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Abstract

We analyze the effect of counterparty risk on insurance contracts using the case of credit risk
transfer in banking. In addition to the familiar moral hazard problem caused by the insuree’s
ability to influence the probability of a claim, this paper uncovers a new moral hazard problem on
the other side of the market. We show that the insurer’s investment strategy may not be in the
best interests of the insuree. The reason for this is that if the insurer believes it is unlikely that a
claim will be made, it is advantageous for them to invest in assets which earn higher returns, but
may not be readily available if needed. This paper models both of these moral hazard problems
in a unified framework. We find that instability in the insurer can create an incentive for the
insuree to reveal superior information about the risk of their “investment”. In particular, a unique
separating equilibrium may exist even in the absence of any signalling device. We extend the model
and show that increasing the number of insurers with which the insuree contracts can exacerbate
the moral hazard problem and may not decrease counterparty risk. Our research suggests that
regulators should be wary of risk being offloaded to other, possibly unstable parties, especially in

newer financial markets such as that of credit derivatives.
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1 Introduction

In this paper, we develop an agency model to analyze an insurer’s optimal investment decision
when failure is a possibility. We demonstrate that an insurer’s investment choice may be suboptimal
compared to the first best by showing how a moral hazard problem exists on this side of the market.
This insurer moral hazard problem does have an upside however, as we show that it can alleviate
the adverse selection problem on the part of the insuree.

The market for risk protection is one of the most important markets available today. Although
we model a general insurance problem, a particularly relevant example in today’s financial markets
is that of credit risk transfer.! Banks, who were once confined to a simple borrow short and lend
long strategy, can now disperse credit risk through credit derivatives markets to better implement

2 The rapid growth in these financial markets requires us to think of

risk management policies.
insurance in a different way than is standard in the literature. The reason is that banks are ceding
potentially large credit risks to parties such as Hedge Funds which may or may not be in a better
position to handle them.? Furthermore, Allen and Gale (2006) wonder whether credit risk transfer
is done simply as a form of regulatory arbitrage. It would seem prudent then to ask the question
of how stable is, and what are the incentives of the risk taker (insurer)? This entails a study of
counterparty risk. In what is to follow, we define counterparty risk as the risk that when a claim
is made, the insurer is insolvent and not able to fulfil its obligations.

This paper arrives at two novel results. The first is that there can exist a moral hazard on the
part of the insurer. This moral hazard arises because the insurer may choose an excessively risky
portfolio. The intuition behind this result is as follows. There are two key states of the world that
enter into the insurer’s decision problem: the first in which a claim is not made, and the second in
which it is. We assume that the insurer can default in both of these states if they get an unlucky
draw. However, they can invest to help minimize the chances that they become insolvent. This
investment choice comes with a tradeoff: what reduces the probability of insolvency the most in the
state in which a claim is not made, makes it more likely that the insurer will become insolvent in the
state in which it is. If we consider a situation in which the insurers beliefs are such that the contract
is relatively safe, it may be optimal to put capital into less liquid assets to reap higher returns, and
lower the chance of failure in the state in which a claim is not made. However, assets which yield
these higher returns can also be more costly to liquidate, and therefore, make it more difficult to

free up capital if a claim is made. The moral hazard arises because the insurance premium must be

! Another example of a financial insurance market is the market for reinsurance.

2A credit derivative, and specifically a credit default swap is a contract whereby an insurer agrees to cover the
losses of an insuree that take place if pre-defined events happen to an underlying borrower (In many cases, this
event is the default of the underlying bond. However, some contracts include things like re-structuring and ratings
downgrades as triggering events). In exchange for this protection, the insuree agrees to pay an ongoing premium at
fixed intervals for the life of the contract.

3Fitch (2006) reports that banks are the largest insuree in this market. On the insurer side, banks and hedge
funds are the largest, followed by insurance companies and other financial guarantors. It should be noted that the
author’s suspect that banks are the largest insurers, followed by hedge funds, however, they admit that the data is
poor and that other research reports do not support this.



made up front, which introduces a contracting imperfection. This imperfection means the insuree
cannot condition its premium on an observed outcome. Consequently, there is no way to provide
incentives to the insurer to influence its investment decision.

The second result deals with the adverse selection problem that may be present because of the
superior information that the insuree has about the underlying claim. Akerloff (1970) represents
a fundamental paper on the dangers of informational asymmetries in insurance markets. In this
seminal paper, it is shown how the market for good risks may break down, and one is left with
insurance only being issued on the most risky of assets, or in Akerloff’s terminology, lemons. The
incentive that underlies this result is that the insuree is only interested in obtaining the lowest
insurance premium possible.

In contrast, in this paper we show that the safer the underlying claim is perceived to be,
the more severe the moral hazard problem is. Consequently, conditional on a claim being made,
counterparty risk is higher for safer assets. Therefore, it can optimal for an insuree with a poor
quality asset to reveal its type truthfully. In other words, if it is revealed as poor quality, the
insurer will have incentives more in line with the insuree, and consequently it is subjected to less
counterparty risk. We show that this new effect, which we call the counterparty risk effect allows a
unique separating equilibrium to be possible. This result is new in that separation occurs without
the existence of a signalling device. After Akerloff (1970) showed that no separating equilibrium
can exist, the literature developed the concept of signalling devices with such famous examples
as education in Spence’s job market signalling paper. These papers allowed the high (safe) type
agents to separate themselves by performing a task which is “cheaper” for them than for the low
(risky) type agents. Our paper can achieve separation by the balance between the insuree’s desire
for the lowest insurance premium, and the desire to be exposed to the least counterparty risk. One
can think of this result as adding to the cheap talk literature by showing an insurance problem in
which costless communication can bring about separation of types.*

We enrich the model to the case of multiple insurers. The result is that as the size of the contract
that each insurer takes on decreases, the moral hazard problem will increase. In a setup in which all
the insurers are ex-ante identical (but not necessarily ex-post, i.e. they receive IID portfolio draws),
we obtain the result that counterparty risk may remain unchanged. Next, we consider the case of
multiple insurees. We show that even when each individual insuree is insignificant to the insurer
(resembling that of a traditional insurance market such as health or automobile), our results carry
through when there is aggregate risk that is private information to the insurees. Furthermore, our
moral hazard result still remains if this assumption on risk is not met.

Finally, we enrich the model to include a possible moral hazard problem on the part of the
insuree by their ability to affect the probability that a claim is made. If we use the example of a
bank being insured on one of their loans, the banking literature typically assumes that a bank has
superior information about that loan (due to their relationship with the borrower). On account of

this, it is straightforward to see that if the bank is fully insured, they may not have the incentive

“For a nice review of the cheap talk literature, see Farrell and Rabin (1996).



to monitor the loan, and consequently, the probability of default could rise. This represents the
classical moral hazard problem in the insurance literature. Our extension to the model shows
that the new moral hazard of this paper may increase the desire of the insuree to monitor. This
happens because counterparty risk forces the bank to internalize some of the default risk, which
they otherwise would not if there is no counterparty risk. In this section we show that with a
redefinition of the insuree’s payoff distribution function, the addition of this insuree moral hazard

problem does not effect the results of the paper.

1.1 Related Literature

This paper contributes to two streams of literature: that of insurance economics and that of
credit risk transfer and credit derivatives. We contribute to the literature on insurance economics
by raising the issue of counterparty risk which has not received much attention. The reason for
this is that the traditional insurance economics literature imagines the insurer as large, and the
insuree, small. This may be acceptable for some traditional markets, but modern financial markets
require a new framework to asses insurance contracts. Henriet and Michel-Kerjan (2006) recognize
that insurance contracts need not fit the traditional setup in which the insurer is the principal and
the insuree, the agent. The authors relax this assumption and allow the roles to change. Their
paper however does not consider the possibility of counterparty risk as ours does, as they assume
that neither party can fail. Plantin and Rochet (2007) raise the issue of prudential regulation of
insurance companies. They give practical recommendations for countries to better design their
regulation of insurance companies. This work does not consider the insurance contract itself under
counterparty risk as is done in this paper. Consequently, the author’s do not analyze the effects of
counterparty risk on the informational problems of insurance. Instead, they conjecture an agency
problem arising from a corporate governance standpoint. We analyze a more abstract agency
problem driven entirely by the investment incentives of the insurer.

The literature on credit risk transfer (CRT) is relatively small but is growing. Allen and Gale
(2006) motivate a role for CRT in the banking environment. Using the same framework, Allen and
Carletti (2006) show how a default by an insurance company can cascade into the banking sector
causing a contagion effect when these two parties are linked through the transfer of credit risk.
Wagner and Marsh (2006) argue that setting regulatory standards that reflect the different social
costs of instability in the bank and insurance sector will be welfare improving. Our paper differs
from these because they do not consider the agency problems of insurance contracts. As a result,
they do not discuss the consequences that instability can have on the contracting environment, and
how this affects the behavior of the parties involved. Duffee and Zhou (2001) and Thompson (2007)
both analyze informational problems in insurance contracts, however, they focus on the factors that
affect the choice between sales and insurance of credit risk. In contrast, we do not focus on the
choice of an optimal risk transfer technique, but rather, we look deeper into one of them: insurance.

The paper proceeds as follows: section 2 outlines the model and solves the insurer’s problem.

Section 3 determines the equilibria that can be sustained when adverse selection is present. Fur-



thermore, this section determines the first best investment choice and proves the existence of a
moral hazard problem on the part of the insurer. Section 4 analyzes the following extensions: 1)
multiple insurers, 2) multiple insurees, and 3) classical moral hazard on the side of the insuree. In

section 5 we conclude. Many of the longer proofs are relegated to the appendix in section 6.

2 The Model Setup

The model is in three dates indexed t = 0,1,2. There are three agents, an insuree, whom
we will call a bank, and multiple risk insurers, whom we will call Insuring Financial Institutions
(IFIs). As well, there is an underlying borrower who has a loan with the bank. We will model this
party simply as a return structure. The size of the loan will be normalized to 1 for simplicity. We
motivate the need for insurance through an exogenous parameter (to be explained below) which

5

makes the bank display risk aversion.” We assume there is no discounting, however, adding this

feature will not effect our results.

2.1 The Bank

The bank is characterized by the need to shed credit (loan) risk. We use the example of a bank
that faces capital regulation and who must reduce their risk, or else could face a cost (which we will
call Z). Tt is this cost that makes the bank averse to holding the risk and so finds it advantageous
to shed it through insurance. We can think of this situation as arising from an endogenous reaction
to a shock to the banks portfolio, however for simplicity, we will not model this here. There are two
types of loans that a bank can insure, a safe type (S) and a risky type (R). A bank is endowed with
one or the other (for simplicity we assume with equal probability, however, it is not required for
our results). The loan type is private knowledge for the bank and reflects the unique relationship
between them and the underlying borrower. We assume that the loan can be costlessly monitored,
so that there is no moral hazard problem in the bank-borrower relationship. In section 4.3 we will
relax this assumption and show that introducing costly monitoring does not change the results of

the paper. The expected return on the two loans described are given as:

S

B(S) = [ whsw)ou 0
R

E(R) = /O Phi ()0 (2)

Where v is the total return from the loan and hg and hp are return density functions, with
corresponding distributions: Hg and Hgr. We define the upper bound of these two functions as S

and R respectively. Note that there is nothing in the analysis to follow that requires this to be a

5A smooth concave utility function will only distract from our analysis and will not yield new insights. As will
soon become apparent, the issue of how much risk to shed will not play a role in the analysis. Instead, we show that
we can obtain a separating equilibrium without the amount of insurance being used a signal.



single loan. When we interpret this as a single loan, the insurance contracts to be introduced in
section 2.3 will resemble that of a credit default swap. In the case that this is a return on many
loans, the insurance contract will closely resemble that of a portfolio default swap or basket default
swap.6

Both loan types are assumed to default if the realized value is 1& € [0,1]. To distinguish the safe
from the risky loan, we assume that Hg(1) < Hr(1) so that the probability of default of the safe
loan is less than that of the risky loan.” We use a continuous set of states as opposed to a discrete
set because it is useful for section 4.3 where we exploit this enriched view of the bank loan.

The regulator requires the bank to transfer a set amount of default risk. For simplicity, the bank
must transfer a proportion « of their loan, regardless of its type.® We impose the exogenous cost
Z on the bank if the loan defaults and they are not insured for the appropriate amount, or if they
are insured for the appropriate amount, but their counterparty is not able to fulfil the insurance
contract (we will discuss the reasons this may occur below).

In what is to follow, we only model the payoff to this loan for the bank, however, it can be
viewed as only a portion of its total portfolio. For simplicity, we assume that the bank cannot fail
in the model. Having the bank able to fail will not affect our qualitative results since it will not

affect the insurance contract to be introduced in section 2.3. We now turn to the modelling of the
IFT.

2.2 The Insuring Financial Institution

Without the sale of the insurance contract, we assume that the IFI has a payoff function of the

form (denoting NI as ‘No Insurance’):

ﬁf 0
Y, = /0 0500~ | (G=0)50)0, 3)

where f(0) is a probability density function with corresponding distribution F(6) representing the

random return or valuation of the IFI’s portfolio, and G is the cost of bankruptcy. One inter-

SA portfolio or basket default swap is a contract written on more than one loan. There are many different
configurations of these types of contracts. For example, a first-to-default contract says that a claim can be made as
soon as the first loan in the basket defaults.

"We need not assume anything about the shape of either distribution function. For example, it could be the case
that E(R) > E(S) and var(R) > var(S), but it is not required.

8The fact that the bank must insure the same amount, regardless of the type of loan is not crucial. We can think
of v being solved for by the bank’s own internal risk management. Therefore, we could have a differing v depending
on loan quality. What is important in this case is that the IFI is not able to perfectly infer the probability of default
from ~. This assumption is justified when the counterparty does not know the exact reason the bank is insuring. To
know so would require them to go in depth into the bank’s book, which should be excluded as a possibility. In this
enriched case, we could make v stochastic for each loan type reflecting different (private) financial situations for the
bank. In this case, the IFI may not be able to infer the loan quality from the amount that the bank wishes to have
insured. This topic has been addressed in the new Basel II accord which allows the bank to use their own internal
risk management system in some cases to calculate needed capital holdings. One reason for this change is because of
the superior information banks are thought to have on their own assets; regulators have acknowledged that the bank
itself may be in the best position to evaluate its own risk.



pretation of GG is lost goodwill, but any reason for which the IFI would not like to go bankrupt
will suffice. Note that bankruptcy occurs when the portfolio draw is in the set [Ef, 0], where it is
assumed Ry < 0. In what is to follow, we simplify the analysis by defining our portfolio distribution
as uniform.” It is assumed that the IFI receives this payoff at time ¢ = 2, so that at time t = 1,
the random variable 6 represents the portfolio value if it could be costlessly liquidated at that
time. However, the IFI’s portfolio is assumed to be composed of both liquid and illiquid assets. In
practice, we observe financial institutions holding both liquid (e.g t-bills, money market deposits)
and illiquid (e.g loans, some exotic options, some newer structured finance products) investments
on its books. Because of this, if the IFI wishes to liquidate some of their portfolio at time ¢t = 1,

they will be subject to a liquidity cost which we discuss below in section 2.3.

2.3 The Insurance Contract

We now introduce the means by which the bank is insured by the IFI. Because of the possible
cost Z, at time ¢ = 0 the bank requests an insurance contract in the amount of v for one period
of protection. Therefore, the insurance coverage is from ¢t = 0 to ¢t = 1. To begin, we assume that
the bank contracts with one IFT who is in bertrand competition. This assumption will be relaxed
in section 4.1 when we allow the bank to spread the contract among multiple IFIs. The IFI forms
a belief b about the probability that the bank loan will default. In section 3 we will show how b
is formed endogenously as an equilibrium condition of the model. In exchange for this protection,
the IFT receives an insurance premium Py, where P is the per unit price of coverage. The IFI
chooses a proportion 8 of this premium to put in a liquid asset that, for simplicity, has a rate of
return normalized to one in both £ = 1 and ¢ = 2, but can be accessed at either time period. The
remaining proportion 1 — 3 is put in an illiquid asset with an exogenously given rate of return of
R; which pays out at time ¢+ = 2.'° This asset can be thought of as a two period project that
cannot be terminated early. It is this property that makes it illiquid. As we shall soon see, the
payoff to the IFT is linear in the state in which a claim is not made and therefore a redefinition of
the return would allow us to capture uncertainty in the illiquid asset to make it risky as well as
illiquid. Therefore there is no loss of generality assuming this return is certain. We assume Ry is
paid at t = 2 when the portfolio pays off.!! The key difference between these two assets is that the
liquid asset is accessible at t = 1 when the underlying loan may default, whereas the illiquid asset

is only available at t = 2.12

9This assumption can be relaxed to a general distribution, provided that it satisfies some conditions. For example,
there must be mass in a region above and below zero. We explore this extension in a previous version of the paper
and is available from the author upon request.

10We can think of these as two assets that are in the IFD’s portfolio, however, we assume that this amount is
small so that the illiquid asset and the original portfolio are uncorrelated. Note that adding correlation would only
complicate the analysis and would not change the qualitative results.

' The choice between the liquid and illiquid assets is not crucial. The choice can be between a risky and riskless
asset (both liquid) and the qualitative results of the paper will still hold. We explore this in a previous version of the
paper that is available from the author upon request.

2This can be relaxed to allow the recovery of the illiquid asset at fire sale prices, but the qualitative results of the
model would remain the same.



For the remaining capital needed (net of the premium put in the liquid asset) if a claim is
made, we assume that the IFI can liquidate its portfolio. Recall that the IFI’s initial portfolio
contains both liquid and illiquid assets of possibly varying degrees with return governed by F.
We assume that the IFI has a liquidation cost represented by the invertible function C(-) with
C’'() >0, C"() > 0, and C(0) = 0. The weak convexity of C(-) represents the various assets of
differing liquidity in the IFI’s portfolio.'® The IFI will choose to liquidate the least costly assets
first, but as more capital is required, the cost of liquidating increases as they are forced to liquidate
illiquid assets at potentially fire sale prices.'* C(-) takes as its argument the amount of capital
needed from the portfolio, and returns a number that represents the actual amount that must be
liquidated to achieve that amount of capital. This implies that C'(z) > 2 Va > 0 so that C’(z) > 1.
For example, if there is no cost of liquidation and if $z is required to be accessed from the portfolio,
the IFI can liquidate $x to satisfy its capital needs. However, because liquidation may be costly in
this model, the IFT must now liquidate $y > $x so that by the time the liquidation function C'(-)
shrinks the value of the capital, the IFI is left with $x. If C(:) is linear, our problem becomes a
linear program, and as will soon become apparent, this yields an extreme case of moral hazard.

At time t = 1, the IFT learns what the return on its portfolio will be (or leans a valuation of
its portfolio), however, the return is not realized until ¢ = 2. This could be relaxed so that the
IFT receives a fuzzy signal about the return, however, this would yield no further insight into the
problem. Also at ¢t = 1, a claim is made if the underlying borrower defaults. If a claim is made, the
IFI can liquidate its portfolio to fulfil its obligation of 4.1 If the contract cannot be fulfilled, the
IFI defaults. At time ¢ = 2, conditional on the IFI’s survival at time ¢ = 1, the payoff to the IFI
from its portfolio is realized. Also at time ¢t = 2, the payoff to the bank’s loan is realized. Figure 1

summarizes the timing of the model.

IFT receives signal of its

portfolio payoff Conditional on survival, IFI
BT ) e d receives payoff
Bank endowed with (S)afe IFI choses hqul.d (8) and illiquid . an and
: (1 — ) investment State of insurance contract !
or (R)isky loan realized Bank receives payoff
Bank insures proportion v of loan If needed, IFI pays contract or
for premium P~y goes bankrupt
t=0 t=1 t=2

Figure 1: Timing of the model

131f we think of a bank as the IFI, it is obvious that they have many illiquid assets on their books. However, This
is also the very nature most insurance companies and hedge funds businesses. In the case of insurance companies as
the IFI, substantial portions of their portfolios may be in assets which cannot be liquidated easily (see Plantin and
Rochet (2007)). In the case of Hedge Funds as the IFI, many of them specialize in trading in illiquid markets (see
Brunnermeier and Pederson (2005) for example).

" There is a growing literature on trading in illiquid markets and fire sales. See for example Subramanian and
Jarrow (2001), and Brunnermeier and Pedersen (2005).

Note that this contract structure is assumed for simplicity. In reality, the insuring institution would typically
pay the full protection value, but would receive the bond of the underlying borrower in return, which may still have
a recovery value. Inserting this recovery value into the model only complicates the mathematics without changing
the qualitative results.



The payoff function for the IFT can be written as (we suppress the superscript I denoting insurance

as the remainder of the paper will analyze with this setting):

7 —Py(B+(1-B)Ry)
Hp = (1-b) [ / oreyis - [ (G- 9)f(9)d9]
—P~(B+(1-B)Ry) Ry
R C(y—BP7)
s | [ 0-Ct-ppy) - P SO0 - TG 6) fB)de
C('Y_ﬂP’Y) Ef
PG+ (1 B)R) (4)

The first term is the expected payoff when a claim is not made, which happens with probability
1 — b given by to the IFI's beliefs.!6 The —P~(8+ (1 — 3)R;) term in the integrand represents the
positive diversification benefit that engaging in these contracts can have: it reduces the probability
of portfolio default when a claim is not made. We assume that Ry is sufficiently negative so that
Py(B+(1—B)R;) < |Ry|. Since P and 3 are both bounded from above (by D7, it follows
that this inequality is satisfied for a finite R;. This assumption ensures that the IFI cannot
completely eliminate its probability of default in this state. Recall that before the IFI engaged in
the insurance contract, they would be forced into insolvency when their portfolio draw was less
than zero. However, we see that in the state in which a claim is not made, they can receive a
portfolio draw that is less than zero and still remain solvent (so long as their draw is greater than
—P~(B+ (1 — B)Ry)) . Since the IFT is able to lower its chances of defaulting in this state by
investing some of the proceeds of the contract, we refer to this as the IFI diversifying its portfolio.

The second term is the expected payoff when a claim is made, which happens with probability
B given by the IFT’s beliefs. The term C(y — BP~) represents the cost to the IFI of accessing
the needed capital to pay a claim. Notice that the loans placed in the illiquid asset are not
available if a claim is made. Furthermore, the probability of default for the IFI increases in this
case. To see this, notice that before engaging int eh insurance contract, the IFI would default is
its portfolio draw 0 e [Ef, 0]. After the insurance contract, we see that they default if the draw
6 c [Ef, C(y — BP~v) > 0]. To ensure that the IFT prefers to pay the insurance contract when they
are solvent, we assume that G > C(y — fP~) + SP~. Intuitively, if this condition does not to hold,
the IFI would rather declare bankruptcy than fulfil the insurance contract, no matter what their
portfolio draw is. The final term in (4) (Py(8+ (1 — 3)Rr)) is the payoff of the insurance premium
given how it was invested.

As stated previously, we define counterparty risk as the probability that the IFI defaults, con-
ditional on a claim being made. Therefore, it is now clear that in the context of the model,
counterparty risk is given by fgf('y—ﬂPw) f(9)de.

16Note that this does not necessarily have to be the true probability of default, as we shall discover in section 3.
7 This is true for 8 by construction and will be proven for P in Lemma, 1.



2.4 IFI Behavior

We now characterize the optimal investment choice of the IFI and the resulting market clearing
price. We begin by looking at the IFI’s optimal investment decision. In section 3.1 we will show that
the optimal choice of 5* for the IFI is less than the first best choice, 3/°. In other words, the IFI
acts riskier than they would if there were no contracting imperfections. The following proposition
characterizes the optimal behavior conditional on an equilibrium belief (b) and an equilibrium price
(P). The IFT is shown to invest more in the liquid asset if it believes a claim is more likely to be

made.
Proposition 1 The optimal investment in the liquid asset (3*) is increasing in b.

Proof. See appendix.

From the implicit solution for #* derived in the proof to Proposition 1, we see that the result
is conditional on a price P. We define P* as the equilibrium market clearing price. To find it, we
require the IFI to earn zero profit from engaging in the insurance contract.!® We do not implement
the zero profit condition on total profit. The reason for this is that if we take zero total profit, the
additional profit earned from engaging in the insurance contract may be negative. Therefore, the
payoff from the initial portfolio must be excluded. We re-write (4) in terms of the payoff to the IFI
from only the insurance contract. We obtain this equation by subtracting (3) from (4). Call this

payoff Vip;.

0 R
Vier = (1-b) l / Gf(t‘))df)]—b[ / " (Ot - BPY) + 5PY)

—Py(B+(1-PB)Rr) C(y—pPv)

C(y=BP7)
—b l/o Gf(0)deo

It is straightforward to verify that the optimal 8* as derived in Proposition 1 from the total

+Py(B+ (1 - B)Rr). (5)

profit is the same as would be derived from optimizing V;p;. Furthermore, the following lemma

yields both existence and uniqueness of the market clearing price P*.
Lemma 1 There exists a unique market clearing price in the open set (0, 1).

Proof. See appendix.

We now analyze the properties of the equilibrium price P*. The following lemma shows that
as the IFI’s beliefs about the probability a claim increases, so too must the premium increase to

compensate them for the additional risk.

8L emma 3 shows that this assumption can be relaxed to allow more market power to the IFI without affecting
our results.



Lemma 2 The market clearing price P* is increasing in the belief of the probability of a claim (b).

Proof. See appendix.

The lemma yields the intuitive result that our pricing function P(b) is increasing in b. The
price itself is not the focus of this paper; it can be solved for from the IFI’s zero profit condition,
Virr = 0 where Vipy is given by (5).

We now turn to the issue of bargaining power. In the preceding analysis, we assumed that there
was bertrand competition amongst the IFIs. We then invoked a zero profit condition to pin down
the equilibrium price P*. This turns out not to be a crucial assumption. The following lemma
shows that if we allow the IFI to make positive profit, this will have no effect on counterparty risk,

unless the underlying loan is “very” risky.

Lemma 3 If the IFI can make positive profit so that P* increases, counterparty risk remains

unchanged unless 3* = 1, where it decreases.

Proof. See appendix.

The intuition behind this result is that if we increase the amount of money given to the IFI
without changing their beliefs, this will have no effect on the marginal benefit of choosing the liquid
asset. The IFI makes its optimal choice by putting money into the liquid asset until the marginal
benefit of doing so falls to the level of that of putting it into the illiquid asset. Since increasing
just the premium will not change their beliefs (b), this will not change the absolute amount of the
premium they put in the liquid asset. Instead, they will put all additional capital into the illiquid
asset (which will have a higher marginal return at that point). The lemma shows that the only
time counterparty risk will decrease is when 8* = 1, or in other words, when the loan is ‘very’ risky
(recall that Proposition 1 showed that * is increasing in b). This case can only be obtained when
both before and after the price increase, the underlying loan is so risky that it is never optimal to

put any capital in the illiquid asset, so that all additional capital goes into the liquid asset.

3 Equilibrium Beliefs

Akerlof (1970) showed how insurance contracts can be plagued by the ‘lemons’ problem. One
underlying incentive in his model that generates this result is that the insuree wishes only to
minimize the premium they pay. It is for this reason that high risk agents would wish to conceal
their type. In this environment, only pooling equilibria can be supported. Subsequent literature
to the Akerlof (1970) result showed how the presence of a signalling device can allow a separating
equilibrium to exist. What is new in our paper is that no signalling device is needed to justify the
existence of a separating equilibrium. We will call the act of concealing one’s type for the benefit of
a lower insurance premium the premium effect. For the situation that we have been analyzing, we

show in this section that this effect may be subdued in the presence of counterparty risk. We show
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that there is another effect that works against the premium effect that we will call the counterparty
risk effect. The intuition of this new effect is that if high risk agents attempt to be revealed as
low risk, they may obtain a better insurance premium, but the following lemma shows that their

counterparty risk will increase.

Lemma 4 If b decreases, but the actual probability of a claim does not, counterparty risk rises
whenever (3 € (0, 1].

Proof. See appendix.

There are two factors that contribute to this result. First, Lemma 2 showed that as the per-
ceived probability of default decreases, the premium also decreases and therefore leaves less capital
available to be invested in either asset. Second, since the IFI believes that the loan has a lower
probability of failing, it puts more weight on the state in which a claim is not made. Consequently,
it is optimal for the IFI to decrease (3 so as to capitalize on the increased return from the illiquid
asset. When we combine these two facts, the counterparty risk unambiguously increases. The only
case when the counterparty risk will not rise is when the bank is already investing everything in
the illiquid asset, and the decrease in perceived probability of default does not change this.

To analyze the resulting equilibria, we employ the equilibrium concept of a perfect Baysian

Nash Equilibrium (PBE). We now define an equilibrium in our model.

Definition 1 An equilibrium is defined as a 3, a price P, and a belief b such that:
1. b is consistent with Bayes’ rule where possible.
2. The bank optimally chooses to reveal or not reveal truthfully its type.

3. Choosing P, The IFI earns zero profit with 3 derived according to the IFI’s problem.

We look first at the equilibrium that is unique to the insurance market under counterparty risk.
We ask: is there a separating equilibrium in which the safe loans are revealed as such? The answer
without counterparty risk is no. The reason is that in this setting, there is no signalling device
present, making it costless for the bank with a risky loan to imitate a bank with a safe loan.
However, with counterparty risk, it is possible that both types credibly reveal themselves so that
separation occurs. Define the type space i € {S, R} to represent the two possible bank types, and
define the message space M € {S, R} to represent the report that bank type ¢ sends to the IFIL.
Let the payoff be TI(é, M) which represents the profit that a type ¢ bank receives from sending the
message M. To begin, assume that the IFI’s beliefs are such that we are in a separating equilibrium.
Therefore, if M =S5 (M = R) then b = fol dHg (fol dHp). Denote the resulting price of the safe
(risky) contract as Pg (Pg). Finally, let the investment in the liquid asset for the bank with safe
(risky) loan be derived according to Proposition 1 and be denoted by Bs (6r). We now write the
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profit for the bank with a safe loan, given that they are report they are safe (and are revealed as

such).

S 1 R 1
(s, s) = / GdHs($) + (1 - 7) / SdHs()) + / ' | / (1+ 0)dF(9)dHs ()

C(y—BsPsv

C(y=BsPsvy) rl
_,Y / /0 (Z — ) dF(0)dHs (1) — ~Ps (6)

Ry

The first term represents the expected payoff to the bank conditional on the loan not defaulting.
The second term represents the expected payoff (conditional on loan default) to the bank of the
uninsured portion of the loan. The third term represents the expected payoff (conditional on loan
default) in the case in which the IFT remains solvent and is able to pay 7 to the bank as per the
insurance contract. The fourth term represents the expected payoff (conditional on loan default)
in the case in which the IFT is insolvent and cannot fulfil the terms of the insurance contract. The
final term is the insurance premium that the bank must pay to the IFI for protection. We now

look at the profit of a risky bank who reports that they are risky.

R 1 R 1
(R, R) = /1 GdHR(S) + (1) /0 GAHR(Y) +4 / ' /0 (1 -+ $)dF(0)dH (1)

C(y—BrPr7)

C(v—BrPrYy) 1
- / ! /0 (Z — ) dF (0)dH (1)) — +Pr (7)

Ry

We check the conditions under which neither bank type would like to deviate and report the wrong
type. In this case, the IFI chooses (wrongly) Sr (8s) when the bank type is safe (risky). Therefore,

we are checking the conditions that could sustain a separating equilibrium.

I(S, S) > II(S, R) =

/cmﬁspsw) JF(6) ( /0 1 (1+2) dHS(zp)) < Pr — Py (8)

C(y—BrPr7)

expected cost of the additional counterparty risk

amount to be saved in insurance premia

From Lemma 4 we know that C'(y — BrPr7vy) < C(v — BsPs7) so that the left hand side repre-
sents the amount of counterparty risk the bank will save if it conceals its type. This is what we call
the counterparty risk effect. The right hand side represents the amount of insurance premium that
the bank will save if it is able to credibly reveal itself as being a safe loan. This is the premium

effect. We now turn to a bank with a risky loan and repeat the same exercise.
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(R, R) > TI(R,S) =

/C(’Y—ﬁsPs’Y) 4P (6) ( /0 1 (1+2) dHR(@/))) > P — P (9)

C(y—BrPr7)

expected saving in counterparty risk

amount extra to be paid in insurance premia

Again, from Lemma 4 we know that C(y— SrPr7v) < C(v— BsPsv) and therefore the left hand
side represents the additional counterparty risk that a bank with a risky loan will have to take on
if they do not reveal their type. The right hand side represents the savings in insurance premium
that the bank would receive if they did not reveal their type truthfully.

Therefore, when (8) and (9) simultaneously hold, this equilibrium exists. To give an example
of when this can hold, we look at the case in which the safe loan is “very” safe. In particular, we
let lim fol dH¢(0) — 0 and we obtain:

0 < Pr — Ps (10)
——

expected cost of the additional counterparty risk amount to be saved in insurance premia

/C(’YBSPSW) 1F(6) </01 (1+2) dHR(w)> > Pr — Ps (11)

C(vy—BrPr7)

expected saving in counterparty risk

amount extra to be paid in insurance premia

Note here that Pg = 0 since the probability of default is tending to zero. Inequality (10) is
satisfied trivially, while (11) is satisfied when Z is sufficiently large. Recall that Z is the cost of
counterparty failure when a claim is made. Therefore this outcome can be achieved by having a high
enough penalty on the bank for taking on counterparty risk. This is intuitive since a larger penalty
makes them internalize the counterparty risk more, and as a result, greater transparency is achieved
in the market. This is a sense in which counterparty risk may be beneficial to the market, since it
can help alleviate the adverse selection problem caused by one party having superior information.
In this case, the IFI’s beliefs are fully defined by Bayes’ rule. We can now state the first main result
of the paper.

Proposition 2 In the absence of counterparty risk, no separating equilibrium can exist. When
there is counterparty risk, the moral hazard problem allows a unique separating equilibrium to exist
in which each type of bank truthfully announces its loan risk. A sufficient condition for this is either

that the safe loan is relatively safe, the bankruptcy cost Z is large, or both.

Proof. See appendix.

This proposition shows that a moral hazard problem on the part of the insurer can alleviate
the adverse selection problem on the part of the insuree. The separating equilibrium is the case in

which the premium effect dominates for the bank with the safe loan, while the counterparty risk
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effect dominates for the bank with the risky loan. Note that the case in which the safe type wishes
to be revealed as risky, and the risky type wishes to be revealed as safe is ruled out in the proof to
Proposition 2.

There are also two other pooling equilibria that may exist. The first pooling equilibrium occurs
when both the safe and risky bank report that they are safe. In this case, the premium effect
dominates for both types. Therefore, no information is gleaned by the IFI by the message sent
from the banks. Any off-the-equilibrium path belief with b > 1 fol dHg + % fol dHp if risky is
reported is consistent for the IFI with the Cho-Kreps intuitive criterion.

The second pooling equilibrium occurs when both the safe and risky bank report that they are
risky. In this case, the counterparty risk effect dominates for both types. Any off-the-equilibrium
path belief with b < %fol dHg + %fol dHp if safe is reported is consistent with the Cho-Kreps
intuitive criterion. We formalize both of these pooling equilibrium in the proof to Proposition 2.

We now compare the above analysis with the first best outcome to highlight the inefficiencies

and to formally prove the existence of a moral hazard problem.

3.1 The First Best Contract

To find the first best contract between the bank and the IFI, we look at the case in which there
are no contracting imperfections. In particular, we do away with the ability of the IFI to invest
the premium however it wishes, while maintaining the zero profit assumption. It is appropriate to
look at a first best choice of § for both a separating and pooling equilibrium. In this way, we can
focus on the effects of contracting imperfections and isolate them from the well understood effects
of the standard adverse selection problem. Therefore, the first best can be found by maximizing
the bank’s profit, subject to the IFI’s zero profit condition. We denote the first best solution for 3
in the separating case as ﬁ{ﬁ , and the first best price in the separating case as st;,b. As well, let the
equilibrium  and the resulting price from Proposition 1 be denoted by 5, and Py, respectively.
The following Lemma shows that the equilibrium price P;, must be weakly less than the first best

price st;,b.

Lemma 5 There is no price P < Py, such that the IFI can earn zero profit. This implies that

Pr, < P

Proof. It is straight-forward to see that Vipy( o

that Vipr(3,P) A0V 3 € [0,1] and for P < Ps*p.
Since Proposition 1 and Lemma 1 show that with ( s Ps*p) zero profit is attained, it must

be the case that with 8 € [0,1] # 35, and Py, the IFI earns negative profits. It follows that if

P < P;

aps With (3, the IFI must earn negative profits. Since the IFI must earn zero profits, P > Py,

P;,) = 0 (where Vi is defined by (5)) implies

This lemma is valid for the pooling equilibrium case by redefining §* and P* from Proposition

1 and Lemma 1.
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We are now ready to state the second main result of the paper. The following proposition shows
that the IFI chooses a 3* that is too small as compared to the first best choice 3/°. From this and
Lemma 5, it follows that the insurer moral hazard problem causes the level of counterparty risk in
equilibrium to be strictly higher than that of the first best case whenever 5* € [0, 1).

Proposition 3 There exists a moral hazard problem when * € [0,1) in which the IFI chooses to
wnwvest strictly too little in the liquid asset. This insurer moral hazard causes the counterparty risk

to be too high in equilibrium.

Proof. See appendix.

The intuition behind this result comes from two sources. First, since the first best case cor-
responds to optimizing the banks payoff while keeping the IFI at zero profit, the bank strictly
prefers to have the IFI invest more in the liquid asset. Second, the IFI must be compensated for
this individually sub-optimal choice of § by an increase in the premium. Since both § and P rise,
counterparty risk falls (i.e. [ Igf (y=6P7) f(6)dO falls). In other words, the moral hazard problem
on the part of the IFI creates an inefficiency in the choice of the investment of capital. The key
restriction on the contracting space that yields this result is that the insurance premium is paid
upfront. Because of this, the bank cannot condition its payment on an observed outcome. In the
competitive equilibrium case, the bank knows that the IFI will invest too little into the liquid asset,
and therefore lowers its payment accordingly (as from Lemma 3, any additional payment beyond
what would yield zero profit to the IFI would be put into the illiquid asset and have no effect on
counterparty risk).

We now develop some extensions of the model.

4 Extensions

4.1 Multiple IFIs

Let us assume now that the bank is no longer restricted to insuring with only one IFI. We
assume that the bank insures with a finite (and exogenous) number, N, IFIs in the market. For
tractability, we assume that the N IFIs all have a portfolio that takes an IID draw from the
distribution F' with corresponding density f. Therefore, this gives the bank a chance to reduce how
much each counterparty holds (as compared to the case in which there was only one counterparty).
To contrast with the case in which N = 1, we assume that the penalty incurred (Z) is now linearly
proportional to the number of IFIs that fail (e.g. if 1 out of 2 IFIs fail, the bank faces a cost of
zZ

)

)
bank interacting with only one (modified) representative IFI. More specifically, if we imagine the

The following lemma shows that in the environment described, it is equivalent to view the

bank insuring with all IV of the IFIs, the expected profit is derived given that there can be up to
N failures. The result says that there is an equivalent problem in which there is one representative

IFI, however, that IFI solves its investment problem as though it was only insuring 7 of the loan.
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The result comes from two key features of the setup: first, we are analyzing an extreme case in
which each IFT takes a IID draw from the same distribution. Second, the bank has a linear payoff

function.

Lemma 6 Aggregation - Denote p as the probability that 1 of the N counterparties fail. Also,
denote Ty (i, k) as the (expected) profit of the bank when i counterparties fail and k counterparties

succeed. Given this setup, the expected profit of the bank can be written in a simple form as follows:

N
> n;(}\zfviwpn(l — )Y " e(n, N —n) = plly(1,0) + (1 — p)IT (0, 1). (12)
n=0

Proof. See appendix.

The proof proceeds by rearranging the expected profit of the bank to apply the binomial theorem
to show that it collapses down to that as if only one IFI was providing the insurance. However,
each IFT is now responsible for %; a reduction in their liability.

Casual intuition should tell us that when the number of IFIs increases, the counterparty risk
should decrease. In Lemma 7, we show that when the optimal choice of each IFI is a corner solution,
this intuition holds true. However, when an interior solution is achieved, we get the startling result
that counterparty risk remains unchanged. The reason for this counterintuitive result is that when
N > 1, each IFI behaves differently than when N = 1. For what is to follow, we denote the optimal
B when N =1 (N > 1) as 8] (#5). Similarly, we denote the optimal price per unit of protection
that the bank must pay to each IFI when N > 1 as Py;. The following proposition shows that the
smaller the size of the contract that an IFI engages in, the riskier they will behave, and consequently
counterparty risk will remain unchanged (provided an interior solution for 8% is attained). What
is happening is that the IFI has less obligation so that the state of the world in which a claim is
made will see them liquidating less of their portfolio. Therefore, the IFI will have an incentive to

put more into the illiquid asset to take advantage of its higher return.

Proposition 4 Given an interior solution for B} :

1. The optimal proportion of the illiquid asset bought is decreasing in the amount of insurance

contracts per IFI
2. Counterparty risk that the bank is subjected to remains unchanged.
Proof. See appendix.
This proposition shows that as the amount of the insurance contract that each IFI takes on
decreases, the IFI reduces the percentage of the premium they put in the liquid asset. This re-
duction is by the exact amount so that the counterparty risk remains unchanged. This yields the

counterintuitive result that even though each IFT is insuring less of the loan, the counterparty risk

that the bank must endure does not decrease.
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We now look at the consequences of a corner solution in the IFT’s problem. If the IFT is being
as risky as it can be (53 = 0), counterparty risk decreases from the case in which N = 1 whenever
the boundary constraint is strictly binding.!” What is happening is that as N becomes large, the
savings in the counterparty risk comes entirely from the reduction in liability of each IFT.

The final case in which counterparty risk decreases when N > 1 compared to when N = 1
is when B3 = 1. What is happening is that the IFI is so cautious that even after their liability
decreases, they still invest as safe as possible. One case this may apply is when the insurance
contract is being written on a “very” risky loan (b close to one). The following lemma formalizes

these two cases.

Lemma 7 If 85 = 0 or By = 1, counterparty risk decreases when N > 1 from the case where
N =1.

Proof. Plug 85 = 0 and 85 = 1 into the counterparty risk term C(y —~vP/3) and notice that this
is an increasing function of . This in turns implies that counterparty risk decreases with respect
to a decrease in 7.

|

We now relax the assumption that there is only one bank by allowing many banks to simulta-

neously purchase insurance contracts with a single IFI.

4.2 Multiple Banks

In this section, we analyze the case of multiple banks and one insurer. We assume there are
a measure M < 1 of banks. This assumption is meant to approximate the case where there are
many banks, and the size of each individual bank’s insurance contract is insignificant for the IFI’s
investment decision.?’ Using an uncountably large number instead of a countably finite but large
number of banks helps simplify the analysis greatly. Each bank requests an insurance contract of
size . At time t = 0, each bank receives both an aggregate and idiosyncratic shock which assigns
them a probability of default of their loan. For simplicity, this loan is assumed to have a rate
of return of Rp if it succeeds and 0 if it does not. The idiosyncratic shock assigns the banks a
probability of default which we define as £ and let it be uniformly distributed. The CDF can then

be written as follows.

0 if £€<0
(&)=< & if £€(0,M)
1 ifé&>M

9This implies there is one technical case in which the counterparty risk would remain constant. It arises when
the By = 0 but with the lower bound constraint not binding.

20This is the setup we would expect in a traditional insurance market such as health or automobile. However, we
will continue to use the example of credit risk transfer in banking.
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Next, denote the aggregate shock as p4 and let it take the following form:

r  with probability %
baA = . o
s  with probability %,

where 0 < s < r < 1— M. It follows that the probability of default of a bank is p = pa + &.
The example we use is that the aggregate shock puts the banks in one of two industries, a (s)afe
or a (r)isky one. Furthermore, the idiosyncratic shock assigns a level of risk to each bank within
an industry. It follows that the conditional distribution determining the measure of banks that
default in the safe industry, p({|pa = s) first order stochastically dominates that of the risky
industry p(&|pa = r), since p(§lpa = s) > p(€|lpa = r) V . Note that this is in contrast to the
usual definition of first order stochastic dominance which entails higher draws providing a ‘better’
outcome. In the case of this model, the opposite is true, since lower draws refer to a lower probability

of default; a ‘better’ outcome.

4.2.1 The IFI’s Problem

Because of the asymmetric information problem, the IFI does not know ex-ante whether the
loans are in the safe or risky industry (i.e. whether the aggregate shock was py = sor pg =7). It
seems reasonable to imagine that banks have superior knowledge about the state of the industry in
which they are extending loans. The IFI, even though they do not know the quality of the industry,
is assumed to know what banks belong to the same industry. That is, they know that all banks
belong to the same industry, but they do not know the quality of that industry. Therefore, if only

a subset of the banks can successfully reveal their types, this reveals it for the rest of them.

The IFT is assumed contractually obligated to pay 7y to each bank who’s loan defaults, conditional
on them being solvent. In Lemma 9 we will show that there can be no separation of types within
the idiosyncratic shock. Because of this, it follows that given a fixed realization of the aggregate
shock, each bank pays the same premium P.?! We assume that the IFI has the same choice as in
section 2.3, so that it invests a proportion 8 of the premium in the liquid storage asset and (1 — f3)
in the illiquid asset with return R;. We let the IFI’s beliefs distribution over the measure of banks
that will default be given by b(£) defined over the interval [0, M]. Since each bank insures v, the
total size of contracts insured by the IFI is: fOM vd®(§) = M~. The IFT’s payoff can now be written

21We are not concerned with pinning down the price in this section. However, we are interested in whether the
IFT offers a single aggregate pooling price, or two separating prices. We can imagine the IFI having market power in
this section, however, it is not crucial.
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as follows (denoting ‘MB’ as ‘Multiple Banks’).

BPM Ry —PM~(B+(1-B)Ri)+&y
ME / / 0dF(0) + / 0 — G)dF() | dbe)
0 — PM~(B+(1—B)R)+€v R,
Term 1
M Ry C(Ey—BPM~)
] (6~ C(¢7 = 5PM) - BPM) dF(6) + (6— G)dF(6)| db(e)
BPM |JC(Ev—BPM~) Ry
Term 2
+(B8+(1—8)Ry) PM~y (13)

Term 3

The first term represents the case when the IFI has put sufficient capital into the liquid asset so
that there is no need to liquidate its portfolio to pay claims. This happens if a sufficiently small
measure of banks make claims. Since the IFT receives PM~ in insurance premia, it puts GPM~
into the liquid asset. It follows that if less than 5P M+ is needed to pay claims (i.e. less than SPM
banks failed), portfolio liquidation is not necessary. The second term represents the case in which
the IFI must liquidate its portfolio if a claim is made. This happens if the amount they need to
pay in claims is greater than SPM~. C ({y — BPM~y) — BPM~ represents the total cost of their
claims payment, where EM~y — 3P~ is the total amount of capital the IFI needs to liquidate from
its portfolio. The final term represents the direct proceeds from the insurance premium. We need
to make the usual assumption that G > C (§y — BPM~) — BPM~ so that the IFI wishes to fulfil
the contract when they are solvent.

The following lemma both derives the optimal 8* and proves that counterparty risk is less when

a set of beliefs first order stochastically dominates another.

Lemma 8 For a given aggregate shock, there is less counterparty risk when the IFI’s beliefs put

more weight on the industry as being risky (pa =) as opposed to it being safe (pg = s).

Proof. See appendix.

The intuition for this result is similar to that of Lemma 4. If the IFI believes that the pool
of loans is risky, it is optimal for them to invest more in the liquid asset. This happens because
the expected number of claims is higher in the risky case so that the IFI wishes to prevent costly
liquidation by investing more in assets that will be easily available if a claim is made.

We now give the conditions under which the IFIT’s beliefs (b(¢)) are formed.

4.2.2 Equilibrium Beliefs

No Aggregate Shock

To analyze how the beliefs of the IFI are formed, we first consider the case where there is no

aggregate shock. Since there is no uncertainty in what industry the IFI is insuring, its optimal
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investment choice remains the same regardless of whether it offers a pooling price or individual
separating prices.?? It follows that since an individual’s choice will have no effect on counterparty
risk, only the premium effect is active. It is for this reason that a separating equilibrium cannot
exist. To see this, assume that each bank reveals its type truthfully. Now consider the bank with
the highest probability of default, call it bank M. Since it is paying the highest insurance premium,
it can lie about its type without any effect on counterparty risk, and obtain a better premium, and

consequently, a better payoff. The following lemma formalizes.
Lemma 9 There can be no separating equilibrium in which the idiosyncratic shock is revealed.

We now introduce the aggregate shock and show that separation of industries can occur.
Aggregate and Idiosyncratic Shock

Each individual bank now receives both an aggregate and an idiosyncratic shock. We can think
of this procedure as putting the banks in one of two intervals (either [s,s + M] or [r,r + M]).
We know that if one bank is able to successfully reveal its industry (aggregate shock), then the
industry is revealed for all other banks. The following proposition shows that a unique separating

equilibrium can exist in this setting.

Proposition 5 There exists a parameter range in which a unique separating equilibrium in the

aggregate shock can be supported.

Proof. See appendix.

This insight follows from the structure of the industry. If a single bank could reveal only its
own industry, and not the industry of the other banks at the same time, their premium would
be insignificant to the IFI’s investment decision. However, since by successfully revealing itself a
bank also reveals every other bank’s type, their individual problem has a significant effect on IFI’s
investment choice. The parameter range that can support this equilibrium is similar to the case in
which there was only one bank. Some conditions that can support this equilibrium as unique are:
7 sufficiently high, and the safe aggregate shock sufficiently low.

In a typical problem with a continuum of agents, no single agent can affect the equilibrium
outcome through his or her choices. However, with informational problems like the one we have
analyzed here, an individual who has a measure zero can affect the equilibrium outcome.

We now revert to the case of one bank and turn our attention to the bank-borrower relationship

and show the consequences that the traditional moral hazard problem has in the model.

22To see this, note that with no aggregate risk, the IFI knows the average quality of banks and will use that to
make its investment decision based. Any bank claiming that they received the lowest idiosyncratic shock will not
change the IFIs beliefs about the average quality.
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4.3 Moral Hazard in the Bank-Borrower Relationship

We now relax the assumption that monitoring of the borrower is costless for the bank thereby
introducing the traditional moral hazard problem into our framework. For simplicity, we do away
with the adverse selection problem, or alternatively, assume that the needed parameterization
underlying Proposition 2 is satisfied.?> Define M as the amount monitored that takes a value in
the compact interval [0, M]. We introduce a cost of monitoring function for a loan: c¢(M) with
d() >0, () > 0 and ¢(0) = 0. For simplicity, we rule out corner solutions by assuming c(-)
satisfies the Inada conditions: ¢/(0) = 0 and ¢/(M) = +oo. As well, we redefine the return cdf
(pdf) of the loan to be H(y; M) (h(1; M)) that satisfies the usual Monotone Likelihood Ratio
Property (MLRP) so that % (%) > 0. Finally, we make the standard assumption that the
distribution satisfies the convexity-of-distribution function (CDFC) assumption (as in Hart and
Holmstrom, 1987).24 This assumption implies that for any A € [0, 1], and for any M, M':

h(Y; AM + (1 = \)M') < M(yp; M) + (1 — M) h(y; M) (14)

MLRP and CDIC assumptions together intuitively say that increasing the monitoring, increases,
at a decreasing rate, the probability that the return will be above some level .25 We begin by

analyzing the case in which the bank cannot insure itself to avoid the penalty (Z) if the loan fails.

4.3.1 No Insurance

When the bank does not use insurance, the optimal amount of monitoring is the incentive

feasible level as follows:

1

1
SAH (43 M) + (1 — ) /0 dH (s MY — /0 (Z — )dH (1 M) — (M)

S,R
1
S.R 1 1
> [ vdr () + (=) [ drG) —y [ (2 - 0 - ) ¥ M £ 0. (19
1 0 0
Where we use (S, R) as an the upper bound of the return distribution because it could be either
loan type we are analyzing. Hart and Holmstrom (1987) showed that given MLRP and CDIC,

23 All the analysis of this section carries through if we allow for adverse selection; there will be expressions for each
loan type in both the pooling and separating equilibria yielding the same qualitative results.

24This assumption is used in the first order approach to principal agent problems when the monitoring space is
continuous. It allows us to write the infinite number of incentive constraints in one equation. We do not wish to weigh
in on the debate that began in the late 1970’s as to the validity of the first order approach. For those who find the
CDIC assumption unpalatable, Jewitt (1988) Theorem 1 shows how it can be relaxed with additional assumptions
on the utility function. The alternative approach to the continuous case is to discretize the monitoring space so that
there is a finite number of incentive constraints. The qualitative results of this section follow through with such a
procedure, provided there are greater than 2 levels of monitoring (for reasons which will soon become apparent). We
use the continuous setup for convenience, as it maps back easily to our previous results.

%5See Laffont and Martimort (2002) for a nice review of the first order approach to principal agent problems.
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these constraints can be re-written as:

SR 1
¢n) = [ vdHu(ws )+ [ Zd(ein) (16)

Where Hjs is the partial with respect to M. Note that we have used the fact that the MLRP
assumption implies the weaker condition of First Order Stochastic Dominance (FOSD) which im-
plies that fOS’R WwdHps(v; M) > 0. The left hand side represents the marginal cost of increasing
monitoring and is given by the marginal increase in the cost of monitoring itself. The right hand
side represents its marginal benefit and is comprised of both the increase in the expected value of
the loan, and the reduced probability of being subjected to the cost of Z that monitoring brings.
We now look at the case in which the bank can perfectly insure (i.e. no counterparty risk)

themselves to avoid the possible cost of Z.

4.3.2 Insurance, No Counterparty Risk

When the bank uses insurance with no counterparty risk, the optimal amount of monitoring is
as follows:
S,R 1 1
a3 (05 M) + (=) [ o () 9 [ (4 ) (w3 0) + PR - ) =0, (a7
1 0 0

Where PﬁCR represents the marginal price with no counterparty risk. Note that FOSD im-

plies fol dHp(; M) < 0, and Lemma 2 implies %—}; > 0. Therefore, Py = gTIZ = ;—AZ%—}; =

) dHar(1b; M)2P < 0. Finally, since FOSD implies both [} dHar(v; M) < 0 and ff’R dHp(v; M) >
0, we can rewrite (17) in a more intuitive form:
SR

1
¢ (M) +~ /O A (0:00) = [ s 0) + 4 PECT (18)

Marginal Cost of Monitoring Marginal Benefit of Monitoring

Again, the left hand side represents the marginal cost of monitoring. For an increase in mon-
itoring, the bank incurs the monitoring cost itself, plus a decrease in expected payout from the
claim (because claims are made less with more monitoring). The benefits to monitoring are the
increase in the expected return of the loan, plus the reduced insurance premium the bank will enjoy
by reducing the probability that a claim will be made.

Comparing (16) and (18) we see that insurance reduces the incentive to monitor when the

following holds:

PNCE — [ dH(v; M)

Z> .
Jo dHar(v; M)

(19)

In other words, when default of the loan without protection is sufficiently costly, the firm will choose

to monitor more when it is not insured. Note that the sign of Py; — fol dH s (v; M) is ambiguous
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and depends on the underlying parameters of the model. When Py, < fol dHp(v; M), the bank
will always monitor more when they are not insured (for any Z > 0).
We continue by adding counterparty risk to the insurance contract and show that the moral

hazard problem may be less severe than in the current case.

4.3.3 Insurance with Counterparty Risk - Double Moral Hazard

When the bank uses insurance and is subject to counterparty risk, a double moral hazard
problem is present: Both the hidden actions of monitoring by the bank, and investing by the IFI
occur simultaneously in our model. Therefore, we must respect the incentive constraints of both

the bank and the IFI. We now write the first order condition for the bank taking g* as given.

S,R 1 Ry
wdHM(w;M)Jrv/ dHM(w;M)/ dF(0)
0 0 C(v—B*P*y)
1 Cy=B*P*y)
~zy [ attywn) | AF(8) — ¢ (M) — /PSR — 0 (20)
0 R

Where PﬁR is the marginal price with counterparty risk. Because P]\%R < 0, fol dHp(; M) <0
and fOS’R dHp(v; M) > 0, we can rewrite (20).

1 R
¢(M) +~ /0 dH (4 M) / " are) =

C(y—p*P*v)
Marginal Cost of Monitoring
C(y—B*P*7)

dH (4 M) /R dF(9) +PGR (21)
By

1

/0 P gt M) + 79 /0

Marginal Benefit of Monitoring

Altering Proposition 1 to include an optimal choice of monitoring by the bank, we obtain §* for a

given M*.
B =0 if b(M*) < b*
—(1=b(M*))(R; — 1)G + b(M*)[C'(y — B*Py) (G — C(y — B*P~) — 3*P7)
+ (Rf — C(y = B*Py)) (C'(y = B*Py) = 1)] = (R; — 1)(Ry — Ry) if b(M*) € (b*,b*)
pr=1 if b(M*) > b**
* _ (R1—1)(G+R;—Ry)
where b = G et G- om) - (B o1
and b** _ (Rl_l)(G"‘Rf_Ef)

— G(RI=1+C" (=P (G=C(y=P7)=Py)=(Ry=C(y=P)(C'(y=P7))=1)
Comparing (21) and (18) we derive a condition under which the bank strictly monitors more
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with counterparty risk.

1 R
— [ dHy (3 M) (1 —Jel s dF(a)) 4+ PNCR _ pCR

Z >
C — *P*
fﬂf(v B*P*y) dF(6)

(22)

We can conclude that if Z is sufficiently high, the traditional moral hazard problem will be less
severe. The parameter Z works to tie the bank to the loan. If the loan defaults, and so to does the
bank’s counterparty, the bank is not protected and is subject to the cost Z. Therefore, the higher
is Z, the more intensely the bank will monitor the loan.

One of the key elements that emerges from this section is that when we introduce the classical
moral hazard into the model, we need only modify the distribution function to include an optimal
monitoring amount. In other words, the IFI readjusts its belief of the probability of a claim given

the amount of monitoring that the bank will engage in.

5 Conclusion

In a setting in which insurers can fail, we construct a model to show a new moral hazard problem
that can arise in insurance contracts. We model a situation in which the insurer itself may default
in some states of the world. Taking account of this, when the insurer sells an insurance contract, it
uses its evaluation of the risk in the contract to optimally invest its capital. If it suspects that the
contract is safe, it puts capital into less liquid assets, which minimizes the probability they fail in
the state when a claim is not made. However, the downside of this is that when a claim is made,
they are more likely to be illiquid or insolvent and not able to fulfil the contract. We show that the
insurers investment choice is too risky when compared to the first best. The existence of this moral
hazard is shown to allow a unique separating equilibrium to exist wherein the insuree freely and
credibly relays its superior information. In other words, the new moral hazard problem can alleviate
the adverse selection problem. We extend the model by increasing the number of insurers that an
insuree contracts with. We show that in this situation the counterparty risk may not decrease as
one would expect. Next we allow for multiple insurees to investigate the case where each insurance
contract is insignificant to the insurers investment choice. We show that our moral hazard problem
still exists, and we can obtain the separating equilibrium result when there is private aggregate risk.
In a final extension, we show how the classical moral hazard problem on the part of the insuree

can have a positive effect on counterparty risk.
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6 Appendix

Proof Proposition 1. Using the assumption that f(6) is distributed uniform over the interval

[Ef,ﬁf], we solve for the optimal choice of 3 for the IFI, given b and P.

max H[F]
B<l0,1]
Using Leibniz rule to differentiate the choice variable in the integrands, we obtain the following

first order equation:

0 = % [C'(y = BPv) (G — C(y — BPy) — BPy) + (Rf — C(y — BPy)) (C'(y — BPy) — 1)]

G
+(1 = b)=—— [-RiyP+ 7P+ Py(1 - Ry) (23)
Ry — By
Where G —C(y—(3Pv)— P~ > 0 by assumption, and C'(y—SPv)—1 > 0 since C(z) > x V z > 0.

To ensure a maximum, we take the second order condition and show the inequality that must hold.

C"(y = BPy) (G — C(y — BPy) — BPy) + (Ry — C(y — BP7)) C"(y — BP7)
> 2C"(y = BPy) (C'(y — BPy) — 1) (24)

Plugging in the boundary conditions for § into the FOC, we now derive the optimal proportion of

capital put in the liquid asset as an implicit function.

B =0 if b<b*
—(1=b)(Rr = 1)G +b[C'(y = B*P7) (G = C(y — B*Py) — 3*P7)

+ (Ry = C(y = 8*Py)) (C'(y = B*Py) = 1)] = (Rr — 1)(Ry — Ry) if be (b*,b™)
=1 if b> b

_ (Ri—1)(G+R;—Ry)

— G(R—1)+C"()(G=C(1)—(R;—C())(C"(v)~1)”

and b — (Br—1)(G+R;—Ry)
G(R;=1)+C'(y=Py)(G=C(y=P~)=Pv)=(Ry=C(v=Py)))(C'(v=P7))-1)"

where b*

We now show that the optimal proportion of capital put in the liquid asset is increasing in b by
finding g—f from the FOC.
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0 = A+(-Cl— P L PYC G - 8Py~ 1)

HRy — Oy = BPN)(C" G~ BP9 P)
Oy = BPY) (=90 PA)(@ — C(y — BPY) — BP3) + Oy = BPA)(~C' (3 — BP)(~ 20 P)
D))+ GRr 1Py (25)

Where we define:

A= C'(y = BPy)Py(G = C(y = Py) = BPy) + (Ry — C(y — BPy)) Py (C'(y = BPy) — 1) > 0.(26)
Rearranging for % yields to following.
B —C'(y = BP7) (G = C(y = BPy) = BPy) — (Ry — C(y = BP7)) (C'(y = BP7) —1) = G(R; — 1)

b —C"(y = BPY) (G~ C(y = BPy) = BP7) — (Ry — C(v = BPY)) C"((Ry — C(y — BP7))) +2C" (v — BP7) (C'(y — BPv) — 1)
0 (27)

\Y

Where the numerator is trivially negative while the denominator is negative because of condition
(24) imposed by the SOC to achieve a maximum.

]

Proof of Lemma 1.

Step 1: Existence

We prove that there exists a P* that satisfies the following:

0 Ry
0 = (1-b) l / wa)de] b [ / (Cly — BP*y) + BP")
—P*y(B+(1-B)Rr) C(y—BP*)
C(y—BP*y)
= [ /O GF(0)d8| + P*(8+ (1 — B)Ry). (28)

Consider P* < 0. In this case, the IFI earns negative profits. To see this, notice all terms on
the right hand side of (28) are weakly negative, with the second and third terms strict (since
C(y — BP*y) > BP*y when P* < 0). Therefore, it must be that Vip;(8*, P* < 0) < 0. This
contradicts the fact that Vipr(8*, P*) = 0 in equilibrium.

Next, consider P* > 1, and = 1 (not necessarily the optimal value). In this case, the first term
on the right hand side of (28) is strictly positive, the second and third terms are zero, while the
fourth is strictly positive. Since * can yield no less profit than § = 1 by definition of it being an
optimum, it must be that V;p;(3*, P* > 0) > 0. This contradicts the fact that Vipr(8*, P*) =0
in equilibrium. Therefore, if it exists, P* € (0,1).

To show that P* exists in the interval (0, 1), we differentiate the right hand side of (28) to show

26



that profit is strictly increasing in P.

8;/?1 = bBP[C'(y— BPy) (G — C(y— BPy) — BPy) + (Rf — C(y — BPy)) By (C'(y — BP) — 1)]
+(1=0b)[Gy(B+ (1 =B)Rr)]+~v(B+ (1 —B)Rr) (29)
> 0 (30)

Where the inequality follows from the assumption that G > C(y— SPv) — P~ and the assumption
that C(x) > « Vo > 0 (which implies C’(z) > 1). Therefore, since profit is negative when P* < 0
and positive when P* > 1, and since profit is a (monotonically) increasing function of P*, profit

must equate to zero within P* € (0, 1).
Step 2: Uniqueness

Assume the following holds: Vipr(8*, Pf) = 0. Since we have already shown that profit is a
strictly increasing function of P*, then if Py > Pf (Py < Py) this implies Vipr(6*, Py) > 0
(Virr(5*, P3) < 0). Therefore, since given Py and P;f and Vg (8%, Pf) = 0 implies that Py = PJ
must hold, our price is unique.

|

Proof of Lemma 2.
From the envelop theorem, we can ignore the effect that changes in b have on 8 when we evaluate
the payoff at 5*. Plugging § = §* into (4) and taking the partial derivative with respect to b yields:

OViri _ (By—C(y=B"Py)) (Cly = B*PY) + 3°P7) + C(y — B Py)G + PyG(B* + (1 — 8*)Rr)
ab R

b=p" Ry — By
< 0 (31)

The inequality follows because C(-) > 0 by assumption. Since the envelop theorem is a local
condition and does not hold for large changes in b, it serves as an upper bound on the decrease in
profits. It follows that an increase in b must be met with an increase in P otherwise the IFI would
make negative profit and would not participate in the market.

]

Proof of Lemma 3. Since counterparty risk is defined as | ]g’; (r=AP7) f(0)dh, we find the effect
that a change in P has on C(y — 8*Pry). Since C(-) is monotonic, we focus on (y — 8*P~). It
should be immediately apparent that when §* = 0, changes in P have no effect. Intuitively, if the
IFT is already putting everything into the illiquid asset, any additional capital will be put into the
illiquid asset.

We now take the following partial derivative and show that it equates to zero.
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O(y—p"Py) _ op* *
5P =7\ 3p P+ (32)
(where * is defined implicitly in the FOC).

_op"
oP

0 = {—C’(v — 3*Pr) ( Py — ﬂ*v)} [C'(y = B*Py) — 1]

+[Ry — Cly - 8 Py)] [C”(w — 3*Pr) (— aafg Py — ﬁ*v)]

+er-gp (5P =) |6 - 06 - 5Py - P
o0* op*
+C'(y = " Pr) [*C’(v — B*Pv) (* a[; Py — 5*7) — By - ai Pv} (33)
Rearranging for %i; yields the following.
op* B .
2P PyA = —-p*vA
opr B
oP P (34
Where we define:
A = C"(y—pPy)(G—C(y—BPy)—BPy)+ (Rf — C(y — fPv)) C"(y — pP~)
—2C"(y = BPy) (C'(y — BPy) — 1) . (35)

Note that A < 0 from the assumption on the SOC (24) to ensure a maximum. Substituting (34)
into (32) yields the desired result:

d(y — " Pr)

5p = 0. (36)

Therefore changes in P have no effect on counterparty risk when ( attains an interior solution.
The final situation is where 8* = 1. We obtain:

Iy —P)
In this case, the TFT puts all additional premia in the liquid asset and thus reduces the counterparty
risk.
|

Proof of Lemma 4. Since counterparty risk is defined as |’ Igf (y=BP7) f(0)de, we are interested in

what happens to C'(y — 8*P*y) as b changes.
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We ﬁrst focus on the case in Which 5% € (0,1). We now take following partial derivative where we

define 2 W = g—g e and 22 = a—P|P P
d(y—p*P*y) p* OP*
—_— = pP* * 38
b a7 o (38)
From Proposition 1 we know (5) > 0. As well, from Lemma 2 we know 22~ > 0. Since g* € (0,1)
and P* > 0 (from Lemma 1), it follows that:
O (y—p"P)
0 39
% < (39)

Therefore, as b increases, counterparty risk decreases when 5 € (0,1). Next, consider the case of

0* = 1. Again, from Lemma 2 we know dP > 0. Therefore, w < 0 regardless of whether
aaﬁb =0or i > (0. Thus, counterparty rlsk decreases when b decreases if g* =1.

It is 0bv1ous that if 5* = 0 there will be no change in counterparty risk by noting that §* P~y will
be independent of b.
|

Proof of Proposition 2. We begin by ruling out a separating equilibrium when there is no
counterparty risk. Without counterparty risk: [ éf dF(0) = 0. It follows that the left hand side of
(8) and (9) are both zero. Since Pp — Ps > 0, (8) and (9) cannot be simultaneously satisfied so
that the separating equilibrium cannot exist.

We now introduce counterparty risk and show that the separating equilibrium in which the safe
(risky) type reports they are risky (safe) cannot exist. The condition under which the safe type

would prefer to be revealed as risky can be written as follows:

I(S, R) > TI(S, S) =

/cw apen) 0) < /0 1 (1+2) dHS(zp)> > Pr — Py (40)

C(y—BrPr7)

expected saving in counterparty risk

amount extra to be paid in insurance premia
Next, we write the condition under which the risky type would prefer to be revealed as safe as:
II(R,S) >II(R,R) =

/C(V Bs Ps) 0F () (/01 (1+2) dHR(¢)) < Pr — Py (41)

C(y—BrPr7)

expected cost of the additional counterparty risk

amount to be saved in insurance premia

Since fol dHg(v) < fol dHR(v), it follows that the left hand side of (40) is unambiguously smaller
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than the left hand side of (41). It follows that (40) and (41) cannot simultaneously hold, and thus
this separating equilibrium cannot exist.

We proceed by showing the conditions for which the two pooling equilibria can exist. We begin
with the case in which both types wish to be revealed as safe. We define 3/, and P/, as the
equilibrium result from the IFI’s problem when the belief of the probability of a claim cannot be
further updated: b = %fol dHg(v) + % fol dHR(v). Finally, we let Sor and Pog be the result from
the IFI’s problem when a bank gives an off the equilibrium path report of R. The following two

conditions formalize this case:

I(S, S) > II(S, R) =

C(vy=P1/2P1/27) 1
/ dF(6) ( | a+2 stw)) < Po - Py)s (12)
0 N———

amount to be saved in insurance premia

C(v—BorPoE")

expected cost of the additional counterparty risk

TI(S,R) > TI(R, R) =

C(y=B1/2P1/27) 1
/ 4F(9) ( [a+2) dHR<w>) < Por — Py (43)
0 —————

C(v—BorPor")

expected cost of the additional counterparty risk

amount to be saved in insurance premia

The binding condition (43) is satisfied for Z sufficiently small. The intuition is that if counterparty
risk is not too costly, the bank would wish to obtain lowest insurance premium. In other words, the
premium effect dominates. To sustain this equilibrium, we see that b > % fol dHg () —1—% fol dHR ().
We continue by analyzing the case in which both types report that they are risky. In this case,
we will use the notation Boge and Pogs to indicate the off the equilibrium path beliefs if a bank

reports that they are safe. The conditions can be characterized as follows:

1(S, S) > I1(S, R) =

C(vy—PBor2PoE27) 1
/ dF'(0) (/ (1+2) dHS(iﬁ)) > Py/5 — Pops (44)
0 N————’

amount extra to be paid in insurance premia

C(W—ﬁl/2P1/2’Y)

expected saving in counterparty risk
(S, R) > (R, R) =

C(y—Bor2Por27) 1
/ dF(0) </ (1+2) dHRW)) > Py — Pop (45)
0 N ——

amount extra to be paid in insurance premia

0(7*31/2131/2)

expected saving in counterparty risk

The binding condition (44) is satisfied for Z sufficiently high. Intuitively, the bank is so averse to

counterparty risk, that the counterparty risk effect dominates. It follows that for this equilibrium
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to exist, b < %fol dHgs(¥) + % fol dHR(v).
We now show that the separating equilibrium defined by (8) and (9) can be unique. Combining

(8) and (9) we get the following condition for when the separating equilibrium exists:

Pr — Pg Pr — Pg
C(y—PBsPs7) dF(6 f dHR (1) SZ+1s fc(’Y BsPs7) dF ( )fl dHg (1) (46)
C(v—BrPr7) 0 R C(v—BrPr7) 0 o

Turning to the pooling equilibria, we use extreme off the equilibrium path beliefs for simplicity (the
following is valid for the general belief as well). Let OF = R and OE2 = S. The condition under

which the pooling equilibrium cannot exist can be written as:

Pr — P, P,y — P
(v— 51/2P1/:;) dF1/2 L gH =Z+1= fC(V 55PS’Y)1/2dF(0§f1 dHg (1)) (47)
fC’Y BrPRY) )fo r(Y) C(y=B1/2P1/27) 0 s

It follows that if (46) and (47) are satisfied, the separating equilibrium exists and is unique. To
see that these conditions can be simultaneously satisfied, let lim fol dHg(1) — 0 so that the right
hand side of both (46) and (47) are satisfied. It follows that if Z is sufficiently large, the left hand
side of these two inequalities can be satisfied yielding a unique separating equilibrium.

|

Proof of Proposition 3. The Proof proceeds in 3 steps. Step 1 derives the first order condition
for the first best problem. Step 2 assumes the equilibrium solution and derives an expression for
a—g from the IFT’s zero profit condition. Step 3 shows that 5 and P’? must be greater than in
the equilibrium case when §* < 1. Since the results apply for either the separating or pooling

equilibrium, we show that 3* < 3/, where these can be either equilibrium case.

Step 1
The profit for the bank (bk) is written as follows (note here we leave the banks return distribution

function as H).
(S,R) 1 ﬁf 1
My = dH 1 dH 1+ ¢)dF (6)dH
wo= [ v 0y (e eq [0 o varean

(v=BPy) r1
— /R /0 (Z — ) dF(0)dH (1)) — AP (48)

=f

For the first best case, P/* is now endogenous and determined by Viz;(3/%, P/*) = 0 (where Vig;
is defined by (5)). Using the uniform assumption on F yields the following first order condition.

21; =~C'(y = P7) < " 366) t Z)/o ) w

The left hand side represents the marginal cost of increasing (3, while the right hand side represents

the marginal benefit of doing so.
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Step 2
We show that if 3/ = B*, then (49) cannot hold. We know that from the IFI’s problem, the
following must hold (see Proposition 1 for its derivation):

b ! * * £ * * * 55) * £ /! * £
0 = T [C'(y = B*P™) (G = C(y = *P*y) = B*P*y) + (Rf — C(y — B*P*y)) (C'(y = B*P*y) — 1)]

T af

(1= b= [FRAP" 4P 4 Py(1— Ry) (50)
We now find an expression for ?T},BD g ppr by implicitly differentiating the equation Vipr(8*, P*) =
0. T
0 ﬁf
0o - -yl Groas| ~v| [ (cty- s+ oPY)
—Py(B+(1-B)Rr) C(y—BPv)
C(y—BP7)
s G1(6)d8| + Py(3+ (1 - A)Ry) (51)
0

Implicitly differentiating this equation to find 9P vields the following.
g a3 ¥ g

oP G
A = (1-b=——— [~RyP* +~yP*| + P*(v(1 —
X - (1 )Rf "R [~ RiyP* +yP*] + P*(y(1 - Ry)
bP*
o (O = P (G = Oy = 7 P*y) = 5 P™)
r— By
+(Ry = C(y = 8°P*y)) (C'(y = °P*y) — 1)] (52)

Where we define:

A = bBF[C'(y = B P*y)(C(y = B*P*y) + B*P*y) — (Ry — C(y — B*P*y)) (C'(v = B*P*y) — 1)

+C'(y = B*P*y)G]. (53)
It follows that g—g ‘ﬁ gpope 0 since the right hand side of (52) is the FOC derived in Proposition
1 and must equate to 0 at the optimum, 3*.
Step 3
Substituting %‘[kﬂ*fzp* = 0 into (49) yields:
1
0=1C'y = 8 P") (P) 1+ 2) [ dH (), 69
0

which cannot hold since v > 0, fol dH(1) > 0 and Z > 0. Therefore, 4/° # p* and P/* # P*. To
satisfy (49), it must be the case that % > 3*. From Lemma 5 we know that Pf® > P*. However,
if 30 > B*, then P/ > P*. Tt follows that [CO™""7""7) f(g)do < [CO~7 ™) f(9)dp. Therefore,
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counterparty risk is strictly smaller in the first best case as compared to the equilibrium case.
It is obvious that if 8* = 1, it is not possible for the first best to be any less risky. This is the case
in which the IFI is already investing everything in the liquid asset.

]
Proof of Lemma 6. Define the payoff for a bank (bk) who contracts with N IFIs. For simplicity,

we suppress the loan type as the proof does not depend on it.

5T N !
My, = YwdH () + (1 — / WdH (¢ Z:: (prob n IFIs do not fall)N> /0 dH ()

0

—y Z <p7'0b n IFIs fail) > / dH(¢) — yNPy (55)
n=1

Where prob(n IFIs fail) represents the probability that n IFIs fail, prob(n IFIs do not fail) repre-

sents the probability that n IFIs do not fail, and v/N Py represents the total premium paid by the

bank. For simplicity (and since the IFIs are ex-ante identical) we assume that they each individu-

ally receive Py in exchange for their coverage of 3. We now find Zﬁ’:l (prob(n IFIs do not fail)%)

which represents the expected payment from the IFIs when a claim is made. Expanding this term

yields the following.

N on N! Ry " Ry N-n
= ;(N) <n'(N—n)') </C<”5PN7V>dF(9)> (1—/0(%6PN%)dF(9)> (56)

N

Where § is solved for from the IFIs problem according to Proposition 1. Weleta = [ cl*% s

(3-pw 3) 4F)

to obtain:

N
_ Zo (%) (n,(NNin)J (™ (1— a)¥ "] (57)

n=

[aN 4 (NN 1) <1!(NN1 1)!) VN1~ a) 4ot a(l a)Nl} (58)

Where the second equality follows by expanding the summation and reversing the order. We now

factor out a and simplify:

(N —1)!

_ N—1
- a[a v —2n?
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Using a change of variable M = N — 1:

_ {aM + 1!(]\%1)1“]”1(1 —a)+ maMzu a4t (—aM|  (60)
M
= Y i @ =) (61)
2 .
— ala+(1—a)M (62)

Where the final equality follows from the binomial theorem. Since N is finite, this implies M is
finite, and therefore 1V~1 = 1. We obtain:

N " B,
Z (prob(n IFIs do not fail)—) = / dF(0). (63)
= N C(%—BPNF)

. C(%-BPn3 .
By letting a = fRf(N PN ) dF(6), we can repeat the above analysis to show:

C(%—BPn %)

N
nz_:l<pr0b(n IFIs fail)%) - / dF(6). (64)

Ry

Substituting (63) and (64) into (55) yields an expression for the expected profit of the bank.

S,R 1 Ry 1
11 = dH 1-— dH dF(0 dH
w = [ @) sy [eareen [0 aro) [an)
C(F—BPn3) 1
— [ ZdF(0) | dH($) - NPy (65)
Ef 0

We can see that the expected payoff of the bank is given by the expected payoff as if the bank were

dealing with only one IFI, but the IFI was making its investment decision with a contract size of
ol

-
|

Proof of Proposition 4. The proof proceeds in two steps. In step one we show that as ~y
decreases, the IFI decreases 33 (compared to the case of 8}). Step two shows that as a result of
the decrease of 3%, counterparty risk remains unchanged. This proof will follow closely the proof
of Lemma 3.

Since counterparty risk is defined as | Ig .(7_5 P f(0)df, we find the effect that changes in « have on
C(y — B*Py). Since C(-) is monoton;c, we focus on v — 3*P~y. This proposition focuses only on

the case in which §* achieves an interior solution.

Step 1

In this step we take the following partial derivative and show that it equates to zero.
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d(y—B*Py)
vy

a *
—1- ( 5 P'y+6*P> (66)

We now find %% = g—g‘ﬁ 5 (where (* is defined implicitly in the FOC found in the proof to

Proposition 1).

0 = [C’(wﬂ*m) (bﬁ*P—iﬁPv)}[O’Wﬂ*Pv)fl]

Ry =065 [ -0 (1= 5P = G )|

Oy
a *
+ {C"(v — 3" P7) (1 — P - ;7 Pv)} (G —C(y =B Py) — P
ap* op*
0 g [0 - (1-p -9 p ) —pp- 9] e
Rearranging for %i; yields the following.
op* B .
op 1A= (1-5P)A (68)

Where we define:

A = C'(y—=pB"Py)(G—C(y—B"Py)— B*Py) + (Ry — C(y — B*Py)) C"(y — B*P7)
—2C"(y = B*Py) (C'(y = B*Py) — 1).. (69)

Note that A < 0 from the assumption on the SOC to ensure a maximum. Therefore, %—57* = 1_135;13 >

0. This implies that as v decreases (N increases), G4 decreases as desired.

Step 2
Substituting (68) into (66) yields the following.

d(y—[*Py)
opr

o P7<1 Pi*p)

=0 (70)

— B*P

By Lemma 6, we can view the counterparty risk as the probability that one IFI is insolvent when
a claim is made (given its investment choice is solved for with a contract size of 7). Since this
probability does not change in the case when N > 1 from N = 1, it follows that counterparty risk
remains unchanged.

|

Proof of Lemma 8. Optimizing H%ﬁ choosing 3 yields the following first order condition (recall
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F is assumed to be uniformly distributed):

1

B8*PM
0 = — - /0 (=PM~(1 = Ry)) Gob(€) + (~PM~(B* + (1 - B*)Ry) + B*PM~ — R;) GPM

Ry — Ry

M
+ﬁ / [—C'(&y — B*PMy)(—PM~) (—=C(&y — 3*PMy) — 3*PM~)
=By JprPm

+ (Rf — C(&y — B*PM~)) (=C'(&y — B*PM~)(—=PM~) — PM~) + C'(&y — 3*PM~)(—PM~)(—G))

e [(Ry - O0) (-C0) 5 PMA) + (C(0) ~ By) (~G)] PM + (1~ Rp)PAMy
f— 4

Recalling C'(0) = 0 we simplify the above.
8*PM
0 = —/ +(Rr — 1)Gdb(€) — PM~(1 — B*)RiG
0

M
+7/ [C'(&y — B*PM~) (G — C(&y — B*PM~) — 3" PMy)
B*PM

+ (Ry — C(&y — B*PM)) (C'(&y — B*PM~y) — 1)]
+RsfB*y — R;G —y(Rr — 1) (72)

The SOC implies that the right hand side of (72) is decreasing in 5* so that our problem achieves
a maximum. Define two belief distributions b1 (§) and b2(&) such that b1 (£) > ba(€) V€. As well, let
(87, b1(€)) solve the first order condition (71). Intuitively, moving from by (§) to ba(€), mass shifts
from the interval [0, 3* PM] to [3*PM, M]. Formally:

B*PM 8*PM
/ dhi(€) > / dba(€) (73)
0 0

M M

/ dbi(€) < / db(€). (74)
B*PM B*PM

Since it is assumed that the FOC holds with (5], b1(€)), given (73) and (74) that with (87, b2(£)), it
follows that 8] must increase for (72) to hold. In other words, the riskier the distribution of loans
that the IFT insures, the more that it invests in the liquid asset.

To proceed we use a similar result to that of Lemma 2. It is straight forward to see that when the
beliefs of default are higher (as in the risky case), so must the price of the contracts be higher (this
can be shown in the same way that Lemma 2 was proved by showing that a net profit function is
decreasing in the amount of risk in the loans). Next we find what happens to counterparty risk.
What is different about the case of multiple banks is that the counterparty risk is defined relative
to the number of banks that default: B”;M gf(@*ﬁPMW) dF(9)db(€).

In the case where the IFI puts more weight on the loans being risky (pa = r), 5* and P* increase,
so that C(y — BP~) decreases. Furthermore, since from the point of view of a bank the probability
of a claim does not change, counterparty risk decreases as compared to when the IFI puts more

weight on the loans being safe (pg = s).
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Proof of Proposition 5. The proof proceeds in 3 steps. Steps 1 and 2 determine when the
pooling equilibria cannot exist. In particular, we use beliefs of the IFI for which banks have the
greatest incentive to pool. In step 1 we assume that all banks report that they are in the safe
industry (pa = s) and find a condition wherein at least one bank who received the aggregate shock
pa = r wishes to reveal it truthfully. In the second step we assume that all banks are reporting
that they are in the risky industry (ps = r) and find a condition wherein at least one bank who
received the aggregate shock py = s wishes to reveal it truthfully.?® Step 3 determines when a
unique separating equilibrium can exist. We use beliefs such that the banks have the least incentive
to separate. In this step we assume banks are separating and find the condition wherein both bank

types do not wish to deviate and be revealed as the other.

Step 1

Consider all banks reporting that they are safe (pg = s), regardless of the aggregate shock. Now
consider the incentive of banks who have received the aggregate shock p4 = r. Given that all banks
are reporting that they are safe, we need to find one bank who wishes to send the message that they
are risky (pa = r). If every bank reports that it is in the safe industry, the IFT does not update its
beliefs. However, if at least one bank deviates and says that it in the risky industry, then all banks
are believed risky, with the deviating bank(s) believed to have received highest idiosyncratic shock
(& = M) (or, if there is a measure of deviating banks, the highest measure of the idiosyncratic
shock). We know that the bank with the greatest incentive to be revealed as risky is the one with
the highest idiosyncratic shock, which we denote as bank M. Denote the probability of default

of the loan of this bank as p}, and the individual (total) pooling price as P]\%J (P%).27 Let the
individual separating price for a risky bank with the highest idiosyncratic shock be P;;, and let
the total price be P". Next, we denote the optimal investment choice of the IFI in the pooling
(separating) case by $'/2 (8"). Finally, we will let D'/2 (D") represent the probability that upon a
claim being made in the pooling (separating) case, the IFI is insolvent and cannot pay. It follows

_ 1/2 1/2 _prpr
that DV2 = [, ey, [0 AR (0)db(€) and DR = [, ch(“ B ETMY) G 1(0)db(€).

The condition under which this bank has the incentive to reveal its type truthfully can be written

as follows.

(1= ph)Rp + piyy(1 — D7) — piyyD"Z — 4Py > (1 — ply)Ri + phyy(1 — DY2) — phyyDY2Z —yPy[?
= vy (DV2 = D7) (1+ 2) 2 Py = Pf* (75)

Step 2

Consider all banks reporting that they are risky (p4 = r), regardless of the aggregate shock. Now
consider the incentive of banks who receive the aggregate shock p4 = s. We find the condition
under which a bank would like to reveal that it is safe (pa = s). Let the beliefs of the IFI be

26Note that there are other pooling equilibria in which some banks report differently than others. These can arise
when the IFIT’s beliefs are such that no new information is gleaned from the reports. Since these equilibria yield the
same outcome, we will focus only on the cases described.

2"TNote that the total price is the per unit price that the IFI receives, while the individual price is the per unit
price that a bank pays.
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that if all banks report that they are risky, with at least one reporting that it is safe, then the
banks are safe, with the deviating banks believed to have received the lowest idiosyncratic shock
(£ = 0) (again, if there is a measure of deviating banks, than they receive the lowest measure of
the idiosyncratic shocks). We know that the bank with the greatest incentive to be revealed as
safe is the one with the lowest idiosyncratic shock, call it bank 0. Denote the probability of default
for the loan of this bank as p{j and the individual price if they reveal themselves as safe as P]f/l.QS
We let the total price be P?. Finally, let 8° represent the optimal investment choice of the IFI
if bank 0 reports that it is safe. It follows that counterparty risk in this case can be defined by:
D$ = éﬁfps o Ig (Ev=A*P*MY) 41 (0)db(€). The condition under which this bank has the incentive to
reveal its type zruthfully can be written as follows.

(1 - p3)Re + (1 — D*) = pyyD*Z — vPir > (1 — p3)Rp + pigy(1 — DY?) — piyDY2Z — Py/?
=p; (D =D2)(1+2) < B - Py (T6)

From Lemma 9, we know that in the (aggregate) pooling case, there can be no separating equi-
librium in the idiosyncratic shock so that Pol/ 2 = PJ%/I/Q = PY2. Therefore (75) and (76) are

simultaneously satisfied when:

P2 — ps,
p5(D* = D?)

Py, — P2

>1472> M~
- ~ (D2 —Dr)

(77)

To see that (77) can hold, take the limit as pf approaches zero and set Z sufficiently high.

Step 3

We now find the conditions under which the separating equilibrium exists. Consider the case where
each bank is revealing its aggregate shock.?’ Let the beliefs of the IFI be as follows: if there is
at least one bank reporting that they are in the safe industry, with the rest reporting risky, then
everyone is believed to be in the safe industry. Because we are trying to show that a separating
equilibrium can exist, we take the simple case in which the resulting price for the deviating bank(s)
is P°. Since there can be no separating equilibrium in the idiosyncratic shock, we let Pj = P.
Next, if at least one bank reports that it is in the risky industry while the rest report that they are
safe, then everyone is believed risky, with the deviating bank(s) receiving the price P". Again, since
there can be no separation in the idiosyncratic shock, let Pj; = p®. The two cases are analyzed

below.

28Note that the price corresponds to the highest idiosyncratic shock because we find the condition under which a
bank is least likely to default.

2°Note that there are other separating equilibria where some report their type truthfully, while others do not. For
simplicity we will not consider these here.
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(1—ph)Rp +pyy(1 — D") — ptyD"Z —vP" > (1 — py)Rp + pyy(1 — D®) — phyD°Z — v P*°
= ph(D*—=D")(1+Z) > P —P° (18)

Turning to the second case, we derive the following condition.

(1= py)Re + pary(1 = D°) = pyyD*Z — yP* > (1 = piyy) R + piyy(1 — D7) — pyyyD"Z — v P"
= P"— PS> p3, (D5 — D7) (1+ Z)(79)
It follows that (78) and (79) are simultaneously satisfied when:

Py — P,
Py (DS — D7)

By — 1§

>(1+2Z) > —F—5~
(1+2) py (D* = D)

(80)
Since pj > pi;, these inequalities can be satisfied by choosing Z appropriately. It follows that the
separating equilibrium exists and is unique when both (77) and (80) are satisfied. To see that this
is possible, consider p3, and p{ sufficiently small so that for Z sufficiently large both the right hand
side of (77) and (80) are satisfied.

|
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