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The Cox, Ross, and Rubinstein binomial model is
generalized to the multinomial case. Limits are
investigated and shown to yield the Black-Scholes
Sformula in the case of continuous sample paths for
a wide variety of complete market structures. In the
discontinuous case a Merton-type formula is shown
to result, provided jump probabilities are replaced
by their corresponding Arrow-Debreu prices.

A multinomial option pricing formula consistent with
an Arrow-Debreu complete markets equilibrivm is
derived. Economic uncertainty is modeled as evolving
on an ( » + 1 )-ary tree with branching occurring during
a short interval of time in which there is no trading.
Direct empirical implementation of such a formula is
feasible, though issues associated with the identifica-
tion of the number of branches and their probabilities
should be addressed. This article develops limiting for-
mulas that arise on letting the intertrading interval
approach zero. Two limiting contexts are considered,
one yielding continuity for the sample paths of share
prices (the continuous case), while the other permits
jump discontinuities (the discontinuous case). For other
approaches to option valuation that usefully can be
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compared to the methods of this article, see Merton (1977), Jones {1984),
Kreps (1982), and Harrison and Pliska (1981).

The limiting formula in the continuous case is found to be the Black-
Scholes formula [Black and Scholes (1973)] thus generalizing the binomial
result of Cox, Ross, and Rubinstein (1979) (CRR) and establishing the
validity of the Black-Scholes formula for the wider context of muitiple
branching {or high but finite martingale multiplicity [see Duffie and Huang
(1985, p. 1342)]}. For a critical examination of the relationship of the
binomial model to the Arrow-Debreu theory, see Milne and Shefrin (1987).

The limiting formula in the discontinuous case requires the replacement

of jump probabilities by corresponding Arrow-Debreu prices in Met-ton’s
(1976) formula. This makes it necessary for empirical researchers, who
wish to assume such processes and account for risk aversion, to describe
the underlying Arrow-Debreu structure in sufficient detail to permit iden-
tification of the relevant Arrow-Debreu prices. Procedures for the identi-
fication of these prices in two special cases are developed in Madan and
Milne (1988a, 1988b).
The limits investigated extend the analysis of CRR to a wider subclass.
In the continuous case the analysis shows that for a variety of primitive
security prices consistent with complete markets, the limiting option value
is Black-Scholes. This suggests that in the continuous case the option can
be an asymptotically redundant security in certain incomplete market struc-
tures, in that a variety of differing individual valuations converge upon
each other. Though this is also possible for the discontinuous case, the
underlying conditions are shown to be more restrictive.

The article is divided into four sections. Section 1 develops the multi-
nomial option pricing model for an arbitrary ( » + 1)-ary branching tree.
Section 2 is devoted to the continuous case. The discontinuous case is
presented in Section 3, and Section 4 concludes.

. The Multinomial Model

Suppose that the uncertainties are given by a finite set of events £ with
elements e, partially ordered as a tree. For simplicity each node is assumed
to possess » + 1 successor nodes e’ Denote by Sfe) the n ¥ 1 vector of
share prices at node e, with R (independent of ¢ ) being the associated »
x ( n -+ 1) matrix of one-period rates of return. Let # denote the return on
a risk-free asset. The assumed full rank, independent of e, rate of return

matrix is then given by
|1 K

where 1 is an (n + 1)-dimensional vector of unit entries (the superscript
T denoting transposition).

Following Kreps (1982), let 4 be the normalized vector of one-period
primitive prices. A cash flow ¥¢ at successor nodes ¢’ then has an Arrow-
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Multinomial Option Pricing Model

Debreu price at e given by W = r'Z,g,y,. In particular, the primitive
prices g are defined by rAg = 1. . : .

. Theorem 1. Letp,, . . ., pyy; denote the entries in the first row of A, The
Arrow-Debreu price W, at e, of an option to buy the first share at time m
Jor a price of K #s given by

n+1 nt+l

(S 01 1o REg &

where A = v = (v, ..., v,_,“); v, an imege‘r,' v, = 0 Iy = m,
Soft. . . g%Y > K} and S, is the price of the first share at e, '

Proof. The price of the option at ¢, is the discounted expected terminal
value of the option using Arrow-Debreu prices as probabilities for the
calculation of expectations. The terminal price of the share is Spj ...

1\ where v, is the number of times the growth factor was p, The terminal
value of the option is max{S,p} . .. p'5y — K, 0). Because the probability

of » is ‘
m
[,,“ e pm]q;. P (13

the formula follows on direct computation of discounted expected values.
|

Observe that the expression for W, is precisely analogous to the CRR
binomial case and that it may be summarized by writing

where P,(4) denotes the multinomial probability of the set 4 under the
system of probabilities given by x for x = v, g and v, = gp,/r. Equation
(1) constitutes the multinomial option pricing model. Though the deri-
vation here uses a state pricing approach, while CRR use an arbitrage
argument, the two approaches are equivalent for a complete markets con-
text.

. The Continuous Case

The Black-Scholes formula is derived in this section as the limit of the
multinomial option pricing model (1), obtained by letting m, the number
of trading periods in a time interval of length t, tend to infinity while the
return matrix A™ is adjusted with m to yield sample path continuity in the
share prices. For this purpose let the time to maturity be ¢ and break up
the interval [0, ¢ ] into m pieces of length #m. Construct a finite rooted
free of height m with each node possessing » + 1 branches, a unit of time
on the tree being #/m units of real time. Suppose that in addition to the
riskless asset there are » shares available for trading at each node with
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constant mean and variance rates for log returns given by g, 6% for the ith
share. We need to define for each m the one-tree period matrix A™. Noting
the compounding of returns in Equation (1) motivates the specification
of log returns Z™ (Zy = In Ry i is the log return for security i along the jth
branching state) and this is

Zm= A(y™)C ' )

where C is a fixed » x ( » + 1) matrix and A(y™) is a diagonal matrix
dependent on m containing scaling factors for each share. The purpose of
the scaling factors is to reduce the jump magnitudes, as the number of
jumps in a fixed interval of time increases towards infinity, with a view to
preserving finiteness of the variance of the sum of all the jumps over the
interval. Let p" denote the probabilities of the » + 1 branches at each
node e. Given C, the requirement that the mean and variance rates be g,
and &% «completely determines p” and »” from the following equations:

&

A(p™y 0 ‘m
o el

2
q;"’(EMC%,)=g£+‘i—-? fori=1,...,n 4)

with Equation {(4) being an evaluation of the second moment about zero.

Theorem 2 establishes the existence of a well-defined underlying mul-
tinomial probability structure that approximates arbitrarily closely any mul-
tidimensional Brownian motion with drift for the vector process of share
prices. The motivation behind this construction is Merton’s {1982} analysis
suggesting, for limiting sample path continuity, the choice of Z" as A(y™)C,
where »" is organized to be of order \/1/m, in that ™/\/1/m tends to a
vector of positive constants.

Tbreorem 2. If (C7, 1) is invertible, and 3x > 0, Cx = O, then Equations
(3) and (4) can be solved for p~, n™ with m sufficiently large.

Proof See the Appendix. »

Corollary 1. A sequence p™ > 0 of solutions to Equations (3) and (4)
converges o x.

Proof From Equation (4), observe that 7°m converges to ¢3¢ :and hence
on multiplying the first » equations in (3) byV/mand taking limits we
find that the limit of p” as m tends to infinity must belong to the null space
of C. It must, of course, also satisfy the last equation in (3). Under our
assumptions this limit must be the unique vector =. W

The assumptions on C are not restrictive. First note that the invertibility
of (R™, 1) ensures a complete markets structure while the existence of =
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> () satisfying R*x =1 is equivalent (by the Farkas theorem) to supposing
that no linear combination of the risky securities is risk-free. These prop-
erties are expected to be carried down to the invertibility of (C%, 1) and
the existence of ™ > 0 in the null space of C on noting that®™ — U is
approximately equal to A(y™)C for large m, where Uisthe n x (n+ 1)
matrix with all entries unity. The rows of C may, without loss of generality,
be resealed to ensure that Zm,Chy =1, and in this case the limiting corre-
lation matrix for the log returns is CA(x)C”. Given 7, C therefore may be
partially identified from estimated correlations.

Three steps are involved in showing that the Black-Scholes formula may
be obtained as the limit of the Arrow-Debreu option valuation formula of
Equation (1). The first step reduces the multinomial probability P.(4) in
the limit to that of a standard normal probability N¢z) for a suitably con-
structed point z. The second step establishes the limit of z as m tends to
ifinity. It is here that the continuous and discontinuous cases show their
difference, essentially because a Taylor series analysis, valid for the con-
tinuous case, fails for the jumps. Finally, one substitutes the limiting value
of z into N(z) and then into Equation (1) for the appropriate P.(4) to
obtain the Black-Scholes formula.

The application of Lemma Al (see Appendix) vields the following
asymptotically valid approximation forPem{4), x™ = g~, v

Pml(A) = N(z™)
where _
2" =[ln S/K + mp™¢m + m(xm — p) T/ wm
w = VmQ@™ — (2.)VVmG" — t3.)
V= xm — xmxm?
$e=1np,

The Black-Scholes formula is obtained in the limit by showing that the
limit of 2™ as m tends to infinity for ™ = g™, ¢ is the appropriate Black-
Scholes argument of the N function. An important step in this regard is
the behavior of m{a™ — p™)7™, the first row of mZ~(x™ — p™) and its
limit is determined in Theorem 3.

Tbeorem 3. The limit as m tends to infinity of ¢~ #s 7, and
o gy BT =0/t (1
e + °(m) OF

while the corresponding equation for v* is

1 T | . 19¢
(ln r pm o“/Z)t “”E,,C,,cg+o() ©

{Zr(rm — p™), =

* o{x) Is the order notation indicating a function converging to zero faster than x, in that 6(x)/x tends to
zero as x tends to zero {Merton {1982 p. 24)} i

, |
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and the limit of V"' as m tends to ingfinity is also T.

Proof: The normalized primitive prices g (see ‘the observation preceding
Theorem 1) are defined by

[f’;’:m ]q"' =1 @)

Let U denote a conformable matrix with all entries unity. Then (7) may

be written as
[ 5] m "

From Equation (2), we haver¥"R™ — U = exp(~#/mIn rU + A(#™)C)
- U (where the exponentiation is entrywise). Then, noting that »™lbehaves
like a nonzero multiple of1/v/m, a Taylor series expansion yields

e = U = MGG Zlary+ %[A(n"')zc*(‘.] + o(ﬁ) ©)

where C*C denotes entrywise multiplication. Substituting (9) into the first
n equations of (8) yields (noting Ug™= 1)

AG™Cqn = —; T %[A(nm)zc-cqm] + o(%) (10)

Subtracting from (10) the first » equations of (3) and writing Z™ for A{n™)C
yields

(Inr— g, — o3/2)2
m

{zm(‘f" - P"')]: =

1 2Cr G, — 1
- E{[A(ﬂ ))C*Cq7), — ait/m} + O(m) (11)

The Appendix completes the proof by showing that the term in curly
brackets is also ofl/m).

In the Appendix, the analogous Equation (6) for the primitive prices v"
is also established. m

Equation (5), established by Theorem 3, relates log return expectations
under pseudoprobabilities ¢ to those under p. The negative of the differ-
ence is the risk premium, which in the limit is given by the approximation
(g, + 03/2 — Inr}t/m ffor security i

Noting that ™ is the first row of Z", Equations (5) and (6) yield

li_{g m(¢”“'P’")Tf'”=(lﬂf“'ﬂx"‘o—§)f. - Q2)
, . 2 o
llﬂ m(irm — p™)yim = (ln r— g, + ?)t a3
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Equations (12) and (13) capture the effects of shifting from the original
probabilities to the normalized Arrow-Debreu prices or pseudoprobabil-
ities in the computation of expectations. Under universal risk neutrality,
Equation (12) must equal zero, and Equation (13) is then just the variance
o%t. Observe that (12) is the covariance of ™ with g=/p™ and as the latter
is precisely the density of the Arrow-Debreu measure with respect to the
probability system given by the p’, it follows that (12) is the negative of
the risk premium for log returns on the first security. On the other hand,
(13) is the negative of the risk premium plus the risk measured by o3

Lemma A2 (see Appendix) shows that mp™ ™= tand lim w~ =

o, ViThe substitution of these limits along with (12) and (13) into the
expression for z#1yields the Black-Scholes formula

lim W, = V() ~ Kr-*N(&)

(/R (lnr, o
4= (61\/}) +("1 * 2)\/}

dz:da_‘ﬁ\/}

An important observation about this result is that the limiting option
value is independent of the particular choice of C. In complete markets
the option is a redundant security with the completeness obtained from
the full rank of C and the associated unique g. Because the limiting option
price does not depend on the entries of C, this shows that the Black-
Scholes formula can be relevant to a variety of complete market economies.

In incomplete markets, there would typically be a set of primitive prices
associated with the marginal rates of substitution of different individuals.
These could be used to obtain personal valuations of a European call option
on any share, but in general these personal valuations will differ, reflecting
the potential gains from trade. Of course, the introduction of the option
as a traded security in the incomplete markets equilibrium will result in
a redetermination of marginal rates of substitution that result in an equal-
ization of personalized option valuations to its price. The variation of .
personal valuations in an incomplete markets equilibrium before its intro-
duction as a traded security reflects the nonredundancy of the option in
incomplete markets. However, using the above results, an asymptotic
redundancy is possible if one structures the incomplete markets equilibria
such that the personalized option valuations converge on each other and
the Black-Scholes formula. In order to ensure that the various C matrices
are consistent with the same economy, they must imply the same state
probabilities and hence the same 7. In this case, all primitive prices are
convergent to each other and to .

The Discontinuous Case

We show in this section that in the discontinuous case, the limiting mul-
tinomial formula is precisely Merton’s (1976) formula with one change:
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jump probabilities must be replaced by corresponding Arrow-Debreu prices.
For the discontinuous case, the log return matrix Z" is partitioned as
follows:

zr = (A(5")C, G) (14)

where C and G are fixed matrices of dimension # x ¢ and n % d, respec-
tively, ¢ +d = n + 1, and the columns of G correspond to the jump states
with entries (some of which may be zero) giving the effects on the loga-
rithm of the corresponding security prices. Partitioning p™ into (o™, p™),
the equations defining p”, #™: analogous to Equations (3) and (4) now are

| #t
1 .
oo+ Zreu=Z 4 e (16)

Assume the columns of G and the rows of C are not zero. Consider mul-
tiplying Equation (16) by m and observe that the convergence of p to
=< implies the existence of convergent subsequences for may”, mpi™ with
respective limits, say, 631, =7 It also follows on multiplying the first n
equations of (15) by VVm and taking limits, provided &2 > 0 for all £, that
x° belongs to the null space of C. Hence, one can structuge the limits as
in the continuous case, choosing € with a.one-dimensional null space
containing #¢ > 0 with the rows of C staled to ensure 2%, #jC} = 1. 3
then has the interpretation of the limiting variance rate of the continuous
component, being the limit of 2, psCin7*m/#, while the mean Cx* = 0.

On the other hand, #f = /(179 is the limiting probability of the kth
jump given that there is a jump, with (17x%)#/m being the limltlng prob-

ability of 2 jump in an interval of length #/m.

To construct a system of discrete trees with a well-defined limiting pro-
cess, Equations (15) and (16) must be shown to have convergent solu-
tions as m tends to infinity. To assist in this construction, consider the
Hmiting equations obtained on rewriting the equations as {note Cz° = 0,

Iz =1)
\/%AwﬂC\/%@m—rﬂ+G%%“in'
T ﬂ — T ._t_ﬂm_
(V3o war\ 3o

[ + VYmZN m/ t(p‘ --r;)C]n'"'m

G%*m ” o .‘.‘j...t
+? t P d?'+m (17)
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which in the limit yield
A(@CH + Gri=pu
1M =0

B+ DG = :
i 21; x th '_t _(18)

Let x denote the vector®, =4, ) and x,, denote the vector Vm/(pem
— x°), m/gr, \/m/tq™). Equations (18) may be written®(x) = (i, 0, ¢?)7
while (17) asserts $,(x,.) = (&, 0, 03)7, where (¢62), = o} + uit/m. Since
®,.(x) — &(x) = [0, 1V mr?, N/ mCiP53], follows that Pacon-
verges uniformly on compact subsets of x = (0, x4 &) to ®. .Solutions of
Equations (17) therefore are related to those of (18). Now note that the
dimension of the space (0,4 &) isc+d+ n=2n+1 and the equation
13 = 0 restricts choices to a 2n-dimensional linear subspace in which the
inequalities =4 > 0 and ¢ > 0 « constitute 2n-dimensional relatively open
conditions. It follows that the restriction of & to ¥ = {{#, 74, &) |10 = 0,
x4 > 0, > 0} iis a smooth map from an open subset of a smooth manifold
of dimension 2n into the 2n-dimensional space of triples (p, O, o ). By
Sard’s theorem [Milnor (1965)] the set of critical values of F has Lebesgue
measure 0, and so for almost all choices of (i, 0, 0°) in the range of &, V®
has rank 2n.

Theorem 4 is analogous to Theorem 2 in that it establishes for the
discontinuous case the existence of an underlying multinomial probability
structure that approximates in the limit a Poisson jump process for the
vector of share prices.

Theorem 4. If (u 0, 6°) is a regular value of the range of ®, with &(x,) =
®@, 7 7o) = (i, O, 0%), then there exists a neighborhood Q of 8, 74 &,
such that, for sufficiently large m, Equations (17}, ®,.(x,)= (¢, 0, 62} =
Vs POSSESS a unique solution x,, in Q.

Proof. See the Appendix. o

The local uniqueness offered by Theorem 4 is all that is desired, as the
intention is to construct trees for arbitrarily large m with x, convergent
1o Xy

The equations defining the primitive prices, analogous to (7) and
employing Equation (2), are

y¥mpalyme yVmgs 7 i O 1
e R

where ()4 = €1t is shown in Lemma A3 (see Appendix) that g, g™
are convergent to «<, 0 and analogous to ®, and the equations defining the
limiting values X, ¢ of Vm/t(g™ ~ =), m/tg’" are
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A@C & —U||Ax]|_|lnr—5%/2
a9 It B

where U is again a conformable matrix of unit entries. Comparison of
Equation (20) with the first two sets of (18) shows that #2and ¢“ are not
likely 1o be identical. However, like #9, ¢ = (17¢")'¢7gives the Arrow-
Debreu prices for the events of particular jumps conditional on there being
a jump, while @ = 17 is the Arrow-Debreu Poisson rate of jumps.

The equations relating the expectations of continuous component log
returns under primitive prices ¢”, »” and probabilities p™” are given by the
following theorem, proved in a manner analogous to Theorem 3. Theorem
5 is used in a manner analogous to the use of Theorem 3 in deriving a
Merton (1976) type generalization of the Black-Scholes formula.

Theorem 5. The expected log returns using ¢ and p™ for the continuous
components are related by

[A@™C(g™™ — p), = {Inr — [AGCH), — 53/2 — w [(e5 — U)g]}¢

1
/m+ o\ @n

The analogous result fdr v™ is
[AG@™C(r™ — pm)), = {Inr — [AG)CH}, — §/2 — w[(es — U)$9)} ¢

. 1 .

Progof. See the Appendix. »

We can now establish the Arrow-Debreu form for Merton’s generalization
of the Black-Scholes formula in the presence of jump discontinuities.

Theorem 6. The limiting Arrow-Debreu option value for the jump case is
given by

(wd bewEm[Y”N(a?) — Kr'N(dD)]

B
nr- w(e ~ U)(f;“]rl Y
. + 2)\/? (23)

lim-%"¥z
=0

=GO

In(¥*/K) (1
&= +
h &1\/} d'l
&= — 5V

where Y* = S,28 . X, the X, are i.i.d with probability b2 of being &%, and
Ey, #s the expectation operator with respect to the density of Y*.

Proof. The limit of W§ is obtained by conditioning Equation (1) on the
number and magnitude of jumps. Essentially, as a result of the multipli-
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cative nature of compounding rates of returns and the instantaneity of the
jumps in the limit, the jumps may be accounted for at the start and are
incorporated into the variable ¥ for A jumps. The probabilities of the
jump/no jump partition are given by the binomial, and this converges by
standard arguments to the Poisson with parameter w. The rest of the analysis
is identical to the continuous case, with expressions (21} and (22) replac-
ing the roles of (5) and (6) and hence the extra term [(ef —~ W)@, in
the argument for N(x). The role of u,iin the continuous case in expressions
(5) and (6) is taken over by A(&)CH, which from Equation (17) is like a
continuous component mean and disappears from the final expressions
for reasons identical to those associated with the absence of u,in the Black-
Scholes formula. B

Unlike the continuous case, the limiting option value does depend on
the choice of C and G, but only through the lower dimensional entities
7., ¢9: and the associated jump magnitudes of the particular share. Hence,
there could be asymptotic redundancy of the option value with jumps and
incomplete markets, but this would be less likely.

. Conclusion

The Cox, Ross, and Rubenstein binomial model was generalized to the
multinomial case. Limits were investigated and shown to yield the Black-
Scholes formula in the case of continuous sample paths for a wide variety
of complete market structures. In the discontinuouws case a Merton-type
formula was shown to result, provided jump probabilities were replaced
by their corresponding Arrow-Debreu prices.

Appendix

Proof of Theorem 2

Since = > 0 and [C", 1}"x = [0, 1]" there exists a bounded closed convex
neighborhood V of = strictly interior to 22}, that is mapped one-to-one
onto 2 neighborhhod Q of [0, 1]”. The existence of a solution to Equations
(3) and (4) is established using a fixed point for a function Fon V. To
define F, take p arbitrary in V, use (4) to solve for n (possible by strict
nonnegativity of p) then observe that (3) rewritten as [C7, 1}’ = A(y,
1)7Yut/m, 1]" has for sufficiently large m a right-hand side that is in @ so
the solution p' is in ¥ and p' = F(p) defines F whose fixed point is 2
solation to (3) and (4). m ' ‘

Lemma Al. Reduction of P.(A) to N(z).

Proof Define the ( #n + 1 )-dimensional random vector w?® = (..1..) by u}

= 1, if at time A#/m the event associated with the jth branching occurs, 0
otherwise. w’satisfies 1*= 1 and so its covariance matrix is degenerate.
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For any vector s let the notation # denote the truncated vector obtained
from s by deleting its last entry. The covariance matrix of #*® for branch
probabilities given by % is V= A(&X) — &7 and this is nonsingular for x
> 0. P.(A)is the probability that :» € A and » = Z, w®, which for large m
is [Bhattacharya and Rao (1976, p. 184, Corollary 18.3)] distributed as a
multivariate normal vector with the appropriate mean and covariance matrix,
¥ being nondegenerate. Simple manipulations of the definition of A yield
that » € A just if

VI — £ i) UG — mR) > —In(S/K) = mpt = mix = T

where {,;=Inp,: for all /. The resuli follows noting the normality of the lefi-
hand side. =

Proof of Theorem 3 completed

Multiplying Equation (11) of the article by\/m and letting m tend to
infinity one observes that the limit of " is in the null space of C and so
must be 7 (note g > 0, 17¢g™ = 1) Now multiply the term in curly brackets
in Equation (11) by m, take limits, noting mmy convergent to o%f, g"
convergent to 7, and Zm,C% = 1. Substitution of these facts into the limit
yields the result. n

Demonstration of Equation (6) and the limit of V"

As v™ = r¥/=A(p") g™, :substitute for g™, =A(p™)v™in Equation (7) and
conduct a Taylor series expansion analogous to that for Theorem 3 to
derive, on substraction of the first » equations of (3),

(nr—pult
m

[A(ﬂ"')C(V" — pM)]‘ = — %[A(nm)IC‘C;{”]: )

+ 0 AGMZL,LChr + 0(‘,1;;) _

The result follows on an argument analogous to that of Theorem 3, noting
on multiplication of the above equation by\/mand taking limits that +"
tends to 1.

Lemma A2.

Proof- (@) mpm™§™ = uw,t by construction for all m. (b) For the limit of w",
note Vmi{ends to ¢,\V7Cyyand Rhds to  A(%) — #%". The limit ofw™
is therefore o3tyA(F) — #7TW where ¥, = C,;; — C, 4. The result follows
on showing that the quadratic form is unity. For this calculation the reader
is referred to Madan and Milne {1987). m

Proof of Theorem 4

Let 2, = (B, =€, &), supposing®(x,) is regular for @ restricied to 17 =0
and considered as a map into the space of vectors (i, 0, 6%). Let A denote
the 2n X (2n + 1) matrix of derivatives of ® so viewed. The Jacobian&)
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of & at x, is the determinant of 4 augmented by the row (17, 0, 0) and this
must be nonzero for otherwise there exists z = (¢', ', &), 17’ = 0 and
Az = 0 contradicting the supposed regularity of $(x,). By the Corollary to
Theorem 21 (pp. 276, 277) of Buck (1965), ¢ is one-to-one in a neigh-
borhood £ of x,. In order to solve &,(x,) = y, parameterize m by u =
1/m and write the equation to be solved generally as $(x, &} = y(x) where
the dependence of y on m is incorporated in the expression y(w). Now
let ¥(x, u) be defined as $(x, ) — y(#), note that ¥(x,, 0) = 0 and by
the regularity of y, that ¥, = &_ is nonsingular, The result follows on use
of the implicit function theorem [Spivak (1965, p. 41)], treating u as the
parameter space. B

Lemma A3. Supposing e — U s of ﬁzll rank, g, g™ are convergent 10
x5, 0 and \/m/t(qg™ — =), m/tq"" are convergent 1o A, ¢“ defined by
Equation (20) of the article. _

Proagf Proceed as in the proof of Theorem 3 to deduce that

m N Mmoo am = of 1o
\/Baimce+ \ /e - g o{75)

One must therefore have in the limit that Cg* tends to zero as does {(e®
= U)g*" whence it follows that 4 tends to x° and g~ to zero. The Taylor
series expansion used in deriving the above equation gives in greater detail

that
VA(H")C \/'(qm P U) e g

= lﬁ r(17g<~1 + e%g*) — %(—;)A(u’”)’C'Cq‘”' + (—-t-)o(-l—)

m

The first set of equations follow on taking limits. The second isa limiting
consequence of

r 2 § S ‘ _t T, ﬁ am e
o\ 2w+ \ (B0
which is a rewrite of the condition that the g”s and #“s add to unity. =

Proof of Theorem 5 :
Subtracting the first set of Equations (15) from the Taylor series approxi-
mation used in Lemma A3 one obtains that
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A™C(E™ = ) + (& — U)gin — Gprim = (—i) 7g™)in 71

—_ %A(ﬂ’")?c’ ann

+ (—i) (In P) Sgi — “;’ + 0(3-) - (A1)

m
Now note that

1. (m/D(t/m) & q*In r tends to zero so (#/m) g Inris o(1/m).

2. (m/D[A(y™)*C*Cq™ — &%t/m] tends to zero so A(r;"')’C‘Cq‘"' -
at/mis o(1/m).

3. m/q(t/m)17g™ ~ t/m] tends to zero so (¢/m)17q™ — t/m is
o(1/m).

4. m/qGp™ — (t/m)Gm¥] tends 10 Zero S0, Gp#m — (t/m)Gx? is
o(1/m).

5. m/f(& — U)g*™ — (& — U)¢?(t/m)] tends to zero so [(eG Vg
—~ (& — W) (¢/m)] is 0(1/m).

Replacing the terms in 1 to 5 above by their limits up to order /m in
Equation (A1) yields the result. B

Demonstration of Equation (22)
Using ™ = r'¥"A(p")g™ and following an argument analogous to that used

for Equation (6) to deduce on subtracting the first » equations of (15)
that

AGPICCerm = pm), = (ATomDin r = SnrBClop
+ WIE/C,Cyts | :
+ [ — U)ALeo) i, — ﬁ"‘;‘ + (Gp™), + o(i) (A2)

Note that the limits 1 to 4 in the proof of Theorem S above hold with v’s
replacing g’s. For the limit 5, note that since the limit of m/#4™ lis equal
to eSu{lim(m/ ) qi"] which equals €“*¢{ that (m/D[(e& — U)A(e Sk) goim
— (& — U)¢“t/mitends to zero so [(&€ — U)A(e~ 1) ™ — (&£ — U)¢t/
m] is o(1/ m). Also note that as (m/DmTnrZ,CyCyt T — 6:162,CyCymst/ m]
tends to zero[aPaPZ,C Cytp™ — 6,6.2,C,,Cmft/m) is o(1/m)The result
follows on substitution of these limits into (A2).
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