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ABSTRACT

The purpose of this paper is to investigate, using Monte Carlo methods, whether or not Hall’s (2000)

centered test of overidentifying restrictions for parameters estimated by Generalized Method of

Moments (GMM) is more powerful, once the test is size-adjusted, than the standard test introduced

by Hansen (1982). The Monte Carlo evidence shows that very little size-adjusted power is gained

over the standard uncentered calculation. Empirical examples using Epstein and Zin (1991) prefer-

ences demonstrates that the centered and uncentered tests sometimes lead to different conclusions

about model specification.
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1. Introduction

Generalized Method of Moments (GMM) (Hansen, 1982) is widely used in applied economics to esti-

mate and test macroeconomic models. In terms of testing for model misspecification, the most popular

test is Hansen’s (1982)J-test for overidentifying restrictions. While the test has widespread use, Altonji

and Segal (1996), and Hall and Horowitz (1996), among others, have documented that it frequently

over-rejects in small samples. Most recent research efforts have been directed at improving the size

performance of theJ-test. On the other hand, Hall (2000) proposes a centered version of the popular

J-test with the aim of gaining power. Smith (1999) provides Monte Carlo evidence that the standard

J-test can have low size-adjusted power in a nonlinear asset pricing model. Hall (2000)’s Monte Carlo

evidence shows a modest power gain of 10 percent assuming a linear data generating process.

Hall observes that the standard estimator of the long-run covariance matrix with unknown het-

eroscedasticity and serial correlation (HAC) used in Hansen’s test statistics is consistent only under

the null. If the null hypothesis is false, power could fall from using an inconsistent estimate. While

power is not usually a problem in most practical situations, it is worthwhile to pursue the performance

of the statistic under the alternative. Hall uses a two-step procedure to construct a new HAC matrix.

The procedure amounts to subtracting the sample mean of the moment conditions from the second step

weighting matrix. This gives a consistent estimator both under the null and alternative hypotheses.

Hall’s Monte Carlo experiments show a considerable size distortion of the centered calculation over

the uncentered calculation as well as a 10 percent increase in the number of rejections when the null is

false.

This paper presents Monte Carlo evidence on the properties of the two test statistics to show that

the size-adjusted power gain of Hall’s test is not significantly greater than the standardJ-test. Two

experimental designs are considered. The first is identical to Hall’s and involves independent data. The

second experiment augments the data generating process with serially correlated data, which better

mimics most applications. Unfortunately, the Monte Carlo findings indicate that the centeredJ-test

once adjusted for its size distortion is only a marginal improvement over the uncentered counterpart.
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In addition to the Monte Carlo evidence, a nonlinear macroeconomic model assuming Epstein and

Zin (1991) preferences is estimated as a way of showing the possibility of empirical discrepancies

between the standard and centeredJ-tests which may lead to confusion.

2. Generalized Method of Moments Estimation

GMM estimates the parameters of a model, matching the moments of the theoretical model to those

of the data as closely as possible. A weighting matrix determines the relative importance of matching

each moment.

LetX = (x1, . . . ,xt), wherexi ∈Rk is ak×1 random variable, andt = 1, . . .T, be a set of observables

from a stationary sequence. Suppose for some true parameter-valueθ0 (k×1) the following moment

conditions (mequations) hold andm≥ k :

E [g(xt ,θ0)] = 0. (1)

This is, of course, the usual set-up for GMM and leads to the estimator:

θ̂T = argmin
θ∈Θ

(
T−1

T

∑
t=1

g(xt ,θ)
)′

WT

(
T−1

T

∑
t=1

g(xt ,θ)
)
, (2)

where the positive semi-definite weighting matrix,WT converges to a positive definite matrix of con-

stants. The GMM estimator̂θ is consistent for any arbitrary weighting matrix, subject to some reg-

ularity conditions. Hansen shows that the optimal weighting matrix converges toS−1
T whereST =

∑∞
j=−∞ Egt(θ0)gt− j(θ0)′ ≡ Γ0 +∑∞

j=0(Γ j +Γ′j).

The estimation is usually done in two steps. The initial weighting matrix uses the instruments and

the final estimate uses the optimal weighting matrix. The centered and uncentered estimators differ in

the second stage. The centered estimator subtracts the sample mean from the moment condition which

is non-zero in expectation under the alternative. The centered HAC estimator is consistent under the

null and alternative, whereas the standard estimator is consistent only under the null.
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2.1. Hypothesis Testing

A primary objective of this paper is to compare the size-adjusted power of Hall’s centeredJ-test with

that of the standardJ-test introduced by Hansen. The standard way of testing is to take the second step

estimate of the parameters,θ̂T , and construct a test statistic that is distributedχ2
m−k:

ĴT = TgT(θ̂T)′Ŝ−1
T gT(θ̂T). (3)

The centered test statistic is essentially the same, exceptgT(θ̂T) is demeaned for the covariance

calculation. However, Hall demonstrates that the centeredJ-test is more powerful than the standardJ-

test in large samples. This is because the HAC matrix continues to be consistent under the alternative.

I wish to examine the finite sample power issue when the two tests are size-adjusted.

3. Monte Carlo Experiment

Hall demonstrates an asymptotic gain in the divergence of the centeredJ-test over the uncentered for a

local alternative. He also presents Monte Carlo results that suggest this test is 10% more powerful that

Hansen’s original test. An unrealistic feature of Hall’s Monte Carlo design is the independence of the

data so that there is no need to calculate a weight matrix based on autocovariances. Hall’s comparisons

are based on asymptotic critical values for the centered test, even though it has considerably more size

distortion than does the standard test. I replicate Hall’s experiment below and find that the power gain

is almost completely lost once there is an adjustment for size. I also consider simple simulations using

a model with dependent data, that nests Hall’s experiments:

yt = xt + γz1,t +µt ,

xt = z1,t +z2,t + εt ,

z1,t = ρ1z1,t−1 +ω1,t , (4)

z2,t = ρ2z2,t−1 +ω2,t ,
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with t = 1,2, ...,T, and(z1,t ,z2,t ,µt ,εt)′ ∼ N(0,Σ) with Σ having elementsσii = 1, i = 1,2,3,4 and

σ12 = σ34 = 0.5. For a model with independent dataρ1 andρ2 are set equal to zero. For dependent

dataρ1 = ρ2 = 0.9. The following moment condition is tested:

E[zt(yt −xtθ)] = 0. (5)

The model is estimated by GMM wherêST = Ω0 + ∑N
j=1 k̂ j(Ω̂ j + Ω̂′

j) is a consistent estimator ofST .

The kernel weights are determined using the Newey and West (1994) automatic selection method with

N = c× int[(T/100)2/9] andc = 4,12. The moment condition holds only ifθ = 1 andγ = 0. I vary

γ from 0.00 to 10.00 to measure the power of theJ-test with 10,000 replications and sample size,

T = 300. Results are presented in table 1 and 2. The median test statistic and the power of each test are

reported in Table 1 fori.i.d data and Table 2 for serially correlated data. The median of the automatic

lag length criteria of Newey and West using the Bartlett kernel is also reported for the standard and

centered tests (b,bc). For bothi.i.d and serially correlated data, the power of the centeredJ-test (Jc) is

greater than the power of the standardJ-test (J). Interestingly, the median test statistic and power of the

test statistic are larger when the null hypothesis is true. This is the case even though Hall’s procedure

is for estimation under the alternative hypothesis. The centeredJ-test may therefore over-reject a true

null hypothesis.

Since the centered test has a greater size distortion than the non-centered test I compare the tests

using size-power tradeoff curves as described by Davidson and MacKinnon (1998). Figure 1 to 4

present several of these curves. The dotted line represents values for the centered test and the solid line

represents the standard test. The45◦ line represents a test with size equal to power. A curve below the

45◦ line represents a biased test and a curve above the line represents a test with power greater than

size. The tradeoff curves are generated by varying the critical value of the tests. For each critical value,

size is measured as the percentage of rejections under the null hypothesis, and power is measured as

the percentage of rejections under the alternative hypothesis. Thus power is adjusted by size. Figure 1

presents size-power tradeoff curves withγ = 0.125for the case ofi.i.d observations. The centered test

is only slightly more powerful than the standard test, and only at very low size. Figure 2 has the same

γ but with dependent data. Again the centered test is slightly more powerful than the standard test. The

overidentifying restrictions tests are more powerful with independent data than dependent data. Figure
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Table 1
Summary Statistics for Overidentifying Restrictions Tests,ρ1 = ρ2 = 0

c γ Med(bT) Med(J) P(J) Med(bcT) Med(Jc) P(Jc)

4 0.000 5 0.475 0.045 5 0.482 0.060
0.125 5 1.330 0.183 5 1.386 0.219
0.250 6 4.698 0.598 5 5.394 0.639
0.375 7 9.048 0.926 5 12.170 0.940
0.500 8 12.703 0.996 5 21.086 0.997
10.00 13 18.489 1.000 5 111.21 1.0000

12 0.000 14 0.509 0.040 15 0.527 0.085
0.125 14 1.344 0.166 15 1.508 0.250
0.250 16 4.193 0.553 15 5.879 0.666
0.375 20 6.784 0.897 15 13.152 0.944
0.500 23 8.238 0.993 15 22.628 0.997
10.00 28 9.806 1.000 15 117.92 1.000

Note: Med(·) denotes the median of the statistic, andP(·) denotes the probability of rejecting the
null with nominal size 5 percent.c is a truncation parameter in the estimation of the long-run
covariance estimator.

Table 2
Summary Statistics for Overidentifying Restrictions Tests,ρ1 = ρ2 = 0.9

c γ Med(bT) Med(J) P(J) Med(bcT) Med(Jc) P(Jc)

4 0.000 6 0.493 0.040 6 0.503 0.058
0.125 6 2.254 0.294 6 2.431 0.340
0.250 7 6.432 0.805 6 8.104 0.842
0.375 10 9.333 0.983 7 14.163 0.990
0.500 11 10.738 0.999 8 19.085 0.999
10.00 13 12.298 1.000 12 30.114 1.0000

12 0.000 13 0.539 0.034 15 0.568 0.083
0.125 15 2.195 0.248 15 2.619 0.368
0.250 18 5.238 0.742 14 8.296 0.845
0.375 21 6.786 0.959 14 13.991 0.988
0.500 23 7.422 0.992 14 18.606 0.999
10.00 26 8.147 0.999 16 29.245 1.000

Note: Med(·) denotes the median of the statistic, andP(·) denotes the probability of rejecting the
null with nominal size 5 percent.c is a truncation parameter in the estimation of the long-run
covariance estimator.

3 presents size-power tradeoff curves withγ = 0.250 for the case ofi.i.d observations. Figure 4 has

γ = 0.250and dependent data. The tests are more powerful for independent data than dependent data.
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This may be because estimation is more difficult with serially correlated data. The Monte Carlo results

indicate that once adjusted for size the centeredJ-test is not as powerful as initially believed.

4. Empirical Example

GMM is extensively applied in the asset pricing literature. Testing for overidentifying restrictions

is a first step in determining whether a model is misspecified. Hansen’sJ-test is widely used in this

context. Many asset pricing models can be written as1= Et [(1+Ri,t+1)mt+1] wheremt+1 is the pricing

kernel or stochastic discount factor. This result lends itself to estimating and testing this class of asset

pricing models by GMM. The empirical example follows Epstein and Zin (1991), who assume state-

nonseparable preferences. The Epstein and Zin (1991) model is attractive because it breaks the link

between risk aversion and intertemporal substitution. This model has been examined extensively in an

attempt to explain the equity risk premium puzzle. The stochastic discount factor is given by:

mt+1 =
(

β
(
ct+1/ct

)− 1
φ
)θ(

1/Rm,t+1

)1−θ
, (6)

wherect+1/ct is consumption growth,Rm is the risk free rate and{β,φ,θ} parameters to be estimated.

The specification separates risk aversion from intertemporal substitution. Epstein and Zin (1991) show

that the performance of the model is sensitive to the measure of consumption and choice of instru-

mental variables. However, for the most part they do not reject the model using the standard tests at

conventional levels. Using monthly stock return data from January 1970 to December 2002 I compare

Hansen’sJ-test to Hall’s centeredJ-test. The test statistics are not adjusted for size because the empir-

ical distribution function cannot be traced under both the null and alternative hypotheses. As reported

in the Monte Carlo, the size distortions of Hall’s centeredJ-test are larger than the standardJ-test.

The nonlinearity of the moment conditions in this empirical example almost certainly exacerbates the

distortion. Clark (1996) provides Monte Carlo results on size distortions of theJ-test for nonlinear

models. Since the centered test statistic demeans the moment condition, the estimate of the covariance

matrix will be more precise. This increases the over-rejection rate of the centered test statistic.
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The Euler equations used in the estimation are:

Et

[(
β
(
ct+1/ct

)− 1
φ
)θ

Rθ−1
m,t+1Ri,t+1

]
−1 = 0 i = 1, ...N.

Monthly data sets are constructed for consumption and asset returns. Two measures of consumption

are considered: real per capita expenditure growth on nondurables goods and real per capita expendi-

tures on nondurables plus services. For real asset returns four value-weighted indexes are included:

returns on the NYSE/AMEX for SIC codes A,B,C; E; F,G; and H,I. The market portfolio (Rm) is a

value-weighted index of the NYSE/AMEX returns. There are five equations and three parameters.

There are two sets of instruments (Z1,Z2) with nine and thirteen overidentifying restrictions, respec-

tively. Descriptive statistics are presented in table 3 and estimation results in table 4. Similar to Epstein

and Zin (1991), the time discount factor,β, is not significantly different from one. The elasticity of

intertemporal substitution in consumption,φ varies significantly across the set of instruments and is

imprecisely estimated. Relative risk aversion is given byα whereθ = (1−α)/(1−1/φ) and is near

one. It is imprecisely estimated when the Treasury bill is used as an instrument.

Table 3
Descriptive Statistics, 1970:1-2002:12

Variable Nondurables Nondurables and Services
ct+1/ct 1.0009 (0.0070) 1.0013 (0.0038)
Rmt 1.0062 (0.0547) 1.0057 (0.0452)
R1t 1.0047 (0.0611) 1.0042 (0.0610)
R2t 1.0053 (0.0427) 1.0048 (0.0423)
R3t 1.0069 (0.0575) 1.0064 (0.0569)
R4t 1.0065 (0.0525) 1.0060 (0.0520)
Tbillt 1.0020 (0.0042) 1.0015 (0.0027)

Note: Nominal returns are deflated using the prices corresponding to the
definition of consumption.R1t corresponds to the return on SIC codes
A,B,C; R2t to the return on SIC code E;R3t to the return on SIC codes F,G;
andR4t corresponds to the return on SIC code H,I. Standard errors are in
parentheses.

The overidentification tests give similar results. There are competing conclusions about the non-

expected utility model at the one or five percent significance level. The centeredJ-test is larger than
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the standard test in every case. The non-expected utility model is rejected at the ten percent level,

regardless of whether the centered or uncentered covariance matrix is used.

5. Conclusion

Hall (2000) has suggested using a centeredJ-test to increase the power of the existingJ-test for overi-

dentification. Hall presents results that suggest that his test is 10 percent more powerful that Hansen’s

(1982) original test. In this paper, I show that in finite samples the gain in power is mostly due to a

greater size distortion present in the centered test. The empirical example using Epstein and Zin (1991)

preferences illustrates that the twoJ-tests can yield conflicting conclusions about model specification.

Given the performance of Hall’sJ-test once it is adjusted for size, one must search elsewhere for

size-corrected power gains. One prospect is to apply the bootstrap to the centeredJ-test. The bootstrap

is now a common approach to hypothesis testing that has been shown to reduce approximation error.

For example, see Hall and Horowitz (1996). MacKinnon (2002) points out that although at a small

number of bootstrap samples the bootstrap does lose some power, at a reasonably large number of

bootstrap samples this is not problematic. In fact, the loss of power in bootstrapping the centeredJ-test

would arise precisely because it corrects the tendency of the test to over-reject.

Another avenue is to use more robust estimators than GMM and/or more robust statistics. With

respect to estimation, advances with generalized empirical likelihood (GEL) methods provide one al-

ternative to using GMM. For example, see the statistics derived in Imbens et al. (1998). GEL has the

advantage over GMM in that (i) the asymptotic bias of the parameter estimates does not increase in the

number of overidentifying restrictions, and (ii) the moment conditions hold exactly in finite samples.

This second point implies there is no need to re-center the moment conditions when estimating the

long-run covariance matrix.

Finally, weak identification is a potential issue in the empirical example which is overlooked. Test-

statistics based on GMM estimation in the presence of weak identification have non-standard limiting

distributions. Several new tests have been developed using empirical likelihood (or one of its variants)

estimation. These statistics are robust to weak identification and should be used under those conditions.
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In a nonlinear framework examples include Stock and Wright (2000), Kleibergen (2005), and Otsu

(2004). More research in these areas seem fruitful.
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Figure 1. Size-Power Curves: Independent data
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Note: γ = 0.125, T = 300, Replications= 10000. Jc is the centered test for overidenti-
fying restrictions and is given by the long-dashed line.J is the standard test and given
by the straight line. A test above the 45 degree line is one with power greater than size.
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Figure 2. Size-Power Curves: Dependent Data
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Note: γ = 0.125, T = 300, Replications= 10000. Jc is the centered test for overidenti-
fying restrictions and is given by the long-dashed line.J is the standard test and given
by the straight line. A test above the 45 degree line is one with power greater than size.
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Figure 3. Size-Power Curves: Independent data
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Note: γ = 0.250, T = 300, Replications= 10000. Jc is the centered test for overidenti-
fying restrictions and is given by the long-dashed line.J is the standard test and given
by the straight line. A test above the 45 degree line is one with power greater than size.
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Figure 4. Size-Power Curves: Dependent Data
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Note: γ = 0.250, T = 300, Replications= 10000. Jc is the centered test for overidenti-
fying restrictions and is given by the long-dashed line.J is the standard test and given
by the straight line. A test above the 45 degree line is one with power greater than size.
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Table 4
Empirical Results

We estimate the following moment conditions for the period1970 : 01to 2002 : 12

Et

[(
β
(
ct+1/ct

)− 1
φ
)θ

Rθ−1
m,t+1Ri,t+1

]
−1 = 0 i = 1, ...N

Standard Centered
Consumption Z1 Z2 Z1 Z2

ND β 0.9963 0.9992 0.9962 0.9990
(0.0065) (0.0059) (0.0065) (0.0056)

φ 1.2502 0.3875 1.2504 0.4268
(6.384) (0.2633) (6.341) (0.3070)

α 0.8021 1.1776 0.8032 1.1584
(6.3844) (0.2294) (6.3406) (0.2310)

J 19.80 24.31
[0.0192] [0.0284]

Jc 21.47 28.02
[0.0107] [0.009]

ND + SV β 1.0000 0.9963 0.9997 0.9958
(0.0623) (0.0053) (0.0581) (0.0055)

φ 0.2323 2.5204 0.2649 2.5171
(2.651) (18.90) (3.188) (19.71)

α 0.3383 0.8962 0.3942 0.9018
(8.496) (0.5116) (8.761) (0.5060)

J 20.79 20.07
[0.0136] [0.0934]

Jc 24.19 27.18
[0.0040] [0.0118]

Note: The specific notation is the following: ND=nondurables; SV=services. Z1 =
{ι,ct/ct−1,Rm,t−1}, andZ2 = {ι,ct/ct−1,Rm,t−1,Tbillt−1}. Standard errors are in parentheses and
p-values are in brackets
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