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Abstract

This paper analyzes the semiparametric estimation of multivariate long-range
dependent processes. The class of spectral densities considered is motivated
by and includes those of multivariate fractionally integrated processes. The
paper establishes the consistency of the multivariate Gaussian semiparametric
estimator (GSE), which has not been shown in other work, and the asymptotic
normality of the GSE estimator. The proposed GSE estimator is shown to have
a smaller limiting variance than the two-step GSE estimator studied by Lobato
(1999). Gaussianity is not assumed in the asymptotic theory. Some simulations
confirm the relevance of the asymptotic results in samples of the size used in
practical work.
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1 Introduction

Consider a real-valued covariance stationary q-vector process Xt that is generated by

 (1− L)d1 0
. . .

0 (1− L)dq


 X1t − EX1t

...
Xqt − EXqt

 =

 u1t
...

uqt

 , −1
2

< d1, . . . , dq <
1
2
,

(1)
where ut = (u1t, . . . uqt)′ is a covariance stationary process whose spectral density
fu (λ) is bounded and bounded away from zero (in the sense of positive definite
matrices) at the zero frequency λ = 0. This is a multivariate extension of a scalar
fractionally integrated process (the so-called I(d) process), and the time series Xat ex-
hibits long-range dependence whenever da > 0. Xt becomes a multivariate ARFIMA
process when ut is a vector ARMA process, but the specification (1) does not require
ut to be of this or any other parametric form.

Fractionally integrated processes have a time domain representation that natu-
rally extends conventional ARMA models and are the most widely used long-range
dependent time series in econometrics. The relationship between the value of the
memory parameter and the persistence of a shock is easily understood in terms of
the coefficient in the expansion (albeit this is only formal for d > 0)

(1− L)−d =
∞∑

k=0

Γ(d + k)
Γ(d)k!

Lk,

where Γ is the gamma function. Discussion and examples of recent empirical ap-
plications of fractional integration are found in, e.g., Bollerslev and Wright (2000),
Brunetti and Gilbert (2000), and Henry and Zaffaroni (2003).

Let f(λ) denote the spectral density of Xt, so that

E(Xt − EXt)(X ′
t+k − EX ′

t) =
∫ π

−π
eikλf(λ)dλ.

Define Φ(λ) = diag((1−eiλ)−d1 , · · · , (1−eiλ)−dq), then f(λ) = Φ(λ)fu(λ)Φ∗(λ) (e.g.,
Hannan, 1970, p.61). The memory parameters, da, govern the long-run dynamics of
the process and the behavior of f(λ) around the origin. Therefore, if empirical interest
lies in the long-run dynamics of the process, it is useful to specify the spectral density
only locally in the vicinity of the origin and avoid specifying the short-run dynamics
of ut explicitly. How this is done turns out to be a matter of some importance.

Assume fu(λ) satisfies the local condition

fu(λ) ∼ G, λ → 0,

where G is a real, symmetric, finite, and positive definite matrix. This will be so for
any ut having Wold representation ut = C (L) εt with C (1) finite and of full rank.
Since

(1− eiλ)α = λαe−iπα/2(1 + O(λ)), λ → 0+, (2)
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(Lobato, 1997; Phillips and Shimotsu, 2004), it follows that

f(λ) ∼ diag(λ−daeiπda/2)G diag(λ−dae−iπda/2), λ → 0 + . (3)

If fu(λ) = G(1 + O(λβ)) as λ → 0, then a more refined local approximation to the
spectral matrix at the origin is given by

f(λ) ∼ diag(λ−daei(π−λ)da/2)Gdiag(λ−dae−i(π−λ)da/2)
[
1 + O(λmin{β,2})

]
, λ → 0+,

(4)
as shown in section 2.

When f(λ) is specified locally as (3) or (4), estimation of da is semiparametric
and only uses information on the long-run dynamics of the process. Semiparametric
estimators are robust to misspecification of the short-run dynamics, because they are
agnostic to the behavior of the spectrum away from the origin.

In the univariate case where f(λ) ∼ Gλ−2d as λ → 0, one attractive semiparamet-
ric estimator was proposed by Künsch (1987) and analyzed by Robinson (1995b). The
estimator, a Gaussian semiparametric estimator (GSE), is based on the maximization
of the frequency domain Gaussian likelihood function that is localized to the vicinity
of the origin. The GSE generally has several advantages over other semiparametric
estimators, including efficiency and weaker distributional assumptions. Lobato (1999)
has already analyzed one version of the multivariate extension of GSE. His approach
involves two-step estimation, which is based on a first-step univariate estimation of
d1, . . . , dq and a Newton-type second step. Lobato shows asymptotic normality of
this two-step estimator.

We consider semiparametric estimation of d when the spectral density has the
general local form given in (3) or (4). The specification (3) extends the local spec-
ification of the scalar spectrum f(λ) ∼ Gλ−2d to the multivariate case. It includes
multivariate fractionally integrated processes and is general enough to accommodate
the presence of poles and zeros at frequencies away from the origin (Phillips and
Shimotsu, 2004, provide an example of the latter). In (3), the memory parame-
ters appear in the two factors λ−da and eiπda/2, and hence the estimation of the da

needs to take both λ−da and eiπda/2 into account. The representation (4) involves
both λ−da and ei(π−λ)da/2, so that there is an additional linear factor in the complex
exponential. These additional dependencies on the memory parameter in the multi-
variate spectrum make the analysis more difficult but utilize the correct specification
of the spectral matrix around the origin. Lobato (1999) considered semiparametric
estimation of d from the following simpler alternate local form of spectral density1

f̃(λ) ∼ diag(λ−da)Gdiag(λ−da), λ → 0. (5)

When Xt is generated by a multivariate fractionally integrated process such as (1),
however, estimation based on the specification (5) cannot provide efficient estimates

1The specification (5) is also used in Lobato and Robinson (1998) to construct a nonparametric
test for weak dependence. Lobato and Velasco (2000) extend it to analyze the two-step Gaussian
semiparametric estimation of multivariate nonstationary long-range dependent processes.
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of da. This is because the off-diagonal elements of the spectral matrix of Xt have a
nonnegligible imaginary part in the neighborhood of the origin and thus a complex
asymptote at λ = 0, as is clear from (4). So, f̃(λ) in (5) does not belong to the
class of spectral densities specified in (3) or (4). Indeed, we are not aware of any
physically realizable time domain model of multivariate time series whose spectral
density follows (5), except those special cases where G itself is diagonal (which implies
there is no long run covariance between the elements of Xt), or where da = d for all
a (in which case Φ(λ) = (1 − eiλ)−dIq and the long range dependence is identical
across components). In general, when G has nonzero off-diagonal elements, f (λ) has
complex off-diagonal elements involving da. In particular, the phase spectrum of Xat

and Xbt is nonzero (and depends on da and db) even at the zero frequency. This
means that different memory patterns in Xat and Xbt induce phase shifts in the cross
spectrum of these variables at the origin. Since there is information in the phase
patterns of the data about memory, taking the correct local form (3) into account in
GSE estimation should improve the efficiency of estimation. The results of this paper
show this to be so and indicate that the impact on efficiency can be significant.

We also prove the consistency of our multivariate GSE. Two-step estimation is
partly motivated by its computational ease, because a two-step estimation is faster
in general than a high dimensional direct minimization. However, in view of modern
computational resources, a direct minimization of the objective function with respect
to the q memory parameters is not likely to cause any practical difficulty. Indeed,
the simulation in this study confirms it. Some direct minimization methods such as
Nelder-Mead simplex algorithm dispense with numerical/analytical derivatives which
are necessary for the evaluation of the score function and Hessian. Although the proof
of the consistency of univariate GSE by Robinson (1995b) is not directly applicable
to the multivariate case, a proper modification of this proof enables us to handle the
nonuniform convergence of the objective function and establish the consistency of the
multivariate GSE.

The GSE is shown to have a Gaussian limiting distribution. As anticipated, the
limiting variance is different from, and smaller than, that of the GSE analyzed by
Lobato (1999). As indicated above, the gain in efficiency arises because both real
and imaginary parts of the spectral density and periodograms are utilized and the
presence of da in the factor ei(π−λ)da/2 in (4) provides additional information on d.
Simulations with multivariate fractionally integrated processes confirm this increase
in efficiency in finite samples. In addition, we prove the consistency and asymptotic
normality of the GSE of Lobato (1999) under (3) and show its limiting variance is
different from the one derived in Lobato (1999).

The remainder of the paper is organized as follows. Section 2 describes the GSE.
Consistency of the GSE is demonstrated in Section 3, and Section 4 derives its limiting
distribution. Section 5 shows the consistency and asymptotic normality of the GSE
of Lobato (1999) under (3) and compares it with our GSE. Section 6 reports some
simulation results, and Section 7 concludes. Proofs are given in Appendix A in
Section 8. Some technical results are collected in Appendix B in Section 9.
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2 Multivariate semiparametric estimation

We consider semiparametric estimation of d = (d1, · · · , dq)
′
, which uses only Fourier

frequencies in the neighborhood of the origin and hence is nonparametric with respect
to short-run dynamics of the data. Define the discrete Fourier transform (dft) and
the periodogram of Xt evaluated at frequency λ as

w (λ) =
1√
2πn

n∑
t=1

Xte
itλ, I (λ) = w (λ) w∗ (λ) ,

where x∗ denotes the conjugate transpose of x. For the reason explained in Section
3, it is useful to consider a local approximation at the origin that is finer than that
given in (3). Since |1− eiλ| = |2 sin(λ/2)| and arg(1− eiλ) = (λ−π)/2 for 0 ≤ λ < π,
we have

(1− eiλ)θ = (|2 sin(λ/2)|)θ exp[i(λ− π)θ/2]
= λθ exp[i(λ− π)θ/2](1 + O(λ2)).

This is merely a refinement of (2), but the smaller error magnitude (O(λ2)) will
become essential in the analysis in Section 4. Since fu(λ) ∼ G as λ → 0, we have, for
the Fourier frequencies λj = 2πj/n with j = 1, . . . ,m and m = o(n),

f(λj) ∼ Λj(d)GΛ∗
j (d), Λj(d) = diag (Λja(d)) ; Λja(d) = λ−da

j ei(π−λj)da/2. (6)

Therefore, the Gaussian log-likelihood function localized to the origin is

Qm(G, d) =
1
m

m∑
j=1

{
log det Λj(d)GΛ∗

j (d) + tr
[(

Λj(d)GΛ∗
j (d)

)−1
I(λj)

]}
=

1
m

m∑
j=1

{
log det Λj(d)GΛ∗

j (d) + tr
[
G−1Re

[
Λj(d)−1I(λj)Λ∗

j (d)−1
]]}

,

where the second line follows because both Qm(G, d) and G are real. Using the
fact that det AB = det A det B for any complex matrices A and B, the first order
condition with respect to G gives

G =
1
m

m∑
j=1

Re[Λj(d)−1I(λj)Λ∗
j (d)−1].

Substituting this into Qm(G, d) in conjunction with the fact that

log det Λj(d) + log det Λ∗
j (d)

= log det Λj(d)Λ∗
j (d) = log(diag(λ−2da

j )) = −2
q∑

a=1

da log λj ,
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we obtain the objective function

R(d) = log det Ĝ(d)− 2
q∑

a=1

da
1
m

m∑
j=1

log λj ,

Ĝ(d) =
1
m

m∑
j=1

Re
[
Λj(d)−1I(λj)Λ∗

j (d)−1
]
.

In the following, we denote the true parameter values by G0 and d0. The estimator
is defined as

d̂ = arg min
d∈Θ

R(d),

where the space of admissible estimates of d0, Θ, takes the form Θ = [∆1,∆2]q, with
−1/2 < ∆1 < ∆2 < 1/2.

3 Consistency of the estimator

We now introduce the assumptions on m and f(λ) needed for the consistency of
the estimator. Let fab(λ) and G0

ab denote the (a, b) th element of f(λ) and G0,
respectively.

Assumption 1 As λ → 0+,

fab (λ) = eiπ(d0
a−d0

b)/2G0
abλ

−d0
a−d0

b + o(λ−d0
a−d0

b ), a, b = 1, . . . , q.

Assumption 2

Xt − EXt = A (L) εt =
∞∑

j=0

Ajεt−j ,
∞∑

j=0

||Aj ||2 < ∞,

where || · || denotes the supremum norm and E(εt|Ft−1) = 0, E(εtε
′
t|Ft−1) = Iq a.s.,

t = 0,±1, . . . , in which Ft is the σ-field generated by εs, s ≤ t, and there exists a
scalar random variable ε such that Eε2 < ∞ and for all η > 0 and some K > 0,
Pr(||εt||2 > η ) ≤ K Pr(ε2 > η).

Assumption 3 In a neighborhood (0, δ) of the origin, A(λ) =
∑∞

j=0 Aje
ijλ is dif-

ferentiable and
∂

∂λ
Aa(λ) = O(λ−1||Aa(λ)||) as λ → 0+,

where Aa(λ) is the a’th row of A(λ).
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Assumption 4 As n →∞,
1
m

+
m

n
→ 0.

Assumptions 1-4 are multivariate extensions of Assumptions A1-A4 of Robinson
(1995b) and analogous to the ones used in Robinson (1995a) and Lobato (1999). In
Assumption 1, replacing eiπ(d0

a−d0
b)/2 with ei(π−λ)(d0

a−d0
b)/2 does not make a difference

because eiλ − 1 = o(1). Assumption 3 implies ∂Aa(λ)/∂λ = O(λ−da−1), because
||Aa(λ)|| ≤ (Aa(λ)A∗

a(λ))1/2 = (2πfaa(λ))1/2.
Under these conditions, we may now establish the consistency of d̂.

Theorem 1 Let Assumptions 1-4 hold. Then, for d0 ∈ Θ, d̂ →p d0 as n →∞.

4 Asymptotic normality of the estimator

We introduce some further assumptions that are used in the results of this section.
They are analogous to the assumptions in Lobato (1999).

Assumption 1′ For β ∈ (0, 2] and a, b = 1, . . . , q,

fab (λ)− ei(π−λ)(d0
a−d0

b)/2λ−d0
a−d0

bG0
ab = O(λ−d0

a−d0
b+β) as λ → 0 + .

Assumption 2′ Assumption 2 holds and also for a, b, c, d = 1, 2,

E(εatεbtεct|Ft−1) = µabc a.s., E(εatεbtεctεdt|Ft−1) = µabcd, t = 0,±1, . . . ,

where |µabc| < ∞ and |µabcd| < ∞.

Assumption 3′ Assumption 3 holds.

Assumption 4′ As n →∞,

1
m

+
m1+2β(log m)2

n2β
+

log n

mγ
→ 0, for any γ > 0.

Assumption 5′ There exists a finite real matrix H such that

Λj(d0)−1A(λj) = H + o(1), as λj → 0.

Assumption 1′ does not hold for β > 1 if we replace ei(π−λ)(d0
a−d0

b)/2 with eiπ(d0
a−d0

b)/2,
because eiλ = 1 + O(λ). Assumption 1′ is analogous to the ones used in Robin-
son (1995a) and Lobato (1999) and is satisfied by certain multivariate ARFIMA
processes. See Robinson (1995a, p.1056) for further discussion. Assumption 4′ is
slightly stronger than the assumptions in Robinson (1995b) and Lobato (1999), i.e.,
m−1 + m1+2βn−2β(log m)2 → 0. It is satisfied if m ∼ Cnξ with a finite positive con-
stant C and 0 < ξ < 2β/(1+2β). The third term on the left hand side of Assumption
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4′ is necessary in establishing the convergence of the Hessian. Assumption 5′ comple-
ments Assumption 1′ in that it controls the degree of approximation of the transfer
function by Λj(d0). This assumption obviously implies HH ′ = 2πG0 and is satisfied
by multivariate ARFIMA models.

Theorem 2 Let Assumptions 1′-5′ hold. Then, for d0 ∈Int(Θ), as n →∞,

m1/2
(
d̂− d0

)
→ d N

(
0,Ω−1

)
, Ω = 2

[
G0 � (G0)−1 + Iq +

π2

4
(
G0 � (G0)−1 − Iq

)]
,

Ĝ(d̂) → p G0,

where � denotes the Hadamard product.

5 Comparison with the estimator of Lobato (1999)

Lobato (1999) analyzes the two-step GSE that uses the objective function based on
(5):

d̃ = arg min
d∈Θ

R̃(d),

where

R̃(d) = log det G̃(d)−2
q∑

a=1

da
1
m

m∑
j=1

log λj , G̃(d) =
1
m

m∑
j=1

Re
[
diag(λda

j )I(λj)diag(λda
j )
]
,

and shows that, when the spectral density of Xt follows (5), m1/2(d̃ − d0) →d

N(0,Ξ−1), where Ξ = 2[G0 � (G0)−1 + Iq]. Because G0 � (G0)−1 − Iq is positive
semidefinite (Horn and Johnson, 1985, p. 475), d̂ has a smaller (in a matrix sense)
limiting variance matrix than d̃ except when G0 is diagonal.

The following Theorem establishes the asymptotic behavior of d̃ under the As-
sumptions 1-4 and 1′-5′. Intriguingly, d̃ is consistent and asymptotically normal
despite being based on a misspecified model (5). Define

E0 = diag(eiπd0
a/2), G̃0 = Re

[
E0G

0E∗0
]
, G

0 = Im
[
E0G

0E∗0
]
.

Theorem 3 (a) Let Assumptions 1-4 hold. Then, for d0 ∈ Θ, d̃ →p d0 as n → ∞.
(b) Let Assumptions 1′-5′ hold and assume m3n−2(log m)2 → 0. Then, for d0 ∈Int(Θ),
as n →∞,

m1/2
(
d̃− d0

)
→ d N (0, Q) , Q = Ω̃−1ΥΩ̃−1,

Ω̃ = 2
[
G̃0 � (G̃0)−1 + Iq

]
,

Υ = 2
[
G̃0 � (G̃0)−1 + Iq

]
+ 2

(
(G̃0)−1 G

0(G̃0)−1
)
�G

0

−2
(
(G̃0)−1G

0
)
�
(
(G̃0)−1G

0
)′

,

G̃(d̃) → p G̃0.
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The additional assumption m3n−2(log m)2 → 0 is necessary because the misspec-
ification of the true spectral density by (5) involves the term eiλj(d

0
a−d0

b)/2 = O(λj).
Misspecificaton of the true spectral density does not affect the consistency of d̃, but
G̃(d̃) converges to G̃0 and hence is an inconsistent estimate of G0. Since the (a, b)th
element of G̃0 is G0

ab cos(π(da−db)/2), G̃(d̃) underestimates the off-diagonal elements
G0.

The asymptotic variance of d̃ takes an involved form. An interesting special case
is d0

1 = · · · = d0
q , whence G̃0 = G0, G

0 = 0, and Q reduces to Ξ−1. In this case, (3)
coincides with (5) under the true dgp. However, if not all da are the same, the spectral
density has a complex part, which provides an additional source of identification. d̃
fails to take into account its presence and hence is less efficient than d̂. In more
general cases where d0

a are not the same across all a, both Ω̃ and Υ depend on the
value of d0 and an explicit analytic comparison between Ω−1 and Q is not available.
A small numerical evaluation and the simulation evidence below indicate that d̂ is
more efficient than d̃, which comes as no surprise since d̂ is based on the correct
specification.

We compare the diagonal elements of Ω−1 and Q with the asymptotic variance of
the univariate GSE (= 0.25) when q = 2. G0 is chosen to be

G0 =
[

1 ρ
ρ 1

]
, ρ = 0.0, 0.2, 0.4, 0.6, 0.8.

|d1 − d2| is set to 0.0, 0.2, and 0.4. The value of Q depends on d only via |d1 − d2|,
and Ω does not depend on d. Table 1 reports (Ω−1)11 and Q11 and their ratio to 0.25.

When ρ ≤ 0.2, the variance of the three estimators is not substantially different.
When ρ ≥ 0.4, both (Ω−1)11 and Q11 are noticeably smaller than 0.25, and they
decrease as ρ increases. Q11 is always larger than (Ω−1)11 and approaches 0.25 as
|d1 − d2| increases, but it is always smaller than 0.25. Therefore, we may expect a
nonnegligible gain in efficiency from estimating the elements of d jointly, and the gain
may be substantial, especially when both real and imaginary parts of the spectral
density are taken into account.

6 Simulations

This section reports some simulations that were conducted to examine the finite
sample performance of d̂ (hereafter GSE1) and d̃ (hereafter GSE2). The sample size
and band parameter m were chosen to be n = 128, 512 and m = n0.65, and the
statistics in the tables were computed using 10,000 replications. We generate Xt by
truncating the infinite order moving average representation of (1):

Xt =
(

(1− L)−d1 0
0 (1− L)−d2

)[(
u1t

u2t

)
I{t ≥ 1}

]
,(

u1t

u2t

)
∼ iidN

(
0,

[
1 ρ
ρ 1

])
.
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n+2,000 observations of Xt were generated, and the first 2,000 observations were
discarded. Minimization of the objective function is carried out using the Nelder-
Mead simplex method.

Tables 2-4 show the bias, standard deviation, and root mean squared error (RMSE)
of both estimators with n = 512 and the ratio of their variance to the variance of the
univariate GSE. The values of d were chosen to be (0.2,−0.2), (0.2, 0.2), and (0.2, 0.4).
Three values of ρ were used; ρ = 0, 0.4, 0.8. Table 2 shows the results for ρ = 0.
Both GSE1 and GSE2 have little bias for all values of d. The standard deviation and
RMSE of GSE1 are slightly higher than those of GSE2. The limiting variance of the
two estimators is the same, and the simulation results appear to corroborate it. The
bias, standard deviation, and RMSE do not appear to be affected by the value of d.
Table 3 shows the results for ρ = 0.4. GSE1 has a smaller standard deviation and
RMSE than GSE2. The variance of GSE1 is not affected by the value of d, while
the variance of GSE2 increases as |d1 − d2| increases. Table 4 shows the results for
ρ = 0.8. Both GSE1 and GSE2 have smaller standard deviations than the case when
ρ = 0.4. In Tables 2-4, the ratio of the variance of GSE1 and GSE2 to that of the
univariate GSE is close to its theoretical value given in Table 1. A simulation for a
single set of (d1,d2,ρ) with 10,000 replications took around 30 minutes on a PC with
a dual 2.0 Ghz CPU running the Linux operating system, so a direct minimization
by the simplex algorithm did not cause computational problems.

Tables 5 and 6 compare the two-step version of the GSEs with those obtained
by direct minimization by the Newton-Raphson method with line search for selected
values of d and ρ. The two-step estimator is computed by taking a Newton step
from the first-stage estimates, which are obtained by the univariate GSE. Analytical
derivatives are used for both two-step and NR GSEs. For GSE1 with n = 128 and
ρ = 0.8, the estimator computed by direct minimization has a substantially smaller
variance than its two-step counterpart. For all other cases, the two-step method and
direct minimization give very similar performance. The results in Table 6 are also
close to the corresponding results from the Nelder-Mead simplex method in Tables 3
and 4.

Table 7 compares the estimates of 2πG = [(1, ρ)′ (ρ, 1)′] by GSE1 and GSE2. From
Theorem 3, G̃(d̃)12 will converge to G12 cos(π(d1−d2)/2) instead of G12, whereas the
diagonal elements of G are consistently estimated by GSE2. cos(π(d1 − d2)/2) takes
the value of 0.81, 1.00, and 0.95 when |d1 − d2| is 0.4, 0, and -0.2, respectively. The
simulation results confirm the downward bias of GSE2 in the off-diagonal elements
of G, although the bias is small except for |d1 − d2| = 0.4.

We examine the accuracy of asymptotic inference based on Theorem 2 by testing
a hypothesis H0 : (d1, d2) = (d0

1, d
0
2) by a Wald statistic:

W = m(d̂− d0)′Ω̂(d̂− d0),

where Ω̂ is obtained by replacing G0 in the definition of Ω with Ĝ(d̂). In univariate
GSE estimation, Hurvich and Chen (2000, p. 164) report that the finite sample vari-
ance of GSE estimators tends to exceed their asymptotic variance. Hurvich and Chen
find replacing m in the variance estimate by a number cm improves approximation,
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where cm is defined as2

cm =
m∑

j=1

ν2
j , νj = log λj −

1
m

m∑
j=1

log λj .

Since cm/m → 1 as m → ∞, this modification does not alter the asymptotic distri-
bution of the test statistic. The modified Wald statistic takes the form

Wc = cm(d̂− d0)′Ω̂(d̂− d0).

Tables 8 and 9 report the rejection frequencies with 0.10, 0.05, and 0.01 asymptotic
critical values for n = 128, 512 and various values of (ρ, d1, d2). The unmodified
Wald statistic W always overrejects the null, and its size distortion is substantial, in
particular when n = 128. The modified Wald statistic Wc also overrejects, but its
size distortion is much smaller than that of W, and it seems to have a reasonable size
when n = 512. In view of the general overrejecting tendency of Wald tests, we may
conclude that Wc provides a good inferential tool when n is not too small.

7 Concluding remarks

This paper analyzes the semiparametric estimation of multivariate long-range depen-
dent processes. The class of spectral densities considered is motivated by and includes
those of multivariate fractionally integrated processes.

This class of spectral densities has both real and complex parts even around the
origin, and the memory parameter affects both the slope and phase of the spectral
density around the origin. As a result, modeling this dependency correctly achieves
the efficient estimation, while ignoring it results in misspecification.

A Gaussian semiparametric estimator (GSE) that takes this dependency into
account is proposed. It is shown to be consistent and asymptotically normally dis-
tributed. Its limiting variance is independent of the memory parameter, with the
potential for substantial efficiency gain over univariate estimation. The GSE that
ignores the phase shift is still consistent and asymptotically normally distributed de-
spite its misspecification. But it is less efficient than the GSE based on the correct
specification, and its limiting variance depends on the memory parameter. Simulation
results corroborate the asymptotic results, and a properly modified Wald statistic is
shown to have a reasonable finite sample (' 500) size.

This paper sheds light on the importance of and potential difficulty in extend-
ing the univariate semiparametric modeling and estimation of strongly dependent
processes into a multivariate context.
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8 Appendix A: Proofs

In this and the following sections, C denotes a generic constant such that C ∈ (1,∞)
unless specified otherwise, and it may take different values in different places.

8.1 Proof of Theorem 1

Define θ = (θ1, · · · , θq)′ = d − d0 and S(d) = R(d) − R(d0). Fix 1/2 > δ > 0, and
define N δ = {d : ||d−d0|| ≥ δ}, where ||·|| denotes the supremum norm. For arbitrary
small ∆ > 0, define Θ1 = {θ : θ ∈ [−1/2+∆, 1/2]q} and Θ2 = Θ\Θ1, possibly empty.
Without loss of generality, assume ∆ < 1/4. Then we have (c.f. Robinson, 1995b, p.
1634)

Pr
(
||d̂− d0|| > δ

)
≤ Pr

(
infNδ∩Θ S(d) ≤ 0

)
≤ Pr

(
infNδ∩Θ1

S(d) ≤ 0
)

+ Pr (infΘ2 S(d) ≤ 0) . (7)

For the first probability on the right of (7), rewrite S(d) as

S(d) = log det Ĝ(d)− log det Ĝ(d0)− 2
q∑

a=1

θa
1
m

m∑
j=1

log λj

= log det Ĝ(d) + log
(

2πm

n

)−2(θ1+···+θq)

− log det Ĝ(d0)

−2
q∑

a=1

θa

 1
m

m∑
j=1

log j − log m


= log A(d)− log B(d)− log A(d0) + log B(d0) + S2(d),

where

A(d) =
(

2πm

n

)−2(θ1+···+θq)

det Ĝ(d), B(d) =
q∏

a=1

(2θa + 1)−1 det G0,

S2(d) = −2
q∑

a=1

θa

 1
m

m∑
j=1

log j − log m

−
q∑

a=1

log(2θa + 1). (8)

Since m−1
∑m

1 log j − log m + 1 = O(m−1 log m) (see, e.g. Robinson, 1995b, Lemma
2), we have

S2(d) =
q∑

a=1

[2θa − log(2θa + 1)] + O(m−1 log m).
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Because x − log(x + 1) achieves a unique global minimum on (−1,∞) at x = 0 and
x− log(x + 1) ≥ x2/6 for 0 ≤ |x| < 1, for all sufficiently large n

infNδ∩Θ1
S2(d) ≥ δ2/8.

For A(d) and B(d), if there exists nonrandom Ξ(d) such that

(i) supΘ1
|A(d)− Ξ(d)| = op(1), (ii) Ξ(d) ≥ B(d), (iii) Ξ(d0) = B(d0), (9)

as n →∞, then, since inf Θ1Ξ(d) ≥ inf Θ1B(d) > 0, we have, uniformly in Θ1,

log A(d)− log B(d) ≥ log A(d)− log Ξ(d)
= log ([Ξ(d) + op(1)]/Ξ(d)) = op(1),

log A(d0)− log B(d0) = log
(
[Ξ(d0) + op(1)]/Ξ(d0)

)
= op(1),

and Pr(infNδ∩Θ1
S(d) ≤ 0) → 0 follows.

We proceed to show (9). For (i), recall that Λj(d)−1 = diag(λda
j ei(λj−π)da/2) and

Λj(d)−1 = Λj(d− d0)−1Λj(d0)−1 = Λj(θ)−1Λj(d0)−1.

It follows that

A(d) =
(

2πm

n

)−2(θ1+···+θq)

×det

 1
m

m∑
j=1

Re
[
Λj(θ)−1Λj(d0)−1I(λj)Λ∗

j (d
0)−1Λ∗

j (θ)
−1
]

= det

 1
m

m∑
j=1

Re
[
Mj(θ)Λj(d0)−1I(λj)Λ∗

j (d
0)−1M∗

j (θ)
] , (10)

where Mj(θ) =diag(ei(λj−π)θa/2(j/m)θa). Hereafter let Ij denote I(λj) and waj denote
wa(λj), the ath element of w(λj). Observe that the (a, b)th element of the inside of
det{·} in (10) is (recall that Λj(d) =diag(Λja(d)) with Λja(d) = λ−da

j ei(π−λj)da/2, as
defined in (6))

1
m

m∑
j=1

Re

[
ei(λj−π)(θa−θb)/2

(
j

m

)θa+θb wajw
∗
bj

Λja(d0)Λ∗
jb(d

0)

]
.

Summation by parts (c.f., Robinson, 1995b, p. 1636) and Lemma 1 (a) give, uniformly
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in (a, b),

sup
Θ1

∣∣∣∣∣∣ 1
m

m∑
j=1

ei(λj−π)(θa−θb)/2

(
j

m

)θa+θb
(

wajw
∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)∣∣∣∣∣∣
≤ 1

m

m−1∑
r=1

sup
Θ1

∣∣∣∣∣( r

m

)θa+θb

ei(λr−π)(θa−θb)/2 −
(

r + 1
m

)θa+θb

ei(λr+1−π)(θa−θb)/2

∣∣∣∣∣
×

∣∣∣∣∣∣
r∑

j=1

(
wajw

∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
m

m∑
j=1

(
wajw

∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)∣∣∣∣∣∣
≤ C

m−1∑
r=1

( r

m

)2∆ 1
r2

∣∣∣∣∣∣
r∑

j=1

(
wajw

∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)∣∣∣∣∣∣
+

1
m

∣∣∣∣∣∣
m∑

j=1

(
wajw

∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)∣∣∣∣∣∣ = op(1). (11)

It follows that, uniformly in Θ1,

1
m

m∑
j=1

Re
[
Mj(θ)Λj(d0)−1IjΛ∗

j (d
0)−1M∗

j (θ)
]

=
1
m

m∑
j=1

Re
[
Mj(θ)G0M∗

j (θ)
]
+ op(1).

We proceed to derive an approximation of the right hand side. From Lemma 2
of Robinson (1995b), we have supC≥γ≥ε

∣∣∣γm−1
∑m

j=1(j/m)γ−1 − 1
∣∣∣ = O (m−ε) for

0 < ε < C < ∞. Also ei(λ−π)(θa−θb)/2 = e−iπ(θa−θb)/2 +O(λ). Define E (θ) and M∞(θ)
to be matrices whose (a, b) elements are e−iπ(θa−θb)/2 and (1+θa+θb)−1 =

∫ 1
0 xθa+θbdx,

respectively. Then it follows that

1
m

m∑
j=1

[
Mj(θ)G0M∗

j (θ)
]

= E (θ)�M∞(θ)�G0 + O(mn−1) + O(m−2∆), (12)

where � denotes a Hadamard product. Because the determinant is a continuous
function of each element and the matrices E (θ) , M∞(θ), and G0 are finite for θ ∈ Θ1,
(i) of (9) follows with

Ξ(d) = det(Re [E (θ)]�M∞(θ)�G0).

For (ii) and (iii) of (9), rewrite E (θ) = ξξ∗ with ξ = (e−iπθ1/2, · · · , e−iπθq/2)′.
Then

Re [E (θ)] = Re (ξξ∗) = Re [ξ] (Re [ξ])′ + Im [ξ] (Im [ξ])′, (13)

and it follows that Re [E (θ)] is positive semidefinite. Since M∞(θ) and G0 are positive
semidefinite, Re [E (θ)]�M∞(θ) is also positive semidefinite (Lütkepohl, 1996, p.152).
Therefore, it follows from Oppenheim’s inequality

If A,B are m×m and positive semidefinite, then det(A�B) ≥ det A

m∏
i=1

bii.

14



(Lütkepohl, 1996, p.56) that

Ξ(d) ≥
q∏

a=1

(Re [E (θ)]�M∞(θ))aa det(G0) =
q∏

a=1

[M∞(θ)]aa (detG0) = B(d),

giving (ii) of (9). (iii) follows because Ξ(d0) = det(M∞(0) � G0) = B(d0), since all
elements of E (0) are one.

We move to bound the second probability in (7). Observe that

S(d) = log det Ĝ(d)− log det Ĝ(d0)− 2
q∑

a=1

θa
1
m

m∑
j=1

log λj

= log det
1
m

m∑
j=1

Re
[
Λj(θ)−1Λj(d0)−1IjΛ∗

j (d
0)−1Λ∗

j (θ)
−1
]

−2
q∑

a=1

θa
1
m

m∑
j=1

log λj − log det Ĝ(d0)

= log det D̂(d)− log det D̂(d0), (14)

where

D̂(d) =
1
m

m∑
j=1

Re
[
Pj(θ)Λj(d0)−1IjΛ∗

j (d
0)−1P ∗

j (θ)
]
,

Pj(θ) = diag(ei(λj−π)θa/2(j/p)θa), p = exp(m−1∑m
j=1 log j) ∼ m/e.

Since log x is a monotone increasing function of x, Pr(infΘ2 S(d) ≤ 0) → 0 follows if

Pr(infΘ2 det D̂(d)− det D̂(d0) ≤ 0) → 0 as n →∞. (15)

For a q-vector Wj , we can write down each summand of D̂(d) as

Re[Pj(θ)Λj(d0)−1IjΛ∗
j (d

0)−1P ∗
j (θ)]

= Re[WjW
∗
j ] = Re[Wj ](Re[Wj ])′ + Im[Wj ](Im[Wj ])′,

which is positive semidefinite. Thus D̂(d) is a sum of m positive semidefinite matrices.
For a fixed κ ∈ (0, 1), define

D̂κ(d) =
1
m

m∑
j=[κm]

Re
[
Pj(θ)Λj(d0)−1IjΛ∗

j (d
0)−1P ∗

j (θ)
]
,

Kκ(d) =
1
m

m∑
j=[κm]

Re
[
Pj(θ)G0 P ∗

j (θ)
]
.

Then, it follows from Lütkepohl (1996, p. 55) that

det D̂(d) ≥ det D̂κ(d). (16)
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D̂κ(d) is uniformly approximated by Kκ(d). The (a, b)th element of D̂κ(d)−Kκ(d) is

1
m

m∑
j=[κm]

Re

[
ei(λj−π)(θa−θb)/2

(
j

p

)θa+θb
(

wajw
∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)]

=
(

m

p

)θa+θb

Re

 1
m

m∑
j=[κm]

ei(λj−π)(θa−θb)/2

(
j

m

)θa+θb
(

wajw
∗
bj

Λja(d0)Λ∗
jb(d

0)
−G0

ab

)
= op(1) uniformly in θ ∈ Θ2,

where the third line is derived similarly to (11) from summation by parts, Lemma
1 (a), and Lemma 5.4 of Shimotsu and Phillips (2005). It follows that, for any
κ ∈ (0, 1),

supΘ2

∣∣∣det D̂κ(d)− det Kκ(d)
∣∣∣ = op(1), as n →∞.

The proof is completed by deriving the lower bound of Kκ(d) for d ∈ Θ2. Rewrite
Kκ(d) as

Kκ(d) = Mκ
m(θ)�G0,

where a positive semidefinite matrix Mκ
m(θ) is defined as

Mκ
m(θ) =

1
m

m∑
j=[κm]

Re
[
ZjZ

∗
j

]
, Zj =

(
ei(λj−π)θ1/2(j/p)θ1 , · · · , ei(λj−π)θq/2(j/p)θq

)′
.

In view of Oppenheim’s inequality, Lemma 5.5 of Shimotsu and Phillips (2005), and
Lemma 2, there exist ε ∈ (0, 0.1) and κ̄ ∈ (0, 1/4) such that, for sufficiently large m
and all κ ∈ (0, κ̄),

inf
Θ2

det Kκ(d) ≥ det G0 inf
Θ2

q∏
a=1

1
m

m∑
j=[κm]

(
j

p

)2θa

≥ det G0(1 + 2ε)(1− κ2∆)q−1 + o(1).

Choose κ sufficiently small so that (1+2ε)(1−κ2∆)q−1 ≥ 1+ ε. Then, it follows that

infΘ2 det D̂κ(d) = infΘ2 det Kκ(d) + op(1) ≥ det G0(1 + ε) + op(1).

From the results for d ∈ Θ1, we have det D̂(d0) = det Ĝ(d0) →p det G0 as n → ∞.
Therefore,

Pr(infΘ2 det D̂κ(d)− det D̂(d0) ≤ 0) → 0 as n →∞,

and (15) follows in view of (16), completing the proof. �

8.2 Proof of Theorem 2

We follow the approach developed by Lobato (1999). Theorem 1 holds under the
current conditions and implies that with probability approaching one, as n → ∞, d̂
satisfies

0 =
dR(d)

dd

∣∣∣∣bd =
dR(d)

dd

∣∣∣∣
d0

+
(

d2R(d)
dddd′

∣∣∣∣
d

)
(d̂− d0).
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where ||d − d0|| ≤ ||d̂ − d0||. d̂ has the stated limiting distribution if, for any q × 1
vector η, as n →∞,

η′
√

m
dR(d)

dd

∣∣∣∣
d0

=
q∑

a=1

ηa

√
m

∂R(d)
∂da

∣∣∣∣
d0

→d N(0, η′Ωη), (17)

d2R(d)
dddd′

∣∣∣∣
d

→ p Ω, Ω = 2
[
G0 � (G0)−1 + Iq +

π2

4
(
G0 � (G0)−1 − Iq

)]
.(18)

8.2.1 Score vector approximation

First we show (17). The proof is similar to that of Lobato (1999). Observe that

√
m

∂R(d)
∂da

= − 2√
m

m∑
j=1

log λj + tr

[
Ĝ (d)−1√m

∂Ĝ (d)
∂da

]
. (19)

Let ia be a q× q matrix whose ath diagonal element is one and all other elements are
zero, and let Λ0

j denote Λj(d0) in the following. From Λj(d)−1 =diag(λda
j ei(λj−π)da/2)

and Re[(a + bi)(c + di)] = ac− bd, we obtain

√
m

∂Ĝ (d)
∂da

∣∣∣∣∣
d0

=
1√
m

m∑
j=1

Re
[(

log λj +
λj − π

2
i

)
(Λ0

j )
−1iaIj(Λ0∗

j )−1

]

+
1√
m

m∑
j=1

Re
[(

log λj −
λj − π

2
i

)
(Λ0

j )
−1Ijia(Λ0∗

j )−1

]

=
1√
m

m∑
j=1

log λjRe
[
(Λ0

j )
−1 (iaIj + Ijia) (Λ0∗

j )−1
]

+
1√
m

m∑
j=1

λj − π

2
Im
[
(Λ0

j )
−1 (−iaIj + Ijia) (Λ0∗

j )−1
]
,

= H1a + H2a.

Therefore,
∑q

a=1 ηa
√

m(∂R(d))/(∂da)|d0 is equal to

q∑
a=1

ηa

− 2√
m

m∑
j=1

log λj + tr
[
Ĝ
(
d0
)−1

H1a

]+
q∑

a=1

ηatr
[
Ĝ
(
d0
)−1

H2a

]
= R1 + R2.

We proceed to find an approximation of R1 and R2. First, we obtain, with νj =
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log λj− m−1
∑m

1 log λj = log j− m−1
∑m

1 log j = O(log m),

− 2√
m

m∑
j=1

log λj + tr
[
Ĝ
(
d0
)−1

H1a

]

= tr

Ĝ(d0)−1

H1a −
2√
m

m∑
j=1

log λjĜ(d0)ia


= tr

Ĝ(d0)−1 2√
m

m∑
j=1

νjRe
[
(Λ0

j )
−1Ij(Λ0∗

j )−1
]
ia


= (ga + op(1))

2√
m

m∑
j=1

νj

{
Re
[
(Λ0

j )
−1Ij(Λ0∗

j )−1
]}

a
, (20)

where ga is the ath row of (G0)−1 and {A}a denotes the ath column of matrix A. For
the moment, we proceed ignoring the op(1) term in (20), but later it becomes clear
that doing so does not affect the result. If follows from summation by parts, Lemma
1 (b1), and

∑m
1 νj = 0 that

1√
m

m∑
j=1

νj(Λ0
j )
−1Ij(Λ0∗

j )−1

=
1√
m

m∑
j=1

νj

[
(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ0∗
j )−1 −G0

]
+ op(1). (21)

Thus

R1 =
2√
m

q∑
a=1

ηa

m∑
j=1

νj

(
ga
{
Re
[
(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ0∗
j )−1

]}
a
− 1
)

+ op(1).

(22)
The first term on the right is equal to

2√
m

q∑
a=1

ηa

m∑
j=1

νj

(
ga

{
Re

[
(Λ0

j )
−1A(λj)

(
1

2πn

n∑
t=1

εtε
′
t

)
A∗(λj)(Λ0∗

j )−1

]}
a

− 1

)

+
2√
m

q∑
a=1

ηa

m∑
j=1

νj

ga

Re

(Λ0
j )
−1A(λj)

 1
2πn

n∑∑
t6=s

εtε
′
se

i(t−s)λj

A∗(λj)(Λ0∗
j )−1


a

 .

The first part is op(1) from applying the proof of Lemma 1 in Appendix D of Lobato
(1999). It follows that

R1 =
n∑

t=2

ε′t

t−1∑
s=1

Φt−sεs + op(1), Φs =
1

π
√

mn

m∑
j=1

νjRe
[
Ωje

−isλj + Ω′
je

isλj

]
, (23)
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where Ωj is defined as

Ωj =
q∑

a=1

ηa

{
A∗(λj)(Λ0∗

j )−1
}

a
ga(Λ0

j )
−1A(λj). (24)

We can simplify R1 further as

R1 =
n∑

t=2

ε′t

t−1∑
s=1

Θt−sεs + op(1), Θs =
1

π
√

mn

m∑
j=1

νjRe
[
Ωj + Ω′

j

]
cos(sλj). (25)

This is because we can rewrite
∑n

t=1 ε′t
∑t−1

s=1 Φt−sεs −
∑n

t=1 ε′t
∑t−1

s=1 Θt−sεs as

n∑
t=2

ε′t

t−1∑
s=1

 1
π
√

mn

m∑
j=1

νjIm
[
Ωj − Ω′

j

]
sin(t− s)λj

 εs. (26)

This is op(1) because its second moment is equal to

1
π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

ν2
j tr
{(

Im
[
Ωj − Ω′

j

])′ Im [Ωj − Ω′
j

]}
sin2(sλj)

+
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑∑
j 6=k

νjνktr
{(

Im
[
Ωj − Ω′

j

])′ Im [Ωk − Ω′
k

]}
sin(sλj) sin(sλk),

which is o(1) from Im[Ωj ] → 0 by Assumption 5′,
∑m

j=1 ν2
j = O(m), and Lemma 3

(c) and (d).
We move to R2. Proceeding similarly to (20) - (21), we obtain

tr
[
Ĝ
(
d0
)−1

H2a

]
= (ga + op(1))

1√
m

m∑
j=1

(λj − π)
{
Im
[
(Λ0

j )
−1Ij(Λ0∗

j )−1
]}

a
. (27)

It follows from Lemma 1 (b2), Assumption 5′, and the uncorrelatedness of Iεj and
Iεk for j 6= k that

1√
m

m∑
j=1

(λj − π)Im
[
(Λ0

j )
−1Ij(Λ0∗

j )−1
]

= − π√
m

m∑
j=1

Im
[
(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ0∗
j )−1

]
+ op(1).

Therefore, ignoring the op(1) term in (27) and proceeding as between (21) and (23),
we find that

R2 = −π

2

n∑
t=2

ε′t

t−1∑
s=1

Φ̃t−sεs + op(1), Φ̃s =
1

π
√

mn

m∑
j=1

Im
[
Ωje

−isλj + Ω′
je

isλj

]
,
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where Ωj is defined in (24). Using a decomposition similar to (26) in conjunction
with Im[Ωj ] → 0 and Lemma 3 (a) and (b), we can simplify R2 as

R2 =
n∑

t=1

ε′t

t−1∑
s=1

Θ̃t−sεs + op(1), Θ̃s =
π

2
1

π
√

mn

m∑
j=1

Re
[
Ωj − Ω′

j

]
sin(sλj). (28)

It follows from (25) and (28) that, with z1 = 0,

q∑
a=1

ηa

√
m

∂R(d)
∂da

∣∣∣∣∣
d0

=
n∑

t=1

zt + op(1), zt = ε′t

t−1∑
s=1

[
Θt−s + Θ̃t−s

]
εs.

By a standard martingale CLT, (17) follows if

n∑
t=1

E(z2
t |Ft−1)−

q∑
a=1

q∑
b=1

ηaηbΩab → p0, (29)

n∑
t=1

E(z2
t I(|zt| > δ)) → 0 for all δ > 0. (30)

Applying the argument in Lobato (1999, pp. 149-51) to our Θs and Θ̃s , we obtain
||Θs||, ||Θ̃s|| = O(n−1m1/2 log m) for 1 ≤ s ≤ n/2 and ||Θs||, ||Θ̃s|| = O(m−1/2s−1 log m),
and Assumption 1 implies that Ωj = O(1). Therefore, Lemmas 2 and 3 in Lobato
(1999) hold for our Θs and Θ̃s. Hence, we can apply the arguments in Lobato (1999,
Proof of (C2), pp. 142-43) to show that (30) holds. For (29), from the results in
Lobato (1999, page 142 line 1 and Lemmas 2 and 3), we have

n∑
t=1

E(z2
t |Ft−1) =

n∑
t=2

t−1∑
s=1

tr
[(

Θt−s + Θ̃t−s

)′ (
Θt−s + Θ̃t−s

)]
+ op(1). (31)

Now

n∑
t=2

t−1∑
s=1

tr
[
Θ′

t−sΘt−s + Θ̃′
t−sΘ̃t−s

]
=

1
π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

ν2
j tr
{
Re
[
Ω′

j + Ωj

]
Re
[
Ωj + Ω′

j

]}
cos2(sλj)

+
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑∑
j 6=k

νjνktr
{
Re
[
Ω′

j + Ωj

]
Re
[
Ωk + Ω′

k

]}
cos(sλj) cos(sλk)

+
π2

4
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

tr
{
Re
[
Ω′

j − Ωj

]
Re
[
Ωj − Ω′

j

]}
sin2(sλj)

+
π2

4
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑∑
j 6=k

tr
{
Re
[
Ω′

j − Ωj

]
Re
[
Ωk − Ω′

k

]}
sin(sλj) sin(sλk).
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The second and fourth terms are o(1) from Ωj = O(1) and Lemma 3 (b) and (d).
For the first and third terms, observe that{

tr
{

(4π2)−1Re
[
Ω′

j

]
Re [Ωj ]

}
→
∑q

a=1

∑q
b=1 ηaηbG

0
ab(G

0)−1
ab ,

tr
{
(4π2)−1Re [Ωj ] Re [Ωj ]

}
→
∑q

a=1 η2
a,

(32)

as λj → 0. Therefore, in view of Lemma 3 (a) and (c), we have
∑n

t=2

∑t−1
s=1tr[Θ

′
t−sΘt−s+

Θ̃′
t−sΘ̃t−s] →

∑q
a=1

∑q
b=1 ηaηbΩab. Finally,

n∑
t=2

t−1∑
s=1

Θ′
t−sΘ̃t−s

=
1

2πmn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

m∑
k=1

νjνktr
{
Re
[
Ω′

j + Ωj

]
Re
[
Ωk − Ω′

k

]}
cos(sλj) sin(sλk) = 0,

because tr((A′+A)(B−B′)) = 0 for any real matrices A,B. Therefore,
∑n

t=2

∑t−1
s=1tr[(Θt−s+

Θ̃t−s)′(Θt−s + Θ̃t−s)] →
∑q

a=1

∑q
b=1 ηaηbΩab, establishing (29). Since m−1/2

∑m
j=1 νj

Re[(Λ0
j )
−1Ij(Λ0∗

j )−1] and m−1/2
∑m

j=1 Im[(Λ0
j )
−1Ij(Λ0∗

j )−1] are Op(1) from the above
argument, the op(1) terms in (20) and (27) do not affect the result.

8.2.2 Hessian approximation

The proof is similar to that of Lobato (1999). Fix ε > 0 and let M = {d : (log n)4||d−
d0|| < ε} = {θ : (log n)4||θ|| < ε}. First, we show Pr(d /∈ M) → 0 as n → ∞. Using
the notations in the proof of Theorem 1, infΘ1\M S2(d) is bounded as

infΘ1\M S2(d) ≥ ε2(log n)8/8.

By applying Lemma 1 (b2) to (11), we strengthen (i) of (9) to

supΘ1
|A(d)− Ξ(d)| = Op(mβn−β + m−2∆ log m + mn−1).

It follows that, uniformly in Θ1,

log A(d)− log B(d) ≥ log
(
[Ξ(d) + op((log n)−8)]/Ξ(d)

)
= op((log n)−8),

log A(d0)− log B(d0) = log
(
[Ξ(d0) + op((log n)−8)]/Ξ(d0)

)
= op((log n)−8).

Therefore, as n →∞, Pr(infΘ1\M S(d) ≤ 0) → 0 and Pr(d /∈ M) → 0 follow.
Observe that

∂2R(d)
∂da∂db

= tr

[
−Ĝ−1(d)

∂Ĝ(d)
∂da

Ĝ−1(d)
∂Ĝ(d)
∂db

+ Ĝ−1(d)
∂2Ĝ(d)
∂da∂db

]
. (33)

The derivatives of Ĝ(d) are given by

∂Ĝ(d)
∂da

=
1
m

m∑
j=1

Re
[(

log λj +
λj − π

2
i

)
iaΛj(d)−1IjΛ∗

j (d)−1

]

+
1
m

m∑
j=1

Re
[(

log λj −
λj − π

2
i

)
Λj(d)−1IjΛ∗

j (d)−1ia

]
,
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and

∂2Ĝ(d)
∂da∂db

=
1
m

m∑
j=1

Re

[(
log λj +

λj − π

2
i

)2

iaibΛj(d)−1IjΛ∗
j (d)−1

]

+
1
m

m∑
j=1

Re

[∣∣∣∣log λj −
λj − π

2
i

∣∣∣∣2 iaΛj(d)−1IjΛ∗
j (d)−1ib

]

+
1
m

m∑
j=1

Re

[∣∣∣∣log λj −
λj − π

2
i

∣∣∣∣2 ibΛj(d)−1IjΛ∗
j (d)−1ia

]

+
1
m

m∑
j=1

Re

[(
log λj −

λj − π

2
i

)2

Λj(d)−1IjΛ∗
j (d)−1iaib

]
.

Define, for k = 0, 1, 2,

Ĝk(d) = m−1∑m
j=1(log λj)kRe

[
Λj(d)−1IjΛ∗

j (d)−1
]
,

Gk(d) = m−1∑m
j=1(log λj)kIm

[
Λj(d)−1IjΛ∗

j (d)−1
]
,

Then it follows that

∂Ĝ(d)
∂da

= iaĜ1(d) + Ĝ1(d)ia + (π/2)iaG0(d)− (π/2)G0(d)ia + op((log n)−1),

∂2Ĝ(d)
∂da∂db

= iaibĜ2(d) + iaĜ2(d)ib + ibĜ2(d)ia + Ĝ2(d)iaib

+(π2/4)
[
−iaibĜ0(d) + iaĜ0(d)ib + ibĜ0(d)ia − Ĝ0(d)iaib

]
+πiaibG1(d)− πG1(d)iaib + op(1),

where the order of the reminder terms follows from summation by parts,
∑r

j=1 Λj(d)−1IjΛ∗
j (d)−1 =

Op(r), and Assumption 4′. We state the following properties, to be established later.
Uniformly in d ∈ M,

Ĝk(d) = G0m−1∑m
j=1(log λj)k + op((log n)k−2), Gk(d) = op((log n)k−2). (34)

The assumption m−γ log n → 0 is necessary in showing (34), because the terms
with G1(d) do not cancel out even if we take the trace of Ĝ−1(d)(∂2Ĝ(d))/(∂da∂db).
Define G0

1a = iaG
0 + G0ia, G0

2ab = iaibG
0 + iaG

0ib + ibG
0ia + G0iaib, and G0

3ab =
−iaibG

0 + iaG
0ib + ibG

0ia −G0iaib. It follows from (34) that

Ĝ−1(d) = (G0)−1 + op((log n)−2),

∂Ĝ(d)/∂da = m−1∑m
j=1(log λj)G0

1a + op((log n)−1),

∂2Ĝ(d)/∂da∂db = m−1∑m
j=1(log λj)2G0

2ab + (π2/4)G0
3ab + op(1).

Since tr[(G0)−1G0
1a(G

0)−1G0
1b] =tr[(G0)−1G0

2ab] and m−1
∑m

j=1(log λj)2−[m−1
∑m

j=1(log λj)]2 →
1, we obtain

∂2R(d̃)
∂da∂db

= tr
[
(G0)−1G0

2ab + (π2/4)(G0)−1G0
3ab

]
+ op(1),
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and (18) follows. Ĝ(d) →p G0 follows from (34).
It remains to show (34). Define

Fk(d) = m−1∑m
j=1(log λj)kΛj(θ)−1G0Λ∗

j (θ)
−1,

then (34) follows if

supd∈M

∥∥∥m−1∑m
j=1(log λj)kΛj(d)−1IjΛ∗

j (d)−1 − Fk(d)
∥∥∥ = op((log n)k−2), (35)

supd∈M

∥∥∥Fk(d)−G0m−1∑m
j=1(log λj)k

∥∥∥ = o((log n)k−2). (36)

For (35), rewrite it as

supd∈M

∥∥∥m−1∑m
j=1(log λj)kΛj(θ)−1

[
Λj(d0)−1IjΛ∗

j (d
0)−1 −G0

]
Λ∗

j (θ)
−1
∥∥∥ . (37)

Define bnj(θ) = (log λj)kei(λj−π)(θa−θb)/2λθa+θb
j , then the (a, b)th element of the inside

of supd∈M in (37 ) is equal to

m−1∑m
j=1 bnj(θ)

[
ei(λj−π)(d0

a−d0
b)/2λ

d0
a+d0

b
j wajw

∗
bj −G0

ab

]
.

It is easily seen that bnj(θ) − bn,j+1(θ) = O((log n)kj−1) and bnm = O((log n)k)
uniformly in θ ∈ M. Therefore, it follows from summation by parts and Lemma 1
(b2) that (37) = Op((log n)km−1

∑m
r=1(r

βn−β + r−1/2 log r)) = op((log n)k−2).
We move to the proof of (36). The (a, b)th element of the inside of supd∈M in

(36) is equal to

m−1∑m
j=1(log λj)k

[
ei(λj−π)(θa−θb)/2λθa+θb

j − 1
]
G0

ab. (38)

Since, for θ ∈ M and 0 < λj ≤ 1, |λθa+θb
j − 1|/|θa + θb| ≤ | log λj |n|θa|+|θb| ≤ C log n

and |ei(λj−π)(θa−θb)/2 − 1| ≤ C(|θa|+ |θb|), we have

supd∈M |ei(λj−π)(θa−θb)/2λθa+θb
j − 1| ≤ C supd∈M (|θa|+ |θb|) log n = O((log n)−3),

and hence (38) is o((log n)k−2). Therefore, we show (34) and complete the proof. �

8.3 Proof of Theorem 3 (a)

The proof follows the logic of the proof of Theorem 1, with corresponding modifica-
tions. Define

S̃(d) = R̃(d)− R̃(d0)

= log det G̃(d)− log det G̃(d0)− 2
q∑

a=1

θa
1
m

m∑
j=1

log λj

= log Ã(d)− log B̃(d)− log Ã(d0) + log B̃(d0) + S2(d),
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where S2(d) is defined in (8) and

Ã(d) =
(

2πm

n

)−2(θ1+···+θq)

det G̃(d), B̃(d) =
q∏

a=1

(2θa + 1)−1 det G̃0.

From the proof of Theorem 1, Pr(infNδ∩Θ1
S̃(d) ≤ 0) → 0 follows if we find a non-

random Ξ̃(d) such that, as n →∞,

(i) supΘ1

∣∣∣Ã(d)− Ξ̃(d)
∣∣∣ = op(1), (ii) Ξ̃(d) ≥ B̃(d), (iii) Ξ̃(d0) = B̃(d0).

(39)
Define M̃j(θ) =diag(e−i(λj−π)d0

a/2(j/m)θa). Then, the expression of Ã(d) corre-
sponding to (10) is

Ã(d) = det

 1
m

m∑
j=1

Re
[
M̃j(θ)Λj(d0)−1I(λj)Λ∗

j (d
0)−1M̃∗

j (θ)
] . (40)

Applying summation by parts, Lemma 1 (a), and the bound provided by (11) gives,
uniformly in Θ1,

Ã(d) = det

 1
m

m∑
j=1

Re
[
M̃j(θ)G0M̃∗

j (θ)
]

+ op(1)

 .

Proceeding as in the proof of Theorem 1 with eiλ = 1 + O(λ), we obtain the bound
corresponding to (12):

1
m

m∑
j=1

Re
[
M̃j(θ)G0M̃∗

j (θ)
]

= M∞(θ)� G̃0 + O(mn−1) + O(m−2∆). (41)

Therefore, (i) and (iii) of (39) follow with Ξ̃(d) = det(M∞(θ) � G̃0). Define E0 to
be a matrix whose (a, b) elements are exp[iπ(d0

a − d0
b)/2]. Since we can rewrite G̃0 =

Re[E0]�G0 and Re[E0] is positive semidefinite (c.f. (13)), G̃0 is positive semidefinite.
Therefore, we may apply Oppenheim’s inequality to Ξ̃(d), and (ii) of (39) follows
because

Ξ̃(d) ≥
q∏

a=1

[M∞(θ)]aa det G̃0 = B̃(d).

The proof completes by showing Pr(infΘ2 S̃(d) ≤ 0) → 0. In place of (14), we
obtain

S̃(d) = log det D̃(d)− log det D̃(d0),

where

D̃(d) =
1
m

m∑
j=1

Re
[
P̃j(θ)Λj(d0)−1IjΛ∗

j (d
0)−1P̃ ∗

j (θ)
]
,

P̃j(θ) = diag(e−i(λj−π)d0
a/2(j/p)θa).
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Pr(infΘ2 S̃(d) ≤ 0) → 0 follows if

Pr(infΘ2 det D̃(d)− det D̃(d0) ≤ 0) → 0 as n →∞. (42)

For a fixed κ ∈ (0, 1/4), define

D̃κ(d) =
1
m

m∑
j=[κm]

Re
[
P̃j(θ)Λj(d0)−1IjΛ∗

j (d
0)−1P̃ ∗

j (θ)
]
,

and K̃κ(d) = m−1
∑m

j=[κm] Re[P̃j(θ)G0 P̃ ∗
j (θ)]. Then we obtain det D̃(d) ≥ det D̃κ(d)

and supΘ2
|det D̃κ(d) − det K̃κ(d)| = op(1) by applying the same argument as the

proof of Theorem 1. We move to derive the lower bound of K̃κ(d). Rewrite K̃κ(d) as

K̃κ(d) = M̃κ
m(θ)� Eκ

m �G0,

where a positive semidefinite matrices M̃κ
m(θ) and Eκ

m are defined as

M̃κ
m(θ) =

1
m

m∑
j=[κm]

Z̃jZ̃
′
j , Z̃j =

(
(j/p)θ1 , · · · , (j/p)θq

)′
,

Eκ
m =

1
m

m∑
j=[κm]

Re
[
ξjξ

∗
j

]
, ξj =

(
e−i(λj−π)d0

1/2, · · · , e−i(λj−π)d0
q/2
)′

.

From Oppenheim’s inequality, Lemma 5.5 of Shimotsu and Phillips (2005), and
Lemma 2, it follows that there exist ε ∈ (0, 0.1) and κ̄ ∈ (0, 1/4) such that, for
sufficiently large m and all κ ∈ (0, κ̄),

inf
Θ2

det K̃κ(d) ≥ det
{
Eκ

m �G0
}

inf
Θ2

q∏
a=1

1
m

m∑
j=[κm]

(
j

p

)2θa

≥ det
{

(1− κ)G̃0 + o(1)
}

(1 + 2ε)(1− κ2∆)q−1 + o(1).

Choosing κ sufficiently small gives infΘ2 det D̃κ(d) = infΘ2 det Kκ(d) + op(1) ≥ (1 +
ε) det G̃0 + op(1). From the results for d ∈ Θ1, det D̃(d0) = det G̃(d0) →p det G̃0, and
(42) follows and we complete the proof. �

8.4 Proof of Theorem 3 (b)

The proof follows the logic of the proof of Theorem 2, with corresponding modifica-
tions. See the proof of Theorem 2 for the relevant definitions if not stated herein.
The stated result follows if, with d̈ ∈ [d0, d̃],

η′
√

m
dR̃(d)

dd

∣∣∣∣∣
d0

=
q∑

a=1

ηa

√
m

∂R̃(d)
∂da

∣∣∣∣∣
d0

→d N(0, η′Υη), (43)

d2R̃(d)
dddd′

∣∣∣∣∣
d̈

→ p Ω̃. (44)
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8.4.1 Score vector approximation

First we show (43). Define Ej =diag(exp[i(π − λj)d0
a/2]) for j = 0, . . . ,m, then

G̃
(
d0
)

=
1
m

m∑
j=1

Re
[
Ej(Λ0

j )
−1Ij(Λ0∗

j )−1E∗j
]
,

and

√
m

∂G̃ (d)
∂da

∣∣∣∣∣
d0

=
1√
m

m∑
j=1

log λjRe
[
Ej(Λ0

j )
−1 (iaIj + Ijia) (Λ0∗

j )−1E∗j
]
.

Using an argument similar to (19) and (20), we obtain

q∑
a=1

ηa

√
m

∂R̃(d)
∂da

∣∣∣∣∣
d0

=
q∑

a=1

ηa

− 2√
m

m∑
j=1

log λj + tr

[
G̃
(
d0
)−1√

m
∂G̃
(
d0
)

∂da

]
=

q∑
a=1

ηa (g̃a + op(1))
2√
m

m∑
j=1

νj

{
Re
[
Ej(Λ0

j )
−1Ij(Λ0∗

j )−1E∗j
]}

a
= R̃1,

where g̃a is the ath row of (G̃0)−1 and {A}a denotes the ath column of matrix A.
Using summation by parts, Lemma 1 (b1),

∑m
1 νj = 0, and m3n−2(log m)2 → 0, in

place of (21) we have

1√
m

m∑
j=1

νjEj(Λ0
j )
−1Ij(Λ0∗

j )−1E∗j

=
1√
m

m∑
j=1

νj

[
E0(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ0∗
j )−1E∗0 − E0G

0E∗0
]
+ op(1). (45)

Then, proceeding as in the proof of Theorem 2, in place of (22) and (23) we obtain

R̃1 =
2√
m

q∑
a=1

ηa

m∑
j=1

νj

(
g̃a
{
Re
[
E0(Λ0

j )
−1A(λj)IεjA

∗(λj)(Λ0∗
j )−1E∗0

]}
a
− 1
)

+ op(1)

=
n∑

t=2

ε′t

t−1∑
s=1

Ψt−sεs + op(1),
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where

Ψs =
1

π
√

mn

m∑
j=1

νjRe
[
Ω̈je

−sλj + Ω̈′
je

sλj

]
=

1
π
√

mn

m∑
j=1

νjRe
[
Ω̈j + Ω̈′

j

]
cos(sλj) +

1
π
√

mn

m∑
j=1

νjIm
[
Ω̈j − Ω̈′

j

]
sin(sλj),

Ω̈j =
q∑

a=1

ηa

{
A∗(λj)(Λ0∗

j )−1E∗0
}

a
g̃aE0(Λ0

j )
−1A(λj).

Since ||Ψs|| is bounded by the bound of ||Θs||, (43) follows if (c.f. (29)-(31))

n∑
t=2

t−1∑
s=1

tr
[
Ψ′

t−sΨt−s

]
−

q∑
a=1

q∑
b=1

ηaηbΥab →p 0. (46)

Now
n∑

t=2

t−1∑
s=1

tr
[
Ψ′

t−sΨt−s

]
=

1
π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

ν2
j tr
{

Re
[
Ω̈′

j + Ω̈j

]
Re
[
Ω̈j + Ω̈′

j

]}
cos2(sλj)

+
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑∑
j 6=k

νjνktr
{

Re
[
Ω̈′

j + Ω̈j

]
Re
[
Ω̈k + Ω̈′

k

]}
cos(sλj) cos(sλk)

+
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

ν2
j tr
{

Im
[
Ω̈′

j − Ω̈j

]
Im
[
Ω̈j − Ω̈′

j

]}
sin2(sλj)

+
1

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑∑
j 6=k

νjνktr
{

Im
[
Ω̈′

j − Ω̈j

]
Im
[
Ω̈k − Ω̈′

k

]}
sin(sλj) sin(sλk)

+
2

π2mn2

n−1∑
t=1

n−t∑
s=1

m∑
j=1

m∑
k=1

νjνktr
{

Re
[
Ω̈′

j + Ω̈j

]
Im
[
Ω̈k − Ω̈′

k

]}
cos(sλj) sin(sλk).

The second and fourth terms are o(1) from Ω̈j = O(1) and Lemma 3 (b) and (d). The
fifth term is 0 because tr((A′ + A)(B − B′)) = 0 for any real matrices A,B. Define
H̃ = E0H so that E0(Λ0

j )
−1A(λj) → H̃ and Ω̈j → Ω̈ =

∑q
a=1 ηa{H̃∗}ag̃

aH̃ as λj → 0.
Then, from Lemma 3 (a) and (c), the sum of the first and third terms converges to

(4π2)−1tr
{

Re
[
Ω̈′ + Ω̈

]
Re
[
Ω̈ + Ω̈′

]}
+ (4π2)−1tr

{
Im
[
Ω̈′ − Ω̈

]
Im
[
Ω̈− Ω̈′

]}
.

Since Re[AA∗] = Re[A]Re[A′]+Im[A]Im[A′] and Re[AA] = Re[A] Re[A]−Im[A]Im[A]
for any square matrix A, this reduces to

2(4π2)−1tr
{

Re
[
Ω̈Ω̈∗

]
+ Re

[
Ω̈Ω̈
]}

.
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Since G̃0 = Re[E0G
0E∗0 ] = Re[H̃H̃∗]/2π and G

0 = Im[E0G
0E∗0 ] = Im[H̃H̃∗]/2π,

(4π2)−1tr
{

Re
[
Ω̈Ω̈∗

]}
= (4π2)−1

q∑
a=1

q∑
b=1

ηaηbRe
[
tr
[{

H̃∗
}

a
g̃aH̃H̃∗(g̃b)′

{
H̃∗
}∗

b

]]
= (4π2)−1

q∑
a=1

q∑
b=1

ηaηbRe
[
tr
[
g̃aH̃H̃∗(g̃b)′{bth row of H̃}

{
H̃∗
}

a

]]
=

q∑
a=1

q∑
b=1

ηaηb

{
tr
[
g̃aG̃0(g̃b)′G̃0

ba

]
− tr

[
g̃aG

0(g̃b)′G0
ba

]}
=

q∑
a=1

q∑
b=1

ηaηb

[
G̃0

ab (G̃0)−1
ab + g̃aG

0(g̃b)′G0
ab

]
,

and

(4π2)−1tr
{

Re
[
Ω̈Ω̈
]}

= (4π2)−1
q∑

a=1

q∑
b=1

ηaηbRe
[
tr
[{

H̃∗
}

a
g̃aH̃

{
H̃∗
}

b
g̃bH̃

]]
= (4π2)−1

q∑
a=1

q∑
b=1

ηaηbRe
[
tr
[
H̃
{

H̃∗
}

a
g̃aH̃

{
H̃∗
}

b
g̃b
]]

=
q∑

a=1

q∑
b=1

ηaηb

{
tr
[
{G̃0}ag̃

a{G̃0}bg̃
b
]
− tr

[
{G0}ag̃

a{G0}bg̃
b
]}

=
q∑

a=1

q∑
b=1

ηaηb

[
1{a = b} −

{
(G̃0)−1G

0
}

ab

{
(G̃0)−1G

0
}

ba

]
.

Therefore, (46) follows and the proof completes.

8.4.2 Hessian approximation

Pr(d̈ /∈ M) → 0 follows from replacing A(d) and Ξ(d) in the proof of Theorem 2 with
Ã(d) and Ξ̃(d). Now, in place of (33), we have

∂2R̃(d)
∂da∂db

= tr

[
−G̃−1(d)

∂G̃(d)
∂da

G̃−1(d)
∂G̃(d)
∂db

+ G̃−1(d)
∂2G̃(d)
∂da∂db

]
. (47)

Define G̃k(d) = m−1
∑m

j=1(log λj)kRe[diag(λda
j )Ijdiag(λda

j )] for k = 0, 1, 2, then
G̃0(d) = G̃(d) and

∂G̃(d)/∂da = iaG̃1(d) + G̃1(d)ia,
∂2Ĝ(d)/∂da∂db = iaibG̃2(d) + iaG̃2(d)ib + ibG̃2(d)ia + G̃2(d)iaib.

Using an argument similar to (35) and (36), we obtain, in place of (34),

G̃k(d) = Re
[
diag

(
eiπd0

a/2
)

G0diag
(
e−iπd0

a/2
)]

m−1∑m
j=1(log λj)k + op

(
(log n)k−2

)
= G̃0m−1∑m

j=1(log λj)k + op

(
(log n)k−2

)
,
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uniformly in d ∈ M. Define G̃0
1a = iaG̃

0 +G̃0ia and G̃0
2ab = iaibG̃

0 + iaG̃
0ib + ibG̃

0ia +
G̃0iaib and repeat the arguments following (34), then it follows that ∂2R̃(d̈)/∂da∂db =
tr[(G̃0)−1G̃0

2ab] + op(1), giving (44) and completing the proof. �

9 Appendix B: technical lemmas

Lemmas 5.4 and 5.5 of Shimotsu and Phillips (2005) are given for the convenience of
readers and are to be removed from the final version.

Shimotsu and Phillips (2005), Lemma 5.4

For κ ∈ (0, 1), as m →∞,

(a) sup
−C≤γ≤C

∣∣∣∣∣∣ 1
m

m∑
j=[κm]

(
j

m

)γ

−
∫ 1

κ
xγdx

∣∣∣∣∣∣ = O
(
m−1

)
,

(b)
sup−C≤γ≤C |m−1

∑m
j=[κm](j/m)γ | = O (1) ,

lim infm→∞ inf−C≤γ≤C |m−1
∑m

j=[κm](j/m)γ | > ε > 0.

Shimotsu and Phillips (2005), Lemma 5.5

For p ∼ m/e as m →∞ and ∆ ∈ (0, 1/(2e)), there exist ε ∈ (0, 0.1) and κ̄ ∈ (0, 1/4)
such that, for sufficiently large m and all fixed κ ∈ (0, κ̄),

(a) inf
−C≤γ≤−1+2∆

1
m

m∑
j=[κm]

(
j

p

)γ

≥ 1 + 2ε, (b) inf
1≤γ≤C

1
m

m∑
j=[κm]

(
j

p

)γ

≥ 1 + 2ε.

Lemma 1 Let Aa(λj) be the ath row of A(λj) =
∑∞

k=0 Ake
ikλj and A∗

b(λj) be the
bth column of A∗(λj).
(a) Under the assumptions of Theorem 1, as n →∞, for 1 ≤ v < r ≤ m,

max
a,b

r∑
j=v

(
ei(λj−π)(d0

a−d0
b)/2λ

d0
a+d0

b
j wajw

∗
bj −G0

ab

)
= Avr + Bvr,

where max1≤v<r≤m |r−1Avr| = op(1) and E|Bvr| = O(r1/2 log r).
(b) Under the assumptions of Theorem 2, as n →∞, for 1 ≤ v < r ≤ m,

(b1) max
a,b

r∑
j=v

ei(λj−π)(d0
a−d0

b)/2λ
d0

a+d0
b

j

(
wajw

∗
bj −Aa(λj)IεjA

∗
b (λj)

)
= Op(r1/3(log r)2/3 + log r + r1/2n−1/4).

(b2) max
a,b

r∑
j=v

(
ei(λj−π)(d0

a−d0
b)/2λ

d0
a+d0

b
j wajw

∗
bj −G0

ab

)
= Op(rβ+1n−β + r1/2 log r).
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Proof Decompose the term inside the summation as H1j + H2j + H3j , where

H1j = ei(λj−π)(d0
a−d0

b)/2λ
d0

a+d0
b

j

[
wajw

∗
bj −Aa(λj)IεjA

∗
b (λj)

]
H2j = ei(λj−π)(d0

a−d0
b)/2λ

d0
a+d0

b
j [Aa(λj)IεjA

∗
b (λj)− fab(λj)]

H3j = ei(λj−π)(d0
a−d0

b)/2λ
d0

a+d0
b

j fab(λj)−G0
ab.

We prove part (a) first. Assumption 1 implies that, for any η > 0, n can be chosen
such that maxa,b |H3j | ≤ η uniformly in j = 1, . . . ,m, and maxv,r maxa,b |r−1

∑r
j=v H3j | =

o(1) follows. For the contribution from H1j , from the proof of Theorem 2 of Robinson
(1995a) (also see Robinson (1995b) p. 1673) we have

EIj = fj{1 + O(j−1 log(j + 1))},
Ewajw

∗
εj = Aa(λj)/2π + O(j−1 log(j + 1)λ−da

j ),
EIεj = In/2π + O(j−1 log(j + 1)),

j = 1, . . . ,m. (48)

Rewrite H1j as

ei(λj−π)(d0
a−d0

b)/2λ
d0

a+d0
b

j

{
[waj −Aa(λj)wεj ]w∗

bj + Aa(λj)wεj

[
w∗

bj − w∗
εjA

∗
b (λj)

]}
.

(49)
From (48), Aa(λj)A∗

a(λj)/2π = faa(λj), and λ
2d0

a
j faa(λj) ∼ G0

aa, we obtain

E |waj −Aa(λj)wεj |2 = O(λ−2d0
a

j j−1 log(j + 1)), Ewbjw
∗
bj = O(λ−2d0

b
j ),

and similarly for E|w∗
bj − w∗

εjA
∗
b(λj)|2. Therefore, applying the Cauchy-Schwartz

inequality to the terms in the brace in (49) gives E|(49)| = O(j−1/2 log(j + 1)) and
maxa,b E|

∑r
j=v H1j | = O(r1/2 log m) follows.

For the contribution from H2j , as in Lobato (1999, p.148) use Iεj = (2πn)−1(
∑n

t=1 εtε
′
t+∑∑

s 6=t εsε
′
te

i(s−t)λj ) to rewrite
∑r

j=v H2j as

ei(λj−π)(d0
a−d0

b)/2 1
2π

r∑
j=v

λ
d0

a+d0
b

j Aa(λj)
1
n

n∑
t=1

(
εtε

′
t − Iq

)
A∗

b (λj) (50)

+ei(λj−π)(d0
a−d0

b)/2 1
2π

r∑
j=v

λ
d0

a+d0
b

j Aa(λj)

 1
n

∑∑
s 6=t

εsε
′
te

i(s−t)λj

A∗
b (λj). (51)

(50) is op(r) uniformly in 1 ≤ v < r ≤ m because n−1
∑n

1 (εtε
′
t − Iq) →p 0 from

Theorem 1 of Heyde and Senata (1972) and ||A∗
b (λj)Aa(λj)|| = O(λ−d0

a−d0
b

j ). Rewrite
(51) as ei(λj−π)(d0

a−d0
b)/2

∑∑
s 6=t ε′tΞt−sεs, where

Ξt−s =
1

2πn

r∑
j=v

λ
d0

a+d0
b

j A∗
b (λj)Aa(λj)ei(s−t)λj .
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∑∑
s 6=t ε′tΞt−sεs has mean zero and variance

∑∑
s 6=t(vec′Ξt−svecΞt−s+vec′Ξ′t−svecΞs−t).

Trivially, we have ||Ξs|| = ||Ξ−s|| = ||Ξn−s|| and Ξs = O(rn−1), and summa-
tion by parts gives Ξs = O(s−1 log r) for 1 ≤ s ≤ n/2. Therefore, the variance of∑∑

s 6=t ε′tΞt−sεs is O(n
∑[n/r]

h=1 ||Ξh||2 + n
∑[n/2]

h=[n/r] ||Ξh||2) = O(r(log r)2), and part
(a) follows.

For part (b), (b1) holds because maxa,b |
∑r

j=v H1j | = Op(r1/3(log r)2/3 + log r +
r1/2n−1/4), which follows from applying the proof of (C.2) in Lobato (1999). For
(b2), in addition to the bound on maxa,b |

∑r
j=v H1j |, we have maxa,b |

∑r
j=v H2j | =

Op(r1/2 log r) because (50)= Op(r1/2) since n−1
∑n

t=1(εtε
′
t − Iq) = Op(n−1/2) from

Assumption 2′ and (51)= Op(r1/2 log r). Assumption 1′ implies maxa,b |
∑r

j=v H3j | =
O(rβ+1n−β), giving (b2). �

Lemma 2 For p ∼ m/e as m → ∞, ∆ ∈ (0, 1), and κ ∈ (0, 1), we have, for
sufficiently large m,

inf
−1+2∆≤γ≤1

1
m

m∑
j=[κm]

(
j

p

)γ

≥ 1− κ2∆ + o(1).

Proof It follows from Lemma 5.4 of Shimotsu and Phillips (2005) that

1
m

m∑
j=[κm]

(
j

p

)γ

=
(

m

p

)γ 1
m

m∑
j=[κm]

(
j

m

)γ

= eγ

∫ 1

κ
xγdx+o(1) =

eγ(1− κγ+1)
γ + 1

+o(1).

The stated result follows because eγ/(γ + 1) ≥ 1 for γ ∈ [−1 + 2∆, 1]. �

Lemma 3 For j, k = 1, . . . ,m with m = O(n), as n →∞,

(a)
∑n−1

t=1

∑n−t
s=1 cos2(sλj) = (1/4)n2 + o(n2),

(b)
∑n−1

t=1

∑n−t
s=1 cos(sλj) cos(sλk) = O(n), j 6= k,

(c)
∑n−1

t=1

∑n−t
s=1 sin2(sλj) = (1/4)n2 + o(n2),

(d)
∑n−1

t=1

∑n−t
s=1 sin(sλj) sin(sλk) = O(n), j 6= k,

Proof Robinson (1995b, p. 1645) shows that
∑n−1

t=1

∑n−t
s=1 cos2(sλj) = (n − 1)2/4,∑n−1

t=1

∑n−t
s=1 cos(sλj) = −n/2, and

∑n−1
t=1

∑n−t
s=1 cos(sλj) cos(sλk) = −n/2 for j, k =

1, . . . ,m < 1
2n, j 6= k, giving parts (a) and (b). Part (c) follows from

n−1∑
t=1

n−t∑
s=1

sin2(sλj) =
n−1∑
t=1

n−t∑
s=1

{
1− cos2(sλj)

}
=

n(n− 1)
2

− (n− 1)2

4
=

n2(1 + o(1))
4

.

Part (d) follows from 2
∑n−1

t=1

∑n−t
s=1 sin(sλj) sin(sλk) =

∑n−1
t=1

∑n−t
s=1 {cos(sλj−k)− cos(sλj+k)} =

O(n). �
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Table 1. Comparison of asymptotic variance
ρ 0.0 0.2 0.4 0.6 0.8

univariate 0.250 0.250 0.250 0.250 0.250
(Ω−1)11 0.250 0.234 0.200 0.167 0.142

Q11 |d1 − d2| = 0.0 0.250 0.245 0.230 0.205 0.170
Q11 |d1 − d2| = 0.2 0.250 0.245 0.232 0.211 0.188
Q11 |d1 − d2| = 0.4 0.250 0.247 0.238 0.225 0.218

(Ω−1)11/0.25 1.000 0.937 0.801 0.669 0.570
Q11/0.25 |d1 − d2| = 0.0 1.000 0.980 0.920 0.820 0.680
Q11/0.25 |d1 − d2| = 0.2 1.000 0.982 0.929 0.845 0.753
Q11/0.25 |d1 − d2| = 0.4 1.000 0.987 0.951 0.901 0.870
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Table 2. Simulation results: n = 512, m = n0.65 = 57
GSE1 GSE2

bias s.d. RMSE var(GSE1)
var(uni) bias s.d. RMSE var(GSE2)

var(uni)

ρ = 0.0
(d1, d2) = (0.2,−0.2)

d1 -0.0069 0.0777 0.0780 1.0173 -0.0071 0.0773 0.0776 1.0069
d2 -0.0035 0.0780 0.0780 1.0159 -0.0037 0.0775 0.0776 1.0049

(d1, d2) = (0.2, 0.2)
d1 -0.0065 0.0772 0.0775 1.0083 -0.0066 0.0770 0.0772 1.0018
d2 -0.0051 0.0777 0.0779 1.0182 -0.0052 0.0772 0.0784 1.0053

(d1, d2) = (0.2, 0.4)
d1 -0.0057 0.0775 0.0777 1.0168 -0.0058 0.0770 0.0772 1.0034
d2 -0.0020 0.0779 0.0780 1.0135 -0.0020 0.0776 0.0776 1.0054
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Table 3. Simulation results: n = 512, m = n0.65 = 57
GSE1 GSE2

bias s.d. RMSE var(GSE1)
var(uni) bias s.d. RMSE var(GSE2)

var(uni)

ρ = 0.4
(d1, d2) = (0.2,−0.2)

d1 -0.0053 0.0694 0.0696 0.8101 -0.0049 0.0751 0.0753 0.9509
d2 -0.0021 0.0704 0.0704 0.8135 -0.0019 0.0760 0.0761 0.9500

(d1, d2) = (0.2, 0.2)
d1 -0.0056 0.0691 0.0694 0.8082 -0.0067 0.0738 0.0741 0.9197
d2 -0.0044 0.0688 0.0689 0.7969 -0.0051 0.0742 0.0744 0.9285

(d1, d2) = (0.2, 0.4)
d1 -0.0038 0.0692 0.0693 0.8105 -0.0052 0.0741 0.0743 0.9289
d2 -0.0017 0.0690 0.0690 0.7982 -0.0013 0.0748 0.0748 0.9370
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Table 4. Simulation results: n = 512, m = n0.65 = 57
GSE1 GSE2

bias s.d. RMSE var(GSE1)
var(uni) bias s.d. RMSE var(GSE2)

var(uni)

ρ = 0.8
(d1, d2) = (0.2,−0.2)

d1 0.0017 0.0594 0.0594 0.5936 0.0059 0.0711 0.0714 0.8523
d2 0.0046 0.0604 0.0606 0.6026 0.0090 0.0721 0.0727 0.8578

(d1, d2) = (0.2, 0.2)
d1 -0.0043 0.0581 0.0583 0.5708 -0.0066 0.0635 0.0638 0.6820
d2 -0.0038 0.0576 0.0577 0.5607 -0.0054 0.0637 0.0640 0.6864

(d1, d2) = (0.2, 0.4)
d1 0.0003 0.0585 0.0585 0.5795 -0.0009 0.0662 0.0662 0.7412
d2 0.0004 0.0582 0.0582 0.5653 0.0033 0.0671 0.0672 0.7528
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Table 5. Simulation results: n = 128, m = n0.65 = 23
GSE1 (2-step) GSE1 (NR)

bias s.d. RMSE bias s.d. RMSE
ρ = 0.4, (d1, d2) = (0.2,−0.2)

d1 -0.0173 0.1265 0.1277 -0.0139 0.1239 0.1247
d2 -0.0095 0.1268 0.1272 -0.0054 0.1237 0.1239

ρ = 0.8, (d1, d2) = (0.2, 0.4)
d1 -0.0175 0.1304 0.1316 -0.0070 0.1042 0.1044
d2 -0.0190 0.1257 0.1271 -0.0078 0.1041 0.1044

GSE2 (2-step) GSE2 (NR)
bias s.d. RMSE bias s.d. RMSE

ρ = 0.4, (d1, d2) = (0.2,−0.2)
d1 -0.0142 0.1341 0.1349 -0.0133 0.1341 0.1347
d2 -0.0061 0.1341 0.1343 -0.0051 0.1337 0.1338

ρ = 0.8, (d1, d2) = (0.2, 0.4)
d1 -0.0122 0.1200 0.1206 -0.0085 0.1198 0.1201
d2 -0.0078 0.1194 0.1197 -0.0041 0.1193 0.1194
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Table 6. Simulation results: n = 512, m = n0.65 = 57
GSE1 (2-step) GSE1 (NR)

bias s.d. RMSE bias s.d. RMSE
ρ = 0.4, (d1, d2) = (0.2,−0.2)

d1 -0.0068 0.0695 0.0698 -0.0053 0.0693 0.0695
d2 -0.0037 0.0705 0.0706 -0.0021 0.0704 0.0704

ρ = 0.8, (d1, d2) = (0.2, 0.4)
d1 -0.0052 0.0589 0.0592 -0.0010 0.0585 0.0585
d2 -0.0055 0.0595 0.0597 -0.0007 0.0592 0.0592

GSE2 (2-step) GSE2 (NR)
bias s.d. RMSE bias s.d. RMSE

ρ = 0.4, (d1, d2) = (0.2,−0.2)
d1 -0.0053 0.0751 0.0753 -0.0049 0.0751 0.0753
d2 -0.0022 0.0760 0.0761 -0.0019 0.0760 0.0761

ρ = 0.8, (d1, d2) = (0.2, 0.4)
d1 -0.0038 0.0667 0.0668 -0.0020 0.0667 0.0667
d2 0.0001 0.0682 0.0682 0.0019 0.0682 0.0682
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Table 7. Simulation results: n = 512, m = n0.65 = 57
2πG11 = 2πG12 = 1.0, 2πG12 = 2πG21 = 0.4

mean(GSE1) mean(GSE2)
(d1, d2) 2πĜ11 2πĜ12 2πĜ22 2πĜ11 2πĜ12 2πĜ22

(0.2,−0.2) 1.0274 0.4082 1.0148 1.0280 0.3447 1.0157
(0.2, 0.2) 1.0300 0.4121 1.0243 1.0340 0.4105 1.0279
(0.2, 0.4) 1.0244 0.4110 1.0318 1.0296 0.3937 1.0325
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Table 8. Simulation results: n = 128, m = n0.65 = 23
rejection frequencies (W ) rejection frequencies (Wc)

ρ d1 d2 0.10 0.05 0.01 0.10 0.05 0.01
0.0 0.2 -0.2 0.2802 0.1924 0.0866 0.1471 0.0874 0.0280
0.0 0.2 0.2 0.2801 0.1961 0.0921 0.1510 0.0927 0.0328
0.0 0.2 0.4 0.2899 0.2020 0.0933 0.1562 0.0947 0.0326
0.4 0.2 -0.2 0.2706 0.1847 0.0819 0.1375 0.0825 0.0248
0.4 0.2 0.2 0.2673 0.1854 0.0881 0.1451 0.0884 0.0289
0.4 0.2 0.4 0.2814 0.1975 0.0858 0.1504 0.0871 0.0260
0.8 0.2 -0.2 0.2688 0.1843 0.0769 0.1380 0.0775 0.0227
0.8 0.2 0.2 0.2580 0.1798 0.0797 0.1395 0.0802 0.0251
0.8 0.2 0.4 0.2736 0.1884 0.0819 0.1438 0.0829 0.0252
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Table 9. Simulation results: n = 512, m = n0.65 = 57
rejection frequencies (W ) rejection frequencies (Wc)

ρ d1 d2 0.10 0.05 0.01 0.10 0.05 0.01
0.0 0.2 -0.2 0.1929 0.1188 0.0422 0.1272 0.0695 0.0198
0.0 0.2 0.2 0.1891 0.1191 0.0403 0.1277 0.0705 0.0185
0.0 0.2 0.4 0.1936 0.1211 0.0412 0.1284 0.0726 0.0188
0.4 0.2 -0.2 0.1942 0.1217 0.0397 0.1294 0.0723 0.0162
0.4 0.2 0.2 0.1832 0.1132 0.0370 0.1205 0.0652 0.0173
0.4 0.2 0.4 0.1845 0.1142 0.0379 0.1211 0.0678 0.0166
0.8 0.2 -0.2 0.2005 0.1226 0.0427 0.1304 0.0720 0.0203
0.8 0.2 0.2 0.1773 0.1048 0.0342 0.1127 0.0586 0.0163
0.8 0.2 0.4 0.1819 0.1106 0.0364 0.1182 0.0644 0.0134
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