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European call options are priced when the uncertainty driving the stock price follows the V. G .  
stochastic process (Madan and Seneta 1990). The incomplete markets equilibrium change of measure 
is approximated and identified using the log return mean. variance, and kurtosis. An exact equilib- 
rium interpretation is also provided, allowing inference about relative risk aversion coefficients from 
option prices. Relative to Black-Scholes, V. G .  option values are higher, particularly so for out of 
the money options with long maturity on stocks with high means. low variances, and high kurtosis. 
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I .  INTRODUCTION 

Option pricing with Brownian motion as the martingale process describing the evolution 
of the underlying uncertainty is fairly well developed. The basic geometric Brownian 
motion model with constant drift and diffusion coefficients employed for valuing Euro- 
pean call options in a constant interest rate setting (Black and Scholes 1973) has now been 
extended to allow for stochastic volatility (Wiggins 1987, Scott 1987, and Hull and White 
1987), stochastic interest rates (Ho and Lee 1986, Heath, Jarrow, and Morton 1989), and 
the valuation of American put options by numerical methods (Brennan and Schwartz 
1977, Parkinson 1977) and analytic approximation (Johnson 1983, Barone-Adesi and 
Whaley 1987, Jamshidian 1989, Barone-Adesi and Elliott 1989, and Carr, Jarrow, and 
Myneni 1989). 

Madan and Seneta ( 1990) introduced an alternative martingale process, termed the 
V. G .  (variance gamma), as a candidate for replacing the role of Brownian motion as a model 
for the underlying uncertainty driving stock market returns. This process is defined as 
N ( r )  = b(G(t)) ,  where b( t )  is standard Brownian motion and G(t)  is the process of 
independent gamma increments with mean t and variance vt. Hence, the process may be 
viewed as Brownian motion evaluated at a random time change. I t  is a pure jump process 
with jump magnitudes concentrated near the origin (Madan and Seneta 1990). The distri- 
bution of N(  1 )  is long-tailed relative to the normal distribution and has a kurtosis of 
3(1 + v ) .  Conditional on G(t )  the distribution of N ( t )  is normal with variance G(r); 
hence, the nomenclature variance gamma. 

' Earlier versions of this paper were presented at the Australian Graduate School of Management workshop 
in economic theory and at a seminar at the University of Maryland. More recently the paper was presented at 
the University of Alberta, the World Congress of the Econometrics Society Barcelona 1990, and at a seminar at 
Queen's University. We would like to thank the seminar participants for various comments and suggestions and, 
in particular, Robert Elliott, Stuart Turnbull. and the referees for considerable assistance. Errors remain our 
responsibility. 
Munuscrip/ received Murrh 1990; , f i t i d  reiisiotl received M a y  1991. 
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This alternative was sought primarily to obtain a process consistent with the observa- 
tion (Bookstaber and McDonald 1987, Madan and Seneta 1987, Praetz 1972, Press 1967, 
Fama 1965, and Mandelbrot 1963) that the local movement of log prices is long-tailed 
relative to the normal, while the movement over larger time intervals approaches nor- 
mality. Properties of Brownian motion that are desirable and were sought to be maintained 
in the alternative models for the driving uncertainty include finite moments of at least the 
lower orders, sample path continuity, and independent identically distributed (i.i.d.1 in- 
crements over nonoverlapping intervals of equal length. 

Sample path continuity, however, essentially requires that the process be a stochastic 
integral with respect to Brownian motion, in which case the local motion is normal. Hence 
this property was abandoned and pure jump processes were considered. Unlike Jones 
(1984), the interest was not in accommodating by arbitrage the occasional large jumps, 
expanding of necessity the number of spanning assets required, but rather in correcting 
the local behavior of the driving uncertainty. The V. G. model was therefore contrasted 
with other i.i.d. pure jump processes, like the process of independent symmetric stable 
increments (Mandelbrot 1963) and the Press (1967) compound events model, in a study 
conducted by Madan and Seneta (1987). The results were supportive of the V. G .  process, 
which attained minimum chi-squared in 12 out of 19 cases. 

Though other processes have been used in the literature for option pricing, they have 
been either It6 processes with sample path continuity (Cox and Ross 1976) or, in the 
presence of jump discontinuities, they have invoked a risk-neutral valuation result (Mer- 
ton 1976, Cox and Ross 1976, Jarrow and Rudd 1982). The complex issue, noted in 
Brennan and Schwartz (1978), of identifying the change of measure in the jump context 
is taken up here. As observed in Madan, Milne, and Shefrin (1989), this leads to rele- 
vance of the particular change of measure via a dependence of the option price on the 
mean rate that reflects the coefficient of relative risk aversion in certain interpretations 
developed below. 

The pricing of European options for a pure jump driving uncertainty can not be accom- 
plished using the cost of a hedging strategy. As Naik and Lee (1990) observe, a self- 
financing continuous trading strategy in the underlying asset and a riskless bond that 
replicates the payoff of the option do not exist. Naik and Lee obtain a necessarily incom- 
plete markets equilibrium value for the option by solving a one-individual equilibrium 
model, employing a constant relative risk aversion utility function for the individual. 

Many authors have observed under a variety of circumstances that discounted asset 
price processes in an equilibrium, with complete or incomplete markets, are a martingale 
under an equivalent change of measure (Harrison and Kreps 1979, Harrison and Pliska 
1981, Huang 1985, Duffie 1988, and Back 1991). With completeness the equivalent 
change of measure is unique, while with incompleteness we have its existence but not in 
general its uniqueness. Duffie derives the result in an equilibrium with initial and final 
consumption for square-integrable semimartingale price processes and a predictable dis- 
counting process that pays at maturity and has a price process strictly bounded above and 
below. Back allows intermediate consumption and obtains the result for square-integrable 
semimartingale price processes but employs a continuous discounting process. The ab- 
sence of arbitrage opportunities is not quite sufficient for the derivation of this result, and 
the interested reader is referred to Back and Pliska (1991) for further discussion. 

Employing the Duffie and Back result, the change of measure density process is first 
parameterized using results from Jacod and Shiryayev (1987). Relying on the fact, noted 
earlier, that most of the jumps for our process are near the origin, we construct a one- 
parameter approximation by a Taylor series expansion to the function that recharges the 
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jump magnitudes. The single parameter is then identified using the martingale condition 
for the discounted asset price process, as it is in modern versions of Black-Scholes theory. 
The option pricing formula derived as a discounted expected value under the identified 
change of measure can then be viewed as a first-order approximation to an incomplete 
markets equilibrium price. 

Alternatively, one can follow Naik and Lee (1990) and set up a representative agent 
(Lucas 1978) pure exchange economy and derive the option pricing formula as an exact 
equilibrium price for this economy. We note for completeness that Naik and Lee (1990) 
derive an option price for a driving martingale component that is a mixture of a diffusion 
and the Press (1967) normal compound Poisson process that was also studied in Madan 
and Seneta (1987). 

Section 2 introduces the V. G. stochastic process. Section 3 parameterizes the equiva- 
lent martingale measure, and the density process for the change of measure is then iden- 
tified in Section 4. The exact equilibrium price interpretation following Naik and Lee 
(1990) is presented in Section 5 .  The option pricing formula is then derived in Section 6 
along with a closed-form approximation valid for large maturity dates. Comparisons with 
Black-Scholes are presented in Section 7. Section 8 concludes the paper. 

2 .  THE STOCHASTIC BASIS 

Let (a, 9, P )  be a complete probability space, and let the time span be (0, TI,  where T 
is a positive real number. Suppose that both standard Brownian motion b = (b( t ) ,  t E 
[O, TI)  and G = (G(t), t E [O, T I ) ,  the right-continuous process of independent gamma 
increments with mean t and variance vr, t E (0, TI,  are defined on the probability space. 
Let N = { N ( t )  = b(G(t)) ,  t E [0, TI}  be the V. G. process, and let F = {sr, t E [O, TI)  
be the right-continuous filtration generated by N .  (A filtration is an increasing family of 
sub-a-fields of 9). We assume that 9 0 contains all the P-null sets and that 9~ = 8. 
Since G(0) = 0 a.s.,  9 0  is almost trivial containing just sets of measure zero or one. 

We use 6 (resp., 9) to denote the optional (resp., predictable) a-field and 7~ to denote 
the product measure on x [O, TI generated by P and Lebesgue measure. (The optional 
(resp., predictable) cr-field is the cr-field generated on f l  X [O, TI by the adapted right- 
continuous (resp., left-continuous) processes. A process measurable with respect to 6 
(resp., 9') is naturally adapted to F and is said to be an optional (resp., predictable) 
process. 

It is well known that any process of independent increments like N ( t )  with N ( 0 )  = 0, 
and without fixed times of discontinuity, has a distribution that is infinitely divisible. Fur- 
thermore, letting [$( u )  be the log characteristic function satisfying E(eiUN('))  = et+(u), then 

is a martingale (Jacod and Shiryayev 1987, p. 75). In particular, for our specific V. G. 
process we have 

+(u)  = - In 
v 1 + vu*/2 ( 2 . 2 )  

The role of Brownian motion b in the original Black-Scholes model may be replaced 
by the V. G. process N by postulating the following model for the stock price. 
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Assumption 2.1. 
martingale process 

The stock price S = { S ( t ) ,  t E (0, TI} follows the optional semi- 

where p is the expected rate of return on the stock. 

Equation (2. I )  implies that e"N(')-f6(fr'i) is a martingale if @(a/i) = ( t / v )  In [ I / (  1 - 
v(r2/2)j is finite. This requires v(r2/2 < 1 or v < 2/a2 .  This bounds the kurtosis that can 
be accommodated. 

A better understanding of the process (2.3) may be obtained by considering its local 
movement as described by the stochastic differential of (2.3) and by writing the process 
S as a stochastic integral with respect to the integer-valued random measure associated 
with the process N ( t ) .  Taking the stochastic differential, we obtain, on noting that N ( t )  
has no continuous martingale component, 

We see from (2.4) that there is a continuous proportional drift of p - +(a/i) with pro- 
portional jumps of magnitude - 1 synchronized with the jumps in N .  Note that the 
proportional jumps always exceed - 1,  and this keeps the price process nonnegative. 

Let pN be the optional integer-valued random measure on 10, T ]  x R, associated with 
the process N ( t )  and defined by 

where E, is the Dirac measure at the point a. The process S may also be written in terms 
of pN as 

and so a jump in N of magnitude x yields a jump in S of magnitude S ( t -  )(e'rx - 1). 
Madan and Seneta (1990) show that N ( t )  can be approximated as the difference of 

two identical but independent increasing compound Poisson processes with arrival 
rates given by p,, = J-TIfl e-z ' (m' ) (vz ) - '  dz and conditional jump density given by 
p , ~ ' e - ' ' ( ~ ' ) ( v ~ ) - ' l ~ ~ ~ ~ , ~ ~ .  The jumps in N therefore have a high frequency and are 
concentrated near the origin. This property motivates our approximation to the equivalent 
martingale measure in the next section. This approximation will also prove useful in 
simulating the value of complex contingent claims adapted to the process N. 
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3 .  EQUIVALENT MARTINGALE MEASURES FOR THE V. G. PROCESS 

The results of Duffie (1988) and Back (1990) quoted in the introduction assert that dis- 
counted asset price processes of traded securities in an economic equilibrium are martin- 
gales under an equivalent change of measure. We suppose the existence of a constant 
instantaneous interest rate r. 

ASSUMPTION 3.1. A pure discount bond maturing at T with face value of $1 is traded 
and has a price process given by e r ( T -  ,). 

It follows in equilibrium that there exists a measure Q = P ( Q  equivalent to P; i.e.,  

(i) e-"S(t) is a Q martingale, and 
(ii) the price W,  at t of a traded call option on the stock with maturity T and a strike 

Q ( A )  > 0 if and only if P ( A )  > 0 for all A E !Y), such that 

price K is 

where Ef! is the expectation operator with respect to the measure Q and conditional 
on 9,. 

Condition (i) is used to identify the measure Q, and then condition ( i i )  is employed to 
evaluate the option price. The measure Q is identified by determining the Radon-Nikodym 
derivative of Q with respect to P and the associated density process 

( 3 . 2 )  h( t )  = Ep[dQ/dPI!Y,]. 

The density process can be identified in terms of the effect of the change of measure on 
the characteristics of the underlying martingale process N .  

Semimartingales can be characterized in terms of their characteristics (see Jacod and 
Shiryayev 1987, p. 76). The characteristics are defined relative to a truncation function 
h(x), and we shall use the function h ( x )  = xlilxl. 1 ) .  The characteristics consist of a triplet 
( B ,  C, v), where B is a predictable real-valued process of finite variation, C is the con- 
tinuous process of the quadratic characteristic of the continuous martingale component of 
the semimartingale, and u is a predictable random measure that is the compensator of the 
random measure p N .  

For a function W(w,  t ,  x )  measurable with respect to the product u-field 6 (resp., $) 
of 6 (resp., 9) on fl X (0, TI with the Bore1 a-field on R and of a random measure 
p ( w ;  dt, dx), we define the stochastic integral W * p by 

if J ,o , , lxR I W(w, t ,  x) lp(w; dt, dx) is finite; otherwise (W * p), is infinite. 

Shiryayev 1987, p. 84) as 
A semimartingale X can be written in terms of its characteristics ( B ,  C, v) (Jacod and 

X = X o  + X" + h * (px - U) + (X - h(x ) )  * px + B ,  
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where X" is the continuous martingale component of X .  The process h 1: (px - v) de- 
scribes the local (near the origin) discontinuous martingale behavior, (x - h ( x ) )  1: px 
gives the distant jump behavior, and B is a predictable finite-variation part. If the semi- 
martingale X is special with canonical decomposition X = X" + M + A for a martingale 
component M and predictable finite-variation process A ,  then we have that (Jacod and 
Shiryayev 1987, p. 85) 

(3.3) X = X u  + X" + x * (px - V) + A .  

For the process N ,  which is a process of independent increments, the characteristics 
are identified from the Ltvy-Khintchine representation of the characteristic function (Ja- 
cod and Shiryayev 1987, p. 107). If K is a positive measure that integrates lxI2 A 1 and 
satisfies K((0) )  = 0, and if for all t E (0, TI and u E R we have 

then the characteristics are B = bt, C = ct, and v ( o ;  dt, dx) = dt K(dx) .  

yields b = c' = 0 and 
Madan and Seneta ( 1990) obtained the Ltvy-Khintchine representation for N ,  and this 

e x p ( - I x W a f i )  dx for o, (3 .5)  K(&) = 
vlxl 

One observes from (3.5) that ( 1 ~ 1 ~  A 1x1) * v is of integrable variation, and this implies 
(Jacod and Shiryayev 1987, p. 82) that N ( t )  is a special semimartingale. Since N is a 
martingale with no continuous component and N ( 0 )  = 0, we have from (3.5) that 

with E.' = dt K(dx) .  Note however that x * v is zero, so N is x *: pN. as it should be. 
A change of measure from P to a measure Q absolutely continuous with respect to P 

results by Girsanov's theorem (Jacod and Shiryayev 1987, p. 159) in N being a Q semi- 
martingale with altered characteristics. In fact, for a pure jump process like N ,  there exists 
a @-measurable nonnegative function Y ( o ,  t ,  x) satisfying lh(x) (Y - 1)1 Q v, <= Q-a.s. 
such that the characteristics of N relative to Q are 

where Y .  v(w; dt, dx) = Y ( w ,  t ,  x ) v (o ;  dt ,  dx). 
The function Y serves to alter the jump compensator and may be thought of as recharg- 

ing all the jump magnitudes in a predictable fashion. Equivalence of Q to P requires that 
Y be strictly positive, so we may write 

An explicit computation of the density of Q with respect to P is provided by Jacod and 
Shiryayev (1987, p. 1791, provided all P martingales have the representation property 
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relative to N .  This is implied by Jacod and Shiryayev (1987, Theorem 4.34, p. 176), as 
N is a process of independent increments. For the specific case considered here with 
v(w;  { t }  x R) = 0, the density is obtained as the DolCans-Dade exponential of the 
martingale M = { M ( t ) ,  t E [0, TI}  defined by 

(3.7) M = ( Y  - 1) *(PUN - v). 

The Doleans-Dade exponential of a semimartingale X, denoted % ( X ) ,  is defined as the 
semimartingale solution Z to the equation 

z = 1 + z- . x .  

or, in differential notation, 

with ZO = 1. For a process with no continuous martingale component we have that (Jacod 
and Shiryayev 1987, p. 59) 

% ( X ) ,  = exp(X, - Xo)X n ( 1  + A X . y ) e - A x 3 .  
s .- f 

( 3 . 8 )  

Applying (3.8) to the process M ,  written as ( Y  - 1 )  Q p N  - ( Y  - 1 )  * v ,  we note that 

(3.9) % ( M ) ,  = exp - ( Y  - ( 

integrability of e* - 1 with respect to K(dx) requires that +(O) = 0, and for+ smooth 
we may construct a first-order Taylor series approximation of $J at zero and write 

where e is an error or remainder term. Since most of the jump magnitudes are concen- 
trated near the origin for the process N ,  a reasonable approximation to the change of 
measure density for an incomplete markets equilibrium may be specified by employing 
the function 

(3.10) $(w, t ,  X) = a(w ,  t )x.  

Substituting (3.10) into (3.9) and performing the integration with respect to K(&) 
(which can be checked by power series expansion as in Madan and Seneta 1990), we get 
that the change of measure density process A = {A(t), t E [0, TI} has the form 

(3.11) 
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The coefficients a can be identified by employing condition (i), which requires the 
discounted stock price process to be a Q martingale. This requires (Elliott 1982, p. 161) 
that e -"A(t)S( t )  be a P martingale. Writing this expression, we have 

e-"h( t )S( t )  = S(0) exp (a (w ,  s) + a) AN,T + 

From the form of (3.1 I )  and the fact that A is a martingale, it follows that 

is a martingale. Observe now that 

(3.12) e-"h( t )S( t )  = S(O)y(t) exp p - r - 4 ii (Sb 
Hence, (3.11) and (3.12) are martingales only if 

in which case a(w ,  s) must be the constant function a satisfying 

and from (3.11) the change of measure density is 

The change of measure is now identified using (3.13) and (3.14). The option price can be 
determined by integration, which is taken up in Section 5 .  The density (3.14) can also 
be given an exact interpretation for a Naik and Lee (1990) equilibrium, which we dis- 
cuss next. 

4. THE CHANGE OF MEASURE IN A PARTICULAR GENERAL EQUILIBRIUM 

This section describes a general equilibrium in which the change of measure has the form 
(3.14) and the coefficient a is related to the coefficient of relative risk aversion for a 
representative agent. The model is set up as in Naik and Lee (1990), where there is one 
fully-equity-financed firm with a unit of stock outstanding engaged in the costless produc- 
tion of a single perishable consumption good. Let the probability space be as described 
in Section 2, except that the time span is now 10, x]. Suppose the dividend process 
D = {D(r ) ,  t E 10, XI} is exogenously given as 
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(4.1) D(t )  = D(0)  exp(pt - +(cr/i)t + crN(r)).  

This is precisely the process supposed for the stock price earlier. 
The economy has trading in the stock of the single firm with price process S = {S( t ) ,  

t E [0, "1) as well as trading in a zero net supply European call option maturing at T 
with exercise price K .  The price process of the option is W = {W( t ) ,  t E [0, 7'1). There 
is also a risk-free bond traded with maturity T and face value $1 with price process B = 

The economy has a representative agent who chooses a consumption plan c = {c( t ) ,  
m t ) ,  t E (0, TI). 

t E [0, 301) so as to maximize expected utility 

(4.2) 

subject to a budget constraint. The pure rate of time preference is 6 ,  and we suppose that 
the utility function is one of constant relative risk aversion; that is, 

(4.3) U ( c )  = (l/r))cV, 

where 1 - r )  is the coefficient of relative risk aversion. The budget constraint requires 
that all consumption be financed through the gains associated with an investment strategy 
in the financial assets. 

A competitive equilibrium for this economy is a set of security price processes such 
that expected utility of the representative agent is maximized subject to the budget con- 
straint with the representative agent holding the total stock of the firm and consuming all 
the dividends. 

For such an economy, following Naik and Lee, one must have 

and on computing out the expectation (see Appendix A), we obtain 

Hence, S ( t )  follows a process like D ( t ) ,  which is, by construction, consistent with (2.3). 
The interest rate for the economy is obtained from the equation 

which on computation (see Appendix A) yields 

Hence, there is a constant risk-free interest rate of 
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The change of measure process A(? )  may be obtained from the conditional expectation 
process of normalized marginal utilities at T (Back 1990), and this gives 

(4.9) 

which yields (see Appendix A) 

which is of the form (3.14) with a = (7 - 1)a. The coefficient of relative risk aversion 
is 1 - T o r  -a/a. 

5. THE EXPLICIT CHANGE OF MEASURE 

The change of measure is determined explicitly on solving (3.13) for the value of Q in 
(3.14). Defining 8 = ev( f i - r )  and y = vv2/2, we show in Appendix B that the solution 
to (3.13) for a/a is 

One observes directly from (3.13) and (5.1) that if p = r then 8 = 1, and in this case 
a = 0 and one has the risk-neutral case with no change of measure involved. 

It follows from (5.1) that if $( 1 - y )  > 1 then a < 0. On the other hand, if $( 1 - y )  
< 1 then a > 0 can be shown to be equivalent to y( I - 8) < (1  - 8). Thus, for 8 > 1, 
which corresponds to p > r, a > 0 only if y > 1 .  Since we have y < 1,  a is always 
negative for 8 > 1.  If 8 < 1 or p < r, then a > 0 with y < 1 .  Hence, for p > r, 
a < 0, and as - a / m  is the coefficient of relative risk aversion for the equilibrium of Sec- 
tion 4,  the implied utility function is always concave. 

In the region 8 > 1 and 0 5 y 5 I we have a / m  = 0 at the boundary 8 = 1. I t  is also 
zero at the boundary y = 1 and rises without bound at the boundary y = 0. On the arc 
y = 1 - 118 we have - a / a  = 112, so the contour plot of -alo as a function of 8 and 
y in this region has concave level curves written with y as a function of 8. As p -+ x for 
a given v and (T', % rises without bound and - a / a  approaches or (I/@)-. 

6. THE OPTION PRICING FORMULA 

The option price is determined simply by evaluating the expectation of condition ( i i )  given 
by (3.1). It is sufficient to evaluate the option price at time 0, with maturity being at t. 
We first write p in terms of a in the description (2.3) of the stochastic process for S ( t ) .  
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Then p is expressed in terms of cy using (3.13) and the precise form of 4 given in (2.2).  
This yields 

1 - vff212 (6.1) 

In addition, we have the precise change of measure density 

(6 .2)  A( t )  = e a N ( f ) - (  t/lJ)1fl( 1/(  1 V U 2 / 2 ) )  

The option price can now be written as 

We now have to integrate with respect to the density of N ( t ) .  This is done by first condi- 
tioning on the gamma variate G(t)  = G, for, conditional on this, N(t) is normal with 
mean 0 and variance G. The conditional option value W ( G )  is therefore obtained by 
standard methods on integrating with respect to the normal density. 

Substituting (6.1) and (6.2) into (6.3), we find that the variable to be integrated is 

with domain of integration 

V I - v f f2 /2  

and N is distributed normal with mean 0 and variance G. By standard methods the inte- 
gration yields 

where @ is the standard normal distribution function. 

density with a mean t and variance vr, namely, 
The V. G. option price requires that we integrate G in (6.5) with respect to the gamma 

Defining G / v  = g, we may write the V. G .  option price as 

(6.7) 
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The integration in (6.7) must be performed numerically, and W(vg)  must be obtained 
from (6.5). 

This numerical integration really only needs to be performed for small values of rlv. 
For large values of r/v, observe from (2 .2)  that the log characteristic function of N(t)/<t 
may be written as 

1 

and this tends to - u2/2 as t / v  tends to infinity. Hence, the distribution of N ( t ) / q t  may 
be approximated by a standard normal variate for large values of tlv. This asymptotic 
distribution is independent of the parameter v. However, the change of measure involves 
v ,  reflecting the fact that though one has normality for the large t's one does not have 
Brownian motion. 

Using this approximation for the density of N( t ) ,  one may compute the option price for 
large t by evaluating the integral of (6.4) with respect to the normal density with mean 0 
and variance t .  This yields 

W = S 0e  (a+u)2 f /2 ( l  - v ( a  + ~ 7 ) ~ / 2 ) ' / ~ ' @ ( d , )  - Ke-r'+"2r/2(1 - va2/2)""@(d2) ,  

where 

A special case of some interest is the risk-neutral case of p = r when cy = 0. Sub- 
stitution into (6.8) shows that the option price is given precisely by the Black-Scholes 
formula applied to an initial price of  SO^""'^( 1 - v ( T ~ / ~ ) " " ,  with exercise price K ,  inter- 
est rate r, maturity t ,  and variance rate $. In this case the altered stochastic process has 
the effect of applying the multiple (1  - v~7~/2)""e"*"~ to the initial price. As v + 0, the 
process approaches Brownian motion, and this multiple approaches unity from below; 
therefore, the V. G. option price approaches the Black-Scholes price from below. 

In many practical applications the closed-form approximation (6.8) would suffice. Our 
experimentation with the numerical integration and its comparison with (6.7) reveals that 
even for values of t / v  as small as 2 ,  for options worth at least a cent, the formulas (6.7) 
and (6.8) agree to three decimal places. For our comparisons with Black-Scholes reported 
in the next section, the use of (6.8) was sufficient. 

7. PROPERTIES OF THE V. G. OPTION PRICE 

We report here on comparisons of V. G. option prices with their Black-Scholes values. 
The basic finding is that, relative to the V. G. ,  the Black-Scholes formula underprices 
options, with the percentage bias with respect to the Black-Scholes price rising as the 
stock gets out of the money. The percentage bias also rises with the time to maturity, the 
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expected rate of return on the stock, and the level of kurtosis, while it falls with increases 
in the standard deviation. The presentation here is restricted to sensitivity with respect to 
the two new parameters influencing the V. G.  option price, and these are the expected 
rate of return on the stock p and the level of kurtosis, the percentage increase in kurtosis 
being 1OOv. Madan and Seneta (1990) reported on the effects of changing v in the risk- 
neutral valuation case; we report here on the simultaneous effects of changing p and v. 

We take CT to be 0.25, the time to maturity to be 0.25, and the interest rate to be 10%. 
Note that the same value of CT is relevant in using the Black-Scholes or V. G. option 
pricing formulas. This is because the relevant estimate in both cases is the unit period 
variance rate for log returns. The exercise price is fixed at 100, and to allow for the 
analysis of the effects of being out of the money, at the money, and in the money, we 
consider three values for the stock price: 90, 100, and 110, respectively. The values for v 
are the same as those in Madan and Seneta (1990), 0.25, 0.5, 0.75, and 1.0, allowing 
for a doubling of kurtosis at the extreme. Three values for p are investigated: 0.2, 0.3, 
and 0.4. 

Table 7.1 presents the results in a 3 x 4 grid, with p varying across rows and v varying 
across columns. Each cell of the table contains seven numbers, namely the risk aversion 
coefficient at the top of the cell and the V. G. option prices for the cases out of the money, 
at the money, and in the money, listed vertically immediately below with the percentage 
biases from Black-Scholes listed alongside. The biases are a percentage of the Black- 
Scholes value. 

The implied relative risk aversion coefficient estimates rise with p and fall with kurto- 
sis. The biases rise with p and kurtosis, but fall as the stock gets in the money. 

TABLE 7.1 
Comparison of V. G. Option Values with Black-Scholes 

Percentage Change in Kurtosis 

P 25 50 75 I00 

3.04 
1.36 
5.10 

11.86 

4.29 
1.46 
5.35 

12.24 

5.31 
1.64 
5.77 

12.85 

.2 

.3 

.4 

3.0% 
2.0% 
1.37% 

10.61% 
7.0% 
4.6% 

24.24% 
15.4% 
9.83% 

2.92 
1.40 
5. I8 

11.99 

3.95 
I .57 
5.60 

12.62 

4.71 
1.84 
6.24 

13.54 

6.06% 
3.6% 
2.48% 

18.94% 
12.0% 
7.86% 

39.39%J 
24.80% 
15.73% 

2.82 
I .43 
5.26 

12.11 

3.71 
1.65 
5.79 

12.91 

4.3 1 
I .99 
6.58 

14.04 

8.33% 
5.2% 
3.5% 

25 .O% 
15.8% 
10.34% 

50.75% 
3 I .60% 
20.0% 

2.73 
1.45 
5.32 

12.21 

3.51 
1.72 
5.95 

13. I 5  

4.02 
2.11 
6.84 

14.41 

9.84% 
6.4% 
4.36% 

30.30% 
19.0% 
12.39% 

59.85% 
36.80% 
23.16% 

8.  CONCLUSION 

An approximation to an incomplete markets equilibrium price was developed in the case 
of the underlying uncertainty following the pure jump V. G. stochastic process introduced 
by Madan and Seneta (1990). The approximation was developed by taking a first-order 
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Taylor series approximation to the change in the jump compensator induced by the mea- 
sure change. 

The density process was also identified as the relevant change of measure for an exact 
equilibrium of a Lucas (1978) type of economy following the methods of Naik and Lee 
(1990). The coefficient of the change of measure was then interpreted as the coefficient 
of relative risk aversion scaled by the asset return standard deviation. 

The equilibrium martingale condition for discounted asset prices was used to determine 
the measure change, and the option price was then evaluated by integration. A closed- 
form expression was obtained for the longer maturities. 

The V. G. option values were observed to be typically higher than Black-Scholes val- 
ues, with the percentage underpricing by Black-Scholes being higher for out of the money 
options, with long maturity, high mean rates, low variance rates, and high kurtosis. 

APPENDIX A. 

The Derivation of the Relationship of S( t )  to D(t )  in (4.5) 

From (4.4) we have that 

Now by construction 

and, therefore, 

Employing the log characteristic function of the V. G. process, we have that 

Substituting into (A. 1) and integrating, we obtain (4.5). 

Derivation of the Risk-Free Rate of (4.8) 

The discount bond price is given by 

The result follows on taking the negative of the log of B ( t )  divided by ( T  - t ) .  

Derivation of the Density Process of (4.10) 

The t conditional expectation of marginal utility at T is 



APPENDIX B. 

The Solution for a 

On substitution for $I from (2.2), (3.13) implies that 

1 - v(a + a)2/2 
(1 - va2/2)(1 - v(r212)' 

e 4 - r )  = 

Moreover, the positivity of $I(a/i) and +((a + u)/i) implies that va2/2 and v ( a  + ( ~ ) ~ / 2  
must both be less than unity. 

Define 

and 

(B.3) y = v u 2 / 2 ,  

and then rewrite (B. 1) as 

1 - v (a  + a)2/2 
1 - va2/2 ' 

O(1 - y )  = 

Since an interesting entity is a / r ,  we can write (B.4) as a quadratic in a/(r to obtain 

1 - y ( a / r  + 1)2 

1 - y(a /a)2  ' 
O(1 - y )  = 

which yields the quadratic 

(B.6) 

Solving (8.3) for a / w ,  we get for O(l - y )  = I ,  

r(O(1 - y )  - l)(a/(rY - 2 y ( a / o )  + ( 1  - y)(l  - 0) = 0. 
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The solution of (B.6) for 8( 1 - y )  # 1 is 

I I2 

+ i) i O(l - y’ 

ff 1 _ -  - 
(T 8( l  - y )  - 1 (8(l - y )  - 1)2 y 

The radicand is always positive for 8 > 0 and 0 < y < 1. 
If 8( 1 - y )  > 1, then the choice of the sign for the radical must be negative because 

must be below l l y  for the denominator of (B.5) to be positive. For the same reason 
the sign of the radical must be positive if 8( 1 - y )  < 1. 

With these sign choices we obtain (5.1). 
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