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Abstract

This paper presents a family of simple nonparametric unit root tests indexed by one parameter, d,

and containing Breitung's (2002) test as the special case d = 1. It is shown that (i) each member

of the family with d > 0 is consistent, (ii) the asymptotic distribution depends on d, and thus

re
ects the parameter chosen to implement the test, and (iii) since the asymptotic distribution

depends on d and the test remains consistent for all d > 0, it is possible to analyze the power of

the test for di�erent values of d. The usual Phillips-Perron or Dickey-Fuller type tests are indexed

by bandwidth, lag length, etc., but have none of these three properties.

It is shown that members of the family with d < 1 have higher asymptotic local power than the

Breitung (2002) test, and when d is small the asymptotic local power of the proposed nonparametric

test is relatively close to the parametric power envelope, particularly in the case with a linear time-

trend. Furthermore, GLS detrending is shown to improve power when d is small, which is not

the case for Breitung's (2002) test. Simulations demonstrate that when applying a sieve bootstrap

procedure, the proposed variance ratio test has very good size properties, with �nite sample power

that is higher than that of Breitung's (2002) test and even rivals the (nearly) optimal parametric

GLS detrended augmented Dickey-Fuller test with lag length chosen by an information criterion.

JEL Classi�cation: C22

Keywords: Augmented Dickey-Fuller test, fractional integration, GLS detrending, nonparametric,

nuisance parameter, tuning parameter, power envelope, unit root test, variance ratio
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1 Introduction

The problem of testing for an autoregressive unit root is one of the most intensely studied testing

problems in time series econometrics over the last three decades; seminal contributions to this

literature include Dickey & Fuller (1979, 1981), Phillips (1987a), Phillips & Perron (1988), and

Elliott, Rothenberg & Stock (1996). For general reviews see, e.g., Stock (1994) or Phillips &

Xiao (1998). Remarkably, research on testing for unit roots has been characterized by parallel

developments in theoretical and empirical econometrics, and the relevance and importance of this

problem to empirical research is undeniable.

Recently, important progress has been made towards constructing unit root tests with better

size and power properties. Examples include the point optimal tests and augmented Dickey-Fuller

(ADF) tests with GLS detrending of Elliott et al. (1996), and the use of improved data dependent

lag selection information criteria as in Ng & Perron (2001) and Perron & Qu (2007). See Haldrup

& Jansson (2006) for a review focusing on power properties. The seminal contribution of Elliott

et al. (1996) developed a theory of optimal testing in the framework of unit root tests, leading to

the construction of power envelopes for such tests, i.e. bounds on the possible power of parametric

unit root tests under conditions allowing for serial correlation, deterministic components, etc.

In the presence of serial correlation all the above tests are characterized by nuisance parameters

appearing in the asymptotic distribution unless the tests are modi�ed to cope with the serial cor-

relation. The ADF type tests, including the ADF-GLS tests of Elliott et al. (1996), are parametric

and require selection of a lag length for the augmentation to handle serial correlation. Similarly,

the Phillips-Perron tests of Phillips (1987a) and Phillips & Perron (1988), although handling the

serial correlation by a nonparametric correction, require selection of bandwidth and kernel for the

estimation of the long-run variance. The performance of the tests depends highly on the choice

of lag length or bandwidth parameters, both in terms of �nite sample power and size properties

(although data dependent lag selection information criteria improve the tests in this respect, see

Ng & Perron (2001)), but also asymptotically since the consistency of the tests requires that the

lag length or bandwidth parameters expand at particular rates relative to the sample size.1 Fur-

thermore, the asymptotic distributions of these test statistics do not depend on the lag length,

bandwidth, or kernel employed to construct the tests, and thus do not re
ect the particular choice

of these parameters. That is, the tests are characterized by parameters (lag length, bandwidth, etc.)

which change the value of the test statistics but are not re
ected in the corresponding asymptotic

distributions, and hence, in particular, not re
ected in the critical values for the test statistics; such

parameters are referred to as tuning parameters.

1For example, Agiakloglou & Newbold (1996) study the trade-o� between size and power in Dickey-Fuller tests

when data-dependent rules are used for the choice of lag order, and Leybourne & Newbold (1999b, 1999b) examine

the behavior (e.g. with respect to the nuisance parameter issue) of both Dickey-Fuller and Phillips-Perron tests.

1



Existing unit root tests that are free of tuning parameters include the variable addition test

of Park & Choi (1988) and Park (1990), and the nonparametric test of Breitung (2002). The test

of Breitung (2002) is a generalization of the KPSS unit root test of Shin & Schmidt (1992), who

note that the calculation of their �̂� (0) test may be done \without the necessity to choose a rule

for determining [the bandwidth parameter] l." Thus, Shin & Schmidt (1992) explicitly recognized,

although only in passing, the importance and usefulness of tuning parameter free tests of the unit

root hypothesis. Breitung (2002) demonstrated by simulations the superiority of his test relative

to the variable addition test of Park & Choi (1988), so the below comparisons to existing tuning

parameter free tests focus on the nonparametric Breitung (2002) test.

This paper presents a family of simple nonparametric tests of the autoregressive unit root hy-

pothesis, which are based on tuning parameter free statistics and improve upon existing tuning

parameter free tests in terms of asymptotic local power. Compared to parametric tests, the pro-

posed tests avoid many of the issues related to nuisance parameters, at least asymptotically, while

maintaining competitive power properties. The nonparametric tests are constructed as a ratio of

the sample variance of the observed series and that of a fractional partial sum (fractional di�erence

of a negative order) of the series. Recently, fractional integration has been attracting increasing

attention from both theoretical and empirical researchers in economics and �nance, see e.g. Baillie

(1996) or Robinson (2003) for reviews. In this paper, fractional integration techniques are exploited

to construct a family of tests for an autoregressive unit root.2 The variance ratio statistic is in-

dexed by one parameter, d, which determines the order of the fractional partial summation, but

since the asymptotic distribution depends on d this is not a tuning parameter. The test procedure

itself applies a sieve bootstrap to improve �nite sample performance. The lag length p in the sieve

approximation does not appear in the asymptotic distribution, and the variance ratio test with the

bootstrap procedure is therefore not tuning parameter free.

There are several other important di�erences between the parameter d indexing the variance

ratio tests and the tuning parameters in ADF regressions (lag length) or Phillips-Perron type tests

(bandwidth and kernel). First of all, for any member of the family with d > 0, the variance ratio test

is consistent. Secondly, the asymptotic distribution depends on d, and thus re
ects the parameter

chosen to implement the test. Thirdly, and consequently, since the asymptotic distribution depends

on d and the test remains consistent for all d > 0, it is possible to analyze the (asymptotic local)

power properties of the test for di�erent values of d, and then try to locate a member of the family

which is \tailored" to maximize power against relevant alternatives. The usual ADF/ADF-GLS or

Phillips-Perron type tests have none of these three properties.

The proposed procedure is nonparametric and does not rely on the speci�cation of a particular

2In the fractional integration literature, tests of the unit root hypothesis against alternatives of fractional integra-

tion have been developed which admit standard asymptotics, see e.g. Robinson (1994) and Tanaka (1999). This paper

excludes such alternatives since the unit root hypothesis is nested within the class of autoregressive alternatives.
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data generating process or model. This feature in particular distinguishes the approach from the

well known fully parametric testing approaches, e.g. the ADF test. Of course, this aspect is a

consequence of the nonparametric nature of the variance ratio test statistic, and is important in

practical applications where speci�cation of the short-run dynamics is always a matter of some

ambiguity and concern, since misspeci�ed short-run dynamics leads to inconsistent estimation of

the remainder of the model and hence to erroneous inferences on the order of integration. There is

also no need to specify a bandwidth and kernel as in the Phillips-Perron type approach.

When d = 1 the Breitung (2002) test appears as a particular member of the proposed family.

However, it is shown that members of the family with parameter d < 1 have higher asymptotic

local power than Breitung's (2002) test. Furthermore, when d is small the asymptotic local power

of the proposed nonparametric test is relatively close to, but naturally below, the parametric power

envelope of Elliott et al. (1996). In particular, in the case with a linear time trend only 12% more

observations would be required for the nonparametric variance ratio test with d = 0:1 to achieve

asymptotic local power of one-half compared to the ADF-GLS test.

Finally, a simulation study is conducted where comparisons are made with the leading tuning

parameter free test of Breitung (2002) and the (nearly) optimal ADF-GLS test of Elliott et al.

(1996) applying the MAIC lag augmentation selection rule of Ng & Perron (2001) as modi�ed by

Perron & Qu (2007). The simulations apply a sieve bootstrap procedure to the proposed variance

ratio test which is then characterized by the tuning parameter p denoting the sieve lag length which

is chosen by the MAIC. The bootstrapped variance ratio test has size properties that are as good as

those of the ADF-GLS test using the MAIC lag selection rule. With the sieve bootstrap procedure,

the �nite sample power of the variance ratio test is similar to that of the ADF-GLS test and even

superior in some cases, such as the important case of a model that includes a linear time trend and

has moving average errors. Thus, even though the ADF-GLS test has superior asymptotic local

power properties, the need to select a tuning parameter (lag augmentation) and estimate nuisance

parameters (serial correlation) reduces the power of the Dickey-Fuller type tests in more realistic

settings.

The remainder of the paper is laid out as follows. In the next section the variance ratio family

of tests is presented along with the asymptotic distribution theory. Section 3 develops the relevant

local asymptotic power analysis and introduces a GLS detrended version of the tests. In section

4 simulation evidence is presented to document the �nite sample properties of the nonparametric

test. Both sections 3 and 4 include comparisons to Breitung's (2002) test as well as (nearly) e�cient

parametric tests. Section 5 o�ers some concluding remarks. All proofs are gathered in the appendix.
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2 The Nonparametric Variance Ratio Test

Suppose the observed univariate time series fytgTt=1 is generated by the model

yt = �yt�1 + ut; t = 1; 2; :::; y0 = 0; (1)

where ut is unobserved short-run dynamics to be de�ned precisely later.
3 The unit root testing

problem is the test of the null hypothesis

H0 : � = 1 vs. H1 : j�j < 1: (2)

Consider, under the null hypothesis, the behavior of the observed time series fytgTt=1 generated
according to (1) with � = 1 and also its fractional partial sum,

~yt = �
�d
+ yt; t = 0; 1; :::; d > 0; (3)

where we have used the de�nition

��d+ xt = (1� L)
�d
+ xt =

t�1X
k=0

� (k + d)

� (d) � (k + 1)
xt�k =

t�1X
k=0

�k(d)xt�k

so that only values corresponding to a positive time index enters the fractional di�erence/summation

expression. This is denoted by the subscript on the di�erence operator, i.e. �+, which is a truncated

version of the binomial expansion in the lag operator L (Lxt = xt�1).

It is well known that under regularity conditions on ut, a functional central limit theorem is

obtained for yt and a similar (fractional) functional central limit theorem is obtained for ~yt, i.e.

T�1=2ybTsc ) �yW0 (s) ; 0 � s � 1; (4)

T�1=2�d~ybTsc ) �yWd (s) ; 0 � s � 1; (5)

as T ! 1 for some �y to be speci�ed later. Here, b�c denotes the integer part of the argument,
\)" means weak convergence inD [0; 1], andWd is the type II fractional standard Brownian motion

of order d (> �1=2), see e.g. Marinucci & Robinson (2000), de�ned as

Wd (r) = 0, a.s., r = 0; (6)

Wd (r) =
1

� (d+ 1)

Z r

0
(r � s)d dW0 (s) , r > 0: (7)

3The initial condition can be replaced by other well-known conditions that yield the same functional central limit

theorems (4) and (5). Note that, if it is known that y0 is likely to be small then, in the fully parametric setup, this

knowledge will generate more discriminatory power for the unit root problem by applying the ADF-GLS tests of

Elliott et al. (1996), see M�uller & Elliott (2003). In that sense, the zero initial condition poses the greatest challenge

for the proposed nonparametric test when compared to the ADF-GLS tests in simulations below.
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Note that with this de�nition W0 is the standard Brownian motion.

It follows that the rescaled sample variances of yt and ~yt satisfy

T�2
TX
t=1

y2t ) �2y

Z 1

0
W0 (s)

2 ds; (8)

T�2(1+d)
TX
t=1

~y2t ) �2y

Z 1

0
Wd (s)

2 ds; (9)

as T !1, under the unit root null hypothesis (2). Thus, by forming the variance ratio,

� (d) = T 2d
PT
t=1 y

2
tPT

t=1 ~y
2
t

; (10)

the nuisance parameter �2y is eliminated from the limiting distribution and there is no need to

estimate serial correlation parameters. The statistic � (d) in (10) de�nes the family of variance

ratio statistics indexed by the fractional partial summation parameter, d.

The statistic (10) generalizes the idea of Shin & Schmidt (1992), Breitung (2002), and Taylor

(2005) who used the ratio of the sample variance of yt and that of the partial sum of yt to eliminate

the nuisance parameter �2y and avoid estimation of serial correlation parameters in testing for a

unit root. Thus, setting d = 1, ~yt is the partial sum of yt and �(1) is then (the inverse of) the

statistic proposed by Breitung (2002), which is therefore also a member of the family of tests in

(10). The same idea was applied by Vogelsang (1998a, 1998b) to test for structural breaks without

estimating serial correlation parameters.

In recent work, M�uller (2007, 2008) demonstrates some desirable properties of variance ratio

type unit root test statistics such as (10), which are not necessarily shared by other statistics

that have to estimate the long-run variance �2y . In particular, tests based on variance ratio type

statistics are shown to be able to consistently discriminate between the unit root null and the

stationary alternative.

To adjust for a non-zero mean and possibly deterministic time trend in the observed time series

yt, suppose fytgTt=1 is generated according to

yt = �
0�t + zt; t = 0; 1; :::; (11)

where zt is unobserved and generated as yt in (1). Here, �t = 0 when there are no deterministic

terms, �t = 1 when there is a non-zero mean, and �t = [1; t]
0 when there is correction for a deter-

ministic linear time trend. Thus, the family of variance ratio statistics corrected for deterministic

terms is de�ned as in (10) but with residuals ŷt = yt � �̂0�t replacing the observed time series yt.
For now, ŷt are OLS residuals, but in the next section GLS detrending is considered in the spirit of

Elliott et al. (1996) which will in fact increase the power of the test, at least against near-integrated

alternatives and for an important range of d values.
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The following assumption on ut in (1) is imposed throughout.

Assumption 1 The zero-mean process ut is weakly stationary and ergodic and satis�es

(a) 0 <
P1
k=�1 j
u(k)j <1, where 
u(k) = E(utut+k);

(b) T�1=2
PbTsc
t=1 ut ) �yW0 (s) for �y > 0 and all 0 � s � 1;

(c) T�1=2�d
PbTsc
t=1 �

�d
+ ut ) �yWd (s) for d > 0, �y > 0, and all 0 � s � 1:

Assumption 1 is similar to Condition C in Elliott et al. (1996) and holds under a variety

of regularity assumptions. Su�cient conditions for (b) are given by, e.g., Phillips (1987a) and

Phillips & Solo (1992), and for (c) by, e.g., Akonom & Gourieroux (1987), Davidson & de Jong

(2000), and Marinucci & Robinson (2000). The conditions include mixing conditions and moment

conditions (existence of a moment of order greater than two), and are satis�ed by, e.g., stationary

and invertible ARMA models. The conditions permit conditional heteroskedasticity in futg but
rule out unconditional heteroskedasticity.

Under the null hypothesis that � = 1 and under Assumption 1 on ut, (4) and (5) clearly hold.

In that case, the limiting distribution of the variance ratio statistic � (d) is easily derived and is

presented in the following theorem.

Theorem 1 Let yt be de�ned by (1) and (11), � (d) by (10) with the residuals ŷt replacing yt in

(3) and (10), and let j = 0 when �t = 0, j = 1 when �t = 1, and j = 2 when �t = [1; t]
0. Under the

null hypothesis (2), Assumption 1 on ut, and for d > 0,

� (d)) Uj (d) =

R 1
0 Bj (s)

2 dsR 1
0
~Bj;d (s)

2 ds
; j = 0; 1; 2;

as T ! 1, where B0 (s) = W0 (s) and the demeaned (j = 1) and detrended (j = 2) standard

Brownian motions are de�ned as

Bj (s) =W0 (s)�
�Z 1

0
W0 (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1
Dj (s) ; j = 1; 2;

where D1 (s) = 1, D2 (s) = [1; s]
0, and also ~B0;d (s) =Wd(s) and

~Bj;d (s) =Wd(s)�
�Z 1

0
W0 (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1 Z s

0

(s� r)d�1

� (d)
Dj (r) dr; j = 1; 2:

Note that in this theorem and below, weak convergence is for a �xed value of d. Also note thatZ s

0

(s� r)d�1

� (d)
dr =

sd

d� (d)
=

sd

� (d+ 1)
;Z s

0

(s� r)d�1

� (d)
rdr =

sd+1

d(d+ 1)� (d)
=

sd+1

� (d+ 2)
;
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Table 1: Critical values CVj;
 (d) of the variance ratio test (10)
Deterministics 
 T d = 0:10 d = 0:25 d = 0:50 d = 0:75 d = 1:00

j = 0 : �t = 0 0.10 100 1.54 2.78 6.76 15.30 33.63
500 1.54 2.77 6.70 15.09 33.13

0.05 100 1.62 3.13 8.45 21.00 48.73
500 1.62 3.14 8.44 20.70 49.42

0.01 100 1.76 3.90 12.55 36.12 98.82
500 1.77 3.92 12.93 38.59 106.6

j = 1 : �t = 1 0.10 100 1.75 3.83 12.29 32.04 70.03
500 1.76 3.87 12.39 32.32 70.43

0.05 100 1.81 4.18 14.49 41.55 100.4
500 1.82 4.20 14.43 40.83 97.83

0.01 100 1.92 4.82 19.39 64.82 186.3
500 1.93 4.85 18.98 62.12 173.1

j = 2 : �t = [1; t]
0 0.10 100 1.91 4.78 19.50 69.86 227.4

500 1.92 4.83 19.68 70.35 228.0
0.05 100 1.96 5.09 22.07 83.94 291.3

500 1.98 5.17 22.33 84.79 289.6
0.01 100 2.04 5.68 27.73 119.1 455.1

500 2.08 5.83 28.26 118.8 446.2

Note: The critical values are simulated based on 20,000 Monte Carlo replications. The test rejects

when the test statistic is larger than the critical values in this table.

so that the term
R s
0
(s�r)d�1
�(d) Dj (r) dr appearing in the de�nition of ~Bj;d (s) for j = 1 and j = 2

corresponds to fractional powers of s. That is, ~Bj;d (s), j = 1; 2, is a fractional Brownian motion less

the trend correction term from an L2 regression of a standard (non-fractional) Brownian motion

on a fractional polynomial trend of order sd when j = 1 and [sd; sd+1] when j = 2.

The asymptotic distribution Uj (d) of � (d) given in Theorem 1 depends only on the choice of

deterministic terms (j) and the parameter d, i.e. the order of fractional partial summation indexing

the family of tests. Hence, the asymptotic distribution can easily be simulated to obtain quantiles

for any member of the family characterized by the value of the parameter d. Quantiles of Uj (d)

for several values of the parameter d are presented in Table 1.

A very important property of the variance ratio statistic (10) and its asymptotic distribution in

Theorem 1 is that there is no need to specify or estimate any particular parametric or nonparametric

model for the short-run dynamics in ut. Thus, the statistic is asymptotically invariant to any short-

run dynamics in the data generating process for yt. As a result, any hypothesis test based on a

member of the family of variance ratio statistics will share this useful property.

Thus, consider using � (d) as a test of the unit root hypothesis, i.e. of the null hypothesis (2),

where large values of � (d) are associated with rejection of H0. The rejection region of the test and

the alternatives against which it is consistent are given in the following theorem.

Theorem 2 Under the assumptions of Theorem 1 the test that rejects H0 in (2) when � (d) >

7



CVj;
 (d), where CVj;
 (d) is found from

P (Uj (d) > CVj;
 (d)) = 
; (12)

has asymptotic size 
 and is consistent against the alternative H1 in (2).

Note that, although the parameter d indexing the family of tests is speci�ed by the econo-

metrician, it is not a tuning parameter in the sense described in the introduction above. This is

because the choice of d is re
ected in the asymptotic distribution of the variance ratio statistic,

unlike the tuning parameters, e.g. lag length and bandwidth parameters, in the Dickey-Fuller or

Phillips-Perron unit root tests. Thus, the test based on Theorem 2 and the asymptotic distribution

in Theorem 1 would be tuning parameter free. Another consequence is that it may be possible to

locate a member of the family of tests which is tailored in such a way that power is maximized

against relevant alternatives. Indeed, this is considered in the following asymptotic local power

analysis, where results are provided which recommend d = 0:1, c.f. Theorem 3. See also the simu-

lations in section 4 below. Another typical choice could be d = 1, i.e. partial summation, based on

computational simplicity, which is (the inverse of) the statistic used by Breitung (2002) and Taylor

(2005) to test for (seasonal) unit roots.

The variance ratio statistic (10) is related to many well known statistics such as the KPSS

statistic of Kwiatkowski, Phillips, Schmidt & Shin (1992) and Shin & Schmidt (1992), and also

earlier statistics such as the Durbin-Watson statistic, to mention just a few. Indeed, variance ratio

type statistics have a very long tradition in time series analysis. However, there is a fundamental

di�erence between those statistics and the variance ratio statistic in (10). The former statistics are

mostly based on the ratio of the sample variance of yt and that of �yt (corresponding to d = �1
in the present setup) and then the �2y that would appear in the limiting distribution is divided out

by employing some form of long-run variance estimator. On the other hand, the statistic (10) is

the ratio of the sample variance of yt and that of the (fractional) partial sum of yt, which implies

that �2y cancels from the limiting distribution and there is no need to estimate serial correlation

parameters or the long-run variance.

3 Asymptotic Local Power Analysis

In this section, the asymptotic local power of the autoregressive unit root test described in Theorems

1 and 2 is analyzed to guide the choice of the parameter d. Since d is the only parameter indexing

the family of tests and the only parameter needed to calculate the variance ratio test statistic (10),

and is also the only parameter in the asymptotic distribution, it is of interest to examine the power

function for a range of values of d. In particular, one might ask if there is a member of the family

with maximum (within the family) power against relevant alternatives, i.e. if there is a power

8



maximizing value of d. This value could then be chosen by the researcher to \tailor" the test to

obtain high power, i.e. to select the member of the family with the best power properties.

Instead of attempting to calculate the exact power function of the test as a function of d,

the power is described qualitatively using local-to-unity asymptotics. To obtain non-degenerate

power under the alternative, consider the well-known sequence of local alternatives where fytgTt=1
is generated according to

yt = �T yt�1 + ut; �T = 1� c=T; (13)

i.e. near-integrated alternatives with some c � 0, c.f. Chan & Wei (1987) and Phillips (1987b).

For any �xed T , yt is stationary (the alternative) provided T is large enough that c=T 2 (0; 2).
On the other hand, yt is nonstationary (the null hypothesis) in the limit since �T ! 1 when

T ! 1. Thus, the model (13) provides alternatives local to � = 1. Under (13) and Assumption

1, sample moments such as (8) have limiting distributions which are expressed in terms of the

Ornstein-Uhlenbeck process

J0;c (s) =W (s)� c
Z s

0
e�c(s�r)W (r)dr; J0;c (0) = 0: (14)

The next two subsections �rst consider the asymptotic local power of the above family of variance

ratio tests, and subsequently introduce a GLS detrended version to be compared to the GLS

detrended ADF test of Elliott et al. (1996).

3.1 Asymptotic Local Power of the Variance Ratio Test

The following theorem presents the asymptotic distribution of the variance ratio statistic under the

near-integrated local alternatives.

Theorem 3 Let the assumptions of Theorem 1 be satis�ed except (13) replaces (1) in the de�nition

of yt (or zt if �t 6= 0). Then, as T !1,

� (d)) Uj;NI (c; d) =

R 1
0 Jj;c (s)

2 dsR 1
0
~Jj;c;d (s)

2 ds
; j = 0; 1; 2;

where J0;c (s) is the Ornstein-Uhlenbeck process (14), J1;c (s) ; J2;c (s) are the demeaned (j = 1) and

detrended (j = 2) Ornstein-Uhlenbeck processes,

Jj;c (s) = J0;c (s)�
�Z 1

0
J0;c (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1
Dj (s) ; j = 1; 2;

and

~J0;c;d (s) =Wd(s)� c
Z s

0
e�c(s�r)Wd (r) dr;

~Jj;c;d (s) = ~J0;c;d (s)�
�Z 1

0
J0;c (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1 Z s

0

(s� r)d�1

� (d)
Dj (r) dr; j = 1; 2:
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Figure 1: Asymptotic local power functions of � (d) against near-integrated alternatives
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It follows from Theorem 3 that the asymptotic local power of any member of the family of

variance ratio tests can be described in terms of Uj;NI (c; d) whose distribution is a continuous

function of the local noncentrality parameter c � 0 and the index d > 0. Note that Uj;NI (0; d) =
Uj (d), j = 0; 1; 2. Also note that the process ~J0;c;d (s) appearing in Theorem 3 is a fractional

version of the well known Ornstein-Uhlenbeck process J0;c(s), see e.g. Buchmann & Chan (2007).

The local asymptotic power function of any member of the family of variance ratio tests can thus

be calculated as

P (Uj;NI (c; d) > CVj;
 (d)) ;

where CVj;
 (d) is de�ned in Theorem 2.

Figure 1 displays simulated asymptotic local power curves for several members of the variance

ratio test family (with 
 = 0:05) as functions of the local noncentrality parameter, c � 0. The

simulated power functions are based on 20,000 Monte Carlo replications of (13) with T = 500, ut

i:i:d: standard normal, and either no deterministic terms (Panel A), constant mean (Panel B), or

linear trend (Panel C). In each graph, the power curves are drawn for d 2 f0:1; 0:25; 0:5; 1:0g, where
d = 1 is the test of Breitung (2002).
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From Figure 1 it appears that the asymptotic local power of the variance ratio test is monotonic

in d, and that d = 0:1 is the \power maximizing" choice among those power functions depicted, in

the sense that it has uniformly (in c) higher power relative to d = 0:25, d = 0:5, and d = 1:0. It

should be noted that other choices of d conform to the monotonicity apparent in Figure 1 although

the gain in power from choosing an even smaller value of d is minor. Furthermore, it also seems

unwise to choose d too small, since then d acts as if it depends (inversely) on the sample size

which may distort the size properties of the test and result in poor size properties in �nite samples.

Obviously, if d = 0 the test statistic degenerates.4 Thus, Figure 1 suggests that d = 0:1 provides

a good choice of the parameter d indexing the family of tests, in the sense that local asymptotic

power is better uniformly in c relative to higher values of d. In section 4 below, further support of

the d = 0:1 test relative to Breitung's (2002) test (d = 1) is presented based on simulation evidence.

Finally, Figure 1 clearly demonstrates that signi�cant power gains can be achieved by consid-

ering non-integer values of d < 1. Comparing the d = 1 curve with the other curves, it is seen that

d = 1 provides the lowest power in all the panels of Figure 1. In other words, the variance ratio

test with d = 1 suggested by Breitung (2002) for testing the unit root hypothesis against nonlinear

models can be vastly improved upon, at least against near-integrated alternatives, by admitting

non-integer values of d < 1.

3.2 GLS Detrending and Comparison to ADF-GLS Tests

Now consider applying GLS detrending to correct for deterministic terms instead of the simple

OLS detrending above. Thus, for any generic series fxtgTt=1 and some constant �c de�ne x�c;1 = x1
and x�c;t = xt � (1� �c=T )xt�1; t = 2; :::; T . With this de�nition the observed GLS detrended time
series, denoted fŷ�c;tgTt=1, is given by

ŷ�c;t = yt � ~�0�t; (15)

where

~� = argmin
�

TX
t=1

�
y�c;t � �0��c;t

�2
:

The use of GLS detrended time series for the ADF test was proposed by Elliott et al. (1996) who

in particular suggest �c = 7 and �c = 13:5 for �t = 1 and �t = [1; t]0, respectively, resulting in the

ADF-GLS test. These values of �c correspond to the local point alternatives against which the

local asymptotic power for signi�cance level 5% equals one-half. With respect to the choice of lag

4In fact, �(0) = 1 and limd!0 d
�1(�(d)�1 � 1) = limd!0(d

PT
t=1(d

�1(��d
+ � 1)yt)

2 + 2
PT

t=1 ytd
�1(��d

+ �
1)yt)=

PT
t=1 y

2
t = 2

PT�1
j=1 j

�1rj , where rj is the j'th sample autocorrelation and limd!0 d
�1(��d

+ �1) =
Pt�1

j=1 j
�1Lj .

The statistic
PT�1

j=1 j
�1rj is well known as a test in fractionally integrated models, e.g. Robinson (1994) and Tanaka

(1999), although there it is used as a test of I(0), not I(1). The asymptotic distribution of this statistic under the unit

root null can be derived using results of Hualde (2007, Lemma 2), but simulations indicate that it is very sensitive

to short-run dynamics in ut, so this is not pursued further here.
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augmentation for the ADF-GLS tests, it is assumed in the asymptotic comparisons to be chosen

correctly and optimally, and has no e�ect on asymptotic local power.

Consider constructing the variance ratio test based on the GLS detrended series (15). That is,

� (�c; d) = T 2d
PT
t=1 ŷ

2
�c;tPT

t=1 ~y
2
�c;t

; (16)

where ~y�c;t = ��d+ ŷ�c;t similarly to (3). The distribution of the GLS detrended variance ratio test

(16) under the sequence of local alternatives (13) depends on the stochastic processes

V�c;c (s) = J0;c (s)� b1s;

~V�c;c;d (s) = ~J0;c;d (s)� b1
sd+1

�(d+ 2)
;

b1 =
(1 + �c)

1 + �c+ �c2=3
J0;c (1) +

�c2

1 + �c+ �c2=3

Z 1

0
rJ0;c (r) dr;

and is presented in the next theorem.

Theorem 4 Let the assumptions of Theorem 3 be satis�ed except yt is GLS detrended as in (15)

and the variance ratio statistic is given by (16). Then, as T !1,

� (�c; d)) Uj;GLS (�c; c; d) ; j = 1; 2;

where

U1;GLS (�c; c; d) = U0;NI (c; d) ;

U2;GLS (�c; c; d) =

R 1
0 V�c;c (s)

2 dsR 1
0
~V�c;c;d (s)

2 ds
;

and U0;NI (c; d) is de�ned in Theorem 3.

To implement the GLS detrending procedure for the variance ratio test, a recommendation

regarding the choice of local detrending parameter �c is needed. Following Elliott et al. (1996), the

values of �c = c that attain asymptotic local power equal to one-half at 5% signi�cance level are

presented in Panel A of Table 2 for �t = 1 and �t = [1; t]
0 and several values of d. These values of �c =

c are those for which the power envelope type function P (Uj;GLS (�c; �c; d) > CVj;0:05 (�c; d)) is equal

to one-half at 5% signi�cance level, where CVj;
 (�c; d) satis�es P (Uj;GLS (�c; 0; d) > CVj;
 (�c; d)) = 
.

Critical values of the variance ratio test for the particular �c and d values presented in Panel A of

Table 2 are presented in Panel B of Table 2 for signi�cance levels 
 = 1%; 5%; and 10%. Note that

the table presents the critical values for j = 2 only, since the j = 1 case has the same asymptotic

null distribution and hence the same critical values as j = 0 in Table 1.
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Table 2: Values of �c and CVj;
(�c; d) of the VR-GLS test (16)
Deterministics 
 T d = 0:10 d = 0:25 d = 0:50 d = 0:75 d = 1:00

Panel A: Values of �c = c that yield asymptotic local power of 50%
j = 1 : �t = 1 0.05 500 9.4 10.6 12.8 16.3 20.8
j = 2 : �t = [1; t]

0 0.05 500 15.1 16.1 18.7 22.5 28.0
Panel B: Critical values CVj;
 (�c; d)
j = 2 : �t = [1; t]

0 0.10 100 1.80 4.05 13.72 41.75 122.9
500 1.77 3.86 11.92 31.84 78.21

0.05 100 1.85 4.37 15.98 52.28 161.5
500 1.83 4.19 14.05 40.62 108.1

0.01 100 1.95 5.01 20.97 76.37 267.7
500 1.95 4.89 19.29 65.16 195.2

Note: The values of �c = c in Panel A of the table correspond to the (local) point alternatives against

which the local asymptotic power for signi�cance level 5% equals one-half. The critical values in

Panel B apply the corresponding value of �c from Panel A. The results are simulated based on 20,000

Monte Carlo replications. The test rejects when the test statistic is larger than the critical values

in Panel B of this table.

In Figure 2 the asymptotic local power functions of the GLS detrended variance ratio tests with

d 2 f0:001; 0:1; 1g are presented for the no deterministics case (Panel A), the constant mean case
(Panel B), and the linear trend case (Panel C). The Breitung (2002) test (d = 1) is included for

comparison with existing tuning parameter free tests, and the test with d = 0:001 is included to

examine how close the asymptotic local power curve of the nonparametric variance ratio test can be

pushed towards the parametric power envelope. Also included are the local power functions of the

Dickey-Fuller and GLS detrended Dickey-Fuller tests. The local power functions of the latter are

indistinguishable from the parametric power envelope, c.f. Elliott et al. (1996). All the asymptotic

local power functions are simulated based on 20,000 Monte Carlo replications with T = 500.

Note that, as observed by Breitung & Taylor (2003), the Breitung (2002) test does not bene�t

from GLS detrending { on the contrary { whereas the variance ratio test based on fractional partial

summation (e.g. d = 0:1) does bene�t signi�cantly from GLS detrending in terms of asymptotic

local power. In both the case with mean correction (Panel B) and the case with trend correction

(Panel C), the asymptotic local power of the variance ratio test with d = 0:1 is approximately the

same as that of the Dickey-Fuller test. When GLS detrending is employed in the construction of

the variance ratio test the power is increased, and in particular the power of the GLS detrended

variance ratio test with d = 0:1 is signi�cantly higher than that of the Dickey-Fuller test although

still below that of the GLS detrended Dickey-Fuller test. In all three panels of Figure 2, the

GLS detrended variance ratio tests conform to the same monotonicity in d as in Figure 1. Thus,

compared to Figure 1, the asymptotic local power of the GLS detrended variance ratio test with

d < 1 is even more superior to Breitung's (2002) test than its OLS detrended counterpart.
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Figure 2: Asymptotic local power functions of GLS detrended tests against near-integrated alter-

natives
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One method to measure and compare the asymptotic local power of the GLS detrended variance

ratio test with that of Breitung's (2002) test and the ADF-GLS tests (whose asymptotic local power

essentially coincides with the parametric power envelope) is to calculate the Pitman asymptotic

relative e�ciency (ARE) of the d = 0:1 and d = 1 tests relative to the ADF-GLS test. In the

framework of asymptotic local power, this is done by comparing the values of c at which the tests

obtain a speci�ed power such as one-half following Elliott et al. (1996). The interpretation is that if

the Pitman ARE of test A relative to test B is 1.25, then 25% more observations would be needed to

obtain asymptotic local power of one-half using test A instead of test B. In the constant mean case,

using 5% tests, the Pitman ARE of the VR-GLS test with d = 0:1 and the Breitung (2002) test

(d = 1) relative to the ADF-GLS test are 1.34 and 2.97. In the linear trend case the corresponding

AREs are 1.12 and 2.07. Thus, in the constant mean case 122% more observations would be needed

and in the linear trend case 85% more observations would be needed for the Breitung (2002) (d = 1)

test than for the VR-GLS test with d = 0:1 to achieve asymptotic local power of one-half. Perhaps

more surprisingly, in the linear trend case only 12% more observations would be required for the

VR-GLS test with d = 0:1 than for the ADF-GLS test to achieve asymptotic local power of one-half.
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It is clear from the above asymptotic analysis that the nearly optimal ADF-GLS test is more

powerful in a local asymptotic sense than the nonparametric GLS detrended variance ratio test

with d = 0:1. However, these considerations assume that the tuning parameter, i.e. lag length, in

the ADF-GLS test is chosen optimally, even though in any applied situation the correct/optimal

lag length is unknown. It is well known that in more realistic scenarios where the lag length is

unknown and must be chosen/estimated from data, using e.g. an information criterion, and serial

correlation nuisance parameters must be estimated, the properties of the Dickey-Fuller type tests

may deteriorate relative to the above \perfect knowledge" case. Indeed, they may be inferior to tests

which do not require selection of tuning parameters or estimation of serial correlation parameters.

4 Finite Sample Performance

The time series yt is simulated according to the model

yt = �yt�1 + ut; t = 1; :::; T; y0 = 0: (17)

To conserve space, only results for the linear trend case are reported5 since most economic time

series exhibit time trends. The sample sizes considered are T = 100 and T = 500, and 20; 000

Monte Carlo replications are used in the simulations. Throughout, a 
 = 5% nominal signi�cance

level is employed. All calculations were made in Ox, see Doornik (2006).

In all the simulations, comparisons are made not only to existing tuning parameter free tests,

but also to the well known ADF test and to the ADF-GLS test of Elliott et al. (1996). To make the

tests comparable, the lag augmentations (say k) in the ADF and ADF-GLS regressions are chosen

using the data dependent modi�ed Akaike information criterion (MAIC) of Ng & Perron (2001)

who show that this criterion \dominates all other criteria from both theoretical and numerical

perspectives." In particular, the further modi�cation of Perron & Qu (2007) was applied to achieve

even better �nite sample properties, and the lag augmentation was chosen to optimize the MAIC

with kmin = 0 and kmax =
�
12(T=100)1=4

�
as in Ng & Perron (2001) and Perron & Qu (2007). Note

that, in the simulations, this upper bound binds rarely for the small sample size (T = 100) and

almost never for the larger sample size (T = 500). Also note that the ADF-GLS test favors small

initial conditions, see M�uller & Elliott (2003), so in that sense the zero initial condition poses the

greatest challenge for the proposed nonparametric test when compared to the ADF-GLS test.

Simulation results for the case where ut is i:i:d: standard normal are presented in Table 3. The

results are reported for the variance ratio statistic with d = 0:1 (denoted � (0:1)), the corresponding

GLS detrended variance ratio statistic (denoted � (�c; 0:1)), the Breitung (2002) test (BT), and the

ADF and ADF-GLS tests using the MAIC to select lag augmentation. For each statistic, entries

5More simulation results, including the constant mean case and simulations of di�erent data generating processes,

are available in the earlier working paper version, see Nielsen (2008).
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Table 3: Simulated rejection frequencies when ut is i:i:d:
T = 100 T = 500

� � (0:1) � (�c; 0:1) BT ADF ADF-GLS � (0:1) � (�c; 0:1) BT ADF ADF-GLS

1:00 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.03
0:9 0.21 0.29 0.18 0.14 0.26 0.21 0.27 0.18 0.13 0.22
0:8 0.61 0.77 0.44 0.44 0.65 0.57 0.70 0.41 0.47 0.71
0:7 0.91 0.97 0.68 0.66 0.77 0.87 0.93 0.62 0.80 0.92
0:6 0.99 1.00 0.83 0.72 0.79 0.97 0.99 0.77 0.90 0.96

Note: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with kmin = 0

and kmax =
�
12(T=100)1=4

�
as in Perron & Qu (2007). For each statistic, entries under the row

marked � = 1:00 are �nite sample rejection frequencies under the null, i.e. the sizes of the tests.

All other entries are �nite sample power. Based on 20,000 Monte Carlo replications.

in the row marked � = 1:00 are rejection frequencies under the unit root null hypothesis, i.e. the

sizes of the tests, and all other entries are �nite sample power.

The results in Table 3 clearly suggest that the nonparametric variance ratio test is useful and

that non-trivial power gains may be obtained relative to the tuning parameter free BT test. More

surprisingly, it appears that the variance ratio test even rivals the ADF-GLS test of Elliott et al.

(1996) in sample sizes that are relevant for empirical research. Thus, even though the ADF-GLS

test has superior asymptotic local power properties, as documented in section 3 above, the need to

select a tuning parameter (lag augmentation) and estimate nuisance parameters (serial correlation)

reduces the power of Dickey-Fuller type tests in more realistic settings. Although the �nite sample

power loss of the ADF-GLS test relative to the power envelope is somewhat alleviated in larger

samples, where the MAIC comes closer to selecting the optimal (but unknown to the researcher)

lag augmentation, it remains an issue and the variance ratio test is still able to achieve similar

power without the need to select any tuning parameters.

Next, consider the moving average (MA) model,

ut = "t + �"t�1; t = 1; :::; T; (18)

where "t is i:i:d: standard normal. The MA model was chosen since MA errors are relevant for many

economic time series as argued by Ng & Perron (2001). For instance, omitted outliers may cause

MA(1) type characteristics in observed time series, c.f. Franses & Haldrup (1994). Furthermore,

unreported simulations (see Nielsen (2008)) have shown that the variance ratio tests are (sometimes

severely) size distorted when the errors ut are generated according to (18). The size issue is also

present in Breitung (2002) and so it is somewhat expected.

To reduce size distortion a bootstrap procedure can be applied. The sieve bootstrap algorithm

applied here follows that of Chang & Park (2003).6

6This bootstrap procedure was also applied to the ADF-GLS test with the MAIC lag selection. However, only
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Let ût denote the �rst di�erence of the GLS detrended observed time series (the same procedure

applies to OLS detrended series). First, �t the approximating sieve autoregression

ût = �1ût�1 + : : :+ �pût�p + "t (19)

by OLS and denote by f"̂tgTt=1 the residuals from (19). It is important to base the bootstrap

procedure on the �rst di�erences of the detrended time series since, as shown by Basawa, Mallik,

McCormick, Reeves & Taylor (1991), bootstrap samples generated without the unit root restriction

make bootstrap unit root testing procedures inconsistent. The lag length p in (19) is chosen to be

the same as that in the ADF-GLS tests with the MAIC selection criterion.

Next, bootstrap errors f"btgTt=1 are constructed by resampling from the centered residuals f"̂t�
"̂tgTt=1 from (19) with replacement. Then fûbtgTt=1 is generated from f"btgTt=1 using the �tted autore-
gression, i.e. by

ûbt = �̂1û
b
t�1 + : : :+ �̂pû

b
t�p + "

b
t ; t = p+ 1; : : : ; T;

where �̂1; : : : �̂p are the estimated parameters from (19) and the initial values ûb1; : : : ; û
b
p are set to

zero for simplicity. Finally, the bootstrap sample fybtgTt=1 is obtained by partial summation, i.e.

ybt = y
b
0 +

tX
s=1

ûbs; t = 1; : : : ; T;

with the initial condition yb0 = 0. For a discussion of the initial conditions imposed on û
b
t and y

b
t ,

see Chang & Park (2003, p. 390).

The bootstrap sample fybtgTt=1 is then GLS detrended and the variance ratio statistic, denoted
�b (�c; d), is calculated from the GLS detrended bootstrap sample as described in the previous

sections. To implement the bootstrap test, the bootstrap procedure is repeated B = 999 times

and the simulated bootstrap p-value is then computed as the percentage of bootstrap statistics

that exceed the actual statistic � (�c; d) from the observed sample, i.e., p̂ = B�1
PB
b=1 1(�b (�c; d) >

� (�c; d)), where 1(�) is the indicator function. The bootstrap test rejects if p̂ < 
.
Note that the bootstrap procedure described here has the additional advantage relative to the

test described in Theorems 1 and 2 based on the asymptotic distribution that a p-value is readily

obtained as part of the procedure. Thus it might be thought of as more informative. Also note that

the bootstrap procedure depends on the tuning parameter p in the sieve approximation (19), and

this is only partly alleviated by the use of the MAIC to choose p. Even though the variance ratio

statistic � (�c; d) { and hence the asymptotic test of Theorems 1 and 2 { is asymptotically tuning

parameter free, the bootstrap procedure implemented to approximate the �nite sample distribution

of � (�c; d) depends on the tuning parameter p in (19). The critical values therefore also depend on

p and hence the bootstrapped test is not tuning parameter free.

very small size improvements were obtained at the cost of a large loss in power, so those results are not reported here.
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Table 4: Simulated rejection frequencies for model (18): T = 100
� Test statistic n � �0:8 �0:6 �0:4 �0:2 0:0 0:2 0:4 0:6 0:8

1:00 � (0:1) 0.17 0.07 0.05 0.05 0.04 0.03 0.03 0.02 0.02
� (�c; 0:1) 0.16 0.08 0.07 0.07 0.07 0.06 0.06 0.04 0.03
BT 0.17 0.07 0.05 0.05 0.05 0.04 0.04 0.04 0.03
ADF 0.18 0.07 0.04 0.04 0.03 0.01 0.01 0.02 0.01

ADF-GLS 0.19 0.09 0.07 0.06 0.04 0.02 0.02 0.02 0.02

0:9 � (0:1) 0.42 0.21 0.18 0.18 0.18 0.14 0.11 0.09 0.06
� (�c; 0:1) 0.49 0.30 0.29 0.31 0.33 0.30 0.25 0.20 0.15
BT 0.42 0.22 0.18 0.17 0.17 0.16 0.14 0.13 0.11
ADF 0.44 0.21 0.17 0.15 0.12 0.04 0.04 0.05 0.03

ADF-GLS 0.52 0.32 0.28 0.27 0.25 0.12 0.11 0.12 0.09

0:8 � (0:1) 0.74 0.45 0.41 0.43 0.48 0.44 0.35 0.26 0.19
� (�c; 0:1) 0.79 0.57 0.57 0.62 0.68 0.69 0.60 0.49 0.38
BT 0.75 0.46 0.41 0.39 0.40 0.38 0.34 0.29 0.25
ADF 0.75 0.46 0.40 0.40 0.43 0.24 0.11 0.14 0.11

ADF-GLS 0.81 0.58 0.57 0.59 0.65 0.51 0.34 0.34 0.27

0:7 � (0:1) 0.92 0.62 0.57 0.60 0.67 0.71 0.61 0.46 0.35
� (�c; 0:1) 0.93 0.71 0.68 0.72 0.78 0.83 0.79 0.68 0.56
BT 0.92 0.65 0.57 0.56 0.58 0.58 0.54 0.46 0.39
ADF 0.92 0.64 0.57 0.59 0.66 0.61 0.36 0.28 0.24

ADF-GLS 0.94 0.73 0.69 0.72 0.77 0.80 0.68 0.57 0.48

0:6 � (0:1) 0.98 0.75 0.65 0.66 0.72 0.79 0.76 0.63 0.49
� (�c; 0:1) 0.98 0.80 0.74 0.75 0.80 0.85 0.84 0.77 0.67
BT 0.98 0.76 0.66 0.66 0.68 0.70 0.67 0.59 0.51
ADF 0.98 0.76 0.66 0.66 0.71 0.78 0.67 0.49 0.38

ADF-GLS 0.98 0.81 0.75 0.76 0.79 0.84 0.83 0.74 0.62

Notes: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with

kmin = 0 and kmax =
�
12(T=100)1=4

�
as in Perron & Qu (2007). The BT, �(0:1), and �(�c; 0:1) tests

use the sieve bootstrap with same lag length as the ADF and ADF-GLS tests. For each statistic,

entries under the rows marked � = 1:00 are �nite sample rejection frequencies under the null, i.e.

the sizes. All other entries are �nite sample power. Based on 20,000 Monte Carlo replications.

Table 4 presents the simulated rejection frequencies with T = 100 under the MA model (18) with

coe�cient � 2 f�0:8;�0:6; : : : ; 0:8g. The BT, �(0:1), and �(�c; 0:1) tests apply the sieve bootstrap
algorithm described above. All the tests have similar size properties and show some distortion for

the largest negative MA coe�cient, � = �0:8, but only minor size distortion for the other values
of the MA coe�cient. In terms of power the variance ratio tests with d = 0:1, and especially

the GLS detrended version, clearly dominate the BT test. Furthermore, the �(�c; 0:1) test actually

outperforms the ADF-GLS test when the MA coe�cient is either small or positive. In the case of

a negative coe�cient the �(�c; 0:1) and ADF-GLS tests have almost identical power. Thus, in this
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Table 5: Simulated rejection frequencies for model (18): T = 500
� Test statistic n � �0:8 �0:6 �0:4 �0:2 0:0 0:2 0:4 0:6 0:8

1:00 � (0:1) 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04
� (�c; 0:1) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
BT 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
ADF 0.05 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02

ADF-GLS 0.05 0.05 0.04 0.04 0.03 0.04 0.03 0.03 0.03

0:98 � (0:1) 0.22 0.20 0.20 0.19 0.19 0.19 0.18 0.17 0.14
� (�c; 0:1) 0.29 0.29 0.30 0.30 0.30 0.30 0.29 0.27 0.24
BT 0.21 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.16
ADF 0.18 0.15 0.13 0.13 0.12 0.12 0.10 0.10 0.08

ADF-GLS 0.28 0.25 0.24 0.23 0.22 0.21 0.19 0.18 0.16

0:96 � (0:1) 0.54 0.52 0.53 0.53 0.53 0.51 0.49 0.45 0.39
� (�c; 0:1) 0.71 0.70 0.71 0.71 0.72 0.70 0.68 0.65 0.59
BT 0.48 0.42 0.41 0.40 0.40 0.39 0.39 0.38 0.35
ADF 0.49 0.44 0.45 0.46 0.46 0.43 0.38 0.35 0.29

ADF-GLS 0.71 0.67 0.67 0.70 0.71 0.68 0.64 0.59 0.52

0:94 � (0:1) 0.79 0.76 0.78 0.79 0.80 0.77 0.76 0.72 0.64
� (�c; 0:1) 0.91 0.88 0.90 0.90 0.91 0.89 0.89 0.86 0.82
BT 0.70 0.64 0.61 0.60 0.60 0.59 0.58 0.56 0.53
ADF 0.77 0.71 0.74 0.76 0.79 0.74 0.71 0.65 0.56

ADF-GLS 0.91 0.88 0.90 0.91 0.92 0.90 0.89 0.86 0.80

0:92 � (0:1) 0.92 0.87 0.89 0.90 0.91 0.89 0.88 0.86 0.80
� (�c; 0:1) 0.97 0.95 0.95 0.95 0.96 0.95 0.95 0.94 0.91
BT 0.84 0.77 0.75 0.74 0.73 0.72 0.71 0.69 0.66
ADF 0.92 0.84 0.86 0.88 0.90 0.88 0.87 0.83 0.75

ADF-GLS 0.98 0.95 0.95 0.96 0.96 0.96 0.95 0.94 0.91

Notes: The ADF and ADF-GLS tests use the MAIC to determine the lag augmentation with

kmin = 0 and kmax =
�
12(T=100)1=4

�
as in Perron & Qu (2007). The BT, �(0:1), and �(�c; 0:1) tests

use the sieve bootstrap with same lag length as the ADF and ADF-GLS tests. For each statistic,

entries under the rows marked � = 1:00 are �nite sample rejection frequencies under the null, i.e.

the sizes. All other entries are �nite sample power. Based on 20,000 Monte Carlo replications.

case with a linear time trend, it appears that the relatively close proximity of the asymptotic local

power function of the � (�c; 0:1) test to the parametric power envelope carries over to the simulation

results.

In Table 5, laid out as the previous table, the simulated rejection frequencies for sample size

T = 500 are reported under the same models as in Table 4. The results show that the size distortion

for � = �0:8 in the smaller sample is no longer present, and all the tests now exhibit excellent size
control for all the MA coe�cients considered. In terms of power, the conclusions from the smaller

sample size are con�rmed: The � (�c; 0:1) test is superior to the ADF-GLS test in the presence of
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small or positive MA coe�cients, and the �(�c; 0:1) and ADF-GLS tests perform very similarly in the

presence of large negative MA coe�cients. Thus, the � (�c; 0:1) test remains very competitive, even

with the larger sample size and therefore better lag augmentation selection by the ADF-GLS test.

However, the power of the ADF-GLS test relative to the � (�c; 0:1) test has increased somewhat

for this larger sample size compared to the smaller sample size, presumably due to better lag

augmentation selection, and is now generally closer to that of the � (�c; 0:1) test. In all cases, the

BT test is clearly dominated by the �(0:1) and �(�c; 0:1) tests.

It is clear that the application of the sieve bootstrap procedure described here delivers tests

with size properties that are as good as those of the ADF-GLS tests with MAIC lag selection.

Furthermore, in terms of power, the bootstrapped �(�c; 0:1) test is clearly superior to the tuning

parameter free BT test, and is generally at least as powerful as, and in some cases even superior

to, the ADF-GLS test.

5 Concluding Remarks

The family of nonparametric variance ratio tests of the unit root hypothesis presented here has the

property that the test statistics are free of tuning parameters. That is, there are no parameters

involved in calculating the test statistic which are not re
ected in the asymptotic distribution. The

test statistics are constructed as a ratio of the sample variance of the observed series and that of a

fractional partial sum of the series { possibly applying GLS detrending to handle deterministic terms

{ and the family is indexed by the parameter d which determines the order of the fractional partial

summation. However, unlike the choice of, e.g., lag length in augmented Dickey-Fuller regressions

or bandwidth in Phillips-Perron type tests, each member of the family with d > 0 is consistent

and its asymptotic distribution depends on d, thus re
ecting the parameter chosen to implement

the test. Consequently, using local-to-unity asymptotics, the power of each member of the family

against near-integrated alternatives was derived. In particular, it was shown that members of the

family with d < 1 have asymptotic local power that is better than that of Breitung's (2002) test;

a leading tuning parameter free test. Furthermore, when d is small the asymptotic local power of

the proposed test is relatively close to the parametric power envelope, especially in the case with a

linear time trend.

Simulation evidence demonstrates the �nite sample properties of the proposed variance ratio

test. To alleviate the size distortion that is sometimes present in small samples, a sieve bootstrap

procedure is applied to the test. The sieve lag length p becomes a tuning parameter in the variance

ratio test in the sense that the bootstrap critical values depend on p. Applying the sieve bootstrap,

the variance ratio test has size properties that are as good as those of the ADF-GLS test when the

two are compared on an even footing by applying the MAIC to select both the lag augmentation

of the Dickey-Fuller regressions and the sieve lag length for the bootstrap procedure. This is the
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case even in the presence of moving average errors with a large negative coe�cient. With the

sieve bootstrap procedure, the �nite sample power of the variance ratio test is similar to that of

the ADF-GLS test and even superior in some cases, such as the important case of a model that

includes a linear time trend and has moving average errors.

Appendix: Proofs

Proof of Theorem 1. In the case with no deterministic terms the result follows immediately by

the continuous mapping theorem since (4) and (5) hold under Assumption 1. In the presence of

deterministic terms, recall that ŷt = zt � (�̂� �)0 �t, where zt is generated as yt in (1). From (4)

the convergence

T�1=2zbTsc ) �yW0 (s)

holds. Now de�ne N1(T ) = 1 and N2(T ) = diag(1; T
�1) and write

T�1=2 (�̂� �)0 �bTsc =
 
T�1

TX
s=1

T�1=2zs�
0
sNj(T )

! 
T�1

TX
s=1

Nj(T )�s�
0
sNj(T )

!�1
Nj(T )�bTsc;

where

T�1=2 (�̂� �)0Nj(T )�1 =
 
T�1

TX
s=1

T�1=2zs�
0
sNj(T )

! 
T�1

TX
s=1

Nj(T )�s�
0
sNj(T )

!�1
(20)

=

 
T�1

TX
s=1

T�1=2zsDj(s=T )

! 
T�1

TX
s=1

Dj(s=T )Dj(s=T )
0

!�1

) �y

�Z 1

0
W0 (s)Dj (s)

0 ds

��Z 1

0
Dj (s)Dj (s)

0 ds

��1
by application of (4) and the continuous mapping theorem, and

Nj(T )�bTsc = Dj(bTsc =T )! Dj(s) as T !1: (21)

It thus follows that

ŷT (s) = T
�1=2ŷbTsc ) �yBj (s) ; j = 0; 1; 2: (22)

Next, for ~yT (s) = T
�d��d+ ŷT (s) = T

�1=2�dPbTsc�1
k=0 �k (d) ŷbTsc�k = T

�1=2�dPbTsc
k=1 �bTsc�k (d) ŷk,

where ŷt = zt � (�̂� �)0 �t and �k(d) = �(k + d)=(�(d)�(k + 1)), the convergence

T�1=2�d
bTscX
k=1

�bTsc�k (d) zk ) �yWd(s)
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holds from (5). For the remaining term, i.e.,

T�1=2�d
bTscX
k=1

�bTsc�k (d) (�̂� �)0 �k =
�
T�1=2 (�̂� �)0Nj(T )�1

�0@T�d bTscX
k=1

�bTsc�k (d)Nj(T )�k

1A ;
the �rst factor converges by (20) and the last factor is deterministic and satis�es the convergence

T�d
bTscX
k=1

�bTsc�k (d)Nj(T )�k = T
�d

bTscX
k=1

�bTsc�k (d)Dj(k=T ) (23)

= T�d
bTscX
k=1

(bTsc � k)d�1

� (d)
Dj(k=T ) + o(1)

= T�1
bTscX
k=1

�
bTsc
T � k

T

�d�1
� (d)

Dj(k=T ) + o(1)

!
Z s

0

(s� r)d�1

� (d)
Dj (r) dr as T !1:

Hence, it follows that

~yT (s)) �y ~Bj;d (s) ; j = 0; 1; 2;

which proves the desired result.

Proof of Theorem 2. The test has asymptotic size 
 by Theorem 1 and the de�nition of

CVj;
 (d). Consistency is proved in the case �t = 0; the remaining cases follow similarly. Under

the alternative hypothesis H1 in (2) and Assumption 1, yt is stationary and ergodic such that

!2y = Ey
2
t <1, and

T�1
TX
t=1

y2t
P! !2y

by the law of large numbers for stationary ergodic time series, e.g. White (1984, p. 42).

Under H1 and Assumption 1 it also holds that 0 <
P1
k=�1 j
y(k)j < 1, where 
y(k) =

E(ytyt+k). If d < 1=2 note that

V ar(~yt) =
t�1X
m=0

t�1X
k=0

�m(d)�k(d)
y(m�k) � C
t�1X
m=0

j
y(m)j
t�1�mX
k=0

(k+m)d�1kd�1 � C
1X
m=0

j
y(m)j <1:

Here, and throughout, C > 0 denotes a generic constant which may take di�erent values in di�erent

places. If d > 1=2,

T 1�2dV ar(~yt) � CT 1�2d
t�1X
m=0

j
y(m)j
t�1�mX
k=0

(k +m)d�1kd�1:
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The evaluations (k +m)d�1kd�1 � k2d�2 if d < 1 and (k +m)d�1kd�1 � T 2d�2 if d � 1 then give

T 1�2dV ar(~yt) � C
1X
m=0

j
y(m)j
(
T�1

PT
k=0(k=T )

2d�2 !
R 1
0 x

2d�2dx <1; d < 1;

T 1�2d
PT
k=0 T

2d�2 <1; d � 1:

Hence, under H1 and Assumption 1, � (d)
�1 = OP

�
T�min(1;2d)

�
and thus �(d) diverges in

probability to +1 when d > 0, noting that � (d) > 0 by construction. Consistency against the

alternative H1 follows.

Proof of Theorem 3. Recall that ŷt = zt � (�̂� �)0 �t, where zt is generated by (13). Under
assumptions implied by Assumption 1, Chan & Wei (1987) and Phillips (1987b) proved that

T�1=2zbTsc ) �yJ0;c (s) ; (24)

where J0;c (s) = W (s)� c
R s
0 e

�c(s�r)W (r)dr; J0;c (0) = 0; is the Ornstein-Uhlenbeck process which

is sometimes also written as J0;c (s) =
R s
0 e

�c(s�r)dW0 (r). As in (20) it follows that

T�1=2 (�̂� �)0Nj(T )�1 ) �y

�Z 1

0
J0;c (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1
; (25)

which combined with (21) and (24) implies that

ŷT (s) = T
�1=2ŷbTsc ) �yJj;c (s) ; (26)

where Jj;c (s) is the demeaned (j = 1) or detrended (j = 2) Ornstein-Uhlenbeck process de�ned in

Theorem 3.

As in the proof of Theorem 1, de�ne ~yT (s) = T�d��d+ ŷT (s) = T�1=2�d
PbTsc
k=1 �bTsc�k (d) ŷk.

First suppose there are no deterministic terms (j = 0), in which case ŷt = yt. Since e
�c=T =

1 � c=T + O(T�2) it follows that yt =
Pt
k=1 e

�c(t�k)=Tuk (where a negligible remainder term has

been left out), and using summation by parts the representation

yt =
tX

k=1

e�c(t�k)=Tuk =
tX

k=1

uk +
t�1X
k=1

�
e�c(t�k)=T � e�c(t�k�1)=T

� kX
m=1

um

is obtained. By the mean value theorem, for 0 � x � 1;

e�c(t�k�1)=T = e�c(t�k)=T +
c

T
e�c(t�k)=T +

1

2

� c
T

�2
e�c(t�k�x)=T

= e�c(t�k)=T +
c

T
e�c(t�k)=T

�
1 +O

�
T�1

��
;

which implies that

yt =

tX
k=1

uk �
c

T

t�1X
k=1

e�c(t�k)=T
kX

m=1

um
�
1 +OP

�
T�1

��
:
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The OP (T
�1) term is uniform in t and is therefore ignored in the following.

Now, still in the case with no deterministic terms, ~yT (s) = T
�1=2�dPbTsc

k=1 �bTsc�k (d) yk is

~yT (s) = T
�1=2�d

bTscX
k=1

�bTsc�k (d)
kX

m=1

um � T�1=2�d
bTscX
k=2

�bTsc�k (d)
c

T

k�1X
m=1

e�c(k�m)=T
mX
l=1

ul

= ~y1T (s)� ~y2T (s);

where ~y1T (s) = T�1=2�d
PbTsc
k=1 �bTsc�k (d)

Pk
m=1 um ) �yWd (s) by (5). By interchanging the

order of the summations the second term can be rearranged as

tX
k=2

�t�k (d)
c

T

k�1X
m=1

e�c(k�m)=T
mX
l=1

ul =
c

T

t�2X
m=0

e�c(m+1)=T
t�mX
k=2

�t�m�k (d)
k�1X
l=1

ul

=
c

T

t�1X
m=1

e�c(t�m)=T
mX
k=1

�m�k (d)
kX
l=1

ul;

and thus ~y2T (s) is

~y2T (s) =
c

T

bTsc�1X
k=1

e�c(bTsc�k)=T ~y1T (k=T )

= c

bTsc�1X
k=1

e�c(bTsc�k)=T
Z (k+1)=T

k=T
~y1T (r)dr

= c

bTsc�1X
k=1

Z (k+1)=T

k=T
e�c(bTsc�bTrc)=T ~y1T (r)dr

= c

Z bTsc=T

1=T
e�c(bTsc�bTrc)=T ~y1T (r)dr

= c

Z s

0
e�c(s�r)~y1T (r)dr +RT (s):

By application of (5) and the continuous mapping theorem (since the functional
R s
0 e

�c(s�r)f(r)dr

is a continuous mapping from D[0; 1] to D[0; 1]) it follows that

c

Z s

0
e�c(s�r)~y1T (r)dr ) �yc

Z s

0
e�c(s�r)Wd (r) dr:

Thus, it only remains to show that the approximation error RT (s) is asymptotically negligible
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uniformly in s 2 [0; 1]. Write RT (s) as

RT (s) = c

Z 1=T

0
e�c(bTsc�bTrc)=T ~y1T (r)dr

+ c

Z s

bTsc=T
e�c(bTsc�bTrc)=T ~y1T (r)dr

+ c

Z s

0

�
e�c(bTsc�bTrc)=T � e�c(s�r)

�
~y1T (r)dr:

It is easily seen that
R 1=T
0 e�c(bTsc�bTrc)=T ~y1T (r)dr = 0 because ~y1T (r) = 0 for r < 1=T . For the

next term we have that

sup
0�s�1

c

Z s

bTsc=T
e�c(bTsc�bTrc)=T ~y1T (r)dr � sup

0�s�1
C

Z s

bTsc=T
~y1T (r)dr

� sup
0�s�1

C

�
Ts� bTsc

T

� ����~y1T �bTscT
�����

� C

T
sup
0�s�1

j~y1T (s)j ;

which is OP
�
T�1

�
since sup0�s�1 j~y1T (s)j ) �y sup0�s�1 jWd (s)j by (5) and the continuous map-

ping theorem. The last term of RT (s) is bounded by

sup
0�s�1

c

Z s

0

�
e�c(bTsc�bTrc)=T � e�c(s�r)

�
~y1T (r)dr

� sup
0�s�1

c

Z s

0

�
e�c(bTsc=T�bTrc=T ) � e�c(bTsc=T�r)

�
~y1T (r)dr

+ sup
0�s�1

c

Z s

0

�
e�c(bTsc=T�r) � e�c(s�r)

�
~y1T (r)dr

� sup
0�r�1

C
����ec(bTrc=T ) � ecr� ~y1T (r)���+ sup

0�r�1

C

T
ecr j~y1T (r)j

� C

T
sup
0�r�1

j~y1T (r)j ;

which is OP (T
�1) by (5) and the continuous mapping theorem. Hence sup0�s�1RT (s)

P! 0:

Finally, the result for the fractional partial sum of the detrended process, i.e. the result for

~yT (s) = T
�1=2�dPbTsc

k=1 �bTsc�k (d) ŷk, can easily be proven. Writing ŷt = zt � (�̂� �)
0 �t, where zt

is generated by (13), it has already been shown that

T�1=2�d
bTscX
k=1

�bTsc�k (d) zk ) �y ~J0;c;d (s) ; (27)

and it only remains to combine this result with (23) and (25) to get

~yT (s)) �y ~J0;c;d (s)� �y
�Z 1

0
J0;c (r)Dj (r)

0 dr

��Z 1

0
Dj (r)Dj (r)

0 dr

��1 Z s

0

(s� r)d�1

� (d)
Dj (r) dr:
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Proof of Theorem 4. From Elliott et al. (1996, pp. 834-835) it follows that T�1=2ŷ�c;bTsc )
�yJ0;c (s) if j = 1 and T

�1=2ŷ�c;bTsc ) �yV�c;c (s) if j = 2. Now ~y�c;t is based on

ŷ�c;t = zt � (~�0 � �0)� (~�1 � �1)t; (28)

which is GLS detrended as in (15). Note that (28) applies to the case j = 2; when j = 1 the last

term is not present. From Elliott et al. (1996, p. 835) it is known that ~�0 = OP (1) and

p
T (~�1 � �1)) �y

(1 + �c)

1 + �c+ �c2=3
J0;c (1) + �y

�c2

1 + �c+ �c2=3

Z 1

0
rJ0;c (r) dr = �yb1: (29)

It follows immediately that T�1=2�d~y�c;bTsc ) �y ~J0;c;d (s) for j = 1 when ~y�c;t is based on ŷ�c;t.

It only remains to be shown that T�1=2�d~y�c;bTsc ) �y ~V�c;c;d (s) when j = 2. Following the steps

in the proofs of Theorems 1 and 3, write

T�1=2�d~y�c;bTsc = T
�1=2�d

bTscX
k=1

�bTsc�k (d) ŷ�c;k

and use (28) to obtain the representation

T�1=2�d~y�c;bTsc = T
�1=2�d

bTscX
k=1

�bTsc�k (d) zk (30)

� (~�0 � �0)T�1=2�d
bTscX
k=1

�bTsc�k (d) (31)

�
p
T (~�1 � �1)T�d

bTscX
k=1

�bTsc�k (d)
bTsc
T

: (32)

It has already been shown in (27) that (30) converges weakly to �y ~J0;c;d (s). Next,

sup
0�s�1

T�1=2�d
bTscX
k=1

�bTsc�k (d) = sup
0�s�1

T�1=2�d
bTsc�1X
k=0

�k (d)

� C sup
0�s�1

T�1=2�d
bTsc�1X
k=1

kd�1

� CT�1=2;

and since ~�0 = OP (1) this implies that (31) is OP (T
�1=2). For (32) use (29) and

T�d
bTscX
k=1

�bTsc�k (d)
bTsc
T

! sd+1

� (d+ 2)
;

such that, for j = 2, T�1=2�d~y�c;bTsc ) �y ~J0;c;d (s)� �yb1 sd+1

�(d+2) = �y
~V�c;c;d (s).
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