series they are better initially and similar for later hours. The

MAFE for the switching VAR model is smaller than that of the misspeci�ed non-switching model.

In Figure 7 the forecasts for the West Denmark-Sweden physical link are displayed. Overall, we

notice again that the 95% error bands are tighter for the bivariate model than for the univariate model.

In the non-switching case neither model performs particularly well for the WDK price series, but for

the SWE price series they both perform considerably better. This is also con�rmed when looking

at Panel B of Table 4. In the regime switching case, the VAR model outperforms the univariate

model for the �rst 5 hours for the WDK price series and is pretty close to the actual observed series.
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Table 4: Mean absolute forecast error (MAFE)
No switching Switching

Univariate VAR Univariate VAR
Panel A: EDK-SWE
EDK 0:0639 0:0882 0:0555 0:0520
SWE 0:0502 0:0645 0:0559 0:0555

Panel B: WDK-SWE
WDK 0:2518 0:2256 0:1945 0:1929
SWE 0:0538 0:0502 0:2862 0:1165

Panel C: WDK-SNO
WDK 0:2518 0:4847 0:2546 0:2119
SNO 0:0359 0:0342 0:3405 0:1105

Panel D: SNO-SWE
SNO 0:0368 0:0352 0:0810 0:0809
SWE 0:0538 0:1523 0:1225 0:0909

Panel E: SWE-FIN
SWE 0:0549 0:0521 0:0408 0:0406
FIN 0:0833 0:0990 0:0845 0:0747

Subsequently, it degenerates to its unconditional mean. Regarding the Swedish price series none of

the two models perform adequately which is also con�rmed in Panel B of Table 4.

Figure 8 considers the West Denmark-South Norway physical link. In the non-switching case the

VAR model produces very good forecasts of the South Norway price series and slightly outperforms

the univariate model. When considering the switching case the VAR model clearly outperforms the

univariate model, see also Panel C of Table 4.

Figure 9 displays the forecast results for the South Norway-Sweden physical link. Without regime

switching the VAR model underestimates the observed price series for Sweden, whereas for the uni-

variate model the median forecast is close to the actually observed price series. With regime switching

both models are very close to the actually observed price series. The VAR model outperforms the

univariate model in terms of tightness of the con�dence band. Panel D of Table 4 shows that in the

regime switching case, the VAR model is again superior to the univariate model.

Finally, Figure 10 displays the forecasts for the Sweden-Finland connection. Here the VAR model

seems to do much better than the univariate model in terms of forecasting the observed price series.

This is also the conclusion drawn from Panel E of Table 4, where it is seen that the switching model

outperforms the non-switching model. Furthermore, we again observe that the forecast con�dence

bands from the univariate models are wider than those from the VAR model in the non-switching case

and indeed a lot wider in the switching case.

To conclude, the regime switching VAR model proposed in this paper seems to provide overall

better forecasts compared to its univariate and non-switching counterparts. In general, forecast con-

�dence bands are more narrow for the switching VAR. In 7 out of 10 cases the switching VAR model

delivers smaller MAFE compared to the non-switching VAR model, and in 10 out of 10 cases the
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switching VAR model outperforms the switching univariate model in terms of MAFE.

6 Conclusion

In this paper we have proposed a multivariate modeling framework for spot electricity prices within

the Nord Pool power grid which enables us to describe the complex price dynamics characterizing this

market. When the actual transmission of electricity is constrained by the �ow capacity, congestion will

occur and hence the presence or absence of transmission bottlenecks may have implications for the price

dynamics. Moreover, it is an empirical regularity that electricity prices exhibit long memory in the form

of fractional integration which may be regime dependent. Our multivariate fractional cointegration

model is new and is motivated by these particular features, and thus allows us to explicitly take into

account the fact that, in non-congestion periods, prices are the same across geographical regions and

therefore also governed by exactly the same price shocks.

From our empirical analysis it is clear that conditioning on congestion or non-congestion states

has a major impact on the dynamics of the electricity prices, and this feature is well described by

the VAR model for both estimation and forecasting. In fact, when not conditioning on the speci�c

states very misleading conclusions may be drawn with respect to the potential fractional cointegration

properties of the data and the adjustment mechanism describing the price behavior. We �nd that what

ensures price convergence is in fact the switching mechanism towards non-congestion where prices are

identical, rather than error correction occurring in a more conventional sense. We believe this is the

�rst empirical example demonstrating that the standard interpretation of error correction models may

break down when in fact a dynamic non-linear feature characterizes the data.

There are three possible types of misclassi�cation of the model dynamics in the empirical analysis.

First, non-switching models may indicate that the price series are fractionally cointegrated, whereas

when conditioning on states this is only the case in the non-congestion state (which is cointegrated by

de�nition). Second, the non-switching model could indicate that there is no fractional cointegration

when in fact there is cointegration in the non-congestion state, and �nally there is the possibility of

fractional cointegration in both regimes, but not in the non-switching model.

We also emphasize the appropriateness of our VAR model in terms of forecasting, where more

narrow forecast con�dence bands are delivered. In 7 out of 10 cases a smaller MAFE is obtained from

the switching VAR model compared to a non-switching VAR model, and in 10 out of 10 cases the

regime switching VAR model outperforms its univariate counterpart in terms of MAFE.

For future research we would like to point to the fact that some geographical regions are indirectly

connected, e.g. West Denmark and East Denmark are indirectly connected through Sweden, so there

are regimes where West Denmark and East Denmark constitute the same price area. The e¤ects of

these indirect links between geographical regions and how they potentially a¤ect the price dynamics is

therefore of major interest. A detailed analysis similar to the analysis presented in this paper including

indirect links is conceptually straightforward using a higher-dimensional model, but computationally

the analysis is di¢ cult and left for future research.
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Figure 1: Map of the Nord Pool area
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Figure 2: Hourly log spot electricity prices for the Nord Pool area covering the period 3 January 2000
to 25 October 2003
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Figure 3: Scatter plots of hourly log prices across Nord Pool regions
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Figure 4: Kernel spectral density estimates of electricity price series and residuals without regime
switching
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Note: In each panel the solid and dotted lines constitute the �rst and second area in the physical
link, respectively. The spectral density curves with the most mass at the zero frequency are for the
observed deseasonalized price series.
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Figure 5: Kernel spectral density estimates of electricity price series and residuals with regime switch-
ing

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

1

2 EDK­SWE

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

1

2 SNO­SWE

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

1

2 SWE­FIN

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

1

2 WDK­SNO

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

1

2 WDK­SWE

Note: In each panel the solid and dotted lines constitute the �rst and second area in the physical
link, respectively. The spectral density curves with the most mass at the zero frequency are for the
observed deseasonalized price series.
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Figure 6: Forecasts for the EDK-SWE physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 7: Forecasts for the WDK-SWE physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 8: Forecasts for the WDK-SNO physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 9: Forecasts for the SNO-SWE physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 10: Forecasts for the SWE-FIN physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.

29


