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Abstract

In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an im-
portant issue, and finite mixture models provide flexible ways to account for unobserved
heterogeneity. This paper studies nonparametric identifiability of type probabilities and
type-specific component distributions in finite mixture models of dynamic discrete choices.
We derive sufficient conditions for nonparametric identification for various finite mixture
models of dynamic discrete choices used in applied work. Three elements emerge as the
important determinants of identification; the time-dimension of panel data, the number of
values the covariates can take, and the heterogeneity of the response of different types to
changes in the covariates. For example, in a simple case, a time-dimension of T = 3 is
sufficient for identification, provided that the number of values the covariates can take is no
smaller than the number of types, and that the changes in the covariates induce sufficiently
heterogeneous variations in the choice probabilities across types. Type-specific components
are identifiable even when state dependence is present as long as the panel has a moderate
time-dimension (T ≥ 6). We also develop a series logit estimator for finite mixture models
of dynamic discrete choices and derive its convergence rate.

Keywords: Dynamic discrete choice models, finite mixture, nonparametric identification,
panel data, sieve estimator, unobserved heterogeneity.
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1 Introduction

In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important
issue. Finite mixture models provide flexible ways to account for unobserved heterogeneity,
and they are commonly used in empirical analysis. To date, however, the conditions under
which finite mixture dynamic discrete choice models are nonparametrically identified are not
well understood. This paper studies nonparametric identifiability of finite mixture models of
dynamic discrete choices when a researcher has an access to panel data. We also develop a series
logit estimator for finite mixture models of dynamic discrete choices.

Finite mixtures have been used in numerous applications, especially in estimating dynamic
models. In empirical industrial organization, Crawford and Shum (2005) use finite mixtures to
control for patient-level unobserved heterogeneity in estimating a dynamic matching model of
pharmaceutical demand. Gowrisankaran, Mitchell, and Moro (2005) estimate a dynamic model
of voter behavior with finite mixtures. In labor economics, finite mixtures are a popular choice
for controlling for unobserved person-specific effects when dynamic discrete choice models are
estimated (cf., Keane and Wolpin (1997), Cameron and Heckman (1998)). Heckman and Singer
(1984) use finite mixtures to approximate more general mixture models in the context of duration
models with unobserved heterogeneity.

In most applications of finite mixture models, the components of the mixture distribution are
assumed to belong to a parametric family. The nonparametric maximum likelihood estimator
(NPMLE) of Heckman and Singer (1984) treats the distribution of unobservables nonparamet-
rically but assumes parametric component distributions. Most existing theoretical work on
identification of finite mixture models either treats component distributions parametrically or
uses training data that are from known component distributions (cf., Titterington, Smith, and
Makov (1985), Rao (1992)); as Hall and Zhou (2003) state, “very little is known of the potential
for consistent nonparametric inference in mixtures without training data.”

This paper studies nonparametric identifiability of type probabilities and type-specific com-
ponent distributions in finite mixture dynamic discrete choice models. Specifically, we assess
the identifiability of type probabilities and type-specific component distributions when no para-
metric assumption is imposed on them. Our point of departure is Hall and Zhou (2003), who
prove nonparametric identifiability of two-type mixture models with independent marginals:

F (y) = π
T∏

t=1

F 1
t (yt) + (1− π)

T∏
t=1

F 2
t (yt), (1)

where F (y) is the distribution function of a T -dimensional variable Y and F j
t (yt) is the distri-

bution function of the t-th element of Y conditional on type j. Hall and Zhou show that type
probability π and type-specific components F j

t ’s are nonparametrically identifiable from F (y)
and its marginals when T ≥ 3, while they are not when T = 2. The intuition behind their result
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is as follows. Integrating out different elements of y from (1) gives lower-dimensional submodels:

F (yi1 , yi2 , . . . , yil) = π
l∏

s=1

F 1
is(yis) + (1− π)

l∏
s=1

F 2
is(yis), (2)

where 1 ≤ l ≤ T , 1 ≤ i1 < . . . < il ≤ T , and F (yi1 , yi2 , . . . , yil) is the l-variate marginal
distribution of F (y). Each lower-dimensional submodel implies a different restriction on the
unknown elements, i.e., π and F j

t ’s. F and its marginals imply 2T − 1 restrictions while there
are 2T + 1 unknown elements. When T = 3, the number of restrictions is the same as the
number of unknowns, and one can solve these restrictions to uniquely determine π and the F j

t ’s.
While their analysis provides the insight that lower-dimensional submodels (2) provide im-

portant restrictions for identification, it has limited applicability to the finite mixture models
of dynamic discrete choices in economic applications. First, it is difficult to generalize their
analysis to three or more types.1 Second, their model (1) does not have any covariates while
most empirical models in economics involve covariates. Third, the assumption that elements of
y are independent in (1) is not realistic in dynamic discrete choice models.

This paper provides sufficient conditions for nonparametric identification for various finite
mixture models of dynamic discrete choices used in applied work. Three elements emerge as
the important determinants of identification: the time-dimension of panel data, the number of
the values the covariates can take, and the heterogeneity of the response of different types to
changes in the covariates. For example, in a simple case, a time-dimension of T = 3 is sufficient
for identification, provided that the number of values the covariates can take is no smaller than
the number of types and that the changes in the covariates induce sufficiently heterogeneous
variations in the choice probabilities across types.

The key insight is that, in models with covariates, different sequences of covariates imply
different identifying restrictions in the lower-dimensional submodels; in fact, if d is the number
of support points of the covariates and T is the time-dimension, then the number of restrictions
becomes in the order of dT . As a result, the presence of covariates provides a powerful source
of identification in panel data even with a moderate time-dimension T .

We study a variety of finite mixture dynamic discrete choice models. We analyze the case
where conditional choice probabilities change over time because time-specific aggregate shocks
are present, or agents are finitely-lived. We consider a possibility that the transition function
of state variables is different across types. We also examine the case where state dependence
is present (for instance, when the lagged choice affects the current choice), and show that
type-specific components are identifiable as long as the panel has a moderate time-dimension

1When the number of types, M , is more than three, Hall et al. (2005) show that for any number of types,
M , there exists TM such that type probabilities and type-specific component distributions are nonparametrically
identifiable when T ≥ TM and that TM is no larger than (1 + o(1))6M ln(M) as M increases. But, as they state,
such an upper bound is “undoubtedly larger than the minimal value” of TM .
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of T ≥ 6. This result is important since distinguishing unobserved heterogeneity and state
dependence often motivates the use of finite mixture models in empirical analysis.

This paper also develops a series logit estimator for finite mixture models of dynamic discrete
choices and derives its convergence rate. Hirano et al. (2003) derives the convergence rate of
the (non-mixture) series logit estimator. Therefore, our work may be viewed as a generalization
of Hirano et al. (2003) to a finite mixture setting where the objective function is not globally
concave. This case is not covered by Chen (2006), who provides a comprehensive survey of
series (sieve) estimation methods of semi-nonparametric econometric models. In our Monte
Carlo experiment, we find that the performance of our series estimator is almost comparable to
that of the parametric maximum likelihood estimator in terms of the accuracy of the estimated
conditional choice probabilities.2

Nonparametric identification and estimation of finite mixture dynamic discrete choice mod-
els are relevant and useful in practical applications for, at least, the following reasons. First,
choosing a parametric family for the component distributions is often difficult because of a lack
of guidance from economic theory; nonparametric estimation provides a flexible way to reveal
the structure hidden in the data. Furthermore, even when theory offers guidance, comparing
parametric and nonparametric estimates allows us to examine the validity of the restrictions
imposed by economic theory.

Second, analyzing nonparametric identification helps us understand the identification of
parametric or semiparametric finite mixture models of dynamic discrete choices. Understanding
identification is not a simple task for finite mixture models even with parametric component dis-
tributions, and formal identification analysis is rarely provided in empirical applications. Once
type probabilities and component distributions are nonparametrically identified, the identifica-
tion analysis of parametric finite mixture models often becomes transparent as it is reduced to
the analysis of models without unobserved heterogeneity. As we demonstrate through examples,
our nonparametric identification results can be applied to check the identifiability of parametric
finite mixture models that are popular in empirical analysis.

Third, the identification results and series estimator of this paper will open the door to
applying semiparametric estimators for structural dynamic models to models with unobserved
heterogeneity. Recently, by building on the seminal work by Hotz and Miller (1993), computa-
tionally attractive semiparametric estimators for structural dynamic models have been developed
(Aguirregabiria and Mira (2002), Kasahara and Shimotsu (2006)), and a number of papers in
empirical industrial organization have proposed two/multi-step estimators for dynamic games
(cf., Bajari, Benkard, and Levin (2005), Pakes, Ostrovsky, and Berry (2005), Pesendorfer and
Schmidt-Dengler (2006), Bajari and Hong (2006), and Aguirregabiria and Mira (2006)). To

2Houde and Imai (2006) independently study nonparametric identification and estimation of dynamic dis-
crete choice model with unobserved heterogeneity and also find that series logit estimators perform well in their
simulations using various models that differ from ours.
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date, however, few of these semiparametric estimators have been extended to accommodate un-
observed heterogeneity. This is because these estimators often require an initial nonparametric
consistent estimate of type-specific component distributions, but it has not been known whether
one can obtain a consistent nonparametric estimate in finite mixture models.3 The identifica-
tion results and series estimator of this paper provides an apparatus that enables researchers
to apply these semiparametric estimators to the models with unobserved heterogeneity. This is
important since it is often crucial to control for unobserved heterogeneity in dynamic models
(see Aguirregabiria and Mira (2006)).

In a closely related paper, Kitamura (2004) examines nonparametric identifiability of finite
mixture models with covariates. Our paper shares his insight that the variation in covariates
may provide a source of identification, but the setting as well as the issues we consider is
different from Kitamura’s. We study discrete choice models in a dynamic setting with panel data,
while Kitamura considers regression models with continuous dependent variables with cross-
sectional data. We address various issues specific to dynamic discrete choice models including
identification in the presence of state dependence and type-dependent transition probabilities
for endogenous explanatory variables.

Our work provides yet another angle for analysis that relates current and previous work
on dynamic discrete choice models. Honoré and Tamer (2006) study identification of dynamic
discrete choice models, including the initial conditions problem, and suggest methods to calculate
the identified sets.4 Rust (1994), Magnac and Thesmar (2002), and Aguirregabiria (2006) study
the identification of structural dynamic discrete choice models.5 Our analysis is also related
to an extensive literature on identification of duration models (cf., Elbers and Ridder (1982),
Heckman and Singer (1984), Ridder (1990), and Van den Berg (2001)).

The rest of the paper is organized as follows. Section 2 discusses our approach to identification
and provide the identification results using a simple “baseline” model. Section 3 extends the
identification analysis of Section 2, and studies a variety of finite mixture dynamic discrete choice
models. In Section 4, we develop a series logit estimator for finite mixture models. Section 5
reports Monte Carlo simulation results. The proofs are collected in the Appendix.

3It is believed that it is not possible to obtain an consistent estimate of choice probabilities. For instance,
Aguirregabiria and Mira (2006) propose a pseudo maximum likelihood estimation algorithm for models with
unobserved heterogeneity but state that (p.15) “for [models with unobservable market characteristics] it is not
possible to obtain consistent nonparametric estimates of [choice probabilities]”. Furthermore, Geweke and Keane
(2001, p.3490) write that “the [Hotz and Miller’s] methods cannot accommodate unobserved state variables.”

4Honoré and Tamer consider general mixing distributions, but treat the conditional distribution of dependent
variable parametrically, and assume strict exogeneity of explanatory variables.

5Structural dynamic discrete choice models are not identified generically and, as Magnac and Thesmar (2002)
state, “the degree of underidentification is even larger with unobserved heterogeneity.” Our identification results
imply that the degree of underidentification in models with unobserved heterogeneity can be reduced to that of
models without unobserved heterogeneity.
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2 Nonparametric identification of finite mixture models of dy-

namic discrete choices

Every period, each individual makes a choice at from the discrete and finite set A, given the
value of the state variables (xt, at−1) ∈ X × A, where the lagged choice is included as one of
the state variables. Each individual belongs to one of M types, and his/her type attribute is
unknown. The conditional choice probability and the initial distribution are different across
types, and type m’s conditional choice probability is denoted by Pm(at|xt, at−1), while its initial
distribution (strictly speaking, density or probability mass function) of (x1, a1) is denoted by
p∗m(x1, a1).6 Type m’s transition probability function of the state variable xt is denoted by
fm(xt|xt−1, at−1). With a slight abuse of notation, we let p∗m(x1, a1) and fm(xt|xt−1, at−1)
denote the density of the continuously distributed elements of xt and the probability mass
function of the discretely distributed elements of xt, respectively.

Suppose we have a panel data with time-dimension equal to T . Each individual observation,
wit = {ait, xit}T

t=1, is drawn randomly from a M -term mixture distribution:

P ({at, xt}T
t=1) =

M∑
m=1

πmp∗m(x1, a1)
T∏

t=2

fm(xt|xt−1, at−1)Pm(at|xt, at−1), (3)

where πm are positive and sum to one. The left-hand-side of (3) is the distribution function of
the observable data while the right-hand-side contains the objects we would like to learn from
the observable data.

Remark 1 In practice, it is sometimes assumed that the distribution of the initial observation,
p∗m(x1, a1), is the stationary distribution satisfying the fixed point constraint

p∗m(x1, a1) =
∑
x′∈X

∑
a′∈A

Pm(a1|x1, a
′)fm(x1|x′, a′)p∗m(x′, a′), (4)

when all the components of x have finite support. When x is continuously distributed, we replace
the summation over x′ with integration. Our identification result, however, does not rely on the
stationarity assumption of the initial conditions.

The model (3) includes the following examples as special cases.

Example 1 (Dynamic discrete choice model with heterogeneous coefficients) Let θ′i =
(β′i, γi) be an individual-specific vector of unobserved variables which are multinomially dis-
tributed. Consider a dynamic binary choice model

Pm(ait = 1|xit, ai,t−1) = 1− Φ(x′itβi + ai,t−1γi), (5)
6Alternatively, we may consider the initial distribution of (x1, a0) as primitive and denote it by p∗m

0 (x1, a0).
Then, we may define p∗m(x1, a1) =

P
a′∈A p∗m

0 (x1, a
′)P m(a1|x1, a

′).
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where Φ(·) denotes standard normal cdf. The distribution of xit conditional on (xi,t−1, ai,t−1)
is specific to the value of θi. Since the evolution of (xit, ait)’s in the presample period is not
independent of θi, the initial distribution of (xi1, ai1) depends on the value of θi (cf., Heckman
(1981)). Browning and Carro (2006) estimate a version of (5) for the purchase of milk using a
Danish consumer “long” panel and provide evidence for heterogeneity in coefficients. Their study
illustrates that allowing for such heterogeneity can make a significant difference for outcomes of
interest such as the marginal dynamic effect.

Allowing for heterogeneity in coefficients is also important in analyzing the effect of policies
or treatments (cf., Heckman, Urzua, and Vytlacil (2006)). For instance, if xit is a treatment
variable and ait is a discrete outcome, then the impact of treatment on an outcome is different
across individuals. Furthermore, the process of xit may also depend on βi if the agents who
choose xit make their choices based on the gain from the treatment. The model (3) captures such
dependence by allowing for the transition function of xit—interpreted as treatment rules—to
depend on the value of βi.

Example 2 (Structural dynamic discrete choice models) The type m’s agent maximizes
the expected discounted sum of utilities, E[

∑∞
j=0 βj{u(xt+j , at+j ; θm) + εt+j(at+j)}|at, xt; θm],

where xt is observable state variable and εt(at) is state variable that are known to the agent but
not to the researcher. The Bellman equation for this dynamic optimization problem is

V (x) =
∫

max
a∈A

{
u(x, a; θm) + ε(a) + β

∑
x′∈X

V (x′)f(x′|x, a; θm)

}
g(dε|x), (6)

where g(ε|x) is the joint distribution of ε = {ε(j) : j ∈ A} and f(x′|x, a; θm) is type-specific
transition function. The conditional choice probability is

Pθm(a|x) =
∫

1

{
a = arg max

j∈A

[
u(x, j; θm) + ε(j) + β

∑
x′∈X

Vθm(x′)f(x′|x, j; θm)

]}
g(dε|x), (7)

where Vθm is the fixed point of (6). Let Pm(at|xt, at−1) = Pθm(at|xt) and fm(xt|xt−1, at−1) =
f(xt|xt−1, at−1; θm) in (3) and (4). The initial distribution of (x1, a1) is given by the stationary
distribution (4). Then, the likelihood function for {at, xt}T

t=1 is given by (3) with (4).

We study the nonparametric identifiability of the type probabilities, the initial distribution,
type-specific conditional choice probabilities, and type-specific transition function in equation
(3), which we denote by θ = {πm, p∗m(x, a), Pm(a′|x, a), fm(x′|x, a) : (a, a′, x, x′) ∈ A × A ×
X × X}M

m=1. Following the standard definition of nonparametric identifiability, θ is said to
be nonparametrically identified (or identifiable) if it is uniquely determined by the distribution
P ({at, xt}T

t=1), without making any parametric assumption about p∗m(x, a), Pm(a′|x, a), and
fm(x′|x, a). Because the order of the component distributions can be changed, θ is identified
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only up to a permutation of the components. If no two of the π’s are identical, we may uniquely
determine the components by assuming π1 < π2 < · · · < πM .

2.1 Our approach and identification of the baseline model

The finite mixture models studied by Hall and Zhou (2003) have no covariates as discussed in the
introduction. In this subsection, we show that the presence of covariates in our model creates a
powerful source of identification.

First, we impose the following simplifying assumptions to the general model (3) and analyze
the nonparametric identifiability of the resulting “baseline model.” Analyzing the baseline model
helps make clear the basic idea of our approach and clarifies the logic behind our main results.
In the subsequent sections, we relax Assumption 1 in various ways, and study how it affects the
identifiability of the resulting models.

Assumption 1 (a) The choice probability of at is independent of the lagged choice at−1 condi-
tional on xt so that Pm(at|xt) = Pm(at|xt, at−1), where at−1 is not one of the elements of xt.
(b) fm(xt+1|xt, at) > 0 for all (xt+1, xt, at) ∈ X × X × A and for all m. (c) The transition
function is common across types; fm(xt+1|xt, at) = f(xt+1|xt, at) for all m.

Under Assumption 1(a), the lagged choice at−1 affects the current choice at only through its
effect on xt via fm(xt|xt−1, at−1). Assumption 1(b) implies that, starting from any pair of the
state and action (x, a) ∈ X × A, any state x′ ∈ X is reached in the next period with positive
probability. With Assumption 1 imposed, the baseline model is

P ({at, xt}T
t=1) =

M∑
m=1

πmp∗m(x1, a1)
T∏

t=2

f(xt|xt−1, at−1)Pm(at|xt). (8)

Since f(x′|x, a) is nonparametrically identified directly from the data on (x′, x, a)’s (cf., Rust
(1987)), we may assume f(x′|x, a) is known without affecting the other parts of the argument.
Divide P ({at, xt}T

t=1) by the transition functions and define

P̃ ({at, xt}T
t=1) =

P ({at, xt}T
t=1)∏T

t=2 f(xt|xt−1, at−1)
=

M∑
m=1

πmp∗m(x1, a1)
T∏

t=2

Pm(at|xt), (9)

which can be computed from the observed data. Assumption 1 guarantees that P̃ ({at, xt}T
t=1)

is well-defined for any possible sequence of {at, xt}T
t=1 ∈ (A×X)T .

Let I = {i1, . . . , il} be a subset of the time indices, so that I ⊆ {1, . . . , T}, where 1 ≤ l ≤ T

and 1 ≤ i1 < . . . < il ≤ T . Integrating out different elements from (9) gives l-variate marginal
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version of P̃ ({at, xt}T
t=1), which we call lower-dimensional submodels

P̃ ({ais , xis}is∈I) =
M∑

m=1

πmp∗m(a1, x1)
l∏

s=2

Pm(ais |xis), when {1} ∈ I, (10)

and

P̃ ({ais , xis}is∈I) =
M∑

m=1

πm
l∏

s=1

Pm(ais |xis), when {1} /∈ I. (11)

In model (9), a powerful source of identification is provided by the difference in each type’s
response patterns to the variation of the covariate (x1, . . . , xT ). The key insight is that, for each
different value of (x1, . . . , xT ), (10) and (11) imply different restrictions on the type probabilities
and conditional choice probabilities. Let |X| denote the number of elements in X. The variation
of (x1, . . . , xT ) generates different versions of (10) and (11), providing restrictions whose number
is in the order of |X|T , while the number of the parameters {πm, p∗m(a, x), Pm(a|x) : (a, x) ∈
A×X}M

m=1 is in the order of |X|. This identification approach is much more effective than one
without covariates, in particular, when T is small.7

To keep the notation simple, we mainly focus on the case where A = {0, 1}. It is straight-
forward to extend our analysis to the case with a multinomial choice of a, but with heavier
notations. Note also that Chandra (1977) shows that a multivariate finite mixture model is
identified if its all marginal models are identified.

Our first proposition provides a sufficient condition for identification under Assumption 1.
The proposition extends the idea of the proof of nonparametric identifiability of finite mix-
ture models by Anderson (1954) and Gibson (1955) to models with covariates.8 The proof is
constructive. Define, for ξ ∈ X,

λ∗mξ = p∗m((a1, x1) = (1, ξ)) and λm
ξ = Pm(a = 1|x = ξ). (12)

Defining λ∗mξ = p∗m((a1, x1) = (0, ξ)) and λm
ξ = Pm(a = 0|x = ξ) does not change our argument.

Proposition 1 Suppose that Assumption 1 holds. Assume T ≥ 3. Let ξj, j = 1, . . . ,M − 1, be
elements of X, and define

L
(M×M)

=


1 λ1

ξ1
· · · λ1

ξM−1

...
...

. . .
...

1 λM
ξ1

· · · λM
ξM−1

 .

7For example, when T = 3 and A = {0, 1}, (10) and (11) imply at least
`|X|+2

3

´
different restrictions while

there are 3M |X| − 1 parameters.
8Anderson (1954) and Gibson (1955) analyze nonparametric identification of finite mixture models similar to

(9) but without covariates and derive a sufficient condition for nonparametric identifiability under the assumption
T ≥ 2M − 1. Madansky (1960) extends their analysis to obtain a sufficient condition under the assumption
2(T−1)/2 ≥ M . When T is small, the number of identifiable types by their method is quite limited.
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Suppose that there exists some {ξ1, . . . , ξM−1} such that L is nonsingular and that there exists k ∈
X such that λ∗mk 6= λ∗nk for any m 6= n. Then, {πm, {λ∗mξ , λm

ξ }ξ∈X}M
m=1 is uniquely determined

from {P̃ ({at, xt}3
t=1) : {at, xt}3

t=1 ∈ (A×X)3}.

Remark 2

1. The condition of Proposition 1 implies that all columns in L must be linearly independent.
Since each column of L represents the conditional choice probability of different types for a
given value of x, the changes in x must induce sufficiently heterogeneous variations in the
conditional choice probabilities across types. In other words, the observed state variable
must be relevant, and different types must respond to its changes differently.

2. The condition that λ∗mk 6= λ∗nk for some k ∈ X is satisfied if the initial distributions are
different across different types. If this condition is violated, then the initial distribution
cannot be used as a source of identification and, as a result, the requirement on T becomes
T ≥ 4 instead of T ≥ 3.

3. One needs to find only one set of M−1 points to construct a nonsingular L. The identifica-
tion of choice probabilities at all other points in X follows without any further requirement.

4. When X has |X| < ∞ support points, the number of identifiable types is at most |X|+ 1.
When x is continuously distributed, we may potentially identify as many types as we wish.

5. By partitioning X into M-1 disjoint subsets (Ξ1,Ξ2, . . . ,ΞM−1), we may characterize a
sufficient condition in terms of the conditional choice probabilities given a subset Ξj of X

rather than an element ξj of X.9

Proposition 1 gives a simple and intuitive sufficient condition for identification in terms of
the rank of the matrix L and the type-specific choice probabilities evaluated at k. In practice,
however, it may be difficult to check the rank condition of L because the elements of L are
functions of the component distributions. We develop a corollary that gives sufficient conditions
in terms of what we can easily estimate from the observed data.

For convenience, first collect notation. Fix at = 1 for all t in P̃ ({at, xt}3
t=1), and define the

resulting function as

F ∗
x1,x2,x3

= P̃ ({1, xt}3
t=1) =

M∑
m=1

πmλ∗mx1
λm

x2
λm

x3
, (13)

9For instance, consider a disjoint partition (Ξ1, . . . , ΞM−1) such that X = ∪M−1
j=1 Ξj . Define the probability of

events {at, {xt ∈ Ξjt}}T
t=1, where jt = 1, . . . , M − 1, by equation (8) but in terms of the initial probability of

(a1, {x1 ∈ Ξj1}), the transition function of {xt ∈ Ξjt} given (at−1, {xt−1 ∈ Ξjt−1}), and the conditional choice
probabilities given {xt ∈ Ξjt}. Then, a similar analysis gives a sufficient condition in terms of the matrix L in
which λ∗m

ξ and λm
ξ are replaced with λ∗m

Ξ = p∗m(a1 = 1, {x1 ∈ Ξ}) and λm
Ξ = P m(a = 1|{x ∈ Ξ}), respectively.
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where λ∗mx and λm
x are defined in (12). Next, integrate out (a1, x1) from P̃ ({at, xt}3

t=1) and fix
a2 = a3 = 1, and define the resulting function as

Fx2,x3 = P̃ ({1, xt}3
t=2) =

M∑
m=1

πmλm
x2

λm
x3

. (14)

Similarly, define the following “marginals” by integrating out other elements from P̃ ({at, xt}3
t=1)

and setting at = 1:

F ∗
x1,x2

= P̃ ({1, xt}2
t=1) =

∑M
m=1 πmλ∗mx1

λm
x2

, F ∗
x1,x3

= P̃ ({1, x1, 1, x3}) =
∑M

m=1 πmλ∗mx1
λm

x3
,

F ∗
x1

= P̃ ({1, x1}) =
∑M

m=1 πmλ∗mx1
,

Fx2 = P̃ ({1, x2}) =
∑M

m=1 πmλm
x2

, Fx3 = P̃ ({1, x3}) =
∑M

m=1 πmλm
x3

.

(15)
Note that F ∗

· involves (a1, x1) while F· does not contain (a1, x1). In fact, F ∗
x1,x2

= F ∗
x1,x3

if
x2 = x3 because Pm(a|x) does not depend on t, but we keep separate notations for the two
because later we analyze the case where the choice probability depends on t.

Corollary 1 Suppose that Assumption 1 holds. Assume T ≥ 3. Let k ∈ X and let ξj, j =
1, . . . ,M − 1, be elements of X. Evaluate F ∗

x1,x2,x3
, Fx2,x3 and their marginals at x1 = k, x2 =

ξ1, . . . , ξM−1, and x3 = ξ1, . . . , ξM−1, and arrange them into two M ×M matrices

P =


1 Fξ1 · · · FξM−1

Fξ1 Fξ1,ξ1 · · · Fξ1,ξM−1

...
...

. . .
...

FξM−1
FξM−1,ξ1 · · · FξM−1,ξM−1

 , Pk =


F ∗

k F ∗
k,ξ1

· · · F ∗
k,ξM−1

F ∗
k,ξ1

F ∗
k,ξ1,ξ1

· · · F ∗
k,ξ1,ξM−1

...
...

. . .
...

F ∗
k,ξM−1

F ∗
k,ξM−1,ξ1

· · · F ∗
k,ξM−1,ξM−1

 .

(16)
Suppose that there exists some {ξ1, . . . , ξM−1} such that P is of full rank and that all the

eigenvalues of P−1Pk take distinct values. Then, {πm, {λ∗mξ , λm
ξ }ξ∈X}M

m=1 is uniquely determined
from {P̃ ({at, xt}3

t=1) : {at, xt}3
t=1 ∈ (A×X)3}.

Corollary 1 gives a sufficient condition in terms of P and Pk, both of which can be constructed
from the distribution function of the observed data. We may check these conditions by computing
the sample counterpart of P and Pk for various {ξ1, . . . , ξM−1}’s. As discussed in Remark
2.5, we may also check the conditions by computing the sample counterpart of P and Pk for
various partitions Ξj ’s instead of elements ξj . The latter procedure is especially useful when x

is continuously distributed.
For the sake of brevity, in the subsequent analysis we provide sufficient conditions only in

terms of the rank of the matrix of the type-specific component distributions (e.g., L). In each
of the following propositions, sufficient conditions in terms of the distribution function of the
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observed data can easily be deduced from the conditions in terms of the type-specific component
distributions.

The identification method of Proposition 1 uses a set of restrictions implied by the joint
distribution of only (a1, x1, a2, x2, a3, x3). When the variation of (x1, x2, . . . , xT ) for T ≥ 4 is
available, we may adopt the approach of Madansky (1960) to use the information contained in
all xt’s, and extend the maximum number of identifiable types from in the order of |X| to in the
order of |X|(T−1)/2. Despite being more complex than Proposition 1, this proposition is useful
when T is large, making it possible to identify a large number of types even if |X| is small. For
notational simplicity, we assume |X| is finite and X = {1, 2, . . . , |X|}.

Proposition 2 Suppose that Assumption 1 holds. Assume T ≥ 3 is odd and define u = (T −
1)/2. Suppose X = {1, 2, . . . , |X|}. Define

Λ0 =


1
...
1

 , Λ1 =


λ1

1 · · · λ1
|X|

...
...

λM
1 · · · λM

|X|

 .

For l = 2, . . . , u, define Λl to be a matrix, each column of which is formed by choosing l columns
(unordered, with replacement) from the columns of Λ1 and taking their Hadamard product. There
are

(|X|+l−1
l

)
ways of choosing such columns, thus the dimension of Λ2 is M ×

(|X|+l−1
l

)
. For

example, Λ2 and Λ3 take the form

Λ2 =


λ1

1λ
1
1 · · · λ1

1λ
1
|X| λ1

2λ
1
2 · · · λ1

2λ
1
|X| · · · λ1

|X|λ
1
|X|

...
...

...
...

...
λM

1 λM
1 · · · λM

1 λM
|X| λM

2 λM
2 · · · λM

2 λM
|X| · · · λM

|X|λ
M
|X|

 ,

Λ3 =


λ1

1λ
1
1λ

1
1 · · · λ1

1λ
1
1λ

1
|X| λ1

2λ
1
1λ

1
2 · · · λ1

2λ
1
1λ

1
|X| · · · λ1

|X|λ
1
|X|λ

1
|X|

...
...

...
...

...
λM

1 λM
1 λM

1 · · · λM
1 λM

1 λM
|X| λM

2 λM
1 λM

2 · · · λM
2 λM

1 λM
|X| · · · λM

|X|λ
M
|X|λ

M
|X|

 .

Define an M × (
∑u

l=0

(|X|+l−1
l

)
) matrix Λ as

Λ = [Λ0,Λ1,Λ2, . . . ,Λu] .

Suppose (a)
∑u

l=0

(|X|+l−1
l

)
≥ M , (b) we can construct a nonsingular M×M matrix L� by setting

its first column as Λ0 and choosing other M − 1 columns from the columns of Λ other than Λ0,
and (c) there exists k ∈ X such that λ∗mk 6= λ∗nk for any m 6= n. Then {πm, {λ∗mj , λm

j }
|X|
j=1}M

m=1

is uniquely determined from {P̃ ({at, xt}T
t=1) : {at, xt}T

t=1 ∈ (A×X)T }.

12



Remark 3 In a special case where there is no covariates and |X| = 1, the matrix Λ becomes

Λ =


1 λ1

1 (λ1
1)

2 · · · (λ1
1)

u

...
...

...
...

1 λM
1 (λM

1 )2 · · · (λM
1 )u

 ,

and the sufficient condition of Proposition 2 reduces to (a) T ≥ 2M−1, (b) λm
1 6= λn

1 for any m 6=
n, and (c) λ∗m1 6= λ∗n1 for any m 6= n. Not surprisingly, the condition T ≥ 2M−1 coincides with
the sufficient condition of nonparametric identification of finite mixtures of binomial distributions
(Blischke (1964)). This set of sufficient condition also applies to the case where the covariates
have no time variation (x1 = · · · = xT ), such as race and/or sex.

Houde and Imai (2006) study nonparametric identification of finite mixture dynamic discrete
choice models by fixing the value of the covariate x (to x̄, for instance) and derive a sufficient
condition for T . They also consider a model with terminating state.

If the conditional choice probabilities of different types are heterogeneous and the column
vectors (λ1

x, . . . , λM
x )′ for x = 1, . . . , |X| are linearly independent, the rank condition of this

proposition is likely to be satisfied, since the Hadamard products of these column vectors are
unlikely to be linearly dependent, unless by a chance. The condition

∑u
l=0

(|X|+l−1
l

)
≥ M with

u = (T − 1)/2 of Proposition 2 is weaker than the condition |X|+ 1 ≥ M of Proposition 1 when
T ≥ 5.

3 Extensions of the baseline model

In this section, we relax Assumption 1 of the baseline model in various ways to accommodate
real-world applications and analyze nonparametric identifiability of resulting models.

3.1 Time-dependent conditional choice probabilities

The baseline model (8) assumes that conditional choice probabilities do not change over periods.
However, the agent’s decision rules may change over periods in some models, such as a model
with time-specific aggregate shocks or a model of finitely-lived individuals. In this subsection,
we keep the assumption of the common transition function, but extend our analysis to mixture
models with time-dependent choice probabilities and transition functions.

Assumption 2 For t = 2, . . . , T , (a) Pm
t (at|xt) = Pm

t (at|xt, at−1), where at−1 is not in the
elements of xt. (b) fm

t (xt+1|xt, at) = ft(xt+1|xt, at) for all m. (c) ft(xt+1|xt, at) > 0 for all
(xt+1, xt, at) ∈ X ×X ×A.

13



With time-dependent conditional choice probabilities, the mixture model we consider is

P ({at, xt}T
t=1) =

M∑
m=1

πmp∗m(x1, a1)
T∏

t=2

ft(xt|xt−1, at−1)Pm
t (at|xt),

where both conditional choice probabilities and transition functions are indexed by time sub-
script t. As in the previous section, we assume that the ft(xt|xt−1, at−1)’s are known and rewrite
the above equation as

P̃ ({at, xt}T
t=1) =

P ({at, xt}T
t=1)∏T

t=2 ft(xt|xt−1, at−1)
=

M∑
m=1

πmp∗m(a1, x1)
T∏

t=2

Pm
t (at|xt). (17)

The next proposition states a sufficient condition for nonparametric identification of the
mixture model (17). In the baseline model (8), the sufficient condition is summarized to the
invertibility of a matrix consisting of the conditional choice probabilities. In the time-dependent
case, this matrix of conditional choice probability becomes time-dependent, and hence its in-
vertibility needs to hold for each period. We consider the case of A = {0, 1}. Define, for ξ ∈ X,

λ∗mξ = p∗m((a1, x1) = (1, ξ)) and λm
t,ξ = Pm

t (at = 1|xt = ξ), t = 2, . . . , T.

Proposition 3 Suppose that Assumption 2 holds. Assume T ≥ 3. For t = 2, . . . , T − 1, let
ξt
j , j = 1, . . . ,M − 1, be elements of X and define

Lt
(M×M)

=


1 λ1

t,ξt
1
· · · λ1

t,ξt
M−1

...
...

. . .
...

1 λM
t,ξt

1
· · · λM

t,ξt
M−1

 .

Suppose there exists {ξt
1, . . . , ξ

t
M−1} such that Lt is nonsingular for t = 2, . . . , T and there exists

k ∈ X such that λ∗mk 6= λ∗nk for any m 6= n. Then, {πm, {λ∗mξ , {λm
t,ξ}T

t=2}ξ∈X}M
m=1 is uniquely

determined from {P̃ ({at, xt}T
t=1) : {at, xt}T

t=1 ∈ (A×X)T }.

The following proposition corresponds to Proposition 2 and relaxes the identification condi-
tion of Proposition 3 when T ≥ 5 by utilizing all the marginals of P̃ ({at, xt}T

t=1).

Proposition 4 Suppose Assumption 2 holds. Assume T ≥ 3 is odd and define u = (T − 1)/2.
Suppose X = {1, . . . , |X|}. Define

Λ̄0 =


1
...
1

 , Λ̄1 =


λ1

2,1 · · · λ1
2,|X|

...
...

λM
2,1 · · · λM

2,|X|

 .
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For l = 2, . . . , u, define Λ̄l to be a matrix whose elements consists of the l-variate product of
the form λm

2,j2
λm

3,j3
. . . λm

l,jl+1
, covering all possible l ordered combinations (with replacement) of

(j2, j3, . . . , jl+1) from (1, . . . , |X|). For example,

Λ̄2 =


λ1

2,1λ
1
3,1 · · · λ1

2,1λ
1
3,|X| λ1

2,2λ
1
3,1 · · · λ1

2,2λ
1
3,|X| λ1

2,|X|λ
1
3,1 · · · λ1

2,|X|λ
1
3,|X|

...
...

...
...

...
...

λM
2,1λ

M
3,1 · · · λM

2,1λ
M
3,|X| λM

2,2λ
M
3,1 · · · λM

2,2λ
M
3,|X| λM

2,|X|λ
M
3,1 · · · λM

2,|X|λ
M
3,|X|

 .

Define an M×
∑u

l=0 |X|l matrix Λ̄ as Λ̄ = [Λ̄0, Λ̄1, Λ̄2, . . . , Λ̄u]. Define L̄�
1 to be a M×M matrix

whose first column is Λ̄0 and whose other M − 1 columns are from the columns of Λ̄ but Λ̄0.
Define L̄�

2 to be a M ×M matrix whose first column is Λ̄0 and whose other columns are from
Λ̄l, 1 ≤ l ≤ u with λm

2,j2
λm

3,j3
. . . λm

l+1,jl+1
replaced with λm

u+2,ju+2
λm

u+3,ju+3
. . . λm

u+l+1,ju+l+1
.

Suppose (a)
∑u

l=0 |X|l ≥ M , (b) L̄�
1 and L̄�

2 are nonsingular, and (c) there exists k ∈ X such
that λ∗mk 6= λ∗nk for any m 6= n. Then, {πm, {λ∗mj , {λm

t,j}T
t=2}

|X|
j=1}M

m=1 is uniquely determined
from {P̃ ({at, xt}T

t=1) : {at, xt}T
t=1 ∈ (A×X)T }.

The proof is omitted because it is similar to that of Proposition 2. Note that
∑u

l=0 |X|l >∑u
l=0

(|X|+l−1
l

)
and the condition on |X| of Proposition 4 is weaker than that of Proposition 2.

This is because the choice probabilities depend on time and the order of the choices becomes
relevant for distinguishing different types. As a result, the number of restrictions implied by
the submodels, analogously defined to (10)-(11) but with time-subscript, is even larger in the
time-dependent case.

3.2 Type-specific transition functions

In empirical applications, we may encounter a case where the transition pattern of state variables
is heterogeneous across individuals, even after controlling for other observables.

In this subsection, we extend the baseline model (8) to accommodate type-specific transition
functions:

P ({at, xt}T
t=1) =

M∑
m=1

πmp∗m(x1, a1)
T∏

t=2

fm(xt|xt−1, at−1)Pm(at|xt). (18)

Namely, we relax Assumption 1(c), but still impose Assumption 1(a)-(b). To facilitate the discus-
sion, define st = (at, xt), q∗m(s1) = p∗m(x1, a1), and Qm(st|st−1) = fm(xt|xt−1, at−1)Pm(at|xt),
and rewrite the model (18) as

P ({st}T
t=1) =

M∑
m=1

πmq∗m(s1)
T∏

t=2

Qm(st|st−1). (19)
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Unlike the transformed baseline model (9), st appears both in Qm(st|s t−1) and Qm(st+1|s t), and
creates the dependence between these terms. This dependence causes two potential problems.
First, we can no longer integrate out an arbitrary st, say s2, and create the marginals. Second,
the variation of st affects P ({st}T

t=1) via both Qm(st|s t−1) and Qm(st+1|s t).
The first problem is solved relatively easily; we can still deduce the marginals by sequentially

integrating out “backwards,” by integrating out sT first, then sT−1, and so on. We just cannot
derive the marginals with respect to pairs of st such as (s1, s3). We solve the second problem
by considering the sequence (st−1, st, st+1) for various values of st while fixing the values of st−1

and st+1. Once st−1 and st+1 are fixed, the variation of st does not affect the state variables in
other periods because of the Markovian structure of Qm(st|st−1). As a result, we can use this
variation to distinguish different types. Let s̄ ∈ S = A×X be a fixed value of s, and define

π̃m
s̄ = πmq∗m(s̄), γm

s̄ (s) = Qm(s̄|s)Qm(s|s̄).

Assume T is even, and consider P ({st}T
t=1) with st = s̄ for odd t:

P ({st}T
t=1| st = s̄ for t odd) =

M∑
m=1

π̃m
s̄

 T−2∏
t=2,4,...

γm
s̄ (st)

Qm(sT |s̄). (20)

This conditional mixture model shares the property of independent marginals with (9), and
hence we can identify its components for each s̄ ∈ S.

The following proposition establishes a sufficient condition for nonparametric identification
of model (20). Because of the temporal dependence in st, the requirement on T becomes T ≥ 6.

Proposition 5 Suppose Assumption 1(a)-(b) holds. Assume T ≥ 6. Let ξj , j = 1, . . . ,M − 1,

be elements of S and define

Gs̄
(M×M)

=


1 γ1

s̄ (ξ1) · · · γ1
s̄ (ξM−1)

...
...

. . .
...

1 γM
s̄ (ξ1) · · · γM

s̄ (ξM−1)

 .

Suppose there exists some {ξ1, . . . , ξM−1} such that Gs̄ is nonsingular and there exists r ∈ S

such that Qm(r|s̄) 6= Qn(r|s̄) for any m 6= n. Then, {π̃m
s̄ , {γm

s̄ (s), Qm(s|s̄)}s∈S}M
m=1 is uniquely

determined from {P ({st}T
t=1) : {st}T

t=1 ∈ ST }.

Having identified {π̃m
s̄ , {γm

s̄ (s), Qm(s|s̄)}s∈S}M
m=1 for s̄, now we turn to the identification

of the primitive parameters πm, p∗m(a, x), fm(x′|x, a), and Pm(a|x). Repeating Proposition
5 for all s̄ ∈ S, we obtain πmq∗m(s) = πmp∗m(a, x) for all (a, x) ∈ A × X. Then, πm is
determined by πm =

∑
(a,x)∈A×X πmp∗m(a, x), and we identify p∗m(a, x) = (πmp∗m(a, x))/πm.

For the identification of the transition functions and the conditional choice probabilities, recall
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Qm(s|s̄) = fm(x|x̄, ā)Pm(a|x) with (ā, x̄) = s̄. Summing Qm(s|s̄) over a ∈ A gives fm(x|x̄, ā),
and we then have Pm(a|x) = Qm(s|s̄)/fm(x|x̄, ā).

Therefore, a sufficient condition for identifying the primitive parameters πm, p∗m(a, x),
fm(x′|x, a), and Pm(a|x) for all m,a, x, x′ is summarized as follows: T ≥ 6, |S| ≥ M − 1,
and, for all s̄ ∈ S, the matrix Gs̄ has rank M for some {ξ1, . . . , ξM−1}, and there exists r ∈ S

such that Qm(r|s̄) 6= Qn(r|s̄) for all m 6= n. These conditions are likely to hold if |S| � M and
the transition pattern of s is sufficiently heterogeneous across different types.

When T > 6, we can relax the condition |S| ≥ M − 1 of Proposition 5 by applying the argu-
ment of Proposition 2. Define γm

s̄,1(s1) = γm
s̄ (s1) and γm

s̄,2(s1, s2) = Qm(s̄|s1)Qm(s1|s2)Qm(s2|s̄),
and similarly define γm

s̄,l(s1, . . . , sl) for l ≥ 3 as a (l+1)-variate product of Qm(s′|s)’s of the form
Qm(s̄|s1)Qm(s1|s2) · · ·Qm(sl|s̄) for {st}l

t=1 ∈ Sl.

Proposition 6 Suppose Assumption 1(a)-(b) holds. Assume T > 6 and is even and define
u = (T − 4)/2. Suppose that S = {1, 2, . . . , |S|}. Define

Λ̃0 =


1
...
1

 , Λ̃1 =


γ1

s̄,1(1) · · · γ1
s̄,1(|S|)

...
. . .

...
γM

s̄,1(1) · · · γM
s̄,1(|S|)

 .

For l = 2, . . . , u, define Λ̃l to be a matrix whose elements consists of γm
s̄,l(s1, . . . , sl), covering all

possible unordered combinations (with replacement) of (s1, . . . , sl) from Sl. For example,

Λ̃2
(M×(|S|+1

2 ))
=


γ1

s̄,2(1, 1) · · · γ1
s̄,2(1, |S|) γ1

s̄,2(2, 2) · · · γ1
s̄,2(2, |S|) · · · γ1

s̄,2(|S|, |S|)
...

...
...

...
...

γ1
s̄,2(1, 1) · · · γ1

s̄,2(1, |S|) γ1
s̄,2(2, 2) · · · γ1

s̄,2(2, |S|) · · · γ1
s̄,2(|S|, |S|)

 .

Define an M×
∑u

l=0

(|S|+l−1
l

)
matrix Λ̃ as Λ̃ = [Λ̃0, Λ̃1, Λ̃2, . . . , Λ̃u], and define G�

s̄ to be a M×M

matrix consisting of M columns from Λ̃ but with the first column unchanged.
Suppose (a)

∑u
l=0

(|S|+l−1
l

)
≥ M , (b) G�

s̄ is nonsingular, and (c) there exists r ∈ S such that
Qm(r|s̄) 6= Qn(r|s̄) for any m 6= n. Then, {π̃m

s̄ , {γm
s̄,l(s1, . . . , sl) : (s1, . . . , sl) ∈ Sl}u

l=1, {Qm(s|s̄)}|S|s=1}M
m=1

is uniquely determined from {P ({st}T
t=1) : {st}T

t=1 ∈ (A×X)T }.

The identification of the primitive parameters πm, p∗m(a, x), fm(x′|x, a), Pm(a|x) follows
from using the argument in the paragraph that follows Proposition 5.

In some applications, the model has two types of state variables, zt and xt, where the
transition function of xt depends on types, while the transition function of zt is common across
types. In such a case, we may relax the requirement on T in Proposition 5 using the variation
of zt as a main source of identification.

We assume that the transition function of (x′, z′) conditional on (x, z, a) takes the form
g(z′|x, z, a)fm(x′|x, a), and impose an assumption analogous to Assumption 1(a)-(b):

17



Assumption 3 (a) Pm(at|xt, zt) = Pm(at|xt, zt, at−1), where (xt, zt) does not include at−1.
(b) fm(x′|x, a) > 0 for all (x′, x, a) ∈ X × X × A and g(z′|x, z, a) > 0 for all (z′, x, z, a) ∈
Z ×X × Z ×A and for m = 1, . . . ,M .

Under Assumption 3, consider a model

P ({at, xt, zt}T
t=1) =

M∑
m=1

πmp∗m(x1, z1, a1)

×
T∏

t=2

g(zt|xt−1, zt−1, at−1)fm(xt|xt−1, at−1)Pm(at|xt, zt). (21)

Then, assuming g(zt|xt−1, zt−1, at−1) is known and defining st = (at, xt), q̃∗m(s1, z1) =
p∗m(x1, z1, a1), and Q̃m(st|st−1, zt) = fm(xt|xt−1, at−1)Pm(at|xt, zt), we write this equation as

P̃ ({st, zt}T
t=1) =

P ({at, xt, zt}T
t=1)∏T

t=2 g(zt|xt−1, zt−1, at−1)
=

M∑
m=1

πmq̃∗m(s1, z1)
T∏

t=2

Q̃m(st|st−1, zt). (22)

Because st appears in both Q̃m(st|st−1, zt) and Q̃m(st+1|st, zt+1), we need to sequentially in-
tegrate out st’s backwards (i.e., sT , then sT−1, and so on), to obtain the lower dimensional
submodels of (22). This is similar to the previously analyzed case without zt. On the other
hand, the presence of an additional state variable zt provides another source of identification,
and we can identify the types by using the variation of zt, while fixing the value of {xt}T

t=1.
The next proposition provides a sufficient condition for nonparametric identification of the

model (22). Define, for s̄ ∈ S and h, ξ ∈ Z,

π̃m
s̄,h = πmq̃∗m(s̄, h), γ̃m

s̄ (ξ) = Q̃m(s̄|s̄, ξ).

Proposition 7 Suppose that Assumption 3 holds. Assume T ≥ 4. Define

Ḡs̄
(M×M)

=


1 γ̃1

s̄ (ξ1) · · · γ̃1
s̄ (ξM−1)

...
...

. . .
...

1 γ̃M
s̄ (ξ1) · · · γ̃M

s̄ (ξM−1)

 .

Suppose that there exists some {ξ1, . . . , ξM−1} such that Ḡs̄ is nonsingular and that there exists
(r, k) ∈ S × Z such that Q̃m(r|s̄, k) 6= Q̃n(r|s̄, k) for any m 6= n. Then {π̃m

s̄,h, {γm
s̄ (ξ)}ξ∈Z ,

{Q̃m(s|s̄, ξ)}(s,ξ)∈S×Z}M
m=1 is uniquely determined from {P̃ ({st, zt}T

t=1) : {st, zt}T
t=1 ∈ (S×Z)T }.

Repeating Proposition 7 for all (s̄, h) ∈ S × Z identifies π̃m
s̄,h for all (s̄, h) ∈ S × Z and

m = 1, . . . ,M , and we may obtain πm =
∑

(s̄,h)∈S×Z π̃m
s̄,h and q̃∗m(s, z) = π̃m

s,z/πm. The transi-
tion functions are obtained as fm(x′|x, a) =

∑
a′∈A Q̃m((a′, x′)|s, z), allowing us to identify the

conditional choice probabilities as Pm(a′|x, z) = Q̃m((a′, x′)|s, z)/fm(x′|x, a).
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The requirement of T = 4 is weaker than that of T = 6 in Proposition 5. This is because
Proposition 7 utilizes the variation of zt rather than that of xt as a main source of identification.
Consequently, its argument is not affected by the temporal dependence of xt. When T > 4, we
may apply the argument of Proposition 2 to relax the sufficient condition for identification in
Proposition 7, but we do not pursue it here; Proposition 6 provides a similar result.

3.3 Lagged dependent variable

In applications, including the lagged choice in explanatory variables for the current choice is
a popular way of specifying dynamic discrete choice models. We show that the models in the
previous subsection can be modified to include the lagged choice as an element of current state
variable and a similar set of conditions for identification can be derived.

First, consider the finite mixture model (3), which we restate here:

P ({at, xt}T
t=1) =

M∑
m=1

πmp∗m(a1, x1)
T∏

t=2

fm(xt|xt−1, at−1)Pm(at|xt, at−1), (23)

where the conditional choice probability, Pm(at|xt, at−1), contains lagged choice at−1 as one of
the conditioning variables. We assume the elements of xt do not include at−1, and Assumption
1(b) holds.

Define q∗m(s1) = p∗m(a1, x1) and Qm(st|st−1) = fm(xt|xt−1, at−1)Pm(at|xt, at−1) with st =
(at, xt). Then (23) can be written as (19), where the only difference from the original formulation
is the definition of Qm(st|st−1). Consequently, we may apply Proposition 5 and Proposition 6
to (23) and find a sufficient condition for nonparametric identification, including T ≥ 6 and the
rank of the matrix Gs̄ or G�

s̄.
We may also extend the model (23) to include an additional state variable zt, similarly

to (21). We simply need to replace Pm(at|xt, zt) in (21) with Pm(at|xt, zt, at−1) and apply
Proposition 7.

Example 3 (Identification of models with heterogeneous coefficients) Consider the model
of Example 1. Denote the ith observation’s type by mi ∈ {1, . . . ,M} so that (βi, γi) = (βmi , γmi)
and Pmi(ait = 1|xit, ai,t−1) = 1−Φ(x′itβ

mi +ai,t−1γ
mi). The initial observation, (ai1, xi1), is ran-

domly drawn from p∗mi(a1, x1) while the transition function of xit is given by fmi(xit|xi,t−1, ai,t−1).
If the conditions in Proposition 5 including T ≥ 6, |S| ≥ M − 1, and the rank of Gs̄ are

satisfied, then p∗m(a1, x1), fm(xt|xt−1, at−1), and Pm(at = 1|xt, at−1) = 1− Φ(x′tβ
m + at−1γ

m)
are identified for all m. Since x′tβ

m + at−1γ
m = Φ−1(1−Pm(at = 1|xt, at−1)), the identification

of type-specific coefficient (βm, γm) follows if the rank of the (dim(βm) + 1) × |A||X| Jacobian
matrix consisting of the derivatives of x′tβ

m + at−1γ
m with respect to the parameter (βm, γm) is

dim(βm) + 1.
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Example 4 (Dynamic discrete games) Consider the model of dynamic discrete games with
unobserved market characteristics studied by Aguirregabiria and Mira (2006), section 3.5. There
are Ni ex-ante identical “global” firms competing in Nh local markets. There are M market
types and each market’s type is common knowledge to all firms but unknown to a researcher.
In market h, of which type is mh, a firm i maximizes the expected discounted sum of profits
E[
∑∞

s=t βs−t{Π(xhs, ahs; θmh)+ εhis(ahis)}|aht, xht; θmh ], where xht is state variable that is com-
mon knowledge for all firms, while εhit(ahit) is state variable that is private information to firm
i. The state variable xht may contain the past choice ah,t−1. The researcher observes xht but
not εhit. There is no interaction across different markets.

Denote the strategy of firm i in market h by σh
i . Given a set of strategy functions σh =

{σh
i (x, εi) : i = 1, . . . , Ni}, the expected behavior of firm i from the viewpoint of the rest of

the firms is summarized by the conditional choice probabilities P σh

i (ai|x) =
∫

1{σh
i (x, εi) =

ai}g(εi|x)dεi, where g(εi|x) is a density function for ε = {ε(a) : a ∈ A}. By assuming that εi’s are
iid across firms, the expected profit and the transition probability of x for firm i under σh is given
by πσh

i (x, ai; θmh) =
∑

a−i∈AN−1

(∏
j 6=i P

σh

j (aj |x)
)

Π(x, ai, a−i; θmh) and fσh

i (x′|x, ai; θmh) =∑
a−i∈AN−1

(∏
j 6=i P

σh

j (aj |x)
)

f(x′|x, ai, a−i; θmh), respectively. Then the Bellman equation is

V σh

i (x; θmh) =
∫

max
ai∈A

{
πσh

i (x, ai; θmh) + εi(ai) + β
∑
x′∈X

V (x′)fσh
(x′|x, ai; θmh)

}
g(dε|x).

A set of strategy functions σh∗ in a stationary Markov perfect equilibrium satisfies σh∗(x, εi) =
arg maxai∈A{πσh∗

i (x, ai; θmh) + εi(ai) + β
∑

x′∈X V (x′)fσh∗
(x′|x, ai; θmh)}, and the equilibrium

conditional choice probabilities are given by P σ∗(ai|x; θmh) =
∫

1{ai = σh∗
i (x, εi)}g(dεi).

Suppose that a panel data {{{ahit, xhit}T
t=1}

Ni
i=1}

Nh
h=1 is available. Consider the asymptotics

where Nh → ∞ with Ni and T fixed. The initial distribution of (a, x) differs across market
types and is given by p∗m(a, x). Let Pm(ait|xit) = P σ∗(ait|xit; θm) and fm(xit|xi,t−1, ai,t−1) =
f(xit|xi,t−1, ai,t−1; θm). Then, for each market, the likelihood function becomes a mixture across
different unobserved market types:

P ({{ait, xit}T
t=1}

Ni
i=1) =

M∑
m=1

πm
Ni∏
i=1

p∗m(ai1, xi1)
T∏

t=2

Pm(ait|xit)fm(xit|xi,t−1, ai,t−1).

In this case, Ni plays a similar role to T for identification. If T = 2, we may apply the
argument of Proposition 5 to show that the choice probabilities are identified when T = 2,
Ni ≥ 3, and |X| ≥ M − 1 (and the corresponding rank conditions hold). When T and Ni are
large, we may apply the argument of Proposition 6 and the sufficient condition for identification
can be weakened to T ≥ 2, Ni ≥ 3, and

∑u
l=0

(|X|+l−1
l

)
≥ M , where u = (Ni − 1)(T − 1)/2 with

Ni odd. Once identification is established, we may consistently estimate the type-specific choice
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probabilities Pm’s using the series logit estimator discussed in Section 4 below.

3.4 Limited transition pattern

This section analyzes the identification condition of the model (3) when Assumption 1(b) is
relaxed. In some applications, the transition pattern of x is limited and not all x′ ∈ X is
reachable with a positive probability if one starts from (x, a). In such a case, a set of sequences
{at, xt}T

t=1 that can be realized with a positive probability also becomes limited, and the number
of restrictions from a set of the submodels becomes smaller and identification becomes harder.

Example 5 (Bus engine replacement model (Rust, 1987)) Suppose a ∈ {0, 1} is the re-
placement decision for a bus engine, where a = 1 corresponds to replacing a bus engine. Let x

denote the mileage of a bus engine with X = {1, 2, . . .}. The transition function of xt is

f(xt+1|xt, at; θ) =


θf,1 for xt+1 = (1− at)xt + at,
θf,2 for xt+1 = (1− at)xt + at + 1,
1− θf,1 − θf,2 for xt+1 = (1− at)xt + at + 2,
0 otherwise,

and not all x′ ∈ X can be realized from (x, a).

If f(x′|x, a) = 0 for some (x′, x, a) and not all x′ ∈ X can be reached from (a, x), then
P̃ ({at, xt}T

t=1) in (9) is not well-defined for some values of {at, xt}. Consequently, we cannot
integrate out arbitrary (xt, at) to construct a lower-dimensional submodel like (10). We han-
dle this problem by applying the approach developed in Proposition 7. Note that integrating
out aT from (8) causes no problem even if f(x′|x, a) = 0 for some (x′, x, a). Once aT is inte-
grated out, we can sequentially integrate out backwards xT , aT−1, xT−1, and so on, and deduce
lower-dimensional submodels P ({at, xt}τ

t=1) with 1 ≤ τ ≤ T. As in the previous sections, these
submodels constitute restrictions that can be used to pin down πm and Pm(a|x). We fix the val-
ues of (a1, x1) and (aτ , xτ ) and focus on the values of (at, xt) that is realizable between (a1, x1)
and (aτ , xτ ). The difference in response patterns between (a1, x1) and (aτ , xτ ) provides a source
of identification.

To fix the idea, assume T = 4, and fix at = 0 for all t, x1 = h, and xτ = k. We set at = 0
for all t to simplify the presentation, but it is possible to choose different sequences of {at}T

t=1.
Let Bh and Ch be subsets of X. We use the variations of x within Bh and Ch as a source of
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identification. Specifically, consider the following submodels

P (x1 = h, (x2, x3) ∈ Bh × Ch, x4 = k; at = 0 for all t),

P (x1 = h, x2 ∈ Bh, x3 = k; at = 0 for all t),

P (x1 = h, x2 ∈ Ch, x3 = k; at = 0 for all t),

P (x1 = h, x2 = k; at = 0 for all t).

For these submodels to provide restrictions for identification, the value of the transition function
f(x′|x, 0) in these submodels must be positive. In other words, all the points in Bh must be
reachable from h. If f(x|h, 0) = 0 for some x ∈ Bh, then the first and second equation become
zero for those values of x, and they provide no information for identifying types. In such a case,
we need to exclude a set of x’s with f(x|h, 0) = 0 from Bh. For the same reason, the first and
third equations imply that all the points in Ch must be reachable from all the points in Bh and
h. Finally, the first, third, and fourth equations imply that k must be reachable from all the
points in Bh and Ch and h.

We develop notations to state the restrictions on Bh and Ch formally. For a singleton
{x} ⊂ X, let Γ(a, {x}) = {x′ ∈ X : f(x′|x, a) > 0} denote a set of x′ ∈ X that can be reached
from (a, x) in the next period with a positive probability. For a subset W ⊆ X, define Γ(a,W )
as the intersection of Γ(a, {x})’s across all x’s in W : Γ(a,W ) = ∩x∈W Γ(a, {x}).

The following assumption summarizes the restrictions on Bh and Ch. Note that the choice of
Ch is affected by how Bh is chosen. If Assumption 1(b) holds, it is possible to set Bh = Ch = X.
The assumption Pm(a|x) > 0 is necessary to guarantee that the submodels are well-defined.

Assumption 4 (a) Pm(a|x) > 0 for all (a, x) ∈ A ×X and m = 1, . . . ,M . (b) h, k ∈ X, Bh,

and Ch satisfy

Bh ⊆ Γ(0, {h}), Ch ⊆ Γ(0, Bh) ∩ Γ(0, {h}), {k} ⊆ Γ(0, Ch) ∩ Γ(0, Bh) ∩ Γ(0, {h}).

The next proposition provides a sufficient condition for identification when Assumption 1(b)
is replaced with Assumption 4. Define, for h, ξ ∈ X,

πm
h = πmp∗m(a1 = 0, x1 = h) and λm

ξ = Pm(a = 0|x = ξ).

Proposition 8 Suppose that Assumptions 1(a),(c) and 4 hold. Suppose T = 4 and |Bh|, |Ch| ≥
M − 1. Let {ξb

1, . . . , ξ
b
M−1} and {ξc

1, . . . , ξ
c
M−1} be elements of Bh and Ch, respectively. Define

G̃1
(M×M)

=


1 λ1

ξb
1

λ1
ξb
2
· · · λ1

ξb
M−1

...
...

...
. . .

...
1 λM

ξb
1

λM
ξb
2

· · · λM
ξb
M−1

 , G̃2
(M×M)

=


1 λ1

ξc
1

λ1
ξc
2
· · · λ1

ξc
M−1

...
...

...
. . .

...
1 λM

ξc
1

λM
ξc
2

· · · λM
ξc
M−1

 .
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Suppose that G̃1 and G̃2 are nonsingular for some {ξb
1, . . . , ξ

b
M−1} and {ξc

1, . . . , ξ
c
M−1} and that

λm
k 6= λn

k for any m 6= n. Then {πm
h , λm

ξ : ξ ∈ Bh ∪ Ch}M
m=1 is uniquely determined from

{P̃ ({at, xt}T
t=1) : {at, xt}T

t=1 ∈ (A×X)T }.

Assuming that all the values of x’s can be realized in the initial period, we may repeat the
above argument for all possible values of x1’s to identify λm

ξ for any ξ ∈ ∪h∈XBh. Furthermore,
we can repeat the argument for different sequences of {at}4

t=1 to increase the identifiable elements
of Pm(a|x)’s. For instance, by choosing Bh = Γ(a, {h}), λm

l is identified for all l ∈ X if
the union of Γ(a, {h}) across different (a, h) ∈ A × X include all the elements of X so that
X = ∪(a,h)∈A×XΓ(a, {h}). This is a weak condition and is satisfied if X is an ergodic set.
However, setting Bh = Γ(a, {h}) may lead to a small number of identifiable types.

Example 5 (continued) In Example 5, assume the initial distribution p∗m(x, a) is defined as
the fixed point of the type-specific stationary distribution. Setting at = 0 for t = 1, . . . , 4, we have
Γ(0, {h}) = {h, h + 1, h + 2} for any h ∈ X. Choose Bh = {h, h + 1}, Ch = {h + 1, h + 2}, and
k = h+2, then (h, Bh, Ch, k) satisfy Assumption 4(b). If the other assumptions of Proposition 8
are satisfied, we can identify M = 3 types and {πmp∗m(0, x), Pm(0|x) : x = h, h+1, h+2}m=1,2,3.
This also identifies Pm(1|x), since Pm(1|x) = 1−Pm(0|x). Repeating for all h ∈ X, we identify
Pm(a|x) for all (a, x) ∈ A × X. We then identify p∗m(x, a) using Pm(a|x), f(x′|x, a) and the
fixed point constraint, while πm is determined as πmp∗m(0, x)/p∗m(0, x).

The sufficient condition of Proposition 8 does not allow one to identify many types when the
size of Bh or Ch is small. It is possible to identify more types when we can find a subset D of
X that is reachable from itself, namely D ⊆ Γ(0, D). For example, if the transition pattern is
such that Γ(0, {x}) = {x − 1, x, x + 1} for some x ∈ X, then the set {x − 1, x, x + 1} serves as
D. In such cases, we can apply the logic of Proposition 2 to identify many types if T > 4.

Assumption 5 (a) Pm(a|x) > 0 for all (a, x) ∈ A×X and m = 1, . . . ,M . (b) A subset D of
X satisfies D ⊆ Γ(0, D).

Set D = {d1, . . . , d|D|}. Define λ∗md = p∗m((a, x) = (1, d)) and λm
d = Pm(a = 1|x = d) for d ∈ D.

Under Assumption 5, replacing X with D and simply repeating the proof of Proposition 2 gives
the following proposition:

Proposition 9 Suppose Assumptions 1(a),(c) and 5 hold. Assume T ≥ 4 is odd and define
u = (T − 1)/2. Define Λr, r = 0, . . . , u, analogously to Proposition 2 other than (X, λ∗mξj

, λm
ξj

) is

replaced with (D,λ∗mdj
, λm

dj
). Define an M×(

∑u
l=0

(|D|+l−1
l

)
) matrix Λ as Λ = [Λ0,Λ1,Λ2, . . . ,Λu].

Suppose (a)
∑u

l=0

(|D|+l−1
l

)
≥ M , (b) we can construct a nonsingular M ×M matrix L� by

setting its first column as Λ0 and choosing the other M−1 columns from the columns of Λ but Λ0,
and (c) there exists dk ∈ D such that λ∗mdk

6= λ∗ndk
for any m 6= n. Then {πm, {λ∗mdj

, λm
dj
}|D|

j=1}M
m=1

is uniquely determined from {P̃ ({at, xt}T
t=1) : {at, xt}T

t=1 ∈ (A×X)T }.

23



For example, if |D| = 3 and T = 5, the number of identifiable types becomes
(
2
0

)
+
(
3
1

)
+
(
4
2

)
=

10. Identifying more types is also possible when the model has an additional state variable zt

whose transition pattern is not limited and there is a state x̄ such that P (x1 = · · · = xT = x̄) > 0
for some sequence of at. Then, for x = x̄, we can use the variation of zt and apply Proposition
7. This increases the number of identifiable types to |Z|+ 1.

3.5 Local identifiability of finite mixture models

Consider a general mixture model of dynamic discrete choices:

P ({st}T
t=1) =

M∑
m=1

πmq∗m1 (s1)
T∏

t=2

Qm
t (st|st−1), (24)

where the state space of s is given by a finite set S. In the following, extending the argument
of Goodman (1974), we derive the sufficient condition for local identifiability for (24).

Consider the case where T = 3 and q∗m1 (s) > 0 and Qm
t (s′|s) > 0 for all possible pairs of

(s′, s). The model (24) contains M(2|S|2−|S|)−1 unknown parameters while it provides a total
of |S|3 − 1 restrictions on q∗m1 (s) and Qm

t (s′|s).10 When M(2|S|2 − |S|) > |S|3, the number of
unknown parameters is necessarily larger than the number of restrictions, and thus the model
is not identifiable. While this condition puts a bound on the maximum identifiable number of
types, such a bound may not be so informative due to possible redundancy in the restrictions.

We consider next whether the parameter is uniquely determined from the restrictions imposed
by the model locally. We say the parameter θ = {πm, {qm

1 (s), Qm
t (s′|s) : (s′, s) ∈ S×S}T

t=1}M
m=1

is locally identifiable if it is uniquely determined from {P ({st}T
t=1) : {st}T

t=1 ∈ ST } within some
neighborhood of θ. See Rothenberg (1971) for the definition of local identifiability.

There are |S|3 − 1 nonlinear equations for M(2|S|2 − |S|) − 1 unknowns. The local iden-
tifiability can be established from the rank condition of a linearized version of these nonlinear
equations. Specifically, consider a M(2|S|2 − |S|) − 1 by |S|3 − 1 matrix, that consists of the
derivatives of the right-hand side of (24) with respect to the M(2|S|2 − |S|) − 1 parameters
evaluated at all the possible |S|3 − 1 points. The parameter θ is locally identifiable if the rank
of this matrix evaluated at θ is at least as large as the number of parameters, |S|3 − 1.

The next proposition generalizes the above argument.

Assumption 6 q∗m1 (s) > 0 and Qm
t (s′|s) > 0 for all (s′, s) ∈ S × S and t = 1, 2, . . . , T .

10Since
P

s∈S q∗m
1 (s) = 1 and

P
s′∈S Qm

t (s′|s) = 1, q∗m
1 (s) and Qm

t (s′|s) contain |S| − 1 and (|S| − 1)|S|
unknowns, respectively, for m = 1, . . . , M and t = 2, 3. There are also M−1 unknowns for πm’s. Thus, the model
contains M(|S| − 1 + 2(|S| − 1)|S|) + M − 1 = M(2|S|2 − |S|) − 1 parameters. On the other hand, the model
(24) provides |S|3 − 1 restrictions because there are |S|3 possible sequences of {at, xt}T

t=1 under the restrictionP
{at,xt}T

t=1
P ({at, xt}T

t=1) = 1.
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Proposition 10 Suppose that Assumptions 6 holds. Let J ≡ M(|S|− 1+(T − 1)(|S|− 1)|S|)+
M − 1 and K ≡ |S|T − 1. Let θ0 be the true parameter.

(a) If J > K, then θ is not uniquely determined from {P ({st}T
t=1) : {st}T

t=1 ∈ ST }.
(b) Consider a J by K matrix denoted by Γ(θ), which consists of the derivatives of the right-

hand side of (24) with respect to the J parameters. Assume that, in an open neighborhood of
θ0, Γ(θ) has constant rank and the elements of Γ(θ) are continuous functions of θ. Then, θ0 is
locally identifiable from {P ({st}T

t=1) : {st}T
t=1 ∈ ST } if the rank of Γ(θ0) is J .

T ≥ 3 is necessary for identification without imposing further restrictions because the number
of parameters is necessarily larger than the number of restrictions when T = 2. The proof of (a)
follows from counting the number of unknowns and restrictions, while the proof of (b) follows
from a standard result on Jacobians. When local identification condition of Proposition 10 fails,
we may apply the methods suggested by Honoré and Tamer (2006) to calculate the parameter
region identified from the set of restrictions implied by the model.

The local identification results similar to Proposition 10 may be derived for other models we
have considered so far. Propositions 1-8 provide sufficient conditions, but they do not always
utilize all the restrictions implied by the model. As a result, even in the case where the sufficient
conditions of these propositions are not satisfied, these models may be locally identified.

4 Series logit estimation of finite mixture models of dynamic

discrete choices

Assuming they are nonparametrically identified, we turn to the estimation of the models in
the previous sections. We use a series logit estimator to estimate type-specific conditional
choice probabilities Pm(a|x, a′) nonparametrically. The number of types, M , is assumed to be
known. We assume that the state variable x is continuously distributed and consider a binary
choice model with A = {0, 1}; a slight modification accommodates multiple choices but with
a more complicated notation. In practice, even when x has a discrete distribution, smoothing
estimators are preferred over the frequency estimator when |X| is large and data are sparse (see,
for example, a Monte Carlo simulation result in Aguirregabiria and Mira (2006)). There is also
a large literature in statistics on applying smoothing methods to discrete data (cf., Simonoff
(1995) (1996) and the references therein).

Let {rj(x) : j = 1, 2, . . .} denote a sequence of known basis functions and let RK(x) =
(r1(x), . . . , rK(x))′ be a K-vector of functions, where K denotes the number of basis functions
to be used. Using an orthogonal polynomial basis such as Chebyshev polynomials avoids mul-
ticollinearity problems. When x is one-dimensional, RK(x) includes the polynomials of x up to
power K−1. When x is r-dimensional, we need K = (n+1)r basis functions in order to include
powers in all elements of x, at least up to n, into RK(x) (see Hirano et al. (2003) p. 1177 for
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details). We assume K →∞ and K/N → 0.

Let {{ait, xit}T
t=1}N

i=1 be a panel data such that wi = {ait, xit}T
t=1 is randomly drawn from

model (3) across i’s from the population. The transition function fm(x′|x, a) is assumed to
be known, common across types. Assuming fm(x′|x, a) is unknown does not affect the results
as long as its estimate converges to f(x′|x, a) at an appropriate rate. The initial observation
(xi1, ai1) is assumed to be drawn from the type-specific stationary distribution implied by the
conditional choice probability and the transition probability. Let h∗ = {h∗(x, a) : (x, a) ∈ X×A,

infx,a h∗(x, a) > 0} be a possible initial distribution of (x, a), and let H be the space of h∗. Let
h = {h(a|x, a′) : (a, x, a′) ∈ A × X × A, 0 < h(a|x, a′) < 1} be a possible conditional choice
probability, and let P be the space of h. Define the operator Φ : H × P → H as (cf., equation
(4))

Φ(h∗;h)(x, a) =
∫

x′∈X

∑
a′∈A

h(a|x, a′)f(x|x′, a′)h∗(x′, a′)dz.

Letting φ(h) denote the fixed point of Φ(·;h), it follows that p∗m(x1, a1) = φ(Pm)(x1, a1), where
Pm = {Pm(a|x, a′) : (a, x, a′) ∈ A×X ×A}.

We approximate type-specific conditional choice probabilities by a series logit model. Specif-
ically, we estimate Pm(a|x, a′) by

hK(a = 1|x, a′; γa′m) = L(RK(x)′γa′m) = L(RK(x)′[a′γ1m + (1− a′)γ0m]),

and hK(a = 0|x, a′; γa′m) = 1−L(RK(x)′γa′m), where L(z) = exp(z)/(1+exp(z)) is the logistic
cdf and γa′m is a series coefficient vector for type m and a′ ∈ {0, 1}. Alternately, we may redefine
x to include a′ and approximate both Pm(a|x, 0) and Pm(a|x, 1) by a single series logit model.
If the lagged choice is not a part of the state variable, we set hK(a = 1|x; γm) = L(RK(x)′γm).
Define hK(γ0m, γ1m) = {hK(a|x, a′; γa′m) : (a, x, a′) ∈ A × X × A}, then the type-specific
likelihood function of the i-th observation is approximated by

`(wi; γ0m, γ1m) = φ
(
hK(γ0m, γ1m)

)
(xi1, ai1)

T∏
t=2

f(xit|xi,t−1, ai,t−1)hK(ait|xit, ai,t−1; γai,t−1m).

Define ζ = {πm, γ0m, γ1m}M
m=1. We obtain ζ̂K = {π̂m

K , γ̂0m
K , γ̂1m

K }M
m=1 as

ζ̂K = arg max
ζ∈ΘK

LN (ζ),

where ΘK is the space of admissible values of ζ specified later in Assumption 8, and LN (ζ) is
the log-likelihood function of the finite mixture series logit model

LN (ζ) =
1
N

N∑
i=1

ln

(
M∑

m=1

πm`(wi; γ0m, γ1m)

)
.

26



Then the series logit estimator of Pm(a = 1|x, a′) is P̂m(a = 1|x, a′) = L(RK(x)′γ̂a′m
K ). Define

the expectation of LN (ζ) as

Q(ζ) = E

[
ln

(
M∑

m=1

πm`(wi; γ0m, γ1m)

)]
.

We assume the following regularity conditions. Let || · ||∞ denote the sup norm, and let
p∗(x, a) =

∑M
m=1 πmp∗m(x, a) denote the stationary distribution of (x, a).

Assumption 7 (a) The support X of x is a compact subset of Rr. (b) f(x′|x, a) is bounded.
(c) Pm(a|x, a′) is s times continuously differentiable with respect to x with s/r ≥ 2 for all m.

(d) η = min1≤m≤M inf(x,a′)∈X×A Pm(1|x, a′)(1 − Pm(1|x, a′)) > 0. (e) p∗(x, a) is continuous,
bounded and bounded away from zero. (f) There exists an integer N ≥ 1 such that the operator
ΦN (·;h) is a contraction with modulus ρ < 1 with respect to || · ||∞ for any h ∈ P.

Assumption 8 (a) The parameter space is defined as ΘK = Π × ΓK × ΓK , where Π is a
M -dimensional simplex and ΓK satisfies

ΓK =
{

γ ∈ RK :
∣∣∣∣ inf
x∈X

L(RK(x)′γ)(1− L(RK(x)′γ))
∣∣∣∣ ≥ η/2

}
.

(b) Q(ζ) is continuous in ζ ∈ ΘK and uniquely maximized at ζ∗K . (c) Q(ζ) is twice continuously
differentiable in a neighborhood of ζ∗K and ∂2

∂ζ∂ζ′Q(ζ∗K) is negative definite.

(d) E| ln(
∑M

m=1 πm`(wi; γ0m, γ1m))| < ∞ for all ζ ∈ ΘK . (e) supx∈X E
∣∣∣∂φ(hm(ζ∗K))(x1,a1)

∂hm(a=1|x,a′)

∣∣∣2 < ∞
for a′ = 0, 1, where hm(ζ∗K)(a = 1|x, a′) = L(RK(x)γa′m∗).

Assumption 7(c) on the smoothness of Pm(a|x, a′) can be relaxed by using the splines instead
of polynomials (see Newey (1997)). Assumption 7(f) is often implicitly assumed in practice
because the stationary distribution is often computed by iterating the operator Φ(·;h) starting
from an arbitrary initial guess until it converges. Assumption 8(a) implies that ΘK is compact
while Assumption 8(b)-(d) are the standard assumptions for consistency. In practice, if ζ /∈ ΘK ,

numerical evaluation of lnL(RK(xit)′γa′m) or ln(1−L(RK(xit)′γa′m)) becomes unstable because
of the evaluation of ln(x) for x ∼ 0. Optimization algorithms for LN (ζ) return error messages
in these circumstances. Therefore, the value of ζ outside ΘK is unlikely to be in the domain of
optimization in practice. We can set ΘK = RK if the objective function is globally concave.

Hirano et al. (2003) show the convergence rate of the (non-mixture) series logit estimator.
The following lemma extends Lemmas 1 and 2 of Hirano et al. (2003) to a finite mixture series
logit estimator. Assumption 8 is stronger than the assumptions in Hirano et al. (2003) mainly
because of the lack of the global concavity of our finite-mixture objective function. Let πm

0

denote the true value of the type probabilities.
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Lemma 1 Suppose Assumptions 7 and 8 hold and 1/N + 1/K + K/N → 0. Then, for m =
1, . . . ,M,

max
a∈A

sup
x∈X

|φ(P̂m)(x, a)− φ(Pm)(x, a)| = Op(K(K−s/(2r) +
√

K/N)),

max
a′∈A

sup
x∈X

|P̂m(a = 1|x, a′)− Pm(a = 1|x, a′)| = Op(K(K−s/(2r) +
√

K/N)),

π̂m − πm
0 = Op(K−s/(2r) +

√
K/N).

Therefore, if s/r ≥ 3 and we choose K ∼ Nν with ν ∈ (0, 1/3), the convergence rate of
P̂m(a|x, a′) − Pm(a|x, a′) becomes N−α for some α > 0. For example, if s/r = 4, then setting
K = N1/5 achieves the optimal convergence rate N−1/5. We conjecture it is possible to extend
our result to the case where the initial distribution is nonparametrically estimated instead of
determined as the fixed point φ(P̂m). However, the convergence rate may become slower than
the one provided in the lemma.

This result allows us to apply various computationally attractive semiparametric estima-
tors for structural dynamic models listed in the introduction to the models with unobserved
heterogeneity. Kasahara and Shimotsu (2006) provides an example of such an application.11

Assumption 8(b)(c) imply that the parameter of the series models are uniquely identified.
In the following proposition, we provide sufficient conditions for Assumption 8(b)(c) in terms
of the primitive condition on nonparametric identifiability of the conditional choice probability.
Let hm = {hm(a|x, a′) : (a, x, a′) ∈ A×X ×A} denote a (generic) conditional choice probability
for type m, and consider ϑ = {πm, hm}M

m=1 as an infinite-dimensional parameter. Let ϑ0 =
{πm

0 , Pm}M
m=1 denote the true parameter value of ϑ. Define the space of ϑ as Θ̄ = ∆M × PM ,

where ∆M is a M -dimensional simplex. Define the expectation of the likelihood function as a
function of ϑ as

Q̃(ϑ) = E

[
ln

(
M∑

m=1

πm ˜̀(wi;hm)

)]
, (25)

where ˜̀(wi;hm) is the type-specific likelihood function of the i-th observation

˜̀(wi;hm) = φ(hm)(xi1, ai1)
T∏

t=2

f(xit|xi,t−1, ai,t−1)hm(ait|xit, ai,t−1).

Proposition 11 Suppose (a) Q̃(ϑ) is continuous, (b) for any ε > 0, Q̃(ϑ0) > supϑ∈Θ̄\Nε
Q̃(ϑ),

where Nε = {ϑ : ||ϑ− ϑ0||∞ ≤ ε}, and (c) Q̃(ϑ) is twice continuously Fréchet differentiable and
its second-order Fréchet derivative D2Q̃(ϑ) satisfies D2Q̃(ϑ0)[%, %] ≤ −λ < 0 for any % 6= 0.12

11Kasahara and Shimotsu (2006) show that, in structural discrete Markov decision models with unobserved
heterogeneity, it is possible to obtain an estimator that is higher-order equivalent to the MLE by iterating the
nested pseudo-likelihood (NPL) algorithm of Aguirregabiria and Mira (2002) sufficiently many, but finite times.

12Fréchet derivatives are the derivatives defined for mappings from one Banach space X to another Banach
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Then Assumption 8(b) and 8(c) hold for sufficiently large K.

5 Monte Carlo Experiments

In order to assess the performance of our series estimators, we use a version of Rust’s celebrated
bus engine replacement model. The reader is also referred to Rust (1987). Example 2 in this
paper provides a brief description of the dynamic discrete choice. We consider the specification
with a linear cost function

u(x, a; θ) =

{
−α0 for a = 1,
−0.01 · α1x for a = 0.

We use the transition function of x in Example 5. We assume that the transition function is
known and common across types, where (θf,1, θf,2) is set to (0.3, 0.3) unless stated otherwise.
There are M types of buses, where type m is characterized by a type specific parameter θm =
(αm

0 , αm
1 )′, and the probability of being type m in the population is πm for m = 1, 2, . . . ,M .

Define π = (π1, π2, . . . , πM−1)′. Let ζ = (π′, θ1′ , . . . , θM ′
)′ be the parameter to be estimated.

Let {{ait, xit}T
t=1}N

i=1 be a panel data set such that wi = {ait, xit}T
t=1 is randomly drawn

across i’s from the population. Conditional on being type m, the likelihood of observing wi is

`(wi; θm) = p∗(xi1; θm)Pθm(ai1|xi1)
T∏

t=2

Pθm(ait|xit), (26)

s.t. Pθm = Ψ(Pθm , θm), (27)

p∗(x; θm) =
|X|∑

x′=1

1∑
a′=0

Pθm(a′|x′)f(x|x′, a′)p∗(x′; θm), (28)

where Pθm is the fixed point of Ψ(·, θm) as defined by (27). p∗(x; θm) is the distribution (density)
function of the initial observation xi1 for type m, which is specified as the stationary distribution
of x for type m. The ML estimator of ζ is then defined as

ζ̂ = arg max
ζ∈ΘK

1
N

N∑
i=1

ln

(
M∑

m=1

πm`(wi; θm)

)
.

An N × T panel dataset is generated as follows. For each individual observation, its type is
drawn from a multinomial distribution. Given the realized type, say type m, its initial obser-
vation is drawn from the stationary distribution of type m. Then observations of replacement

space Y . When X is a Euclidean space, the Fréchet derivatives coincide with the standard derivatives. Concepts
such as the chain rule, product rule, higher-order and partial derivatives, Taylor expansion, and implicit function
theorem are defined analogously to the corresponding concepts defined for the functions in Euclidean spaces; see
Griffel (1985) and Zeidler (1986) for further details.
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decisions are drawn using the choice probabilities obtained by numerically solving the Bellman’s
equation of type m. Subsequent observations of x’s are drawn using the transition function.

The model is estimated using the series logit estimator discussed in section 4. The reported
results are based on 100 simulated samples. We first consider the case of two types with the
model parameters set to (π1, π2) = (0.5, 0.5), α1 = (10, 10), and α2 = (2, 2). Table 1 presents
the squared bias, variance, the root (integrated) mean squared error (RMSE) of the estimated
conditional choice probabilities, and type probabilities for various degrees of the polynomials in
basis functions. It shows a clear pattern for P̂m that, as the degrees of the polynomials increases,
the bias of P̂m decreases, while its variance increases. Thus, as we expect from Lemma 1, there
is a trade-off between bias and variance as we change the degrees of the polynomials. With the
sample size (N,T ) = (500, 10), the lowest values of the RMSE for P̂m is achieved with quartic
polynomials; when the sample size increases to (N,T ) = (2000, 10), the RMSE for P̂m is lowest
at the higher 5 degrees of polynomials.

The last two rows of Table 1 report the frequency at which different degrees of polynomials
are chosen by Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).13

AIC performs better than BIC in terms of the RMSE; AIC tends to choose lower degrees of
polynomials than that which achieves the lowest RMSE of P̂m, but AIC has smaller “bias” in
selecting the degrees of polynomials than BIC.

Table 2 compares the performance (bias, variance and RMSE) of the parametric maximum
likelihood estimator (MLE) and that of the series logit estimator with a cubic polynomial when
the model with two types is estimated. As a benchmark, we also report the results of the MLE
under complete data (i.e., in case that the types are completely observed). The table indicates
that the series approximation is quite good when the sample size is large, although the bias
persists even at (N,T ) = (2000, 10). When the sample size is as small as (N,T ) = (500, 3), the
RMSE is large for the series estimator, but even larger for the parametric MLE. Overall, the
series estimator performs comparably to the MLE in terms of the accuracy of the conditional
choice probability estimates.

Tables 3 and 4 present the results when three-type mixture models are estimated with the
model parameters set to (π1, π2, π3) = (1/3, 1/3, 1/3), α1 = (15, 15), α2 = (1, 1), and α3 = (4, 4).
Again, the performance of the series estimators is comparable to that of MLE. Increasing the
number of types from two to three leads to higher RMSE, and especially higher variance, as
noted from comparison of Tables 3 and 4 with Table 2. As the number of types increases while
fixing the degree of the polynomials, the total number of parameters in series logit functions to
be estimated also increases, leading to higher variance.

Table 5 reports the performance of the series logit estimator and MLE when transition
functions are type-specific and, therefore, are also estimated. The parameters for transition

13Stone (1977) shows the asymptotic equivalence of model selection by cross-validation and AIC in maximum
likelihood estimation.
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functions are set to (θ1
f,1, θ

1
f,2) = (0.4, 0.4) and (θ2

f,1, θ
2
f,2) = (0.2, 0.2). Other parameter values

are the same as those of Table 2. The performance of the series estimators is as good as that
of MLE even when type-specific transition functions are estimated simultaneously. In fact,
comparing Table 5 with Table 2, we notice that the RMSEs reported in Table 5 are smaller than
those reported in Table 2 for the same sample size. This suggests a possibility that the presence
of type-specific functions provides an extra source of identification for different types.

We use Chebyshev polynomials as basis functions. All the starting values for estimating
the mixture model with the incomplete data are from the estimates under the complete data
where the parameters are estimated for observations with known types. This appears to increase
numerical stability although there is a possibility of obtaining local maximum near the starting
values. The mixture model is estimated by maximizing the mixture of likelihood by first using
Nelder-Mead simplex method to obtain an estimate in the neighborhood of the optimum and
then using BFGS to further refine the estimate. We have also experimented with the EM
algorithm in place of Nelder-Mead simplex method and found that the simulation results are
very similar as long as we use good starting values obtained from estimating the model under the
complete data. However, computation time is substantially larger if we use the EM algorithm.

6 Appendix

6.1 Proof of Proposition 1 and Corollary 1

Define V = diag(π1, . . . , πM ) and Dk = diag(λ∗1k , . . . , λ∗Mk ). Define P and Pk as in (16). Then
P and Pk are expressed as (see (13)-(15))

P = L′V L, Pk = L′V DkL.

We now uniquely determine L, V , and Dk from P and Pk constructively. Since L is non-
singular, we can construct a matrix Ak = P−1Pk = L−1DkL. Because AkL

−1 = L−1Dk, the
eigenvalues of Ak determine the diagonal elements of Dk while the right-eigenvectors of Ak de-
termine the columns of L−1 up to multiplicative constants; denote the right-eigenvectors of Ak

by L−1K where K is some diagonal matrix. Now we can determine V K from the first row
of PL−1K because PL−1K = L′V K and the first row of L′ is a vector of ones. Then L′ is
determined uniquely by L′ = (PL−1K)(V K)−1 = (L′V K)(V K)−1. Having obtained L′, we
may determine V from the first column of (L′)−1P because (L′)−1P = V L and the first column
of L is a vector of ones. Therefore, we identify {πm, {λm

ξj
}M−1

j=1 }M
m=1 as the elements of V and L.

Once V and L are determined, we can uniquely determine Dζ = diag(λ∗1ζ , . . . , λ∗Mζ ) for any
ζ ∈ X by constructing Pζ in the same way as Pk and using the relationship Dζ = (L′V )−1PζL

−1.
Furthermore, for arbitrary ζ, ξj ∈ X, evaluate Fx2,x3 , Fx2 , and Fx3 defined in (14) and (15) at
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(x2, x3) = (ζ, ξj), and define

Lζ

(M×2)
=


1 λ1

ζ
...

...
1 λM

ζ

 , P ζ

(2×M)
=

[
1 Fξ1 . . . FξM−1

Fζ Fζ,ξ1 . . . Fζ,ξM−1

]
. (29)

Since P ζ = (Lζ)′V L, we can uniquely determine (Lζ)′ = P ζ(V L)−1. Therefore, {λ∗mζ }M
m=1 and

{λm
ζ }M

m=1 are identified for any ζ ∈ X. This completes the proof of Proposition 1, and Corollary
1 follows immediately. �

6.2 Proof of Proposition 2

The proof is similar to the proof of Proposition 1. Let T = (τ2, . . . , τp), 2 ≤ p ≤ T, be
a subset of {2, . . . , T}. Let X (T ) be a subset of {xt}T

t=2 with t ∈ T . For example, if T =
{2, 4, 6}, then X (T ) = {x2, x4, x6}. Starting from P̃ ({at, xt}T

t=1), integrating out (at, xt) if t /∈ T
and evaluating it at (a1, x1) = (1, k) and at = 1 for t ∈ T gives a “marginal” F ∗

k,X (T ) =
P̃ ({a1, x1} = {1, k}, {1, xt}τ∈T ) =

∑M
m=1 πmλ∗mk

∏
t∈T λm

xt
. For example, if T = {2, 4, 6}, then

F ∗
k,X (T ) =

∑M
m=1 πmλ∗mk λm

x2
λm

x4
λm

x6
. Integrating out (a1, x1) additionally and proceeding in a

similar way gives FX (T ) = P̃ ({1, xt}τ∈T ) =
∑M

m=1 πm
∏

t∈T λm
xt

.

Define V = diag(π1, . . . , πM ) and Dk = diag(λ∗1k , . . . , λ∗Mk ). Define P � = (L�)′V L� and
P �

k = (L�)′V DkL
�, then the elements of P � take the form

∑M
m=1 πm

∏
t∈T λm

xt
and can be

expressed as FX (T ) for some T and {xt}t∈T ∈ X |T |. Similarly, the elements of P �
k can be

expressed as F ∗
k,X (T ). For instance, if r = 3, T = 7, and both Λ and L� are M ×M , then P � is

given by

1 F1 · · · F|X| F11 · · · F|X||X| F111 · · · F|X||X||X|

F1

...
F|X| F|X|11 F|X||X||X||X|

F11

...
. . .

...
F|X||X|

F111 F111|X||X||X|
...

F|X||X||X| F|X||X||X|11 · · · F|X||X||X||X||X||X|



,

where the (i, j)th element of P � is Fσ, where σ consists of the combined subscripts of the (i, 1)th
and (1, j)th element of P �. For example, the (|X|+ 1, 2)th element of P � is F|X|1(= F1|X|). P �

k

is given by replacing Fσ in P � with F ∗
k,σ and setting the (1, 1)th element to F ∗

k .
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Consequently, P � and P �
k can be computed from the distribution function of the observed

data. By repeating the argument of the proof of Proposition 1, we determine L�, V , and Dk

uniquely from P � and P �
k first, and then Dζ = diag(λ∗1ζ , . . . , λ∗Mζ ) and Lζ for any ζ ∈ X from

P �, P �
ζ , L�, and P ζ , where Lζ and P ζ are defined in (29). �

6.3 Proof of Proposition 3

The proof is similar to the proof of Proposition 1. Define Pt and Pt,k analogously to P and Pk but
with λx2 and λx3 replaced with λt,xt and λt+1,xt+1 in the definition of F·’s and F ∗

· ’s. Define V and
Dk as before. Then Pt and Pt,k are expressed as Pt = L′

tV Lt+1 and Pt,k = L′
tV DkLt+1. Since

Lt and Lt+1 are nonsingular, we have Ak = P−1
t Pt,k = L−1

t+1DkLt+1. Because AkL
−1
t+1 = L−1

t+1Dk,
the eigenvalues of Ak determine the diagonal elements of Dk while the right-eigenvectors of Ak

determine the columns of L−1
t+1 up to multiplicative constants; denote the right-eigenvectors of

Ak by L−1
t+1K where K is some diagonal matrix. Now we can determine V K from the first row

of PtL
−1
t+1K because PtL

−1
t+1K = L′

tV K and the first row of L′
t is a vector of ones. Then L′

t

is determined uniquely by L′
t = (L′

tV K)(V K)−1. Having obtained L′
t, we may determine V

and Lt+1 from V Lt+1 = (L′
t)
−1P because the first column of V Lt+1 equals the diagonal of V

and Lt+1 = V −1(V Lt+1). Therefore, we determine {πm, {λm
t,ξt

j
, λm

t+1,ξt+1
j

}M−1
j=1 }M

m=1 as elements

of V , Lt, and Lt+1. Once V , Lt and Lt+1 are determined, we can uniquely determine Dζ =
diag(λ∗1ζ , . . . , λ∗Mζ ) for any ζ ∈ X by constructing Pt,ζ in the same way as Pt,k and using the
relationship Dζ = (L′

tV )−1Pt,ζ(Lt+1)−1. Furthermore, for arbitrary ζ ∈ X, define

Lζ
t

(M×2)

=


1 λ1

t,ζ
...

...
1 λM

t,ζ

 .

Then P ζ
t = (Lζ

t )
′V Lt+1 is a function of the distribution function of the observable data, and we

can uniquely determine (Lζ
t )
′ for 2 ≤ t ≤ T − 1 as P ζ

t (V Lt+1)−1. For t = T , we can use the
fact that (LT−1)′V Lζ

T is also a function of the distribution function of the observable data and
proceed in the same manner. Therefore, we can determine {λ∗mζ , λm

t,ζ}
M−1
j=1 for any ζ ∈ X and

2 ≤ t ≤ T . �
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6.4 Proof of Proposition 5

Integrating out st’s backwards from P ({st}6
t=1) and fixing s1 = s3 = s5 = s̄ gives the following

“marginals” :

F̃ ∗
s2,s4,s6

=
M∑

m=1

π̃m
s̄ γm

s̄ (s2)γm
s̄ (s4)Qm(s6|s̄), F̃ ∗

s2,s6
=

M∑
m=1

π̃m
s̄ γm

s̄ (s2)Qm(s6|s̄), F̃ ∗
s6

=
M∑

m=1

π̃m
s̄ Qm(s6|s̄),

F̃s2,s4 =
M∑

m=1

π̃m
s̄ γm

s̄ (s2)γm
s̄ (s4), F̃s2 =

M∑
m=1

π̃m
s̄ γm

s̄ (s2), F̃ =
M∑

m=1

π̃m
s̄ .

As in the proof of Proposition 1, evaluate these F̃·’s at s2 = ξ1, . . . , ξM−1, s4 = ξ1, . . . , ξM−1,
and s6 = r, and arrange them into two M ×M matrices

P̃ =


F̃ F̃ξ1 · · · F̃ξM−1

F̃ξ1 F̃ξ1,ξ1 · · · F̃ξ1,ξM−1

...
...

. . .
...

F̃ξM−1
F̃ξM−1,ξ1 · · · F̃ξM−1,ξM−1

 , P̃r =


F̃ ∗

r F̃ ∗
ξ1,r · · · F̃ ∗

ξM−1,r

F̃ ∗
ξ1,r F̃ ∗

ξ1,ξ1,r · · · F̃ ∗
ξ1,ξM−1,r

...
...

. . .
...

F̃ ∗
ξM−1,r F̃ ∗

ξM−1,ξ1,r · · · F̃ ∗
ξM−1,ξM−1,r

 .

Define Ṽs̄ = diag(π̃1
s̄ , . . . , π̃

M
s̄ ) and D̃r|s̄ = diag(Q1(r|s̄), . . . , QM (r|s̄)). Then P̃ and P̃r are

expressed as P̃ = G′
s̄Ṽs̄Gs̄ and P̃r = G′

s̄Ṽs̄D̃r|s̄Gs̄. Repeating the argument of the proof of
Proposition 1 shows that Gs̄, Gs̄, Ṽs̄, and D̃r|s̄ are uniquely determined from P̃ and P̃r, and that
D̃s|s̄ and γm

s̄ (s) can be uniquely determined for any s ∈ S and m = 1, . . . ,M . �

6.5 Proof of Proposition 6

Define Ṽs̄ = diag(π̃1
s̄ , . . . , π̃

M
s̄ ) and D̃r|s̄ = diag(Q1(r|s̄), . . . , QM (r|s̄)). Applying the argument of

the proof of Proposition 5 with Gs̄ replaced by G�
s̄, we can identify G�

s̄, Ṽs̄, and D̃r|s̄, and then
D̃s|s̄ and γm

s̄ (s) for any s ∈ S and m = 1, . . . ,M . The stated result immediately follows. �

6.6 Proof of Proposition 7

The proof uses the logic of the proof of Proposition 5. Consider a sequence {st, zt}4
t=1 with

(s1, s2, s3, s4) = (s̄, s̄, s̄, r) and (z1, z4) = (h, k). Summarize the value of s4 and z4 into ζ =
(r, k). For (z2, z3) ∈ Z2, define F̃ h∗

z2,z3,ζ =
∑M

m=1 π̃m
s̄,hγ̃m

s̄ (z2)γ̃m
s̄ (z3)Q̃m(r|s̄, k) and F̃ h

z2,z3
=∑M

m=1 π̃m
s̄,hγ̃m

s̄ (z2)γ̃m
s̄ (z3). Define F̃ h∗

z2,ζ =
∑M

m=1 π̃m
s̄,hγ̃m

s̄ (z2)Q̃m(r|s̄, k), and define F̃ h∗
ζ , F̃ h

z2
, and

F̃ h analogously to the proof of Proposition 5.
As in the proof of Proposition 5, arrange these marginals into two matrices P̄ h and P̄ h

ζ .
P̄ h and P̄ h

ζ are the same as P̃ and P̃r, but F̃· and F̃ ∗
·,r replaced with F̃ h

· and F̃ h∗
·,ζ and sub-

scripts are elements of Z instead of those of S. Define Ṽ h
s̄ = diag(π̃1

s̄,h, . . . , π̃M
s̄,h) and D̃ζ|s̄ =

diag(Q̃1(r|s̄, k), . . . , Q̃M (r|s̄, k)). It then follows that P̄ h = Ḡ′
s̄Ṽ

h
s̄ Ḡs̄ and P̄ h

ζ = Ḡ′
s̄Ṽ

h
s̄ D̃ζ|s̄Ḡs̄. By
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repeating the argument of the proof of Proposition 1, we can uniquely determine Ḡs̄, Ṽ h
s̄ , and

D̃ζ|s̄ from P̄ h and P̄ h
ζ , and, having determined Ḡs̄, determine D̃(s,z)|s̄ for any (s, z) ∈ S × Z. �

6.7 Proof of Proposition 8

For (x2, x3) ∈ Bh × Ch and xc ∈ Bh ∪ Ch, define F h∗
x2,x3,k =

∑M
m=1 π̃m

h λm
x2

λm
x3

λm
k , F h∗

xc,k =∑M
m=1 π̃m

h λm
xc

λm
k , F h∗

k =
∑M

m=1 π̃m
h λm

k , F h
x2,x3

=
∑M

m=1 π̃m
h λm

x2
λm

x3
, F h

xc
=
∑M

m=1 π̃m
h λm

xc
, and F h =∑M

m=1 π̃m
h . They can be constructed from sequentially integrating out P ({at, xt}4

t=1) backwards
and then dividing them by a product of f(xt|xt−1, 0). Note that Assumption 4(b) guarantees
f(xt|xt−1, 0) > 0 for all xt and xt−1 in the subsets of X considered.

As in the proof of Proposition 1, arrange these “marginals” into two matrices P h and P h
k .

P h and P h
k are the same as P and Pk but F· and F ∗

k,· replaced with F h
· and F h∗

·,k . Define
Vh = diag(π1

h, . . . , πM
h ) and Dk = diag(λ1

k, . . . , λ
M
k ). By applying the argument in the proof of

Proposition 3, we may show that G̃1, G̃2, Vh, and Dk are uniquely determined from P̃ ({at, xt}4
t=1)

and its marginals and then show that {λm
ξ }M

m=1 is determined for ξ ∈ Bh ∪ Ch. �

6.8 Proof of Lemma 1

In the following, C denotes a generic positive and finite constant which may take different
values in different places. As in Hirano et al. (2003), H03 henceforth, we use the matrix norm
||A|| = (tr(A′A))1/2. This norm satisfies the Cauchy-Schwartz inequality ||A′B|| ≤ ||A||||B||.
To simplify the notation, we assume that the lagged choice is not a part of the state variable.
Thus the conditional choice probability is Pm(a|x) and its estimate is hK(a = 1|x; γm) =
L(RK(x)′γm). Including the lagged choice does not affect the argument of the proof, apart from
additional notational complexity. We further assume that Assumption 7(f) holds with N = 1
but an analogous argument applies when N > 1.

First, we derive a bound of the estimation error of the initial distribution; for any hm, h̃m ∈ P,

||φ(h̃m)− φ(hm)||∞ ≤ C(1− ρ)−1 sup(a,x) |h̃m(a|x)− hm(a|x)|. (30)

To show (30), we first note that the triangular inequality gives

||φ(h̃m)− φ(hm)||∞ ≤ ||Φ(φ(h̃m); h̃m)− Φ(φ(hm); h̃m)||∞ + ||Φ(φ(hm); h̃m)− Φ(φ(hm);hm)||∞.

The first term on the right is no larger than ρ||φ(h̃m)−φ(hm)||∞ by the contraction property of Φ.

The second term on the right is no larger than ||
∫
x′
∑

a′(h̃
m(a|x)−hm(a|x))f(x|x′, a′)φ(hm)(x′, a′)dx′||∞,

and (30) follows. Thus, the bound of ||φ(P̂m) − φ(Pm)||∞ in the Lemma follows from that of
|P̂m(a|x)− Pm(a|x)|.

The rest of the proof is devoted to deriving the bound of |P̂m(a|x)−Pm(a|x)|. It uses some
of the arguments of H03. p∗(x) in H03 corresponds to our Pm(a|x). Following the argument of
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H03 pp. 1177-78, leading to their equation (29), we find that there is a γm
K such that

supx∈X

∣∣Pm(a = 1|x)− L(RK(x)′γm
K )
∣∣ ≤ CK−s/r, m = 1, . . . ,M. (31)

Hence, it follows from the triangular inequality that, uniformly in x,

|P̂m(a = 1|x)− Pm(a = 1|x)| ≤ |L(RK(x)′γ̂m
K )− L(RK(x)′γm

K )|+ CK−s/r. (32)

The first term on the right is bounded by, with γ̄ ∈ [γ̂m
K , γm

K ],

∣∣L′(RK(x)′γ̄)RK(x)′(γ̂m
K − γm

K )
∣∣ ≤ C supx∈X ||RK(x)|| · ||γ̂m

K − γm
K || ≤ CK||γ̂m

K − γm
K ||, (33)

where the first inequality follow from supγ∈Γk
|L′(RK(x)′γ)| < ∞ by Assumption 8(a), and the

second inequality follows from equation (21) of H03. Define ζK = {πm
0 , γm

K}M
m=1. Then, from

(32)-(33) and ||γ̂m
K − γm

K || ≤ ||γ̂m
K − γ∗mK || + ||γ∗mK − γm

K ||, the results in the Lemma hold if we
show there exists a finite constant C1 such that

(a) ||ζK − ζ∗K || ≤ C1K
−s/(2r) and (b) ||ζ∗K − ζ̂K || = Op(

√
K/N). (34)

We show (34)(a) first. Prior to showing (34)(a), we first need to show ||ζK−ζ∗K || < η for any
η > 0 and for sufficiently large K. Define ϑ and Q̃(ϑ) as in (25), then the information inequality
implies Q̃(ϑ0) ≥ Q̃(ϑ) for any ϑ ∈ Θ̄. In particular, since L(RK(x)′γm

K ), L(RK(x)′γ∗mK ) ∈ P, we
have Q̃(ϑ0) ≥ Q(ζ∗K) ≥ Q(ζK). On the other hand, (31) implies Q(ζK) ≥ Q̃(ϑ0)− C2K

−s/r for
a finite and positive constant C2. Consequently,

Q(ζK) ≥ Q(ζ∗K)− C2K
−s/r. (35)

Let Nη = {ζ : ||ζ − ζ∗K || < η} and suppose ζK /∈ Nη. Since Q(ζ) is continuous and ΘK is
compact, we have supζ∈Θk\Nη

Q(ζ) < Q(ζ∗K) (cf., Newey and McFadden (1994), Theorem 2.1)
and Q(ζ∗K) − Q(ζK) > ε for some ε > 0. However, (35) implies Q(ζ∗K) − Q(ζK) ≤ ε/2 for
sufficiently large K, contradicting ζK /∈ Nη. It follows that ||ζK − ζ∗K || < η.

Having established ||ζK − ζ∗K || < η, we proceed to show (34)(a). Let λmin(A) denote the
smallest eigenvalue of a matrix A. Assumption 8(c) implies that, if we take η sufficiently small,
λη = infζ∈Nη λmin[−(∂2/∂ζ∂ζ ′)Q(ζ)] > 0. Choose C1 so that ληC

2
1 ≥ 4C2. Suppose ||ζK−ζ∗K || >

C1K
−s/(2r). Then, with ζ̄ between ζK and ζ∗K ,

Q(ζK)−Q(ζ∗K) =
∂Q(ζ∗K)

∂ζ ′
(ζK − ζ∗K) +

1
2
(ζK − ζ∗K)′

∂2Q(ζ̄)
∂ζ∂ζ ′

(ζK − ζ∗K).

≤ −(1/2)ληC
2
1K−s/r ≤ −2C2K

−s/r,
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which contradicts to (35). This completes the proof of (34)(a).
We proceed to prove (34)(b). First, we show ζ̂K →p ζ∗K by showing that LN (ζ) is equicon-

tinuous. Write `(wi; γm) as φ(hK(γm))(xi1, ai1) × gi({RK(xit)′γm}T
t=2) for a function gi(·), so

that

LN (ζ) =
1
N

N∑
i=1

ln

(
M∑

m=1

πmφ(hK(γm))(xi1, ai1)× gi

(
{RK(xit)′γm}T

t=2

))
.

For ζ, ζ̃ ∈ ΘK , let hm and h̃m denote the conditional choice probability estimates implied by
RK(x)′γm and RK(x)′γ̃m, respectively. Applying the mean value theorem to LN (ζ) − LN (ζ̃),
with ζ̄ ∈ [ζ, ζ̃], gives:

LN (ζ)− LN (ζ̃) =
1
N

N∑
i=1

M∑
m=1

Am
1i(ζ̄)(πm − π̃m) +

1
N

N∑
i=1

M∑
m=1

Am
2i(ζ̄)(φ(hm)− φ(h̃m))(xi1, ai1)

+
1
N

N∑
i=1

M∑
m=1

T∑
t=2

Am
3it(ζ̄)RK(xit)′(γm − γ̃m), (36)

where supζ∈ΘK
||Am

ji(t)(ζ)|| < ∞ from Assumption 8(a). The first term on the right of (36) is
bounded by C||πm − π̃m||. For the third term on the right of (36), we have

E

∣∣∣∣∣
M∑

m=1

T∑
t=2

Am
3it(ζ̄)RK(xit)′(γm − γ̃m)

∣∣∣∣∣ ≤ C
M∑

m=1

T∑
t=2

E
∣∣RK(xit)′(γm − γ̃m)

∣∣ .
Because RK(x) may be chosen so that E[RK(xit)RK(xit)′] = IK (H03, p. 1177), where the
expectation is taken with respect to the stationary distribution of x, it follows that

E
∣∣RK(xit)′(γm − γ̃m)

∣∣ ≤
(
E
∣∣RK(xit)′(γm − γ̃m)

∣∣2)1/2

= [(γm − γ̃m)′E[RK(xit)RK(xit)′](γm − γ̃m)]1/2 = ||γm − γ̃m||.(37)

Hence the third term on the right of (36) is bounded by
∑M

m=1 ||γm − γ̃m|| in L1. Finally, the
second term on the right of (36) is bounded in L1 by

CE|(φ(hm)− φ(h̃m))(x, a)| ≤ C||φ(hm)− φ(h̃m)||∞ ≤ C sup(a,x) |hm(a|x)− h̃m(a|x)|, (38)

where the last inequality follows from (30). Let f∗(x) =
∑

a p∗(x, a) denote the stationary
distribution of x. Observe that supx |hm(a|x) − h̃m(a|x)| ≤ (infx f∗(x))−1 supx{|hm(a|x) −
h̃m(a|x)|f∗(x)} ≤ C

∫
x |h

m(a|x) − h̃m(a|x)|f∗(x)dx, where the last inequality follows because
|hm(a|x) − h̃m(a|x)|f∗(x) is continuous in x and bounded. Because hm(a|x) = Ba(RK(x)′γm)
for a continuously differentiable function Ba, the right hand side of (38) is bounded by (see also
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(37))

C

∫
x
|RK(x)′(γm − γ̃m)|f∗(x)dx = CE|RK(xit)′(γm − γ̃m)| ≤ C||γm − γ̃m||.

Consequently, for any ζ, ζ̃ ∈ ΘK , |LN (ζ) − LN (ζ̃)| ≤ ∆N with E|∆N | < C||ζ − ζ̃||. Hence,
LN (ζ) is stochastically equicontinuous (cf., proof of Lemma 2.9 of Newey and McFadden (1994)).
Assumption 8(d) implies LN (ζ) →p Q(ζ) for all ζ ∈ ΘK , and in conjunction with Assumption
8(b), we obtain supζ∈ΘK

|LN (ζ) − Q(ζ)| →p 0 by Lemma 2.8 of Newey and McFadden (1994).
ζ̂K →p ζ∗K follows from their Theorem 2.1.

Having established ζ̂K →p ζ∗K , we can expand ∂LN (ζ̂K)/∂ζ = 0 around ζ∗K with probability
approaching one to obtain

0 =
∂

∂ζ
LN (ζ∗K) +

∂2

∂ζ∂ζ ′
LN (ζ̄)(ζ̂K − ζ∗K). ζ̄ ∈ [ζ̂K , ζ∗K ]

By Assumption 8(c), for N large enough, we have λmin[−(∂2/∂ζ∂ζ ′)LN (ζ̄)] > ε > 0. Then
(34)(b) follows if we show ∂LN (ζ∗K)/∂ζ = Op(

√
K/N).

Note that ∂LN (ζ∗K)/∂γm = L1
N + L2

N , where

L1
N =

1
N

N∑
i=1

M∑
m=1

Am
2i(ζ

∗
K)
∫

∂φ(hm(ζ∗K))(xi1, ai1)
∂hm(a = 1|x)

RK(x)dx, L2
N =

1
N

N∑
i=1

M∑
m=1

T∑
t=2

Am
3it(ζ

∗
K)RK(xit),

and Am
2i(·) and Am

3it(·) are given in (36) and hm(ζ∗K)(a = 1|x) = L(RK(x)γm∗). For L1
N ,

note that E
∥∥∥∫ ∂φ(hm(ζ∗K))(xi1,ai1)

∂hm(a=1|x) RK(x)dx
∥∥∥2

≤ C3·tr(E[RK(xit)RK(xit)′]) = C3K with C3 =

supx∈X

(
E
∣∣∣∂φ(hm(ζ∗K))(x1,a1)

∂hm(a=1|x)

∣∣∣2/ f∗(x)2
)

< ∞ by Assumptions 7(e) and 8(e).14 For L2
N , note

that E||RK(xit)||2 = K. In conjunction with supζ∈ΘK
||Am

ji(t)(ζ)|| < ∞, we obtain ∂LN (ζ∗K)/∂γm =
Op(

√
K/N). Furthermore, ∂LN (ζ∗K)/∂πm = N−1

∑N
i=1

∑M
m=1 Am

1i(ζ
∗
K) = Op(

√
1/N) because

E[
∑M

m=1 Am
1i(ζ

∗
K)] = 0 by the information inequality. Therefore, ∂LN (ζ∗K)/∂ζ = Op(

√
K/N),

and the required result follows. �

14This follows from

E

‚‚‚‚Z
∂φ(hm(ζ∗K))(xi1, ai1)

∂hm(a = 1|x)
RK(x)dx

‚‚‚‚2

= tr

„Z Z
E

»
∂φ(hm(ζ∗K))(x1, a1)

∂hm(a = 1|x)

∂φ(hm(ζ∗K))(x1, a1)

∂hm(a = 1|z)

–
RK(x)RK(z)′dxdz

«
≤ C3tr

„Z Z
RK(x)RK(z)′f∗(x)f∗(z)dxdz

«
≤ C3tr

“
E[RK(x)RK(x)′]

”
,

where the expectation is taken with respect to the stationary distribution of (x1, a1) and the last two inequalities
use the Cauchy-Schwartz inequality.
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6.9 Proof of Proposition 11

To simplify the notation, we assume the lagged choice is not a part of the state variable. We
show the required result in two steps. Let ζ�K = {π�mK , γ�mK }M

m=1 be a maximizer of Q(ζ), which
may not necessarily be unique. First, we show ||ζ�K − ζK || < η for any η > 0. Second, we show
that infζ∈{ζ:||ζ−ζK ||<δ} λmin[−(∂2/∂ζ∂ζ ′)Q(ζ)] > 0 for some δ > 0. Then, it follows that ζ�K is
unique and λmin[−(∂2/∂ζ∂ζ ′)Q(ζ�K)] > 0.

Define the conditional choice probability implied by γm
K as hm

K(1|x) = L(RK(x)′γm
K ), and

define hm
K = {hm

K(a|x) : (a, x) ∈ A ×X} and ϑK = {πm
0 , hm

K}M
m=1. Similarly, define h�mK (1|x) =

L(RK(x)′γ�mK ), h�mK = {h�mK (a|x) : (a, x) ∈ A×X}, and ϑ�K = {π�mK , h�mK }M
m=1. Then, repeating

the argument leading to (35) gives Q̃(ϑ0) ≥ Q̃(ϑ�K) ≥ Q̃(ϑK) ≥ Q̃(ϑ0) − C4K
−s/r for a finite

and positive constant C4, which implies ||ϑ�K − ϑ0||∞ < η/2 and ||ϑK − ϑ0||∞ < η/2 for any
η > 0 and for sufficiently large K. Hence ||ϑ�K − ϑK ||∞ < η follows.

We proceed to show ||ζ�K−ζK ||2 ≤ C||ϑ�K−ϑK ||2∞. Observe that ||h�mK −hm
K ||2∞ ≥ supx |L(RK(x)′γ�mK )−

L(RK(x)′γm
K )|2. Since |L′(RK(x)′γ)| is bounded and bounded away from zero for any γ ∈ ΓK by

Assumption 8(a), we have supx |L(RK(x)′γ�mK )−L(RK(x)′γm
K )|2 ≥ C supx |RK(x)′(γ�mK − γm

K )|2

with C = infx,γ |L′(RK(x)′γ)|2. Now, since f∗(x) ∈ (0,∞), we have

sup
x
|RK(x)′(γ�mK − γm

K )|2 ≥ C

∫
|RK(x)′(γ�mK − γm

K )|2f∗(x)dx

= CE|RK(xit)′(γ�mK − γm
K )|2 = ||γ�mK − γm

K ||2,

and it follows that ||ζ�K − ζK ||2 ≤ C||ϑ�K − ϑK ||2∞. Since η is arbitrary, ||ζ�K − ζK || < η follows.
For the second result, because hm

K(a|x) is a function of ζK , we may write ϑK = ϑ(ζK) for a
function ϑ(·). It follows that Q(ζK) = Q̃(ϑ(ζK)), and taking the second-order derivative of both
sides with respect to ζ and multiplying by ζ from the left and the right give, for any ζ ∈ ΘK ,

ζ ′
∂2Q(ζK)
∂ζ ′∂ζ

ζ = D2Q̃(ϑ(ζK))
[
∂ϑ(ζK)

∂ζ
ζ,

∂ϑ(ζK)
∂ζ

ζ

]
+ 2DQ̃(ϑ(ζK))

[
ζ ′

∂2ϑ(ζK)
∂ζ ′∂ζ

ζ

]
.

Then infζ∈{ζ:||ζ−ζK ||<δ} λmin[−(∂2/∂ζ∂ζ ′)Q(ζ)] > 0 follows from ||ϑK −ϑ0||∞ < η for any η > 0,
Assumption (c), DQ̃(ϑ0) = 0 (zero operator) and the continuity of DQ̃(ϑ) and D2Q̃(ϑ). �
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Table 1: Performance of Series Logit Estimator under different degrees of the polynomials

(N, T ) = (500, 10) (N, T ) = (2000, 10)

Degree of Polynomials 2 3 4 5 6 2 3 4 5 6

1000×Bias2 of P̂ m 1.0780 0.3210 0.0657 0.0449 0.0254 1.0236 0.2891 0.0648 0.0476 0.0317

1000×Variance of P̂ m 0.2707 0.3510 0.5263 0.6079 0.9139 0.0618 0.0846 0.1299 0.1364 0.1927

RMSE of P̂ m 0.0367 0.0259 0.0243 0.0256 0.0306 0.0329 0.0193 0.0140 0.0136 0.0150

1000×Bias2 of π̂ 0.5392 0.0857 0.0249 0.2519 0.4111 0.3159 0.0112 0.0010 0.0031 0.0385
1000×Variance of π̂ 1.2825 1.6346 1.9402 3.1487 3.3385 0.3105 0.3929 0.4815 0.5822 0.8096
RMSE of π̂ 0.0427 0.0415 0.0443 0.0583 0.0612 0.0250 0.0201 0.0220 0.0242 0.0291

Frequency Selected by
AIC 24 53 17 4 2 1 24 65 4 6
BIC 87 13 0 0 0 11 85 4 0 0

Notes: Based on 100 simulated samples. The number of types is set to two. The sample size is (N, T ) = (500, 10). The

model parameters are set to: (π1, π2) = (0.5, 0.5), α1 = (10, 10), and α2 = (2, 2). Reported numbers for P̂ m are average

across states and types.

Table 2: Performance of Series Logit Estimator and Parametric Maximum Likelihood Estimator
for Pm and π (two types)

P m π
Incomplete Data Complete Data Incomplete Complete

Series Logit MLE MLE Series MLE MLE
m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

N = 500 1000×Bias2 0.1542 0.3678 0.1316 0.7211 0.0206 0.0029 3.3513 1.8457 0.0096
T = 3 1000×Variance 2.2603 2.7179 2.6998 5.3706 0.5136 0.4563 9.1492 15.1517 0.6004

RMSE 0.0491 0.0555 0.0532 0.0780 0.0231 0.0214 0.1118 0.1304 0.0247

N = 500 1000×Bias2 0.1260 0.4121 0.0846 0.1582 0.0036 0.0017 0.3549 0.0937 0.0060
T = 5 1000×Variance 1.1455 0.8314 1.9855 2.5664 0.4168 0.3786 5.3843 8.8271 0.5317

RMSE 0.0357 0.0353 0.0455 0.0522 0.0205 0.0195 0.0758 0.0944 0.0232

N = 500 1000×Bias2 0.0578 0.5890 0.0070 0.0003 0.0032 0.0045 0.0911 0.0431 0.0114
T = 10 1000×Variance 0.4561 0.2584 0.4478 0.4857 0.2269 0.2172 1.6148 1.8202 0.5839

RMSE 0.0227 0.0291 0.0213 0.0220 0.0152 0.0149 0.0413 0.0432 0.0244

N = 2000 1000×Bias2 0.1138 0.4408 0.0291 0.0393 0.0026 0.0002 0.6471 0.0068 0.0000
T = 3 1000×Variance 0.3714 0.3164 0.5185 1.0567 0.0887 0.1086 2.2959 4.0910 0.1075

RMSE 0.0220 0.0275 0.0234 0.0331 0.0096 0.0104 0.0542 0.0640 0.0104

N = 2000 1000×Bias2 0.0778 0.4745 0.0025 0.0056 0.0000 0.0004 0.3570 0.0514 0.0010
T = 5 1000×Variance 0.2590 0.1956 0.3012 0.4281 0.0779 0.0875 1.2365 1.9300 0.1126

RMSE 0.0184 0.0259 0.0174 0.0208 0.0088 0.0094 0.0399 0.0445 0.0107

N = 2000 1000×Bias2 0.0530 0.5252 0.0020 0.0040 0.0014 0.0005 0.0112 0.0000 0.0000
T = 10 1000×Variance 0.0926 0.0766 0.0975 0.1410 0.0453 0.0603 0.3929 0.4917 0.0927

RMSE 0.0121 0.0245 0.0100 0.0120 0.0068 0.0078 0.0201 0.0222 0.0096

Notes: Based on 100 simulated samples. Cubic polynomials are used in the series logit estimator. The model parameters

are set to: (π1, π2) = (0.5, 0.5), α1 = (10, 10), and α2 = (2, 2).
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Table 3: Performance of Series Logit Estimator and Parametric Maximum Likelihood Estimator
for Pm (three types)

Incomplete Data Complete Data
Series Logit MLE MLE

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

N = 500 1000×Bias2 0.4580 0.3132 4.0997 1.0423 1.8160 2.8257 0.0116 0.0376 0.0028
T = 5 1000×Variance 8.1276 11.5557 25.4937 12.3535 20.6446 31.1327 0.8243 1.1771 0.3056

RMSE 0.0927 0.1089 0.1720 0.1157 0.1499 0.1843 0.0289 0.0349 0.0176

N = 500 1000×Bias2 0.4645 0.2978 0.3810 0.7467 0.4774 0.2678 0.0236 0.0039 0.0011
T = 10 1000×Variance 3.8790 5.3353 2.0695 5.4977 10.8451 3.9569 0.3413 0.7509 0.2166

RMSE 0.0659 0.0751 0.0495 0.0790 0.1064 0.0650 0.0191 0.0275 0.0148

N = 2000 1000×Bias2 0.0460 1.3345 1.1407 0.2542 0.0910 0.9240 0.0032 0.0023 0.0008
T = 5 1000×Variance 1.3847 1.4514 6.9258 3.1676 7.0027 6.9142 0.1577 0.2445 0.0721

RMSE 0.0378 0.0528 0.0898 0.0585 0.0842 0.0885 0.0127 0.0157 0.0085

N = 2000 1000×Bias2 0.0127 0.6411 0.4888 0.0209 0.0217 0.0138 0.0015 0.0015 0.0000
T = 10 1000×Variance 0.3429 0.3446 0.3165 0.6456 0.6921 0.3464 0.0863 0.1869 0.0456

RMSE 0.0189 0.0314 0.0284 0.0258 0.0267 0.0190 0.0094 0.0137 0.0068

Notes: Based on 100 simulated samples. Cubic polynomials are used in the series logit estimator. The model parameters

are set to: (π1, π2, π3) = (1/3, 1/3, 1/3), α1 = (15, 15)′, α2 = (1, 1)′, and α3 = (4, 4)′.

Table 4: Performance of Series Logit Estimator and Parametric Maximum Likelihood Estimator
for πm (three types)

Incomplete Data Complete Data
Series Logit MLE MLE

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

N = 500 1000×Bias2 1.5946 2.7148 0.3482 2.1969 0.0006 0.0001
T = 5 1000×Variance 28.7290 17.7394 29.5289 17.7247 0.3978 0.4551

RMSE 0.1741 0.1430 0.1729 0.1411 0.0200 0.0213

N = 500 1000×Bias2 0.6430 0.0220 0.1005 0.1745 0.0001 0.0151
T = 10 1000×Variance 12.1714 5.0756 16.4884 6.0962 0.5204 0.5029

RMSE 0.1132 0.0714 0.1288 0.0792 0.0228 0.0228

N = 2000 1000×Bias2 2.3321 0.0556 0.0065 0.7193 0.0003 0.0004
T = 5 1000×Variance 9.9087 6.4760 15.1737 7.8472 0.1012 0.1350

RMSE 0.1106 0.0808 0.1232 0.0926 0.0101 0.0116

N = 2000 1000×Bias2 2.8377 0.0448 0.0081 0.0508 0.0002 0.0000
T = 10 1000×Variance 2.0779 0.8650 4.1446 0.8099 0.1137 0.1314

RMSE 0.0701 0.0302 0.0644 0.0293 0.0107 0.0115

Notes: Based on 100 simulated samples. Cubic polynomials are used in the series logit estimator. The model parameters

are set to: (π1, π2, π3) = (1/3, 1/3, 1/3), α1 = (15, 15)′, α2 = (1, 1)′, and α3 = (4, 4)′.
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Table 5: Performance of Series Logit Estimator and Parametric Maximum Likelihood Estimator
under the model with type-specific transition functions (two types)

P m π
Incomplete Data Complete Data Incomplete Complete

Series Logit MLE MLE Series MLE MLE
m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

N = 500 1000×Bias2 0.1143 0.2277 0.2364 0.0051 0.0666 0.0009 0.6424 0.2164 0.0071
T = 3 1000×Variance 3.0484 0.8486 3.0553 0.7756 0.8445 0.3586 6.5723 8.3861 0.5959

RMSE 0.0562 0.0328 0.0574 0.0279 0.0302 0.0190 0.0849 0.0927 0.0246

N = 500 1000×Bias2 0.0222 0.1990 0.0065 0.0102 0.0020 0.0027 0.1130 0.0160 0.0060
T = 5 1000×Variance 1.3496 0.4278 1.1417 0.4057 0.5980 0.2965 2.2066 2.2994 0.5317

RMSE 0.0370 0.0250 0.0339 0.0204 0.0245 0.0173 0.0482 0.0481 0.0232

N = 500 1000×Bias2 0.0359 0.2677 0.0144 0.0073 0.0077 0.0070 0.0136 0.0046 0.0114
T = 10 1000×Variance 0.6176 0.1675 0.5379 0.1678 0.3206 0.1506 0.7165 0.7462 0.5839

RMSE 0.0256 0.0209 0.0235 0.0132 0.0181 0.0126 0.0270 0.0274 0.0244

N = 2000 1000×Bias2 0.0067 0.2310 0.0067 0.0004 0.0101 0.0005 0.3722 0.0017 0.0000
T = 3 1000×Variance 0.6572 0.1927 0.6567 0.1588 0.1706 0.0913 1.4178 1.7934 0.1075

RMSE 0.0258 0.0206 0.0258 0.0126 0.0134 0.0096 0.0423 0.0424 0.0104

N = 2000 1000×Bias2 0.0591 0.2134 0.0039 0.0002 0.0004 0.0005 0.0741 0.0042 0.0010
T = 5 1000×Variance 0.2741 0.0926 0.2397 0.0875 0.1197 0.0678 0.4172 0.4522 0.1126

RMSE 0.0183 0.0175 0.0156 0.0094 0.0110 0.0083 0.0222 0.0214 0.0107

N = 2000 1000×Bias2 0.0788 0.2296 0.0011 0.0004 0.0013 0.0002 0.0012 0.0003 0.0000
T = 10 1000×Variance 0.1011 0.0470 0.0894 0.0491 0.0528 0.0426 0.1526 0.1571 0.0927

RMSE 0.0134 0.0166 0.0095 0.0070 0.0074 0.0065 0.0124 0.0125 0.0096

Notes: Based on 100 simulated samples. Cubic polynomials are used in the series logit estimator. The type probabilities

are set to (π1, π2) = (0.5, 0.5). The model parameters are set to: (π1, π2) = (0.5, 0.5), α1 = (10, 10), and α2 = (2, 2). The

parameters for transition functions are (θ1
f,1, θ1

f,2) = (0.4, 0.4) and (θ2
f,1, θ2

f,2) = (0.2, 0.2).

45




