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Abstract

In practice, bootstrap tests must use a finite number of bootstrap samples. This
means that the outcome of the test will depend on the sequence of random num-
bers used to generate the bootstrap samples, and it necessarily results in some loss
of power. We examine the extent of this power loss and propose a simple pretest
procedure for choosing the number of bootstrap samples so as to minimize experi-
mental randomness. Simulation experiments suggest that this procedure will work
very well in practice.
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1. Introduction

As a result of remarkable increases in the speed of digital computers, the bootstrap
has become increasingly popular for performing hypothesis tests. In econometrics,
the use of the bootstrap for this purpose has been advocated by Horowitz (1994),
Hall and Horowitz (1996), Li and Maddala (1996), and others. Although there are
many ways to use the bootstrap for hypothesis testing, in this paper we emphasize
its use to compute P values. While other ways of performing bootstrap tests are
fundamentally equivalent, the P value approach is the simplest to analyze.

Following the P value approach, one first computes a test statistic, say τ̂ , in the
usual way, and estimates whatever parameters are needed to obtain a data gen-
erating process (DGP) that satisfies the null hypothesis. The distribution of the
random variable τ of which τ̂ is a realization under this “bootstrap DGP” serves
to define the theoretical or ideal bootstrap P value, p∗(τ̂), which is just the prob-
ability that τ > τ̂ under the bootstrap DGP. Normally this probability cannot be
calculated analytically, and so it is estimated by simulation, as follows. One draws
B bootstrap samples from the bootstrap DGP, each of which is used to compute
a bootstrap test statistic τ∗j in exactly the same way as the real sample was used
to compute τ̂ . For a one-tailed test with a rejection region in the upper tail, the
bootstrap P value may then be estimated by the proportion of bootstrap samples
that yield a statistic greater than τ̂ :

p̂∗(τ̂) ≡ 1
B

B∑

j=1

I(τ∗j > τ̂), (1)

where I(·) is the indicator function. As B → ∞, it is clear that the estimated
bootstrap P value p̂∗(τ̂) will tend to the ideal bootstrap P value p∗(τ̂).

There are two types of error associated with bootstrap testing. The first may occur
whenever a test statistic is not pivotal. Although most test statistics used in econo-
metrics are asymptotically pivotal, usually with known asymptotic distributions,
most of them are not pivotal in finite samples. This means that the distribution
of the statistic depends on unknown parameters or other unknown features of the
DGP. As a consequence, bootstrap P values will generally be somewhat inaccurate,
because of the differences between the bootstrap DGP and the true DGP. Neverthe-
less, inferences based on the bootstrap applied to asymptotically pivotal statistics
will generally be more accurate than inferences based on asymptotic theory, in the
sense that the errors are of lower order in the sample size; see Beran (1988), Hall
(1992), and Davidson and MacKinnon (1999).

The second type of error, which is the subject of this note, arises because B is
necessarily finite. An ideal bootstrap test rejects the null hypothesis at level α
whenever p∗(τ̂) < α. A feasible bootstrap test rejects it whenever p̂∗(τ̂) < α. If
drawing the bootstrap samples and computing the τ∗j were sufficiently cheap, we
would choose B to be extremely large, thus ensuring that the ideal and feasible
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tests almost always led to the same outcome. In practice, however, computing the
τ∗j is sometimes not particularly cheap. In such cases, we want B to be fairly small.

There are two undesirable consequences of using a finite number of bootstrap sam-
ples. The first is simply that the outcome of a test may depend on the sequence
of random numbers used to generate the bootstrap samples. The second is that,
whenever B < ∞, there will be some loss of power, as discussed in Hall and Tit-
terington (1989), among others. This loss of power is often small, but, as we will
see in Section 2, it can be fairly large in some cases. The principal contribution of
this paper, which we introduce in Section 3, is a method for choosing B, based on
pretesting, designed so that, although B is fairly small on average, the feasible and
ideal tests rarely lead to different outcomes. In Section 4, we assess the performance
of this procedure by simulation methods. In Section 5, we examine the performance
of an alternative procedure recently proposed by Andrews and Buchinsky (2000).

2. Power Loss for Feasible Bootstrap Tests

The power loss associated with using finite B has been investigated in the literature
on Monte Carlo tests, which are similar to bootstrap tests but apply only to pivotal
test statistics. When the underlying test statistic is pivotal, a bootstrap test is
equivalent to a Monte Carlo test. The idea of Monte Carlo tests is generally at-
tributed to Dwass (1957) and Barnard (1963), and early papers include Hope (1968)
and Marriott (1979). A recent application of Monte Carlo tests in econometrics can
be found in Dufour and Kiviet (1998). One key feature of Monte Carlo tests is that
B must be chosen so that α(B + 1) is an integer if the test is to be exact; see the
Dufour and Kiviet paper for details. Therefore, for α = .05, the smallest possible
value of B for an exact test is 19, and for α = .01, the smallest possible value is 99.
Although it is not absolutely essential to choose B in this way for bootstrap tests
when the underlying test statistic is nonpivotal, since they will not be exact anyway,
it is certainly sensible to do so.

Using a finite value of B inevitably results in some loss of power, because the test
has to allow for the randomness in the bootstrap samples. The issue of power loss
in Monte Carlo tests was first investigated for a rather special case by Hope (1968).
Subsequently, Jöckel (1986) obtained some fundamental theoretical results for a
fairly wide class of Monte Carlo tests, and his results are immediately applicable to
bootstrap tests.

For any pivotal test statistic and any fixed DGP, we can define the “size-power”
function, η(α), as the probability under that DGP that the test will reject the null
when the rejection probability under the null is α. Since the statistic is pivotal, α
is well defined. This function is precisely what we plot as a size-power curve using
simulation results; see, for example, Davidson and MacKinnon (1998). It is always
true that η(0) = 0 and η(1) = 1, and we need η(α) > α for 0 < α < 1 for the
test to be consistent. Thus, in general, we may expect the size-power function to
be concave. For tests that follow standard noncentral distributions, such as the
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noncentral χ2 and the noncentral F , this is indeed so. However, it is not generally
so for every test and for every DGP that might have generated the data.

Let the size-power function for a bootstrap test based on B bootstrap samples be
denoted by η∗(α, m), where α(B + 1) = m. When the original test statistic is
pivotal, η(α) ≡ η∗(α,∞). Under this condition, Jöckel (1986) proves the following
two results:

(i) If η(α) is concave, then so is η∗(α,m).

(ii) Assuming that η(α) is concave, η∗(α,m + 1) > η∗(α,m).

Therefore, increasing the number of bootstrap samples will always increase the
power of the test. Just how much it will do so depends in a fairly complicated way
on the shape of the size-power function η(α). Pivotalness is not needed if we wish
to compare the powers of an ideal and feasible bootstrap test. We simply have
to interpret η(α) as the size-power function for the ideal bootstrap test. Provided
this function is concave, Jöckel’s two results apply. Thus we conclude that the
feasible bootstrap test will be less powerful than the ideal bootstrap test whenever
the size-power function for the ideal test is concave.

Jöckel presents a lower bound on the ratio of η∗(α, m) to η(α), which suggests that
power loss can be quite substantial, especially for small rejection probabilities under
the null. From expression (4.19) of Davison and Hinkley (1997), which provides a
simplified version of Jöckel’s bound,1 we find that

η(α)− η∗(α, m + 1) ≤ η(α)
(

1− α

2πm

)1/2

. (2)

Thus the maximum power loss increases with η(α), may either rise or fall with α,
and is proportional to the square root of 1/(B + 1).

It is interesting to study how tight the bound (2) is in a simple case. We accordingly
conducted a small simulation experiment in which we generated t statistics for the
null hypothesis that γ = 0 in the model

yt = γ + ut, ut ∼ N(0, 1), t = 1, . . . , 4. (3)

These t statistics were then converted to P values. For the ideal bootstrap, this
was done by using the CDF of the t(3) distribution so as to obtain p∗. For the
feasible bootstrap, it was done by drawing bootstrap test statistics from the t(3)
distribution and using equation (1), slightly modified to allow for the fact that this
is a two-tailed test, to obtain p̂∗. There were one million replications.

1 Note that the inequality goes the wrong way in the first printing of the book.
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Figure 1. Power Loss from Bootstrapping, B = 99 (Bound and Actual)

From Jöckel’s results, we know that it is only the size-power function that affects
power loss. The details of (3) (in particular, the very small sample size) were
chosen solely to keep the cost of the experiments down. They affect the results only
to the extent that they affect the shapes of the size-power curves. We performed
experiments for γ = 0.5, 1.0, . . . , 3.0 and present results for γ = 1.0, 2.0, and 3.0,
since these three cases seem to be representative of tests with low, moderate, and
high power. When γ = 1.0, the test rejected 7.6% and 29.0% of the time at the .01
and .05 levels; when γ = 2.0, it rejected 30.9% and 75.7% of the time; and when
γ = 3.0, it rejected 62.0% and 96.7% of the time.

Figure 1 shows the actual power loss observed in our experiments, together with
the loss implied by the bound (2), for B = 99, which is the smallest value of B that
is commonly suggested. The shape of the bounding power loss function is quite
similar to the shape of the actual power loss function, but the actual power loss
is always considerably smaller than the bound. The largest loss occurs for small
values of α when the test is quite powerful. In the worst case, when γ = 3.0 and
α = .01, this loss is substantial: The ideal bootstrap test rejects 62% of the time,
and the feasible bootstrap test rejects only 50% of the time.
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Figure 2. Power Loss from Bootstrapping, γ = 2

Another interesting finding is shown in Figure 2. The bound (2) implies that power
loss will be proportional to (B + 1)−1/2, but, as the figure makes clear, our results
appear to show that it is actually proportional to (B + 1)−1. This suggests that,
in regular cases like the one studied in our experiments, the bound (2) becomes
increasingly conservative as B becomes larger.

In order to avoid a power loss of more than, say, 1%, it is necessary to use a rather
large number of bootstrap samples. If our simulation results can be relied upon,
B = 399 would seem to be about the minimum for a test at the .05 level, and
B = 1499 for a test at the .01 level. If there are cases in which the bound (2) is
tight, then very much larger values of B are needed.

3. Choosing B by Pretesting

Up to this point, we have assumed that B is chosen in advance. However, as
Andrews and Buchinsky (1988) point out, if one wishes to bound the proportional
error of a feasible bootstrap P value, the minimum number of bootstraps needed
depends on the ideal bootstrap P value. They develop an algorithm for a data-
dependent choice of B, which we look at more closely in Section 5, designed to
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control the proportional error of a bootstrap P value in all cases. Nevertheless,
although P values are more informative than the yes/no result of a test at a given
level α, it is often the case that specific values of α, like .05 or .01, are of special
interest. In this section, we propose for such cases a simple pretesting procedure
for determining B endogenously.

Issues other than test power affect any such choice. When B is finite, the random-
ness of a bootstrap P value, or the result of a bootstrap test at level α, comes from
two sources, the data and the simulations, these two sources being independent.
We wish the outcome of a test to depend only on the first source. One way to
achieve that would be to condition on the simulation randomness, but that would
impose the constraint of using the same random number generator with the same
seed for all bootstrap inference. Otherwise, all one can do is to seek to minimize
the effect of simulation randomness. Another issue is, of course, computing time.
Ceteris paribus, it makes sense to minimize expected computing time, where the
expectation is with respect to both sources of randomness. Our problem is to do
so without inducing undue power loss or an unacceptably high probability of a test
result in conflict with that based on the ideal bootstrap P value.

A couple of examples serve to illustrate these issues when some level α is of particular
interest. If τ̂ > τ∗j for every one of B bootstrap samples, B need not be large for us
to conclude that we should reject the null hypothesis. The probability of this event
occurring by chance if p∗(τ̂) is equal to α is (1−α)B. For B = 99 and α = .05, this
probability is .006. Thus, if p∗(τ̂) is greater than or equal to .05, .006 is an upper
bound on the probability that τ̂ > τ∗j for each of 99 bootstrap samples. Similarly,
suppose that p̂∗(τ̂) based on B = 99 is substantially greater than .05. According to
the binomial distribution, the probability that τ∗j > τ̂ 11 or more times out of 99 if
p∗(τ̂) = .05 is .004. Thus, if in fact p∗(τ̂) ≤ .05, it is highly improbable that 11 or
more out of 99 bootstrap samples will produce test statistics more extreme than τ̂ .

These examples suggest a pretesting procedure in which we start with a relatively
small value of B and then increase it, if necessary, until we are confident, at some
prechosen significance level, that p∗(τ̂) is either greater or less than α. If the
procedure stops with a small value of B, p̂∗(τ̂) may differ substantially from p∗(τ̂),
but only when p∗(τ̂) is not close to α, thus ensuring low probability that the feasible
and ideal bootstrap tests yield different outcomes.

To implement the procedure, we must choose β, the level of the pretest (say .001),
and two rather arbitrary parameters that can be expected to have little impact on
the result of the procedure: Bmin, the initial number of bootstrap samples (say, 99),
and Bmax, the maximum number of bootstrap samples (say, 12,799). The second
parameter effectively bounds computing time, and avoids the problem that, if p∗(τ̂)
happens to be very close to α, then a huge number of bootstraps would be needed
to determine whether it is greater or smaller than α. The procedure can be set out
as follows:

1. Calculate τ̂ , set B = Bmin and B′ = Bmin, and calculate τ∗j for B = Bmin

bootstrap samples.
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2. Compute p̂∗(τ̂) based on B bootstrap samples. Depending on whether p̂∗(τ̂) <
α or p̂∗(τ̂) > α, test either the hypothesis that p∗(τ̂) ≥ α or the hypothesis
that p∗(τ̂) ≤ α at level β. This may be done using the binomial distribution
or, if αB is not too small, the normal approximation to it. If p̂∗(τ̂) < α and
the hypothesis that p∗(τ̂) ≥ α is rejected, or if p̂∗(τ̂) > α and the hypothesis
that p∗(τ̂) ≤ α is rejected, stop.

3. If the algorithm gets to this step, set B = 2B′ + 1. If B > Bmax, stop.
Otherwise, calculate τ∗j for a further B′+1 bootstrap samples and set B′ = B.
Then return to step 2.

The rule in step 3 is essentially arbitrary, but it is very simple, and it ensures that
α(B +1) is an integer if α(B′+1) is. It is easy to see how this procedure will work.
When p∗(τ̂) is not close to α, it will usually terminate after one or two rounds with
an estimate p̂∗(τ̂) that is relatively inaccurate, but clearly different from α. When
p∗(τ̂) is reasonably close to α, the procedure will usually terminate after several
rounds with an estimate p̂∗(τ̂) that is fairly accurate. When p∗(τ̂) is very close to
α, it will usually terminate with B = Bmax and a very accurate estimate p̂∗(τ̂).

Occasionally, especially in this last case, the procedure will make a mistake, in the
sense that p̂∗(τ̂) < α when p∗(τ̂) > α, or vice versa. In such cases, simulation
randomness causes the result of a feasible bootstrap test at level α to be different
from the (infeasible) result of the ideal bootstrap test. If Bmax = ∞, the probability
of such conflicts between the feasible and ideal tests is bounded above by β. In
practice, with Bmax finite, the probability can be higher than β. However, the
magnitude of the difference between p̂∗(τ̂) and p∗(τ̂) in the case of a conflict is
bound to be very small. In terms of the tradeoff between conflicts and computing
time, it is desirable to keep β small in order to avoid conflicts when B is still small,
but, for large B, the probability of conflicts can be reduced only by increasing Bmax,
with a consequent increase in expected computing time.

The procedure just described could easily be modified to handle more than one value
of α, if desired. For example, we might be interested in tests at both the .01 and
.05 levels. Then step 2 would be modified so that we would stop only if p̂∗(τ̂) > .05
and we could reject the hypothesis that p∗(τ̂) ≤ .05, or if p̂∗(τ̂) < .01 and we could
reject the hypothesis that p∗(τ̂) ≥ .01, or if .01 < p̂∗(τ̂) < .05 and we could reject
both the hypothesis that p∗(τ̂) ≤ .01 and the hypothesis that p∗(τ̂) ≥ .05.

4. The Performance of the Pretest Procedure

In order to investigate how this procedure works in practice, we conducted several
simulation experiments, with two million replications each, based on the model
(3), with different values of γ, Bmin, Bmax, and β. The same sequence of random
numbers was used to generate the data for all values of these parameters. Bmin

was normally 99, and α was always .05. Because it is extremely expensive to
evaluate the binomial distribution directly when B is large, we used the normal
approximation to the binomial whenever αB ≥ 10. Since (3) is so simple that the
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bootstrap distribution is known analytically, we can evaluate the ideal bootstrap
P value p∗(τ̂) for each replication.

Table 1. Bootstrap Tests with B Chosen by Pretest

γ Bmin Bmax β B∗ Rej. B∞ Rej. B∗ Conflicts Av. Diff.

0.0 99 12,799 0.01 325.1 0.04982 0.04988 0.0017 0.0087

0.0 99 6,399 0.001 318.8 0.04986 0.0022 0.0037

0.0 99 12,799 0.001 420.9 0.04984 0.0015 0.0031

0.0 99 12,799 0.0001 491.0 0.04986 0.0015 0.0025

0.0 439 439 439.0 0.04998 0.0083 0.0132

1.0 99 12,799 0.01 1055.5 0.28861 0.28865 0.0073 0.0091

1.0 99 6,399 0.001 1033.5 0.28844 0.0093 0.0038

1.0 99 12,799 0.001 1472.5 0.28847 0.0065 0.0031

1.0 99 12,799 0.0001 1771.0 0.28840 0.0066 0.0025

1.0 1,499 1,499 1499.0 0.28790 0.0192 0.0070

2.0 99 12,799 0.01 1368.3 0.75479 0.75458 0.0094 0.0091

2.0 99 6,399 0.001 1404.3 0.75411 0.0118 0.0038

2.0 99 12,799 0.001 1973.9 0.75434 0.0085 0.0030

2.0 99 12,799 0.0001 2409.1 0.75450 0.0085 0.0025

2.0 1,999 1,999 1999.0 0.75279 0.0212 0.0061

3.0 99 12,799 0.01 566.6 0.96706 0.96683 0.0029 0.0087

3.0 99 6,399 0.001 705.1 0.96663 0.0036 0.0038

3.0 99 12,799 0.001 885.0 0.96684 0.0026 0.0030

3.0 99 12,799 0.0001 1120.1 0.96688 0.0026 0.0025

3.0 899 899 899.0 0.96449 0.0101 0.0091

B∗ is the average value of B that was finally chosen.

“Rej. B∞” is the proportion of replications for which the null hypothesis was
rejected at the .05 level according to the t distribution.

“Rej. B∗” is the proportion of replications for which the null hypothesis was
rejected at the .05 level according to the bootstrap test, based on whatever
value of B was finally used.

“Conflicts” is the proportion of replications for which the ideal bootstrap test
and the feasible bootstrap test yielded different inferences.

“Av. Diff.” is the average absolute difference between the ideal and feasible
bootstrap P values, for replications on which a conflict occurred.

Table 1 shows results for four different values of γ. When γ = 0, so that the
null hypothesis is true, B∗, the average number of bootstrap samples used by the
procedure, is quite small. As expected, reducing β and increasing Bmax both cause
B∗ to increase. As can be seen from the column headed “Conflicts”, the procedure
does indeed yield very few cases in which the feasible bootstrap test yields a different
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result from the ideal test. For all values of β considered, most conflicts occur when
the procedure terminates with B∗ = Bmax, which implies that p∗(τ̂) is very near α
and is estimated very accurately. The last column, headed “Av. Diff.”, shows the
average absolute difference between p̂∗(τ̂) and p∗(τ̂) in the few cases where there
was a conflict. It is clear that, even when the procedure yields the “wrong” answer,
the investigator is not likely to be seriously misled.

The average number of bootstrap samples is higher for γ = 3 than for γ = 0, higher
again for γ = 1, and higher still for γ = 2. This reflects the way in which the
proportion of the p∗(τ̂) near .05 depends on γ. When B∗ is higher, there tend to
be more cases in which the feasible and ideal bootstrap tests yield different results,
because the procedure terminates more frequently with B = Bmax. It is clear
that the procedure gives rise to some power loss relative to the ideal test, but it is
always very small, less than .0007 in the worst case. All of the choices of β and
Bmax that were investigated appear to yield acceptable results, and it is difficult
to choose among them. We tentatively recommend setting Bmax = 12, 799 and
choosing either β = .01 or β = .001. Using the smaller value of β modestly reduces
the number of conflicts and substantially reduces the average size of the conflicts
that do occur, but it also seems to reduce power slightly in two cases.

The last line in the table for each value of γ shows what happens when we choose
a fixed B slightly larger than the B∗ observed for the recommended values of β
and Bmax. There are far more conflicts when a fixed B is used, and they are on
average much larger, because they are based on much less accurate estimates of
p∗(τ̂). There is also substantially more power loss. Thus it appears that, holding
expected computer time constant, the pretesting procedure works very much better
than using a fixed value of B.

It is easy to understand why the pretesting procedure works well. When the null
hypothesis is true, B can safely be small, because we are not concerned about power
at all. Similarly, when the null is false and test power is extremely high, B does not
need to be large, because power loss is not a serious issue. However, when the null
is false and test power is moderately high, B needs to be large in order to avoid
loss of power. The pretesting procedure tends to make B small when it can safely
be small and large when it needs to be large.

5. An Alternative Procedure

In a recent paper, Andrews and Buchinsky (2000), hereafter referred to as A-B, pro-
pose another method for determining B. Their approach is based on the fact that,
according to the normal approximation to the binomial distribution, if B bootstrap
samples are used, then

B1/2
(
p̂∗(τ̂)− p∗(τ̂)

) ∼ N
(
0, p(1− p)

)
,

conditional on the randomness in the data. They wish to choose B so that the
absolute value of the proportional error in p̂∗(τ̂) exceeds some value d, that will
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generally be considerably less than 1, with probability ρ. If we write p ≡ p∗(τ̂) for
simplicity, this implies that

B = int
(

χ2
1−ρ(1− p)

pd2

)
, (4)

where χ2
1−ρ is the 1 − ρ quantile of the χ2(1) distribution. (A-B use somewhat

different notation, which would conflict with the notation we use in this paper.)

Because (4) depends on p, which is unknown, the A-B procedure involves three
steps. In the first step, it uses the (known) asymptotic distribution of τ to compute
an asymptotic P value for τ̂ . This asymptotic P value is then used in (4) to calculate
a preliminary number of bootstrap samples, B1, and B1 bootstrap samples are then
drawn. The bootstrap P value computed from them is then used in (4) to calculate
a final number of bootstrap samples, B2. If B2 < B1, the procedure terminates
with B = B1. Otherwise, a further B2 −B1 bootstrap samples are drawn.

The above description of the A-B procedure suggests that all the user need choose
in advance is d and ρ. However, a little experience suggests that it is also necessary
to pick Bmax, since, as is clear from (4), B1 will be extremely large when the
asymptotic P value is near zero, as will B2 when the first-stage bootstrap P value
is near zero. Moreover, it is desirable to modify the procedure slightly so that B1

and B2 both satisfy the condition that α(B + 1) is an integer when α = .05, and
this implies that B ≥ 19.

Unlike the procedure we have proposed, the A-B procedure is intended to give a
reasonably accurate estimate of p∗ whether or not p∗ is close to α. But achieving
this goal entails a penalty in terms of our criteria of computing cost, power loss,
and the number and magnitude of conflicts between the ideal and feasible bootstrap
tests. To demonstrate these features of the A-B procedure, we performed a number
of simulation experiments, comparable to those in Table 1. In these experiments,
we tried several values of d and ρ and found that d = .20 and ρ = .05 seemed to
provide reasonable results when γ = 0. This therefore became our baseline case. In
all the experiments, we set Bmin = 19 and Bmax = 12, 799.

The results of our simulations are presented in Table 2. Comparing these results
with those in Table 1 shows that the A-B procedure performs much less well than
the pretesting procedure. Either it achieves similar performance based on far more
bootstrap samples (for example, for γ = 2, compare A-B with d = .10 and ρ = .05
with any of the results in Table 1 except those with β = .01), or else it achieves
much worse performance based on a similar or larger number of bootstrap samples
(for example, for γ = 1, compare A-B with d = .20 and ρ = .10 with the other
procedure with Bmax = 12, 799 and β = .0001).
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Table 2. Bootstrap Tests with B Chosen by A-B Procedure

γ d ρ δ B1 B2 B∗ Rej. B∞ Rej. B∗ Conflicts Av. Diff.

0.0 .10 .05 1.0 1366.9 1370.3 1395.8 0.04982 0.04985 0.0019 0.0031

0.0 .20 .05 1.0 480.7 484.9 501.5 0.04986 0.0038 0.0060

0.0 .20 .10 1.0 365.2 370.0 384.2 0.04979 0.0044 0.0071

0.0 .20 .05 0.5 134.3 499.0 499.0 0.04963 0.0040 0.0064

0.0 .20 .05 2.0 1673.5 481.8 1673.6 0.04989 0.0016 0.0025

1.0 .10 .05 1.0 4982.9 4988.0 5043.5 0.28861 0.28845 0.0084 0.0031

1.0 .20 .05 1.0 2200.3 2212.9 2269.5 0.28810 0.0162 0.0060

1.0 .20 .10 1.0 1738.9 1754.1 1808.1 0.28774 0.0190 0.0071

1.0 .20 .05 0.5 601.0 2265.8 2265.8 0.28706 0.0171 0.0064

1.0 .20 .05 2.0 6032.2 2202.9 6032.2 0.28867 0.0067 0.0025

2.0 .10 .05 1.0 10222.5 10224.7 10279.0 0.75479 0.75424 0.0107 0.0031

2.0 .20 .05 1.0 6113.6 6132.1 6246.6 0.75291 0.0208 0.0060

2.0 .20 .10 1.0 5119.0 5145.6 5267.7 0.75191 0.0244 0.0070

2.0 .20 .05 0.5 1966.4 6216.9 6216.9 0.75124 0.0220 0.0064

2.0 .20 .05 2.0 11256.2 6116.5 11256.2 0.75470 0.0085 0.0025

3.0 .10 .05 1.0 12367.8 12367.1 12386.2 0.96706 0.96675 0.0033 0.0031

3.0 .20 .05 1.0 9680.2 9689.6 9804.4 0.96576 0.0064 0.0060

3.0 .20 .10 1.0 8624.9 8644.1 8788.2 0.96540 0.0076 0.0070

3.0 .20 .05 0.5 3969.0 9732.0 9732.0 0.96527 0.0071 0.0065

3.0 .20 .05 2.0 12659.4 9678.6 12659.4 0.96685 0.0027 0.0025

δ is a factor by which the test statistic is multiplied.

B1 is the average number of bootstraps from step 1 of the A-B procedure.

B2 is the average number of bootstraps from step 2 of the A-B procedure.

B∗ is the average number of bootstraps in total.

See also the notes to Table 1.

Most of our results actually show the A-B procedure in an unrealistically good light,
because the asymptotic P value used to determine B1 is correct. We therefore ran
some experiments in which τ̂ was multiplied by a positive factor δ. When δ < 1,
the asymptotic test underrejects, and when δ > 1, it overrejects. These errors cause
B1 to be chosen poorly. As can be seen from Table 2, overrejection causes the A-B
procedure to use more bootstrap samples than it should, and underrejection causes
it to lose power and have more conflicts, while only slightly reducing the average
number of bootstrap samples. Note that multiplying τ̂ by any positive constant has
absolutely no effect on the performance of a bootstrap test with B fixed or on a
bootstrap test that uses our procedure to choose B.

–11–



6. Final Remarks

An unavoidable feature of bootstrap testing is the need to choose the number of
bootstrap samples, B. In Section 2, we discussed the loss of power that can occur
when B is too small. In Section 3, we proposed a simple pretesting procedure
designed to ensure that, for one or more chosen levels, feasible bootstrap tests (that
is, ones with finite B) yield almost the same results as ideal bootstrap tests, while
keeping B relatively small. We showed in Section 4 that this procedure works
substantially better than using a fixed number of bootstrap samples. Finally, in
Section 5, we showed that it also works much better than another procedure for
choosing B that has recently been proposed.
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