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Abstract

This paper discusses model-based inference in an autoregressive model for fractional
processes which allows the process to be fractional of order d or d−b. Fractional differ-
encing involves infinitely many past values and because we are interested in nonstation-
ary processes we model the data X1, . . . , XT given the initial values X−n, n = 0, 1, . . .,
as is usually done. The initial values are not modeled but assumed to be bounded.
This represents a considerable generalization relative to all previous work where it is
assumed that initial values are zero. For the statistical analysis we assume the condi-
tional Gaussian likelihood and for the probability analysis we also condition on initial
values but assume that the errors in the autoregressive model are i.i.d. with suitable
moment conditions.
We analyze the conditional likelihood and its derivatives as stochastic processes in

the parameters, including d and b, and prove that they converge in distribution. We
use the results to prove consistency of the maximum likelihood estimator for d, b in a
large compact subset of {1/2 < b < d < ∞}, and to find the asymptotic distribution
of the estimators and the likelihood ratio test of the associated fractional unit root
hypothesis. The limit distributions contain the fractional Brownian motion of type II.
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1 Introduction and motivation
Nonstationary autoregressive models have been studied intensively over the past three

decades. In the usual autoregressive model, we consider the nonstationarity implied by a unit
root in the associated autoregressive polynomial. Recently, much attention has been given to
alternative models of nonstationarity such as fractional models characterized by a fractional
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rather than integer integration operator, see e.g. Baillie (1996) or Henry and Zaffaroni (2003)
for reviews and examples, and it appears important to allow fractional orders of integration
(or fractionality) in the time series model. Formal statistical tests of the unit root hypothesis
are of additional interest to economists because they can help to evaluate the nature of the
nonstationarity that most macroeconomic and financial time series data exhibit.
The autoregressive model with k + 1 lags for the univariate time series Xt, t = 1, . . . , T,

conditional on initial values X−n, n = 0, . . . , k, written in levels and differences, is

∆Xt = πXt−1 +

k∑
i=1

φi∆Xt−i + εt, t = 1, . . . , T,

where εt is i.i.d. (0, σ2).
A corresponding fractional autoregressive model, conditional on infinitely many initial

values X−n, n = 0, . . . , was obtained by Johansen (2008) by replacing the difference and
lag operators ∆ and L = 1 − ∆ by their fractional counterparts ∆b and Lb = 1 − ∆b and
applying ∆d−b to Xt :

∆dXt = π∆d−bLbXt +
k∑
i=1

φi∆
dLibXt + εt, t = 1, . . . , T. (1)

In the statistical model defined by (1) the parameters (d, b, φ1, . . . , φk, π, σ
2) are unrestricted

except d ≥ b > 1/2 and σ2 > 0. Note that if k = 0 in model (1) the parameter b is not
identified under the unit root null π = 0, see section 2.3. This motivates study of the simpler
model with d = b,

∆dXt = πLdXt +
k∑
i=1

φi∆
dLidXt + εt, t = 1, . . . , T, (2)

and in the simplest case with k = 0, model (2) reduces to

∆dXt = πLdXt + εt, t = 1, . . . , T, (3)

which we consider separately in some of our results.
The properties of the solution of model (1) depend on the characteristic function for the

process

Π(z) = (1− z)d − π(1− z)d−b(1− (1− z)b)−
k∑
i=1

φi(1− z)d(1− (1− z)b)i

= (1− z)d−bξ(1− (1− z)b) =

k∑
j=−1

ρj(1− z)d+jb, (4)

ξ(y) = 1− y − πy −
k∑
i=1

φi(1− y)yi =
k+1∑
j=0

ρj−1(1− z)jb,

where
∑k

j=−1 ρj = 1 and y = 1 − (1 − z)b. Note that Π(z) is a polynomial in z if and only
if d and b are non-negative integers, whereas ξ(y) is a polynomial in y for any d, b. The
parameter ρ = (ρ−1, . . . , ρk)

′ is a simple linear transformation of π and φ = (φ1, . . . , φk)
′ and

satisfy ρ−1 = −π, ρk = φk and
∑k

j=−1 ρj = 1.
As statistical model we analyze the conditional distribution of (X1, . . . , XT ) given the
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initial values X−n, n = 0, 1, . . . , under the assumption that εt is i.i.d. N(0, σ2). That is,
we derive estimators and test statistics from the conditional likelihood function and their
properties from the conditional distribution. For the asymptotic analysis we assume that
εt is i.i.d. with suitable moment conditions and that X−n is bounded. Thus, the initial
values are not modeled but treated as (bounded) constants. The standard approach in the
literature conducts inference conditional on initial values, which are set equal to zero. In
this paper we develop methods for analysis of the nonstationary (unit root) case with π = 0
and d ≥ b > 1/2. We call the test of π = 0 the fractional unit root test in our model.
Our main result is to find asymptotic properties of (Gaussian) maximum likelihood esti-

mators of the parameters in model (1) under the assumption that π = 0, and the asymptotic
distribution of the likelihood ratio (LR) test that π = 0. We show that if the initial values
are bounded they have no influence on limit results, except that conditioning on initial val-
ues implies that some of the limit results are expressed in terms of the fractional Brownian
motion (fBM) of type II, whereas fBM of type I plays no role in the analysis.
Thus, (1) and (2) are fractional versions of the augmented Dickey and Fuller (1979, 1981)

regression model, and we provide a first analysis of a univariate model with two fractional
parameters with a simple criterion for different orders of fractionality. The test that π = 0
is a test that the process is fractional of order d versus d − b, i.e. the fractional unit root
test is also a test of the order of fractionality of Xt. Note that when d > b the characteristic
function (4) has a unit root also when π 6= 0. However, we still refer to the test of π = 0
as the unit root test in (1) since it is a test of a unit root in the polynomial ξ(y). Other
hypotheses of interest are linear hypotheses on the regression parameters φ = (φ1, . . . , φk)

′

and the fractionality parameters d and b. The analysis of model (1) is a first step towards the
analysis of the multivariate model which allows cofractionality, that is, linear combinations
of fractional processes that decrease the order of fractionality.
A prominent place in literature on models for fractional processes is held by the ARFIMA

model
A(L)∆dXt = B(L)εt, (5)

where A(L) and B(L) are the autoregressive and moving average polynomials. The ARFIMA
model generalizes the well known ARIMA model by introducing the fractional (non-integer)
order of differencing, d. The original Dickey and Fuller (1979, 1981) test is a LR test of
A(1) = 0 within the autoregressive model with d = 0 and B(L) = 1. A Wald-type test of
the same null was considered by, e.g. Chan and Terrin (1995) and Ling and Li (2001) in the
ARFIMA model, where the null hypothesis A(1) = 0 implies that the process is fractional
of order d+ 1 versus order d under the alternative.1

The model we propose to analyze, (1), is different from the ARFIMA model (5) because
it is characterized by two fractional parameters and because of the role of the lag operator
Lb. Our model is not an ARFIMA model in L, unless b = 0, 1, 2, . . . , but an ARFIMA
model in the new lag operator Lb. Thus, in (5) there is only one fractional parameter and
the fractional order of the time series always differs by exactly one under the unit root
null and the alternative, whereas the lag operator Lb implies that the difference in order

1Robinson (1994) proposed testing for a unit root using the LM-test in several different models, see also
Tanaka (1999) and Nielsen (2004). However, these authors examined the properties of hypothesis tests of
the form d = d0 (against composite alternatives) in ARFIMA models, so these are not unit root tests in the
sense defined above.
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of fractionality of the process generated by model (1) under the unit root null and the
alternative is b rather than one, see section 2.1 below. Note that when the roots of A(z) are
outside the unit circle, we find that Xt is fractional of order d. Thus a simple criterion exists
for fractionality of the solution of the ARFIMA model. A similar simple condition exists in
terms of ξ(y) for the process generated by model (1), see Lemma 1.
Another strand of the literature analyzes regression-type statistics with the purpose of

testing for a fractional unit root. An early contribution is Sowell (1990) who analyzed
the regression yt = φyt−1 + ut, where ∆dut = εt and φ0 = 1. He derived the asymptotic
distribution of φ̂FS, the regression estimator of yt on yt−1, instead of the maximum likelihood
estimator for fixed d, φ̂ML, that is, a regression of ∆dyt on ∆dyt−1 as considered by Ling and
Li (2001). Consequently, the asymptotic distribution of the estimator φ̂FS is discontinuous
in d, in the sense that T 2d+1(φ̂FS − 1) converges in distribution to a fBM functional when
d ≤ 0 and T (φ̂FS − 1) converges in distribution to another such functional when d ≥ 0. On
the other hand, the distribution of φ̂ML is the same as that of the standard Dickey and Fuller
(1979, 1981) statistic (see also the analysis in Phillips, 1987). The ideas in Sowell (1990)
were further developed by Dolado, Gonzalo, and Mayoral (2002) who consider the statistical
model α(L)∆yt = φ∆d1yt−1 + εt and test that φ = 0, and Lobato and Velasco (2006) who
consider the model α(L)∆yt = φα(L)(∆d2−1 − 1)∆yt + ut and test that φ = 0. Here α(L) is
a lag polynomial. They indicate the properties of the process under the null and under the
alternative2. In both cases they apply a t-ratio based on a regression equation and motivated
by the model equations, rather than a test based upon an analysis of the likelihood function.
Model (1) proposed here has the advantage relative to that of Dolado, Gonzalo, and

Mayoral (2002) and others, that one can give simple criteria for fractional integration of
various orders in terms of the parameters of the model, see Johansen (2008, Theorem 8) and
Lemma 1. In this way we have a platform for conducting model-based statistical inference
on the parameters and on the fractional order of Xt, and the possibility of extending the
results to the multivariate case.
The remainder of the paper is organized as follows. In section 2 we discuss the properties

of the solution of model (1), including the role of initial values and assumptions for the
asymptotic analysis. In section 3 we define the Gaussian likelihood function and profile
likelihood function as a function of (d, b) and determine its probability limit. In section 4 we
show that the asymptotic distribution of the maximum likelihood estimators d̂, b̂, and φ̂ are
asymptotically Gaussian, whereas the asymptotic distribution of π̂ and the LR test for π = 0
in section 5 involve fBM of type II. We conclude in section 6 and give some mathematical
details in four appendices.

2 Assumptions and main properties of the fractional autoregres-
sive model
We now discuss properties of the solution of the fractional autoregressive model (1) and

the role of initial values, and formulate the assumptions needed for the asymptotic analysis.

2The condition given by Dolado, Gonzalo, and Mayoral (2002) for the roots of π(z) = α(z)(1− z)1−d1 −
φz = 0 to be outside the unit circle is π(0) = 1, π(1) > 0, π(−1) > 0. This cannot be correct as the example
π(z) = 4(z − 1/2)2 = (1 − 4z)(1 − z) + z shows. Indeed, the correct condition leads to the solution of
an unpleasant transcendental equation, see the discussion in Johansen (2008), and thus it does not appear
possible to give simple conditions for fractionality of various orders in terms of the parameters of their model.
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2.1 Properties of the solution of the fractional autoregressive model
The binomial expansion of (1− z)−d defines the coeffi cients πn(d) = (−1)n

(−d
n

)
which are

bounded in absolute value by c(d)nd−1, d ∈ R. For d < 1/2 and εt i.i.d. (0, σ2) we define the
stationary process with finite variance ∆−dεt = (1− L)−dεt =

∑∞
n=0 πn(d)εt−n. For d ≥ 1/2

the infinite sum does not exist, but we define a nonstationary process by the operator ∆−d+ ,

∆−d+ εt =
t−1∑
n=0

πn(d)εt−n = εt + dεt−1 + · · ·+ (−1)t−1

(
−d
t− 1

)
ε1, t = 1, . . . , T,

see for instance Dolado, Gonzalo, and Mayoral (2002) or Marinucci and Robinson (2000)
who call this a “type II”process and use the notation ∆−dεt1{t≥1}, where 1{A} denotes the
indicator function of the event A.
We call a stationary linear process Yt =

∑∞
n=0 ξnεt−n with continuous spectral density,

φ(λ), fractional of order zero if φ(0) 6= 0. We also call the process Y +
t =

∑t−1
n=0 ξnεt−n + µt,

where µt is a deterministic trend, fractional of order zero, and finally if ∆dZt is fractional of
order zero then Zt is fractional of order d.
For the asymptotic analysis we apply the result, e.g. Davydov (1970) and Akonom and

Gourieroux (1987), that when d > 1/2 and E|εt|q <∞ for some q > 1/(d− 1/2), then

T−d+1/2∆−d+ ε[Tu] =⇒ Wd−1(u) = Γ(d)−1

∫ u

0

(u− s)d−1dW (s) on D[0, 1], (6)

where W denotes BM generated by εt and Wd−1 is the corresponding fBM of type II. By the
continuous mapping theorem,

T−2d

T∑
t=1

(∆−d+ εt)
2 d→

∫ 1

0

W 2
d−1du. (7)

We also have, see Jakubowski, Mémin, and Pages (1989),

T−d
T∑
t=1

∆−d+ εtεt+1
d→
∫ 1

0

Wd−1dW. (8)

The properties of the solution of model (1) depend on the characteristic function Π(z) and
the polynomial ξ(y) in (4). If we represent Π(z) as a power series

∑∞
n=0 νnz

n with
∑∞

n=0 ν
2
n <

∞, we define Π+(L)Xt =
∑t−1

n=0 νnXt−n and Π−(L)Xt =
∑∞

n=t νnXt−n. An equation like
Π(L)Xt = Π+(L)Xt + Π−(L)Xt = εt is solved by expanding Π(z)−1 =

∑∞
n=0 τnz

n, |z| < 1,
and using the coeffi cients to define Π+(L)−1εt =

∑t−1
n=0 τnεt−n. Then we apply Π+(L)−1 and

find
Xt = Π+(L)−1εt − Π+(L)−1Π−(L)Xt, t = 1, . . . , T. (9)

This shows that without any conditions on the parameters, Xt is the sum of a stochastic term
Π+(L)−1εt and a deterministic term generated by initial values. To describe the stochastic
properties of the solution we introduce the image of the unit circle under the function z 7→
1− (1− z)b, b > 0, i.e. the set

Cb = {1− (1− z)b : |z| ≤ 1}.

Lemma 1 1. If the roots of ξ are outside Cb, then ξ(y)−1 is regular in a neighborhood of Cb
and ξ(1) 6= 0, so that F (z) = ξ(1 − (1 − z)b)−1 =

∑∞
n=0 τnz

n, |z| < 1, defines a stationary
process Yt =

∑∞
n=0 τnεt−n with

∑∞
n=0 τ

2
n <∞, which is fractional of order zero. Equation (1)
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is solved by

Xt = ∆
−(d−b)
+ Y +

t − Π+(L)−1Π−(L)Xt = ∆
−(d−b)
+ Y +

t + µt, t = 1, 2, . . . , (10)

where Y +
t =

∑t−1
n=0 τnεt−n and µt is a function of initial values. Thus Xt is fractional of order

d− b.
2. If π = 0 then ξ(1) = 0, and if the remaining roots of ξ are outside Cb, then

(1− z)dΠ(z)−1 = γ + (1− z)bH(1− (1− z)b), (11)

where γ = (1 −
∑k

i=1 φi)
−1 and H(y) is regular in a neighborhood of Cb with H(1) 6= 0,

so that the coeffi cients defined by F (z) = H(1 − (1 − z)b) =
∑∞

n=0 τnz
n, |z| < 1, define a

stationary process Yt =
∑∞

n=0 τnεt−n with
∑∞

n=0 τ
2
n < ∞, which is fractional of order zero.

Equation (1) is solved by

Xt = ∆−d+ (γεt + ∆b
+Y

+
t ) + µt, t = 1, 2, . . . , (12)

where µt is given in (10). Thus Xt is fractional of order d. Note that Zt = γεt + ∆bYt
satisfies (1−

∑k
i=1 φiL

i
b)Zt = εt.

3. If b > 1/2 it holds in both cases 1 and 2 that
∑∞

n=0 |τn| < ∞, so that the covariance
function E(YtYt−h) satisfies

∑∞
h=−∞ |E(YtYt−h)| <∞.

Proof. The results (10), (11), and (12) follow from Johansen (2008, Corollary 6 and Theorem
8) and the equation is solved as in (9) using the expression (11) for Π+(L)−1εt.
We prove here that b > 1/2 implies

∑∞
n=0 |τn| < ∞. We give the proof for case 2 of a

unit root. Because H(y) is regular in a neighborhood of Cb, the function F (z) =
∑∞

n=0 τnz
n,

|z| < 1, can be extended by continuity to |z| = 1, and the continuous transfer function for Yt
has the form φ(λ) = H(1 − (1 − eiλ)b) = F (eiλ), where i =

√
−1 is the imaginary unit. The

derivative of φ(λ) is, for y = 1− (1− z)b,

∂φ

∂λ
=
∂H

∂y

∂y

∂z

∂z

∂λ
=
∂H

∂y
(1− (1− eiλ)b)b(1− eiλ)b−1ieiλ,

which is continuous for b ≥ 1, and has a pole for λ = 0 when b < 1. It is, however, square
integrable for b > 1/2. By Parseval’s formula it then holds that the Fourier coeffi cients of
∂φ/∂λ, inτn, are square summable so that

∑∞
n=0 n

2τ 2
n < ∞, see Zygmund (2003, p. 37).

Hence

(

∞∑
n=1

|τn|)2 = (

∞∑
n=1

|τnn|n−1)2 ≤
∞∑
n=1

|τnn|2
∞∑
n=1

n−2 <∞,

so that
∑∞

n=0 |τn| <∞. Finally we evaluate
∑∞

h=−∞ |E(YtYt−h)| by
∞∑

h=−∞

∞∑
i,j=0

|E(τjεt−jτiεt+h−i)| ≤ c
∞∑
i=0

∞∑
h=−∞

|τi−h||τi| ≤ c(

∞∑
i=0

|τi|)2 <∞.

2.2 Assumptions for the asymptotic analysis
We give here the assumptions we use in the asymptotic analysis of our models and a

discussion of initial values.

Assumption 1 The process Xt, t = 1, . . . , T , is generated by model (1) for some k =
1, 2, . . . and satisfies:
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Errors: The errors εt are i.i.d. (0, σ2) with E|εt|q <∞ for some q > max(6, 1/η0) and
0 < η0 < min(1/2, b0 − 1/2, d0 − b0).
True values: The true values satisfy d0 > b0 > 1/2, π0 = 0, σ2

0 > 0, so that ξ(y) has
a unit root and the remaining roots of ξ(y) are outside the set Cb0 , so that γ0 6= 0, where γ0

is the true value of γ. Finally φ0k 6= 0 so the asymptotic distribution of the estimators is
nonsingular.
Initial values: The initial values X−n, n = 0, 1, . . ., satisfy maxn≥0 |X−n| ≤ c.

Assumption 2 The process Xt, t = 1, . . . , T , is generated by model (2) for some k =
0, 1, 2, . . . and satisfies the Errors condition for some q > max(4, 1/(d0 − 1/2)), together
with the True values and Initial values conditions.

Importantly, the Errors assumption does not include Gaussianity for the asymptotic
analysis, but only an i.i.d. condition with suffi cient moments to apply a functional central
limit theorem and our tightness arguments. Note that the moment condition in model (2)
with only one fractional parameter is the same as that required to obtain the functional
central limit theorem (6) at d = d0, e.g. Akonom and Gourieroux (1987) or Marinucci and
Robinson (2000), except we need a minimum of four moments to apply our tightness methods.
The moment condition in model (1) with two fractional parameters is stronger since we need
(6) to hold in a neighborhood of the true value and we also need more moments (six) to apply
our tightness methods with two fractional parameters. The True Values assumption is
the unit root assumption, which ensures that Xt is nonstationary and fractional of order d0.
The theory in this paper will be developed for observations X1, . . . , XT generated by

(1) assuming that all initial values are observed, that is, conditional on X−n, n = 0, 1, . . .,
and under the assumption that they are bounded, which seems a reasonable condition in
practice. Thus, we follow the standard approach in the literature on inference for nonsta-
tionary autoregressive processes, where the initial values are observed but not modeled and
inference is conditional on them. However, we do not set initial values equal to zero as
is often done in the literature on fractional processes, but instead assume only that they
are observed unmodelled bounded constants, which represents a significant generalization
and makes the results more applicable, as we prove that initial values do not influence the
asymptotic results.
In the Initial values assumption the bound on |X−n| is needed so that ∆vXt =∑∞
n=0 πn(−v)Xt−n, and hence the likelihood function, can be calculated for any v > 0.

In practice, however, one has to choose an approximation to ∆vXt by setting initial values to
zero before some time−T0. The approximation error in doing so,DtT0(v) =

∑∞
j=t+T0

πj(−v)Xt−j,
is bounded by, see (55),

|DtT0(v)| ≤ c
∞∑

j=t+T0

j−v−1 ≤ c(t+ T0)−v.

This is small if either t or T0 is large. For T0 = λT, λ > 0, the error in T−1
∑T

t=1(∆vXt)
2

can be evaluated by (T−1
∑T

t=1DtT0(v)2)1/2 = O(T−v). For T0 = 0 the bound becomes
c(log T )1/2T−min(v,1/2). Thus even if T0 = 0, we get an increasing accuracy in the calculations
the larger the sample size T, but when v > 1/2 we can improve the order of approximation
by including initial values.
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To study the consistency of the maximum likelihood estimator of (d, b) we next define
a large compact parameter set N(η0), which is almost {1/2 < b < d < ∞}. We use the
notation ψ = (d, b)′.

Definition 2 For 0 < η0 < min(1/2, b0 − 1/2, d0 − b0) and d0 < η1 < ∞, we define the
compact parameter sets N̄ = {ψ : 1/2 + η0 ≤ b ≤ d − η0 ≤ η1/η0} and N(η0) = ∪k+2

n=0Nn,
where

N0 = {ψ ∈ N̄ : −1/2 + η0 ≤ d− b− d0}, (13)

Nn = {ψ ∈ N̄ : d+ (n− 2)b− d0 ≤ −1/2− η0 < −1/2 + η0 ≤ d+ (n− 1)b− d0}, n = 1, . . . , k + 1,

Nk+2 = {ψ ∈ N̄ : d+ kb− d0 ≤ −1/2− η0}.
Similarly, for 0 < η0 < min(1/2, d0 − 1/2) and d0 < η1 < ∞, we define J̄ = {d :

1/2 + η0 ≤ d ≤ η1/η0} and J(η0) = ∪k+2
n=1Jn, where

J1 = {d ∈ J̄ : −1/2 + η0 ≤ d− d0}, (14)

Jn = {d ∈ J̄ : d(n− 1)− d0 ≤ −1/2− η0 < −1/2 + η0 ≤ dn− d0}, n = 2, . . . , k + 1,

Jk+2 = {d ∈ J̄ : d(k + 1)− d0 ≤ −1/2− η0}.

The interpretation of Nn (or Jn) is that for ψ ∈ Nn and −1 ≤ i < n− 1, the n processes
T d+ib−d0+1/2∆d+ibX[Tu] are nonstationary, and for n−1 ≤ i ≤ k the k−n+2 processes∆d+ibXt

are (asymptotically) stationary. Note that some of the sets may be empty depending on d0,
and also note that ψ0 ∈ N1 where ∆d−bXt is the only nonstationary process.
For η0 → 0 and η1 fixed, N(η0) → {1/2 < b < d < ∞} except for the lines d + ib =

d0−1/2, i = −1, . . . , k, which are critical values for the behavior of the processes because the
main contribution to ∆d+ibXt on these lines is γ0∆d+ib−d0

+ εt = γ0∆
−1/2
+ εt. To prove uniform

convergence of the likelihood function, we thus need to exclude a small neighborhood of
these critical values.

2.3 Identification of the parameters in the statistical model
There is an indeterminacy between b, d, and k, as the following example shows. We use

the formulation in terms of ρ, see (4). The two functions

Π∗(z) = ρ∗−1(1− z)d
∗−b∗ + ρ∗0(1− z)d

∗
+ ρ∗1(1− z)d

∗+b∗

Π(z) = ρ∗−1(1− z)d−b + 0(1− z)d + ρ∗0(1− z)d+b + 0(1− z)d+2b + ρ∗1(1− z)d+3b

correspond to the same model if we take d∗ = d+ b and b∗ = 2b, but the first has k = 1 and
the second k = 3. Note that d − b = d∗ − b∗. We therefore discuss identification based on
the following result.

Lemma 3 Let m ≥ 1 and
∑m

i=0 ζi(1− z)a+ib =
∑m

i=0 ζ̄i(1− z)ā+ib̄, |z| < 1, and assume that
ζ0 6= 0 and ζm 6= 0. Then (a, b, ζ) = (ā, b̄, ζ̄).

Proof. Because ζm 6= 0, the highest order terms must be equal, which implies that a+mb =
ā+mb̄. Similarly ζ0 6= 0 implies that a = ā. Therefore also ζ = ζ̄ .

Corollary 4 Let two models be generated by (1) with the same lag length k ≥ 1, but with
parameters (ρ, d, b) and (ρ̄, d̄, b̄), respectively. Then, under Assumption 1, the parameters
are identified under the null hypothesis π = 0. The same holds under the alternative where
π 6= 0.
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Proof. The assumption that the lag length is k means that ρk 6= 0, and the conclusion then
follows from Lemma 3 under the null π = −ρ−1 = 0, where ρ0 6= 0, see Assumption 1. It
holds under the alternative, because then π = −ρ−1 6= 0 and ρk 6= 0.

3 Conditional likelihood and profile likelihood
We consider model (1) with i.i.d. Gaussian errors in order to determine the score and in-

formation. The parameter set is expressed in terms of τ = (d, b, φ′, π, σ2)′ or τ = (d, b, ρ′, σ2)′,
where

∑k
i=−1 ρi = 1 or ρ′1 = 1 and 1 is a vector of ones. The likelihood function, conditional

on initial values {X−n, n ≥ 0}, becomes

−2T−1 logLT (τ) = log σ2 +
1

σ2T

T∑
t=1

(∆dXt − π∆d−bLbXt −
k∑
i=1

φi∆
dLibXt)

2 (15)

= log σ2 +
1

σ2T

T∑
t=1

(

k∑
i=−1

ρi∆
d+ibXt)

2 = log σ2 +
1

σ2
ρ′MT (ψ)ρ, (16)

where we define the product moments

MijT (ψ) = T−1

T∑
t=1

(∆d+ibXt)(∆
d+jbXt) for i, j = −1, . . . , k. (17)

Minimizing over σ2 and ρ, the profile likelihood and the estimators σ̂2(ψ) and ρ̂(ψ) are

−2T−1 logLprofile,T (ψ) = 1 + log σ̂2(ψ), (18)

σ̂2(ψ) = min
ρ′1=1

ρ′MT (ψ)ρ (19)

ρ̂(ψ) =MT (ψ)−11/1′MT (ψ)−11. (20)

The last relation is found by considering the first order condition for the constrained opti-
mization problem ρ′MT (ψ)ρ − λ(ρ′1 − 1). This can of course also be found, using (π, φ),
by regressing ∆dXt on ∆d−bLbXt and ∆dLibXt, i = 1, . . . , k. Finally the maximum likelihood
estimator ψ̂ is found by optimizing the profile likelihood (18) and applying (19) and (20).
For the asymptotic analysis we normalize the processes as Tmin(d+ib−d0+1/2,0)∆d+ibXt and

define the normalized product momentM∗
T (ψ). For model (2) we define the corresponding

product momentsMT (d) =MT (d, d) andM∗
T (d) =M∗

T (d, d).
The limit results are expressed in terms of fBM, see (6), and in terms of the stationary

process Zt = γ0εt + ∆b0Yt, see Lemma 1. We use these to define the matrices

Mij(ψ) = γ2
0

∫ 1

0

Wd0−d−ib−1Wd0−d−jb−1du, ψ ∈ Nn, for − 1 ≤ i, j < n− 1, (21)

Mij(ψ) = E(∆d+ib−d0Zt)(∆
d+jb−d0Zt), ψ ∈ Nn, for n− 1 ≤ i, j ≤ k, (22)

Mij(ψ) =Mji(ψ) = 0, ψ ∈ Nn, for − 1 ≤ j < n− 1 ≤ i ≤ k. (23)

We use the notation DmMijT (ψ) to denote derivatives with respect to ψ. We can now
formulate the main limit result for the normalized product moments.

Theorem 5 Let Assumption 1 be satisfied for model (1). Then the normalized product
momentsM∗

T (ψ) and their derivatives DmM∗
T (ψ) are tight as continuous processes on N(η0),
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and for m = 0, 1, 2, it holds jointly that for ψ ∈ Nn

M∗
ijT (ψ) =⇒Mij(ψ),−1 ≤ i, j < n− 1, (24)

DmMijT (ψ) =⇒ DmMij(ψ), n− 1 ≤ max(i, j) ≤ k. (25)

For ψ = ψ0

T−b0
T∑
t=1

∆d0−b0Lb0Xtεt
d→ γ0

∫ 1

0

Wb0−1dW. (26)

Let Assumption 2 be satisfied for model (2). Then (24) and (25) hold for M∗
T (d) and

their derivatives on J(η0) and (26) holds with b0 = d0.

The proof of Theorem 5 is given in Appendix D. We next apply these results to derive
the uniform probability limit of the profile likelihood functions for models (1) and (2).

3.1 Convergence of the profile likelihood
Corollary 6 Let Assumption 1 be satisfied for model (1) and let Nn be given in Definition 2
and define for ψ ∈ Nn, the (k+2−n)×(k+2−n) matrixM(n)(ψ) = {Mij(ψ)}ki,j=n−1. Then
the profile likelihood function converges in distribution as a continuous process on N(η0) to
a deterministic limit, so the convergence is uniform in probability:

−2T−1 logLprofile,T (ψ) =⇒
{

1 + log σ2(ψ),
∞,

ψ ∈ ∪k+1
n=0Nn,

ψ ∈ Nk+2,
(27)

where
σ2(ψ) = min

ζ′1=1
ζ ′M(n)(ψ)ζ ≥ σ2

0, ψ ∈ Nn, (28)

and equality holds if and only if ψ = ψ0. Note that ψ0 ∈ N1 so that minψ∈Nn σ
2(ψ) > σ2

0 for
n 6= 1.

Proof. The profile likelihood function and the estimators σ̂2(ψ) and ρ̂(ψ) are given in (18),
(19), and (20).
For ψ ∈ Nn, n ≤ k + 1, the processes ∆d+ibXt are asymptotically stationary for n− 1 ≤

i, j ≤ k andMijT (ψ)
P→Mij(ψ) by (25), but for i, j < n − 1, MijT (ψ) diverges, see (24),

and in order to minimize ρ′MT (ψ)ρ over ρ, we have to choose ρi = 0, for i < n−1. Therefore

σ̂2(ψ)
P→ σ2(ψ) = minζ′1=1 ζ

′M(n)(ψ)ζ, ψ ∈ Nn.
For ψ ∈ Nk+2, all processes ∆d+ibXt are nonstationary and MijT (ψ) diverges for all i

and j. It follows that σ̂2(ψ) and hence the profile likelihood tends to infinity in probability.
In all cases tightness implies that we have convergence in distribution and hence uniform
convergence in probability on the compact set N(η0).
We next discuss the inequality in (28). For ζ = (ζn−1, . . . , ζk) satisfying ζ ′1 = 1, we

define for ψ ∈ Nn the stationary linear process St(ψ) =
∑k

i=n−1 ζi∆
d+ib−d0(γ0εt + ∆b0Yt),

which has transfer function, see Lemma 1,

f(z) =
(1− z)d−d0

∑k
i=n−1 ζi(1− z)ib∑k

i=0 ρ
0
i (1− z)ib0

. (29)

We use the superscript in ρ0
i to denote true value to avoid confusion with the coeffi cient ρ0,

and we also define ρ∗ = (ρ0, . . . , ρk)
′. From f(0) =

∑k
i=n−1 ζi/

∑k
i=0 ρ

0
i = 1 the coeffi cient of

εt in St is one, so that St − εt is a function of lagged ε′s. It follows that for any ζ such that
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ζ ′1 = 1, we have that ζ ′M(n)(ψ)ζ = V ar(St(ψ)) = V ar(St(ψ)−εt)+V ar(εt) ≥ V ar(εt) = σ2
0

with equality if and only if St = εt, which in turn is true if and only if f(z) = 1 for all z.
If ψ = ψ0 (and thus n = 1), then f(z) = (

∑k
i=0 ζi(1 − z)ib0)/(

∑k
i=0 ρ

0
i (1 − z)ib0) which

is clearly equal to one for all z if ζ = ρ0
∗. That is, if ψ = ψ0 then minζ′1=1 ζ

′M(1)(ψ0)ζ =
ρ0′
∗M(1)(ψ0)ρ0

∗ = σ2
0. To prove the reverse implication, suppose the minimum is achieved

for some value ζψ for which ζ ′ψM(n)(ψ)ζψ = σ2
0. Then it follows that f(z) = ((1 −

z)d−d0
∑k

i=n−1 ζψ,i(1− z)ib)/(
∑k

i=0 ρ
0
i (1− z)ib0) = 1 for all z. Because ρ0

k 6= 0 and ρ0
0 6= 0, this

implies by Lemma 3 that n = 1 and (ψ, ζψ) = (ψ0, ρ
0
∗).

Corollary 7 Let Assumption 2 be satisfied for model (2) and Jn be given in Definition 2.
Then:
1. The profile likelihood function converges in distribution as a continuous process on

J(η0):

−2T−1 logLprofile,T (d) =⇒
{

1 + log σ2(d),
∞,

d ∈ ∪k+1
n=1Jn,

d ∈ Jk+2,
(30)

where σ2(d) = minζ′1=1 ζ
′M(n)(d)ζ ≥ σ2

0 for d ∈ Jn, and equality holds if and only if d = d0.
Note that d0 ∈ J1 so that mind∈Jn σ

2(d) > σ2
0 for n 6= 1.

2. For k = 0, the convergence in (30) holds on J(η0), and the limit is strictly convex on
J1 with a minimum at d = d0.

Proof. The proof of 1 follows as in Corollary 6. To prove 2, we note that when k = 0
and π0 = 0, the model is ∆dXt = εt, and for d ∈ J1 we find −2T−1 logLprofile,T (d) =⇒
1 + log σ2(d), where

σ2(d) = E(∆d−d0εt)
2 =

σ2
0

2π

∫ π

−π
|1− eiλ|2(d−d0)dλ.

The convexity follows from the convexity of the function d 7→ |1− eiλ|2(d−d0).

3.2 Some moment relations
For ψ = ψ0 we want to find an expression for σ2

0 and ρ
0. We also prove that the asymptotic

covariance for (ψ̂, φ̂) is nonsingular.
We define, for ψ ∈ N1, the process

εt(ψ, φ) = ∆d−d0(1−
k∑
i=1

φiL
i
b)∆

d0Xt =

k∑
i=−1

ρi∆
d+ibXt,

and the stationary process

ε̃t(ψ, φ) = ∆d−d0(1−
k∑
i=1

φiL
i
b)(γ0εt + ∆b0Yt),

for which
σ2(ψ, φ) = lim

t→∞
V ar(εt(ψ, φ)) = V ar(ε̃t(ψ, φ)).

For a symmetric matrix A we write A > 0 to mean that it is positive definite.
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Lemma 8 Under Assumption 1 it holds for model (1) that ρ0
−1 = −π0 = 0 and for ρ∗ =

(ρ0, . . . , ρk)
′ andM(1)(ψ0) = {Mij(ψ0)}ki,j=0 we have

ρ0
∗ = (M(1)(ψ0))−11/(1′(M(1)(ψ0))−11), (31)

σ2
0 = ρ0′

∗M(1)(ψ0)ρ0
∗ = 1/(1′(M(1)(ψ0))−11), (32)

D2σ2(ψ0, φ0) = 2Σ0 = 2

(
Σ0ψψ Σ0ψφ

Σ0φψ Σ0φφ

)
> 0 for φ0k 6= 0. (33)

Under Assumption 2 when k ≥ 0, we find for model (2) that (31) and (32) hold with
b0 = d0, and that

D2σ2(d0, φ0) = 2

(
1 1 0
0 0 Ik

)
Σ0

(
1 1 0
0 0 Ik

)′
> 0 for φ0k 6= 0. (34)

Proof. Let v = (v0, . . . , vk)
′ be such that v′1 = 0. The coeffi cient of εt in the process Ut =∑k

i=0 vi∆
d0+ib0Xt is

∑k
i=0 vi = 0 and it follows that εt is independent of Ut. Hence the proba-

bility limit of the product moment of Ut with
∑k

i=0 ρ
0
i∆

d0+ib0Xt = εt gives ρ0′
∗M(1)(ψ0)v = 0.

Therefore ρ0
∗ is proportional toM(1)(ψ0)−11, which shows (31) since also 1′ρ0

∗ = 1. To prove
(32) we take the average of (

∑k
i=0 ρ

0
i∆

d0+ib0Xt)
2 = ε2

t and find the limit ρ
0′
∗M(1)(ψ0)ρ0

∗ = σ2
0,

which proves (32) using (31).
We let Et−1 denote the conditional expectation given the past, Ft−1 = σ{X−n, n ≥

0, εs, 1 ≤ s ≤ t − 1}, and find that because εt(ψ0, φ0) = εt and Dmεt(ψ, φ) only contains
lagged εt for m ≥ 1,

Et−1(εtDεt(ψ0, φ0)) = 0, Et−1(εtD
2εt(ψ0, φ0)) = 0, (35)

showing that εtDεt(ψ0, φ0) and εtD2εt(ψ0, φ0) are martingale difference sequences. To prove
(33) we differentiate σ2(ψ, φ) twice and find, for (ψ, φ) = (ψ0, φ0) and using (35), that

D2σ2(ψ0, φ0) = 2 lim
t→∞

E(Dεt(ψ0, φ0)Dεt(ψ0, φ0)′) = 2E(Dε̃t(ψ0, φ0)Dε̃t(ψ0, φ0)′) (36)

which we call 2Σ0.
We next want to show that Σ0 is positive definite when φ0k 6= 0. If Σ0 were singular then

there would be constants α, β, λ1, . . . , λk, such that the stationary linear process

(α
∂

∂d
− β ∂

∂b
−

k∑
i=1

λi
∂

∂φi
)ε̃t(ψ, φ)|ψ=ψ0,φ=φ0 (37)

is identically zero, or equivalently that its transfer function is identically zero. The transfer
function for ε̃t(ψ, φ) is, see also (29),

f(z) =
(1− z)d−d0(1−

∑k
i=1 φi(1− (1− z)b)i)

1−
∑k

i=1 φ0i(1− (1− z)b0)i
,

and that of the derivative process (37) can be expressed as

α

b0

log(1− y)− β

b0

(1− y) log(1− y)ξ̇0(y)/ξ0(y)−
k∑
i=1

λiy
i/ξ0(y),

for ξ0(y) = 1−
∑k

i=1 φ0iy
i, ξ̇0(y) = −

∑k
i=1 iφ0iy

i−1 and y = 1− (1− z)b0 . Thus singularity
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of Σ0 is equivalent to

log(1− y)(αξ0(y)− β(1− y)ξ̇0(y))− b0

k∑
i=1

λiy
i = 0 for all y.

The last term is a polynomial and the first is not, so this implies that λi = 0 for all i, and that
αξ0(y)−β(1−y)ξ̇0(y) = 0 for all y. Setting y = 1 we find that αξ0(1) = α(1−

∑k
i=1 φ0i) = 0.

Because there are no unit roots in ξ0(y), see Assumption 1, this implies that α = 0, and
hence β(1 − y)ξ̇0(y) = 0 for all y. This implies that β = 0 because ξ0(y) is of degree k ≥ 1
and φ0k 6= 0. Thus we have proved that α, β, λ1, . . . , λk are all zero and the matrix Σ0 is
positive definite.
Finally, for b = d = d0 and φ = φ0 we find (34) from σ2(d, φ) = σ2(d, d, φ) and the

relation
∂2

∂d2
σ2(d, φ) =

∂2

∂d2
σ2(b, d, φ) +

∂2

∂b2
σ2(b, d, φ) + 2

∂2

∂b∂d
σ2(b, d, φ).

4 Asymptotic properties of the likelihood estimator
In this section we use the results of the previous sections to prove consistency and derive

the asymptotic distribution of the maximum likelihood estimator.

4.1 Consistency of the likelihood estimator
Theorem 9 Let Assumption 1 be satisfied for model (1) or Assumption 2 for model (2).
Then:
1. For model (1), ψ̂ ∈ N(η0) exists and is consistent and (T b0−1/2π̂, φ̂, σ̂2)

P→ (0, φ0, σ
2
0).

2. The same result holds for the likelihood estimators d̂, φ̂, π̂, and σ̂2 in model (2).
3. If k = 0 in model (2), the limit of the profile likelihood is convex on the interval J1,

and P{mind∈J1(−2T−1D2 logLprofile,T (d)) > 0} → 1, so the profile likelihood is convex and ψ̂
exists uniquely in the set J(η0) with probability converging to one.

Proof. Proof of 1 and 2: We give the proof for model (1). Because N(η0) is com-
pact and the profile likelihood function is continuous, ψ̂ exists on N(η0), and hence also
(ρ̂, σ̂2), see (19) and (20). Convergence in distribution on N(η0) to a deterministic limit
in (27), and continuity of the sup functional implies the uniform convergence supψ∈Nk+2 | −
2T−1 logLprofile,T (ψ)| P→∞ and

sup
ψ∈∪k+1i=0Nn

| − 2T−1 logLprofile,T (ψ)− (1 + log σ2(ψ))| P→ 0. (38)

Let m(ψ) be the probability limit given in (27) which has a a strict minimum at ψ = ψ0. It
follows that for any δ > 0,

inf
N(η0)∩{ψ:|ψ−ψ0|≥δ}

m(ψ) > 1 + log σ2
0. (39)

Consistency of ψ̂ now follows from (38) and (39) by Theorem 5.7 of van der Vaart (1998).
Now take ψ ∈ N1 which contains ψ0 and let ρ∗ = (ρ0, . . . , ρk)

′.We express ρ̂(ψ), see (20),
in terms of the normalized product momentsM∗

T (ψ)(
T b0−1/2ρ̂−1

ρ̂∗

)
= (M∗

T (ψ̂))−1

(
T−b0+1/2

1

)
/(

(
T−b0+1/2

1

)′
(M∗

T (ψ̂))−1

(
T−b0+1/2

1

)
)
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which by tightness ofM∗
T (ψ) and Theorem 5 converges in probability towards, see (31),(

0
(M(1)(ψ0))−11/(1′(M(1)(ψ0))−11)

)
=

(
0
ρ0
∗

)
,

whereM(1)(ψ0) = {Mij(ψ0)}ki,j=0. The result for (π̂, φ̂) follows from the result for ρ̂.
Proof of 3: For k = 0 and b = d, the limit of the second derivative of the profile likelihood

converges to D2(1 + log σ2(d)) = D2 log σ2(d) > 0 for d ∈ J1. Because the convergence is
uniform on the compact interval J1, it holds thatKT = {mind∈J1(−2T−1D2 logLprofile,T (d)) >
0} has probability converging to one and for such outcomes −2T−1 logLprofile,T (d) is strictly
convex, so the maximum likelihood estimator exists uniquely.

4.2 Asymptotic distribution of the likelihood estimator
Because π̂ is superconsistent we rescale π as θ = T b0−1/2π.We find the asymptotic distri-

bution of the score functions and the limit of the information for τ = τ̆ = (d0, b0, φ0, 0, σ̂
2).

By Lemma A.3 we only need the information at τ̆ since the estimators are consistent (by
Theorem 9) and the second derivatives are tight (by Theorem 5). We let D denote the 2 + k
vector of derivatives with respect to ψ and φ.

Lemma 10 Under Assumption 1 the limit distribution of the Gaussian score function for
model (1) at τ̆ = (d0, b0, φ0, 0, σ̂

2) is given by(
T−1/2D logLT (τ̆)
T−1/2 ∂

∂θ
logLT (τ̆)

)
d→
(
N2+k

(
0, σ−2

0 Σ0

)
γ0

∫ 1

0
Bb0−1dB

)
, (40)

where Σ0 is given in (33), Bb0−1 = σ−1
0 Wb0−1, B = σ−1

0 W , and the two components are
independent.

Proof. Let εt(ψ, φ) = ∆dXt −
∑k

i=1 φi∆
dLibXt. Because εt(ψ0, φ0) = εt, we find the score

functions for (ψ, φ) and θ to be

T−1/2D logLT (τ̆) = −σ̂−2T−1/2

T∑
t=1

εtDεt(ψ0, φ0), (41)

T−1/2 ∂

∂θ
logLT (τ̆) = σ̂−2T−b0

T∑
t=1

(∆d0−b0Lb0Xt)εt. (42)

Because εtDεt(ψ0, φ0) is a stationary martingale difference, see (35), with finite third moment,
we find the first result in (40) from the central limit theorem for martingale difference
sequences, see Hall and Heyde (1980, chp. 3). The asymptotic variance is found as the limit

T−1
∑T

t=1Dεt(ψ0, φ0)Dεt(ψ0, φ0)′
P→ Σ0, see (33) and (36). The second result follows from

(26). A similar argument shows, see (6), that we have joint convergence on D[0, 1] towards
the Gaussian processes (U,W,Wb0−1) :

(T−1/2

[Tu]∑
t=1

εtDεt(ψ0, φ0), T−1/2∆−1
+ ε[Tu], T

−b0+1/2∆−b0+ ε[Tu]) =⇒ (U(u),W (u),Wb0−1(u)),

where U is independent of (W,Wb0−1). The independence of the two components of (40)
follows because the stochastic integral

∫ 1

0
Wb0−1dW, which is defined as the L2 limit of the

sums N−1
∑N

i=1Wb0−1(ui)(W (ui+1) −W (ui)), is measurable with respect to the sigma-field
generated by the processes (W,Wb0−1) and hence independent of U .
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Lemma 11 Under Assumption 1 the Gaussian information per observation for model (1)
at τ̆ = (d0, b0, φ0, 0, σ̂

2) converges in distribution to(
σ−2

0 Σ0 0

0 γ2
0

∫ 1

0
B2
b0−1du

)
. (43)

Proof. Let D denote derivatives with respect to (d, b, φ), then the probability limit of

−T−1D2 logLT (τ̆) = σ̂−2T−1

T∑
t=1

εtD
2εt(ψ0, φ0) + σ̂−2T−1

T∑
t=1

Dεt(ψ0, φ0)Dεt(ψ0, φ0)′

is σ−2
0 Σ0 by (33), (35), and a law of large numbers. For the remaining derivatives we find

−T−1 ∂2

∂θ∂ψ
logLT (τ̆) = σ̂−2(T 1/2−b0 ∂

∂ψ
M∗

00T (ψ0)− ∂

∂ψ
M∗
−10T (ψ0))

+ σ̂−2

k∑
i=1

φi

i∑
j=0

(
i

j

)
(−1)j(

∂

∂ψ
M∗
−1jT (ψ0)− T 1/2−b0 ∂

∂ψ
M∗

0jT (ψ0))
P→ 0,

−T−1 ∂2

∂θ∂φi
logLT (τ̆) = σ̂−2

i∑
j=0

(
i

j

)
(−1)j(M∗

−1jT (ψ0)− T 1/2−b0M∗
0jT (ψ0)))

P→ 0,

−T−1 ∂2

∂θ∂ψ
logLT (τ̆) = σ̂−2(T 1/2−b0 ∂

∂ψ
M∗

00T (ψ0)− ∂

∂ψ
M∗
−10T (ψ0))

+ σ̂−2

k∑
i=1

φi

i∑
j=0

(
i

j

)
(−1)j(

∂

∂ψ
M∗
−1jT (ψ0)− T 1/2−b0 ∂

∂ψ
M∗

0jT (ψ0))
P→ 0,

−T−1 ∂
2

∂θ2
logLT (τ̆) = σ̂−2(M∗

−1−1T (ψ0)− 2T 1/2−b0M∗
−10T (ψ0) + T 1−2b0M∗

00T (ψ0))

d→ σ−2
0 γ2

0

∫ 1

0

W 2
b0−1du = γ2

0

∫ 1

0

B2
b0−1du.

Theorem 5 shows DmM∗
−1jT (ψ0)

P→ 0, for j = 0, . . . , k, andM∗
−1−1T (ψ0)

P→ γ2
0

∫ 1

0
W 2
b0−1du.

The factor T 1/2−b0 ensures that the remaining terms converge to zero.
We now apply the previous two lemmas in the usual expansion of the score function to

obtain the asymptotic distribution of the likelihood estimators.

Theorem 12 Under Assumption 1 the asymptotic distribution of the Gaussian maximum
likelihood estimators κ̂ = (d̂, b̂, φ̂′)′ and π̂ for model (1) is given by(

T 1/2(κ̂− κ0)
T b0 π̂

)
d→
(

N2+k

(
0, σ2

0Σ−1
0

)∫ 1

0
Bb0−1dB/(γ0

∫ 1

0
B2
b0−1du)

)
, (44)

where the two blocks are independent.
Under Assumption 2 for model (2) where d = b, we define κ̂ = (d̂, φ̂′)′ and find(

T 1/2(κ̂− κ0)
T d0 π̂

)
d→
(

N1+k

(
0, σ2

0 (QΣ0Q
′)−1)∫ 1

0
Bd0−1dB/(γ0

∫ 1

0
B2
d0−1du)

)
, (45)

where Q =

(
1 1 0
0 0 Ik

)
and the two blocks are independent.
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Proof. Proof of (44): To find the limit distributions of d̂, b̂, φ̂, and θ̂, we expand the
first derivatives of lT (τ̂) = −T−1 logLT (τ̂) around the value τ̆ = (κ0, 0, σ̂

2). Using Taylor’s
formula with remainder term we find (with subscripts denoting partial derivatives)

0 =

(
T 1/2lTκ(τ̆)
T 1/2lTθ(τ̆)

)
+

(
l∗Tκκ l∗Tκθ
l∗Tθκ l∗Tθθ

)(
T 1/2(κ̂− κ0)

T 1/2θ̂

)
. (46)

Here the asterisks indicate that the information matrix is evaluated at intermediate points
(for each row) between τ̂ and τ̆ , which hence converge to τ0 in probability by Theorem 9.
The score functions normalized by T 1/2 and their limits in distribution are given by

Lemma 10. Because the second derivatives are tight, see Theorem 5 and Lemma A.2, and
the intermediate points converge in probability to τ0 we apply Lemma A.3 to replace the
intermediate points by τ0 and find the limit of the information per observation in Lemma
11, see (43). Premultiplying by its inverse we find (44). The independence of the two blocks
follows from Lemma 10.
Proof of (45): The same proof applies. The asymptotic variance follows from (34).
We remark that the asymptotic distribution is normal for the estimators of the fractional

and autoregressive parameters. The asymptotic distribution of the estimator of the unit root
is non-normal and of the Dickey-Fuller type, where the integrand BMs have been replaced
by fBM. Similar distributions have been obtained previously in the literature. For instance,
Tanaka (1999) and Nielsen (2004), among others, consider likelihood based inference in the
ARFIMA model and obtain asymptotically normal distribution theory for the parameters.
However, they do not allow for a unit root in the autoregressive polynomial and cannot
consider the asymptotic distribution of an estimator of a unit root. On the other hand, Ling
and Li (2001) do allow for a unit root in the autoregressive polynomial in the ARFIMA
model, and obtain results similar to ours except their functionals are in fact functionals of
BM since, in our notation, their b = b0 = 1.
Note also that the order of the fBM depends on the distance between the fractional order

of Xt when π = 0 (the data generating process) and π 6= 0. That is, it depends on the
parameter b0, but it does not depend on the fractional order of Xt itself, d0. Finally, we
remark that the estimator of π is super-consistent since the rate of convergence is T b0 , which
is more than root-T -consistent.

5 The likelihood ratio test for a fractional unit root
We next consider the likelihood ratio (LR) test of the unit root hypothesis π = 0, i.e.

the Dickey and Fuller (1979, 1981) test in our model. The profile likelihood for (ψ, φ) when
π = 0 is

−2T−1 logLprofile,T (ψ, φ, π = 0) = −2T−1 log max
θ=0,σ2

LT (ψ, φ, θ, σ2) = 1 + log σ̃2(ψ, φ),

where the restricted maximum likelihood estimators, ψ̃ and φ̃ when π = 0, satisfy ∂
∂ψ
σ̃2(ψ̃, φ̃) =

0, ∂
∂φ
σ̃2(ψ̃, φ̃) = 0, and the estimator for σ2 is σ̃2 = σ̃2(ψ̃, φ̃). Consistency of the restricted

estimator (ψ̃, φ̃, σ̃2) can be proved the same way as consistency of (ψ̂, φ̂, σ̂2).

Theorem 13 Under Assumption 1 for model (1) the asymptotic distribution of the Gaussian
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log likelihood ratio statistic for the hypothesis π = 0 is given by

−2 logLRT (π = 0)
d→

(
∫ 1

0
Bb0−1dB)2∫ 1

0
B2
b0−1du

. (47)

Under Assumption 2 for model (2) the same result holds with b0 replaced by d0.

Proof. We give the proof for model (1) only, since the same proof can be applied for model
(2). Let lT (τ) = −2T−1 logLT (τ) and denote derivatives by subscripts. Expansion of lTτ (τ̂)
around τ0 gives

0 = lTτ (τ̂) = lTτ (τ0) + l∗Tττ (τ̂ − τ0),

where l∗Tττ is the matrix of second derivatives (the information per observation) with each
row evaluated at an intermediate point, see (46). Expansion of the LR test for τ = τ0 gives

−2 logLRT (τ = τ0)) = 2 log(LT (τ̂)/LT (τ0)) = T (τ̂ − τ0)′l∗∗Tττ (τ̂ − τ0)
= T lTτ (τ0)′(l∗Tττ )

−1l∗∗Tττ (l
∗
Tττ )

−1lTτ (τ0) = T lTτ (τ0)′(i∗Tττ )
−1lTτ (τ0),

say. With the notation η = (d, b, φ, σ2) we then get that −2 log(LT (η̂, θ̂)/LT (η0, 0)) is

T

(
lTη(τ0)
lTθ(τ0)

)′(
i∗Tηη i∗Tηθ
i∗Tθη i∗Tθθ

)−1(
lTη(τ0)
lTθ(τ0)

)
= T lTη(τ0)′(i∗Tηη)

−1lTη(τ0) + T
(lTθ(τ0)− i∗Tθη(i∗Tηη)−1lTη(τ0))2

(i∗Tθθ − i∗Tθη(i∗Tηη)−1i∗Tηθ)
.

Similarly we find under the null hypothesis θ = 0 that

−2 log
LT (η̃, 0)

LT (η0, 0)
= T lTη(τ0)′(l∗∗Tηη)

−1lTη(τ0) = T lTη(τ0)′(i∗∗Tηη)
−1lTη(τ0),

so that the test for π = 0, i.e. −2 log(LT (τ̃)/LT (τ̂)), becomes

−2 log
LT (τ̃)/LT (τ0)

LT (τ̂)/LT (τ0)
= T

(lTθ(τ0)− i∗Tθη(i∗Tηη)−1lTη(τ0))2

(i∗Tθθ − i∗Tθη(i∗Tηη)−1i∗Tηθ)
+T lTη(τ0)′((i∗Tηη)

−1−(i∗∗Tηη)
−1)lTη(τ0).

Because lTηη is tight (see Lemma A.2 and Theorem 5), τ̂ and τ̃ are consistent, and T 1/2lTη(τ0)
converges in distribution, we find that T 1/2lTη(τ0)′((i∗Tηη)

−1 − (i∗∗Tηη)
−1)T 1/2lTη(τ0) = oP (1).

Finally, we see by (43) that i∗Tθη(i
∗
Tηη)

−1 = oP (1), so that −2 log(LT (τ̂)/LT (τ̃)) has the same
limit as

(T 1/2lTθ(τ0))2

iTθθ(τ0)

d→
(
∫ 1

0
Bb0−1dB)2∫ 1

0
B2
b0−1du

.

The asymptotic distribution of the LR test for a fractional unit root is of the Dickey-Fuller
type, but with fBMs replacing the usual BMs as integrands. Critical values of the distribution
(47) are easily obtained by simulation, see Table 1 for several values of b0. In practice b0 is
unknown but can be replaced by b̂, and critical values can be simulated on a case-by-case
basis or obtained by interpolation in Table 1. Similar distributions are obtained by Sowell
(1990), Chan and Terrin (1995), and Dolado, Gonzalo, and Mayoral (2002) for other test
statistics. In contrast, Ling and Li (2001) obtain the usual Dickey-Fuller distribution since
the ARFIMA model has b = b0 = 1.

Insert Table 1 about here
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Note that a test that Xt is fractional of order one (or I(1)) is a joint test of π = 0 and
d = 1. The asymptotic distribution of the LR test of such a joint hypothesis is readily
obtained from Theorems 12 and 13 as the sum of (47) and an independent χ2

1-distributed
random variable.

6 Conclusion
We have discussed likelihood based inference in an autoregressive model for a nonsta-

tionary fractional process based on the lag operator Lb. The model generalizes the usual
autoregressive model to allow for solutions where the process is fractional of order d or d− b,
where d ≥ b > 1/2 are parameters to be estimated. The two fractional parameters and new
lag operator, Lb, that characterize our model (1) allow the process to have fractional orders
that differ by b under the unit root null hypothesis and the alternative. In the ARFIMA
model there is a different lag structure and only one fractional parameter and consequently
the fractional orders of the process always differ by exactly one under the unit root null and
the alternative. Hence, our model allows substantially more generality than the ARFIMA
model in this respect. Within this framework we have discussed model-based likelihood
inference on the parameters and on the fractional order of the process.
We model the data X1, . . . , XT given initial values X−n, n = 0, 1, . . ., under the as-

sumption that errors are i.i.d. Gaussian. The standard approach in analysis of fractional
processes is to set initial values equal to zero. We assume that initial values are observed
but not modeled, but we do not set initial values equal to zero. Thus our results are more
useful for applications of fractional processes.
Our main technical tool is to consider the likelihood and its derivatives as stochastic

processes in the parameters under the assumption that errors are i.i.d. with suitable moment
conditions. We apply these tools to prove that the likelihood and its derivatives converge in
distribution, and use this to discuss existence, consistency, and asymptotic distribution of
the maximum likelihood estimator, as well as the distribution of the associated LR test of
the unit root hypothesis. Conditioning on initial values results in the use of type II fBM for
the asymptotic analysis.
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Appendix A: Some results on convergence in distribution
We apply the results to processes indexed by the parameters defined on a large compact

set, but formulate them, as is usually done, e.g. Kallenberg (2001), for processes Xn(s) with
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s = (s1, . . . , sm) ∈ [0, 1]m. For a sequence of p-dimensional stochastic processes Xn(s) ∈
Rp, s = (s1, . . . , sm) ∈ [0, 1]m, we writeXn =⇒ X orXn(s) =⇒ X(s) to indicate convergence
in distribution of the sequence, either as continuous or cadlag processes on [0, 1]m, whereas

Xn(s)
d→ X(s) means convergence in distribution on Rp for a fixed s. When E|X|q <∞ we

define the Lq-norm ||X||q = (E|X|q)1/q, where |X| = (tr{X ′X})1/2 denotes the Euclidean
norm.

Lemma A.1 If Xn(s) ∈ Rp with s = (s1, . . . , sm) ∈ [0, 1]m is a sequence of p-dimensional
continuous processes on [0, 1]m for which Xn(0) is tight and

||Xn(s)−Xn(t)||m+1 ≤ c|s− t| (48)

for some constant c > 0, which does not depend on n, s, or t, then Xn(s) is tight.

Proof. This is a consequence of Kallenberg (2001, Corollary 16.9).
Below we apply Lemma A.1 for the product moments as processes indexed by ψ and

hence m = 2 for model (1), and for product moments indexed by d and hence m = 1 for
model (2).

Lemma A.2 If the continuous process Xn(s) ∈ Rp with s ∈ [0, 1]m is tight on [0, 1]m and
F : [0, 1]k × Rp 7→ Rq is continuously differentiable, then Zn(u, s) = F (u,Xn(s)) is tight on
[0, 1]k+m.

Proof. From Taylor’s formula we find F (u, v) − F (ũ, ṽ) = (u − ũ)′ ∂F
∗

∂u
+ (v − ṽ)′ ∂F

∗∗

∂v
,

where ∂F ∗/∂u and ∂F ∗∗/∂v denote partial derivatives taken in suitable intermediate points.
Because the partial derivatives are continuous and therefore bounded on compact sets, we
find the inequality

max
u,ũ∈[0,1]k,v,ṽ∈[−A,A]p

|F (u, v)− F (ũ, ṽ)| ≤ (|u− ũ|+ |v − ṽ|)MA,

which we can use to evaluate the modulus of continuity of Zn(u, s) and thereby show tight-
ness.
Below we use that the likelihood function for (ψ, φ, θ, σ2), the profile likelihood function

for (ψ, φ, θ), and the profile likelihood function for ψ are all tight as processes in the pa-
rameters. Lemma A.2 shows that this follows from the tightness of the product moment
MT .

Lemma A.3 Let the continuous process Xn(s) ∈ Rp with s ∈ [0, 1]m be tight on [0, 1]m and

let Sn
P→ s0 ∈ [0, 1]m. Then Xn(Sn)−Xn(s0)

P→ 0.

Proof. This result follows from P (|Xn(Sn)−Xn(s0)| > ε) ≤ P (|Sn− s0| ≥ δ) +P (ωXn(δ) ≥
ε), where ωXn(δ) = max|s−s̃|≤δ |Xn(s)−Xn(s̃)| is the modulus of continuity of Xn.
Lemma A.3 is especially useful when deriving the asymptotic distribution of the maximum

likelihood estimators via an asymptotic expansion of the score function. The remainder
term in the expansion is the second derivative of the likelihood function evaluated at an
intermediate point, which we can replace by the true value by application of Lemma A.3
and an initial consistency proof. Thus, we avoid finding a uniform bound on the third
derivative of the likelihood function and rely instead on showing tightness using the moment
condition in Lemma A.1.
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We conclude with a result which indicates how we are going to establish tightness in the
application of the result of Kallenberg.

Lemma A.4 We consider for 1 ≤ t ≤ T < ∞ the processes V (i)
utT , i = 1, 2, which are

continuous in u ∈ [0, 1] and linear in the i.i.d. variables εt with finite sixth moment. We
assume that

||V (i)
utT ||2 ≤ c and ||V (i)

utT − V
(i)
ũtT ||2 ≤ c|u− ũ|, (49)

where the constant c does not depend on (u, ũ) ∈ [0, 1]2 or 1 ≤ t ≤ T < ∞. Furthermore
we consider deterministic functions D(i)

utT , which are continuous in u ∈ [0, 1] and satisfy the
condition

max
u∈[0,1]

T−1

T∑
t=1

(D
(i)
utT )2 → 0 as T →∞. (50)

Then the sequence of product moments

S
(i,j)
uvT = T−1

T∑
t=1

(V
(i)
utT +D

(i)
utT )(V

(j)
vtT +D

(j)
vtT ), T = 1, 2, . . . ,

is tight in (u, v) ∈ [0, 1]2 for i, j ∈ {1, 2}.

Proof. We decompose S(i,j)
uvT as

S
(i,j)
uvT = T−1

T∑
t=1

V
(i)
utTV

(j)
vtT + T−1

T∑
t=1

V
(i)
utTD

(j)
vtT + T−1

T∑
t=1

D
(i)
utTV

(j)
vtT + T−1

T∑
t=1

D
(i)
utTD

(j)
vtT . (51)

To prove that the first term is tight we apply the decomposition

T−1

T∑
t=1

V
(i)
utTV

(j)
vtT − T−1

T∑
t=1

V
(i)
ũtTV

(j)
ṽtT = T−1

T∑
t=1

(V
(i)
utT − V

(i)
ũtT )V

(j)
vtT + V

(i)
ũtT (V

(j)
vtT − V

(j)
ṽtT )

and the inequality (54) in Lemma B.2 and find

||T−1

T∑
t=1

(V
(i)
utTV

(j)
vtT − V

(i)
ũtTV

(j)
ṽtT )||3 ≤ cT−1

T∑
t=1

||V (i)
utT − V

(i)
ũtT ||2||V

(j)
vtT ||2 + ||V (i)

ũtT ||2||V
(i)
vtT − V

(j)
ṽtT ||2

≤ c(|u− ũ|+ |v − ṽ|) ≤ c
√

2|(u− ũ, v − ṽ)|.
This shows that the tightness criterion (48) from Lemma A.1 holds and that the first term
of (51) is tight. The last term of (51) converges to zero uniformly in (u, v) by (50) and is
therefore tight. The mixed moment is bounded by

max
(u,v)∈[0,1]2

T−1

T∑
t=1

|V (i)
utTD

(j)
vtT | ≤ max

v∈[0,1]
(T−1

T∑
t=1

(D
(j)
vtT )2)1/2 max

u∈[0,1]
(T−1

T∑
t=1

(V
(i)
utT )2)1/2.

The first factor converges to zero by (50) and the second factor isOP (1) because T−1
∑T

t=1(V
(i)
utT )2

is tight. Therefore the product converges to zero in probability.
Thus to establish tightness of product moments it is enough to check condition (49) for

the stochastic components and (50) for the deterministic components of the processes.
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Appendix B: Some inequalities
Note the following properties of the Lq-norm,

||X + Y ||q ≤ ||X||q + ||Y ||q, ||XY ||q ≤ ||X||2q||Y ||2q, ||X||q ≤ ||X||r, for 1 ≤ q ≤ r. (52)

The first inequality states that || · ||q is a norm (triangle inequality), the second follows from
the Cauchy-Schwarz inequality, and the third from Jensen’s inequality.

Lemma B.1 Let εt be i.i.d. with mean zero and E|εt|2q <∞ and define Z =
∑∞

j=0 ξjεj for
some coeffi cients ξj for which

∑∞
j=0 ξ

2
j <∞. Then
||Z||2q ≤ cq||Z||2, (53)

where the constant cq does not depend on the coeffi cients ξj.

Proof. Because ||λZ||2q = |λ|||Z||2q, we can scale the ξ′s so that
∑∞

j=0 ξ
2
j = 1. We first

calculate the n’th cumulant κn(Z), n ≤ 2q. This is additive for independent variables and
homogenous of degree n, so that κn(Z) =

∑∞
j=0 κn(ξjεj) =

∑∞
j=0 ξ

n
j κn(εj) = κn(ε)

∑∞
j=0 ξ

n
j .

We next show the inequality
∑∞

j=0 |ξj|n ≤ 1, n = 1, . . . , 2q. For an even number n = 2m,

this follows from
∑∞

j=0 ξ
2m
j ≤ (

∑∞
j=0 ξ

2
j )
m = 1. For n = 2m+1 we apply the Cauchy-Schwarz

inequality

(
∞∑
j=0

|ξj|2m+1)2 = (
∞∑
j=0

|ξj|ξ2m
j )2 ≤ (

∞∑
j=0

ξ2
j )(

∞∑
j=0

ξ4m
j ) ≤ 1.

Thus the cumulants κn(Z), n = 1, . . . , 2q, are bounded independently of ξj when
∑∞

j=0 ξ
2
j =

1. Finally we find from Kendall and Stuart (1977, p. 70) that E(Z2q) is a continuous function
of the cumulants κn(Z), n = 1, . . . , 2q, and hence bounded when

∑∞
j=0 ξ

2
j = 1.

Lemma B.2 Let Ut, Vt, Xt, Yt, t = 1, . . . , T, be processes of the form
∑∞

n=0 ξtnεn, with finite
sixth moments and

∑∞
n=0 ξ

2
tn <∞, then

||
T∑
t=1

XtUt −
T∑
t=1

YtVt||3 ≤ c
T∑
t=1

(||Xt||2||Ut − Vt||2 + ||Vt||2||Xt − Yt||2), (54)

where the constant does not depend on the coeffi cients ξtn.

Proof. The inequality follows by the properties (52) with q = 3, and by using XtUt−YtVt =
Xt(Ut − Vt) + Vt(Xt − Yt) such that

||
T∑
t=1

XtUt −
T∑
t=1

YtVt||3 ≤
T∑
t=1

||Xt(Ut − Vt)||3 + ||Vt(Xt − Yt)||3

≤
T∑
t=1

(||Xt||6||Ut − Vt||6 + ||Vt||6||Xt − Yt||6),

and then applying Lemma B.1.

Lemma B.3 For |u| ≤ u0, m ≥ 0, and j ≥ 1 it holds that

|Dmπj(u)| ≤ c(u0)(1 + log j)mju−1, (55)

|DmT−uπj(u)| ≤ c(u0)T−u(1 + | log
j

T
|)mju−1. (56)
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For −u0 ≤ v ≤ u ≤ u0, m ≥ 0, and j ≥ 1 we have

|Dmπj(u)− Dmπj(v)| ≤ c(u0)(u− v)(1 + log j)m+1ju−1, (57)

|DmT−uπj(u)− DmT−vπj(v)| ≤ c(u0)(u− v)(1 + | log
j

T
|)m+1T−vjv−1. (58)

Proof. Proof of (55): For m = 0 we apply Stirling’s formula

πj(u) =
Γ(u+ j)

Γ(u)Γ(j + 1)
=

1

Γ(u)
ju−1(1 + ε(u, j)),

where maxδ0≤u≤u0 |ε(u, j)| → 0 as j → ∞. This proves the result for δ0 ≤ u ≤ u0, see also
Lemma D.1 of Robinson and Hualde (2003), but we want to extend the result to negative u
and m > 0.
For general u, possibly negative, we choose an integer n0 > u0 and take j > n0, and

define g(u) = u(u+ 1) · · · (u+ n0 − 1). Then

πj(u) =
g(u)

(j − n0 + 1) · · · j πj−n0(u+ n0). (59)

Now we apply (55) to πj−n0(u+n0) because u+n0 ∈ [n0−u0, 2n0], and therefore find, using
(j − n0 + 1) · · · j ≥ (j − n0)n0 , that

|πj(u)| ≤ ( max
|u|≤u0

|g(u)|) 1

(j − n0)n0
c(u0)(j − n0)u+n0−1 ≤ c(u0)(j − n0)u−1

because |g(u)| is uniformly bounded in |u| ≤ u0. Finally,

j−u+1(j − n0)u−1 = (1− n0/j)
u−1 ≤ (1− n0/j)

−u0−1 → 1 as j →∞,
such thatmaxj>n0 j

−u+1(j − n0)u−1 ≤ c(u0), which proves (55) for m = 0 and j > n0. For
j ≤ n0 we have finitely many terms and evaluate each of them as max|u|≤u0 |πj(u)j−u+1| ≤
max|u|≤u0

|u(u+1)...(u+j−1)|
j!

j−u+1 ≤ πj(u0)ju0+1 ≤ c(u0). This completes the proof of (55) for
m = 0.
For m > 0 we apply the inequalities

D logπj(u) =

j−1∑
i=0

1

u+ i
≤ 1

u
+ log j + log(

1

u
+

1

j
) ≤ c(u0, δ0)(1 + log j), u > 0, (60)

|Dmlogπj(u)| = |(−1)m+1

j−1∑
i=0

1

(u+ i)m
| ≤ c(u0, δ0), u > 0. (61)

We find from (59) that

Dπj(u) =
πj−n0(u+ n0)

(j − n0 + 1) · · · j (ug(u)D logπj−n0(u+ n0) + Dug(u)).

Here ug(u) and Dug(u) are uniformly bounded for |u| ≤ u0, and D logπj−n0(u + n0) can be
evaluated as in (60) and πj−n0(u + n0) by (55) because u + n0 ∈ [n0 − u0, 2n0]. The result
extends to all j as above. This proves the full result for m = 1, and for m > 1 we apply (61).
Proof of (56): We first prove the result for 0 < δ0 ≤ u ≤ u0. For m = 0 the result follows

from (55). For m = 1 we find

DT−uπj(u) = T−uπj(u)(

j−1∑
i=0

1

u+ i
− log T ).
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We then apply the inequality, see (60),

log
j

T
− c(u0, δ0) ≤

j−1∑
i=0

1

u+ i
− log T ≤ log

j

T
+ c(u0, δ0),

and find that

|DT−uπj(u)| ≤ c(u0, δ0)T−uju−1(1 + | log
j

T
|).

For m > 1 we apply (61). This proves (56) for 0 < δ0 ≤ u ≤ u0. We extend the results to
|u| ≤ u0 by applying (59) and noting that (56) holds for πj−n0(u+ n0).
Proof of (57) and (58): This follows by the intermediate value theorem using (55) and

(56).

Lemma B.4 Define κ(t, α, β) =
∑t−1

j=1 j
α−1(t−j)β−1 and ξ(T, α, β) = maxi,k

∑T
j=max(i,k) |πj−i(α)πj−k(β)|.

Then, uniformly for max(|α|, |β|) ≤ a0, it holds that

κ(t, α, β) ≤ c(a0)(1 + log t)tmax(α+β−1,α−1,β−1), (62)

ξ(T, α, β) ≤ c(a0)(1 + log T )Tmax(α+β−1,α−1,β−1,0). (63)

Proof. By symmetry we assume without loss of generality that β ≤ α. Note that Robinson
and Hualde (2003, Lemma D.2) prove an analogue of (63) for α = β > 1/2, and that (62)
can be proved for

∑t
j=0 πj(α)πt−j(β).

Proof of (62): We consider three cases. First if β = 1, then max(α + β − 1, α −
1, β − 1) = max(α, 0) and κ(t, α, 1) =

∑t−1
j=1 j

α−1. We compare
∑t−1

j=1 j
α−1 with the integral∫ t

1
xα−1dx = α−1(tα− 1), which is bounded by log t for α ≤ 0 and tα log t for α ≥ 0. We find

that
t−1∑
j=1

jα−1 ≤
{

α−1(tα − 1),
α−1(tα − 1) + 1,

α ≥ 1
α ≤ 1

≤ tmax(α,0)(1 + log t), (64)

which is the bound for β = 1. Then we consider β > 1 and find κ(t, α, β) ≤ tβ−1
∑t−1

j=1 j
α−1 ≤

tmax(α+β−1,β−1)(1 + log t) ≤ tmax(α+β−1,β−1,α−1)(1 + log t). Finally, if β < 1 then also α < 1.
In this case jα−1 is decreasing in j and (t− j)β−1 is increasing in j. Therefore we have the
inequality

κ(t, α, β) =

t−1∑
j=1

jα−1(t− j)β−1 ≤ (
t

2
)β−1

∑
0≤j≤[t/2]

jα−1 + (
t

2
)α−1

∑
[t/2]+1<j≤t−1

(t− j)β−1

so that, using the bound (64),

κ(t, α, β) ≤ c(tβ−1tmax(α,0)(1 + log t) + tα−1tmax(β,0)(1 + log t)),

which is bounded by tmax(α+β−1,β−1,α−1)(1 + log t).
Proof of (63): We first consider the sum

T∑
j=max(i,k)+1

|πj−i(α)πj−k(β)| ≤ c(a0)

T∑
j=max(i,k)+1

(j − i)α−1(j − k)β−1 = c(a0)RT ,

say. In this case we first take β ≤ α ≤ 1, where we use (j− i) ≥ (j−max(i, k)) and (j−k) ≥
(j −max(i, k)). Then RT ≤

∑T
j=max(i,k)+1(j −max(i, k))α+β−2 ≤ c(1 + log T )Tmax(α+β−1,0).

Next we let β ≤ α and α > 1, where (j − i)α−1 ≤ Tα−1. Then RT ≤ Tα−1
∑T

j=max(i,k)+1(j −
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k)β−1 ≤ c(1 + log T )Tα−1+max(β,0). The term with j = max(i, k) can be analyzed the same
way.

Appendix C: Variation bounds
In this appendix we prove a series of lemmas containing variation bounds of the type

||VutT ||2 ≤ c and ||VutT − VvtT ||2 ≤ c(u− v), which we use to verify condition (49) in Lemma
A.4 for relevant processes and product moments. The first lemma covers the initial values,
the second and third lemmas deal with the nonstationary processes and (asymptotically)
stationary processes, respectively, and the fourth lemma concerns product moments including
both stationary and nonstationary processes.
We find from (12) that for v > 0, ∆vXt = ∆v

+Xt + ∆v
−Xt has the representation

∆vXt = γ0∆−d0+v
+ εt + ∆−d0+v+b0

+ Y +
t + ∆v

+µt + ∆v
−Xt, t = 1, 2, . . . , (65)

∆vXt = ∆v
−Xt, t = 0,−1,−2, . . . .

The first term of (65) is asymptotically stationary if d0 − v < 1/2. For d0 − v > 1/2 it will,
suitably normalized and with suffi cient moments, converge to fBM, see (6). The next term
is asymptotically stationary if d0− v− b0 < 1/2, and the last terms are deterministic trends
that are functions of initial values. In order to study the impact of the initial values we use
the representations,

Π+(L)−1 = γ0∆−d0+ + ∆−d0+b0
+ F+(L),

Π−(L) = (∆d0 −
k∑
i=1

φ0i∆
d0(1−∆b0)i)− =

k∑
j=0

ρ0
j∆

d0+jb0
− ,

for some coeffi cients ρ0
j , see Lemma 1 and (4), so that

∆d+ib
+ µt = −∆d+ib

+ Π+(L)−1Π−(L)Xt = −(γ0 + ∆b0
+F+(L))

k∑
j=0

ρ0
j∆

d+ib−d0
+ ∆d0+jb0

− Xt. (66)

Lemma C.1 (Initial values) If |X−n| ≤ c and |u| ≤ u0, 0 < δ0 ≤ v ≤ v0 then uniformly in
u, v and for c0 = c(u0, v0, δ0) the initial values satisfy the relations

| ∂
m

∂um
∆u

+∆v
−Xt| = |

∞∑
n=0

(

t−1∑
j=0

∂m

∂um
πj(−u)πn+t−j(−v))X−n|

≤ c0(1 + log t)m+1t−min(u+v,u+1,v), (67)

| ∂
m

∂um
T u∆u

+∆v
−Xt| ≤ c0(1 + log T )m+1T−min(v,1,v−u,−u). (68)

From this it follows that for G(z) =
∑∞

n=0 gnz
n,
∑∞

n=0 |gn| <∞, we have

|G+(L)
∂m

∂um
∆u

+∆v
−Xt| ≤ c0(1 + log t)m+1

t−1∑
n=0

|gt−n|n−min(u+v,u+1,v), (69)

|G+(L)
∂m

∂um
T u∆u

+∆v
−Xt| ≤ c0(1 + log T )m+1T−min(v,1,v−u,−u). (70)
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Similarly it holds that, uniformtly in δ0 ≤ v ≤ v0,

| ∂
m

∂vm
∆v
−Xt| → 0 as t→∞, (71)

max
1≤t≤T

| ∂
m

∂vm
T v∆v

−Xt| ≤ c0(1 + log T )mT v0 . (72)

Proof. Proof of (67): We find

∆u
+∆v
−Xt =

t−1∑
j=0

πj(−u)

∞∑
i=t−j

πi(−v)Xt−j−i =

∞∑
n=0

(
t−1∑
j=0

πj(−u)πn+t−j(−v))X−n. (73)

From the bound |X−n| ≤ c we find by differentiating (73) and using Dmπj(δ) ≤ c(1 +
log j)mjδ−1, see (55), that the main terms of the derivatives of the right hand side of (67),
corresponding to j > 0, are bounded by

c
∞∑
n=0

t−1∑
j=1

(1 + log j)mj−u−1(n+ t− j)−v−1 ≤ c(1 + log t)m
∞∑
n=0

t−1∑
j=1

j−u−1(n+ t− j)−v−1.

We then find
∑∞

n=0(n + t − j)−v−1 =
∑∞

n=t−j n
−v−1 ≤ c(t − j)−v because −v ≤ −δ0 < 0,

so that the bound becomes c(1 + log t)m
∑t−1

j=1 j
−u−1(t− j)−v. The result follows if we apply

(62) of Lemma B.4 with α = −u and β = 1− v. The term with j = 0 is treated similarly.
Proof of (68): We find, using (67), that

| ∂
m

∂um
T u∆u

+∆v
−Xt| = |T u

m∑
k=0

(
m

k

)
(log T )m−k

∂k

∂uk
∆u

+∆v
−Xt|

≤ c0T
u(1 + log T )m+1t−min(u+v,u+1,v) ≤ c0(1 + log T )m+1T−min(v,1,v−u,−u),

where we used the evaluation T ut−min(u+v,u+1,v) ≤ T−min(v,1,v−u,−u).
Proof of (69) and (70): Follows from (67) and (68).
Proof of (71) and (72): Uniformly for δ0 ≤ v ≤ v0 we have from (55) that

| ∂
m

∂vm
∆v
−Xt| ≤ |

∞∑
n=t

∂m

∂vm
πn(−v)Xt−n| ≤ c0

∞∑
n=t

(1+log n)mn−v−1 ≤ c0

∞∑
n=t

(1+log n)mn−δ0−1 → 0.

Similarly we find that

| ∂
m

∂vm
T v∆v

−Xt| ≤ |T v
m∑
k=0

(
m

k

)
(log T )k

∂m−k

∂vm−k
∆v
−Xt| ≤ c0T

v(1+log T )m
∞∑
n=t

(1+log n)mn−v−1,

which can be evaluated uniformly in 1 ≤ t ≤ T and 0 < δ0 ≤ v ≤ v0 by

c0T
v0(1 + log T )m

∞∑
n=0

(1 + log n)mn−δ0−1 ≤ c0(1 + log T )mT v0 .

Lemma C.2 The deterministic terms Dit = ∆d+ib
+ µt + ∆d+ib

− Xt, see (65), satisfy

max
ψ∈Nn

|DmDit| → 0 as t→∞ for n− 1 ≤ i ≤ k, (74)

max
ψ∈Nn

max
1≤t≤T

|DmT d+ib−d0+1/2Dit| → 0 as T →∞ for − 1 ≤ i < n− 1. (75)
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Proof. Proof of (74): We first consider ∆d+ib
+ µt, see (66), and define v = d0 + jb0 ∈ [d0, v0].

For ψ ∈ Nn and n − 1 ≤ i ≤ k we have u = d + ib − d0 ∈ [−1/2 + η0, u0]. We therefore
investigate |G+(L) ∂m

∂um
∆u

+∆v
−Xt| for such (u, v). The result follows from (69) because the

exponent is bounded as min(u + v, u + 1, v) ≥ min(d0 − 1/2 + η0, 1/2 + η0, d0) > 0. Hence
|G+(L)Dm∆d+ib−d0

+ ∆d0+jb0
− Xt| → 0 as t→∞ uniformly for ψ ∈ Nn since also

∑∞
n=0 |gn| <∞.

For the term ∆d+ib
− Xt we apply (71) with v = d+ ib ∈ [1/2, v0].

Proof of (75): We first consider T d+ib−d0+1/2∆d+ib
+ µt. Using (66) it is enough to in-

vestigate |G+(L)DmT d+ib−d0+1/2∆d+ib−d0
+ ∆d0+jb0

− Xt|. We define v = d0 + jb0 ∈ [d0, v0] and
u = d + ib − d0 ∈ [−d0,−1/2 − η0] for ψ ∈ Nn and −1 ≤ i < n − 1. We apply (70)
to evaluate T 1/2|G+(L)DmT u∆u

+∆v
−Xt| uniformly in u, v, and t, and the exponent min(v −

1/2, 1/2, v − u− 1/2,−u− 1/2) is bounded by min(d0 − 1/2, 1/2, d0 + η0, η0) ≥ η0. For the
term T d+ib−d0+1/2∆d+ib

− Xt we define v = d+ ib which for ψ ∈ Nn and −1 ≤ i < n−1 satisfies
v = d + ib ∈ [η0, d0 − 1/2 − η0]. Then we consider T 1/2−d0|DmT v∆v

−Xt|, and find from (72)
the bound

c0T
1/2−d0(1 + log T )mT d0−1/2−η0 ≤ c0(1 + log T )mT−η0 → 0.

Lemma C.3 Let Zt =
∑∞

n=0 ξnεt−n be a stationary linear process with finite variance and∑∞
n=0 |ξn| < ∞, and define φZ(h) = σ2

∑∞
n=0 |ξn||ξn+h| and Z+

t =
∑t−1

n=0 ξnεt−n. For m =
0, 1, 2 it holds that

||DmT u+1/2∆u
+Z

+
t ||2 ≤ c(v0, u0), (76)

||DmT u+1/2∆u
+Z

+
t − DmT v+1/2∆v

+Z
+
t ||2 ≤ c(v0, u0)|u− v|, (77)

uniformly in v0 ≤ v ≤ u ≤ u0 < −1/2.

Proof. We first note the evaluation |Cov(Z+
t , Z

+
t+h)| = σ2|

∑t−1−|h|
n=0 ξnξn+|h|| ≤ φZ(h), so

that

VT = V ar(DmT u+1/2∆u
+Z

+
t ) = V ar(

t−1∑
i=0

DmT u+1/2πi(−u)Z+
t−i)

≤
t−1∑
i=0

t−1∑
j=0

|DmT u+1/2πi(−u)||DmT u+1/2πj(−u)|φZ(i− j).

We apply the inequality (56) and find that VT is bounded by

c(u0, v0)T 2u+1

t−1∑
i=1

t−1∑
j=1

|i−u−1(1 + | log(
i

T
)|)m||j−u−1(1 + | log(

j

T
)|)m|φZ(i− j) (78)

≤ c(u0, v0)T 2u+1

t−1∑
h=0

φZ(h)

t−1−h∑
j=1

(j + h)−u−1j−u−1(1 + | log(
j + h

T
)|)m(1 + | log(

j

T
)|)m.

Now we evaluate | log( j+h
T

)| ≤ | log( j
T

)| and for−1 ≤ u we find (j+h)−u−1j−u−1 ≤ j−2u−2,
so that when −1 ≤ u ≤ u0 < −1/2, VT is bounded by

c(u0, v0)
∞∑
h=0

φZ(h)T−1

T∑
j=1

(
j

T
)−2u0−2(1+| log(

j

T
)|)2m → c(u0, v0)

∫ 1

0

x−2u0−2(1+| log x|)2mdx <∞.
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For u ≤ −1 we evaluate (j + h)−u−1j−u−1 ≤ T−2u−2 and find

VT ≤ c(u0, v0)

∞∑
h=0

φZ(h)T−1

T∑
j=1

(1 + | log(
j

T
)|)2m → c(u0, v0)

∫ 1

0

(1 + | log x|)2mdx <∞.

To prove (77), we apply the inequality (58) and then use the same proof.

Lemma C.4 Let Zt =
∑∞

n=0 ξnεt−n be a stationary linear process with finite variance and∑∞
n=0 |ξn| < ∞, and define φZ(h) = σ2

∑∞
n=0 |ξn||ξn+h| and Z+

t =
∑t−1

n=0 ξnεt−n. For m =
0, 1, 2 it holds that

||Dm∆u
+Z

+
t ||2 ≤ c(u0, v0), (79)

||Dm∆u
+Z

+
t − Dm∆v

+Z
+
t ||2 ≤ c(u0, v0)|u− v|, (80)

uniformly in −1/2 < v0 ≤ v ≤ u ≤ u0.

Proof. Using (55) we find, as in the proof of Lemma C.3, see (78), the inequality

VT = V ar(Dm∆u
+Z

+
t ) ≤ c(u0, v0)

t−1∑
h=0

φZ(h)
t−1−h∑
j=1

(j+h)−u−1j−u−1(1+log(j+h))m(1+log j)m.

Let δ0 < min(1/2 + v0, 1/2) and note that (j + h)−δ0(1 + log(j + h))m and j−δ0(1 + log j)m

are bounded in j and h and (j + h)−u+δ0−1 ≤ j−u+δ0−1 because −u+ δ0 − 1 ≤ δ0 − 1/2 < 0.
Then

VT ≤ c(u0, v0)
t−1∑
h=0

φZ(h)
t−1−h∑
j=1

(j + h)−u+δ0−1j−u+δ0−1 ≤ c(u0, v0)
∞∑
h=0

φZ(h)
∞∑
j=1

j2(−v0+δ0−1)

which is bounded because 2(−v0 + δ0−1) < −1, which gives (79) because
∑∞

h=0 φZ(h) <∞.
For V ar((∆u

+ −∆v
+)Z+

t ) we apply the inequality (57), and then use the same proof.

Lemma C.5 For i = 1, 2, let Z+
it =

∑t−1
n=0 ξinεt−n satisfy

∑∞
n=0 |ξin| ≤ c < ∞, and define

φij(h) = σ2
∑∞

n=0 |ξi,n||ξj,n+h|. Then for u < −1/2 < v we have

T u−1/2

T∑
t=1

∆u
+Z

+
1t∆

v
+Z

+
2t = T u−1/2

T∑
t=1

t−1∑
i=0

t−1∑
j=0

πt−i(−u)πt−j(−v)Z+
1iZ

+
2j

P→ 0.

Proof. For µi,j,k,l = E(Z+
1iZ

+
1kZ

+
2jZ

+
2l), the second moment of the variable is

VT = T 2u−1

T∑
t=1

t∑
i=1

t∑
j=1

πt−i(−u)πt−j(−v)

T∑
s=1

s∑
k=1

s∑
l=1

πs−k(−u)πs−l(−v)µi,j,k,l

≤ T 2u−1

T∑
i,j=1

T∑
t=max(i,j)

|πt−i(−u)πt−j(−v)|
T∑

k,l=1

T∑
s=max(k,l)

|πs−k(−u)πs−l(−v)||µi,j,k,l|

≤ T 2u−1ξ(T,−u,−v)2

T∑
i,j,k,l=1

|µi,j,k,l|,

see Lemma B.4 for the definition of ξ(T,−u,−v).We want to prove that VT → 0 as T →∞.
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From Anderson (1971, p. 467), for the case of stationary processes, we have that

|µi,j,k,l| ≤ σ4
0(φ11(i− k)φ22(j − l) + φ12(i− j)φ12(k − l) + φ12(i− l)φ12(j − k))

+ κ4(ε)

min(i,j,k,l)∑
n=0

ξ1,i−nξ1,k−nξ2,j−nξ2,l−n.

Summing over 1 ≤ (i, j, k, l) ≤ T and using the bounds
T∑

i,k=1

φij(i− k) ≤ cT
∞∑
h=0

φij(h) ≤ cT,

T∑
i,j,k,l=1

min(i,j,k,l)∑
n=0

ξ1,i−nξ1,k−nξ2,j−nξ2,l−n ≤ cT,

we find VT ≤ T 2u−1ξ(T,−u,−v)2(c1T
2 + c2T ). Thus we find from (63) in Lemma B.4 that

VT ≤ cT 2u+1ξ(T,−u,−v)2 ≤ c(log T )2Tmax(−1−2v,−1,2u−1−2v,2u+1)

The exponent is negative because u < −1/2 < v which shows that VT → 0.

Appendix D: Proof of Theorem 5
The derivatives of the likelihood function are functions of DmMT (ψ), see (16) and (17).

These product moments are functions of ∆d+ibXt, i = −1, 0, . . . , k, and their derivatives,
and we discuss the properties of these processes below. We next prove tightness by applying
Lemma A.4 for the normalized product moments, M∗

T (ψ), and using conditions (49) and
(50). Then we derive the limits of each of the product moments and the relevant derivatives,
and this completes the proof of Theorem 5.
We give the proof only for the general model (1). The same proof can be applied for

model (2).

D.1 Representation and tightness of the processes and product moments
From (65) we find for i = −1, 0, . . . , k, and t = 1, 2, . . .

∆d+ibXt = ∆d+ib−d0
+ (γ0εt + ∆b0

+Y
+
t ) + ∆d+ib

+ µt + ∆d+ib
− Xt = S+

it +Dit, (81)

S+
it = ∆d+ib−d0

+ (γ0εt + ∆b0
+Y

+
t ), (82)

Dit = ∆d+ib
+ µt + ∆d+ib

− Xt. (83)

For ψ ∈ Nn, Sit = ∆d+ib−d0(γ0εt + ∆b0Yt) is stationary if n − 1 ≤ i ≤ k, and nonstationary
for −1 ≤ i < n− 1.

Lemma D.1 Let Assumption 1 be satisfied for model (1) and letm = 0, 1, 2. Then Dm∆d+ibXt

satisfies condition (49) if u0 ≥ d + ib − d0 ≥ −1/2 + η0, and DmT d+ib−d0+1/2∆d+ibXt sat-
isfies condition (49) if −d0 ≤ d + ib − d0 ≤ −1/2 − η0. In the same cases DmDit and
DmT d+ib−d0+1/2Dit satisfy (50). It follows that DmM∗

T (ψ) is tight.

Proof. We write∆d+ibXt = S+
it +Dit, see (81). The results for the deterministic terms follow

from (74) and (75) in Lemma C.2. Next let Z+
t = γ0εt+∆b0

+Y
+
t =

∑t−1
n=0 τnεt−n which satisfies∑∞

n=0 |τn| <∞, see Lemma 1. If d+ib−d0 ≥ −1/2+η0 then u = d+ib−d0 ∈ [−1/2+η0, u0]
and DmS+

it = Dm∆d+ib−d0Z+
t satisfies (49) by Lemma C.4. If d + ib − d0 ≤ −1/2 − η0 then

u = d+ ib− d0 ∈ [−d0,−1/2− η0] and DmT d+ib−d0+1/2S+
it satisfies (49) by Lemma C.3.

D.2 Convergence of product moments
We want to find the limits of M∗

T (ψ) and its derivatives and thereby prove the results
(24), (25), and (26) of Theorem 5.
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Lemma D.2 Under Assumption 1 where q > 1/η0 we find for T →∞ that

T d+ib−d0+1/2∆d+ibX[Tu] =⇒ γ0Wd0−d−ib−1(u), ψ ∈ Nn, −1 ≤ i < n. (84)

Proof. We write ∆d+ibXt = ∆d+ib−d0
+ γ0εt + ∆d+ib−d0

+ ∆b0
+Y

+
t + Dit. It follows from (6) and

q > 1/η0 ≥ 1/(d0− d− ib− 1/2) when ψ ∈ Nn and i < n− 1, that for t = [Tu] the first term
normalized by T d+ib−d0+1/2 converges in distribution on D[0, 1] to γ0Wd0−d−ib−1(u). Next let
Z+
t = ∆d+ib−d0+b0

+ Y +
t for which max1≤t≤T E(|Z+

t |q) ≤ a, and define u = d + ib− d0 + 1/2 ≤
−η0 when ψ ∈ Nn and −1 ≤ i < n− 1. Then

P ( max
1≤t≤T

T u|Z+
t | ≥ c) ≤

T∑
t=1

P (|Z+
t | ≥ cT−u) ≤

T∑
t=1

E(|Z+
t |q)

cqT−qu
≤ ac−qT 1+qu.

This converges to zero because 1+qu ≤ 1−qη0 < 0, which shows that T d+ib−d0+1/2∆d+ib−d0−b0
+ Y +

t

converges to zero uniformly in t ≤ T. Finally maxψ∈Nn max1≤t≤T T
d+ib−d0+1/2|Dit| → 0 for

−1 ≤ i < n− 1 by (75).
Proof of (24): The continuous mapping theorem and (84) imply that for a fixed ψ

M∗
ijT (ψ)

d→ γ2
0

∫ 1

0

Wd0−d−ib−1Wd0−d−jb−1du =Mij(ψ), ψ ∈ Nn, −1 ≤ i, j < n− 1.

Since this holds jointly for finitely many ψ andM∗
ijT (ψ) is tight, we have proved convergence

in distribution.
Proof of (25): We first takem = 0. Because Sit = ∆d+ib−d0(γ0εt+∆b0Yt) =

∑∞
j=0 τijεt−j =

S+
it + S−it is stationary for ψ ∈ Nn and n − 1 ≤ i ≤ k, we find E(T−1

∑T
t=1(S−it )

2) =

σ2
0T
−1
∑T

t=1(
∑∞

n=t τ
2
in) → 0, so that the probability limit of T−1

∑T
t=1 S

+
itS

+
jt equals that of

T−1
∑T

t=1 SitSjt which exists by the law of large numbers. The deterministic terms have no
influence in the limit because of (74). Thus, see (22),

MijT (ψ)
P→Mij(ψ), ψ ∈ Nn, n− 1 ≤ i, j ≤ k. (85)

The convergence in probability (and distribution) holds jointly for finitely many values of
ψ ∈ Nn, so we have proved (25) for n− 1 ≤ i, j ≤ k becauseMijT (ψ) is tight. Next we take
−1 ≤ i < n− 1 ≤ j ≤ k and write

M∗
ijT (ψ) = T−1

T∑
t=1

T d+ib−d0+1/2(S+
it +Dit)(S

+
jt +Djt).

From (74), (75), and max1≤t≤T ||S+
jt||2 ≤ c, max1≤t≤T ||T d+ib−d0+1/2S+

it ||2 ≤ c, see (76) and

(79), it follows that we only have to show that T−1
∑T

t=1 T
d+ib−d0+1/2S+

itS
+
jt

P→ 0. This
follows by Lemma C.5 for Z+

1t = Z+
2t = γ0εt + ∆b0

+Y
+
t and u = d+ ib− d0 ≤ −1/2− η0, and

v = d+ jb− d0 ≥ −1/2 + η0. The convergence in probability holds jointly for finitely many
values of ψ ∈ Nn and tightness holds by Lemma D.1.
The derivatives Dm give rise to an extra factor (log T )m, which does not change the proof.
Proof of (26): We write

∆d0−b0Lb0Xt = ∆d0−b0Xt −∆d0Xt = γ0(∆−b0+ εt − εt) + Y +
t −∆b0

+Y
+
t +D0

−1t −D0
0t,



Likelihood inference for fractional processes 30

see (81), where D0
−1t and D

0
0t are calculated for ψ = (d0, b0). We decompose the product

moment of ∆d0−b0Lb0Xt and εt as

T−b0
T∑
t=1

γ0(∆−b0+ εt − εt)εt + T−b0
T∑
t=1

(Y +
t −∆b0

+Y
+
t )εt + T−b0

T∑
t=1

(D0
−1t −D0

0t)εt. (86)

For the last term we find

V ar(T−b0
T∑
t=1

(D0
−1t −D0

0t)εt) ≤ T−2b0+1T−1σ2
0

T∑
t=1

(D0
−1t −D0

0t)
2 → 0,

by (74) and (75). The second term of (86) is T−b0
∑T

t=1(Y +
t −∆b0

+Y
+
t )εt, which is a sum of

a martingale difference sequence, so that

V ar(T−b0
T∑
t=1

(Y +
t −∆b0

+Y
+
t )εt) = σ2

0T
−2b0

T∑
t=1

V ar(Y +
t −∆b0

+Y
+
t ) ≤ cT 1−2b0 → 0.

Finally, the first term of (86) is compared with the product moment of ∆−b0+ εt and εt+1

for which we have the convergence in (26), see (8), by showing that the difference converges
to zero. We find

∑T
t=1 εt(∆

−b0
+ εt−1− (∆−b0+ εt− εt)) =

∑T
t=1 εt(εt−∆−b0+1

+ εt), with mean zero
and variance

V ar(
T∑
t=1

εt(εt −∆−b0+1
+ εt)) = σ4

0

T∑
t=1

t−1∑
j=1

π2
j (b0 − 1) ≤ c

T∑
t=1

t−1∑
j=1

j2(b0−2) ≤ cT 2 max(b0−3/2,0)+1.

Normalized by T−2b0 this converges to zero because b0 > 1/2, and proves (26) of Theorem 5.
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Table 1: Simulated quantiles of the distribution (47)
b0 = 0.6 b0 = 0.8 b0 = 1.0 b0 = 1.2 b0 = 1.4

90% 2.52 2.70 2.95 3.18 3.33
95% 3.60 3.83 4.10 4.37 4.53
99% 6.34 6.60 6.92 7.23 7.42
Note: Based on 100, 000 replications and T = 1000.


