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Abstract

We propose to extend the cointegration rank determination procedure of Robinson and

Yajima (2002) to accommodate both (asymptotically) stationary and nonstationary frac-

tionally integrated processes as the common stochastic trends and cointegrating errors by

applying the exact local Whittle analysis of Shimotsu and Phillips (2005). The proposed

method estimates the cointegrating rank by examining the rank of the spectral density

matrix of the d’th differenced process around the origin, where the fractional integration

order, d, is estimated by the exact local Whittle estimator. Similar to other semiparamet-

ric methods, the approach advocated here only requires information about the behavior

of the spectral density matrix around the origin, but it relies on a choice of (multiple)

bandwidth(s) and threshold parameters. It does not require estimating the cointegrating

vector(s) and is easier to implement than regression-based approaches, but it only provides

a consistent estimate of the cointegration rank, and formal tests of the cointegration rank

or levels of confidence are not available except for the special case of no cointegration.

We apply the proposed methodology to the analysis of exchange rate dynamics among a

system of seven exchange rates. Contrary to both fractional and integer-based parametric

approaches, which indicate at most one cointegrating relation, our results suggest three or

possibly four cointegrating relations in the data.
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1 Introduction

The concept of fractional cointegration is attracting increasing attention from both theoretical

and empirical researchers in economics and finance. A p-vector time series Xt is said to be

cointegrated if each element of Xt is I(d) but there exists a linear combination that is I(d− b)

with b > 0, where an I(d) time series is defined to be one whose d’th difference is weakly

dependent stationary. The concept of cointegration, originally developed by Granger (1981)

and Engle and Granger (1987), does not restrict the value of d and b to be integer. However,

the estimation methods of cointegration were developed primarily for the so-called I(0)/I(1)

cointegration, where it is assumed that d = b = 1, i.e. that Xt has a unit root and its

linear combination is weakly dependent stationary. Fractional cointegration generalizes the

conventional I(0)/I(1) cointegration framework by allowing both d and b to be real numbers.

It avoids a knife-edge distinction between I(1) and I(0) processes and enables substantially

more flexible modeling of long-run relationships between time series.

Technical difficulties associated with fractional integration have been hindering the devel-

opment of rigorous analysis of fractional integration and cointegration, but theoretical analyses

of fractional cointegration are emerging, e.g. Breitung and Hassler (2002), Chen and Hurvich

(2003a, 2003b, 2004), Robinson and Hualde (2003), Robinson and Marinucci (2003), Velasco

(2003a, 2003b), Dolado and Marmol (2004), Nielsen (2004b), Christensen and Nielsen (2004),

Marmol and Velasco (2004), Hassler and Breitung (2005), and Hassler, Marmol, and Velasco

(2006). Recent applications of fractional cointegration can be found, for example, in Dueker and

Startz (1998), Brunetti and Gilbert (2000), Kim and Phillips (2001), Marinucci and Robinson

(2001), and Henry and Zaffaroni (2003).

In this paper, we extend the cointegration rank determination procedure of Robinson and

Yajima (2002) to accommodate both (asymptotically) stationary and nonstationary fraction-

ally integrated processes for the common stochastic trends and cointegrating errors. This is

accomplished by applying the exact local Whittle analysis of Shimotsu and Phillips (2005).

The proposed method estimates the cointegrating rank by examining the rank of the spectral

density matrix of the d’th differenced process around the origin, using the exact local Whittle

estimator to estimate the fractional integration order, d. Similar to other semiparametric meth-

ods, the approach advocated here only requires information about the behavior of the spectral

density matrix around the origin, but it relies on a choice of (multiple) bandwidth(s) and

threshold parameters. Furthermore, it does not require estimating the cointegrating vector(s)

and is therefore easier to implement than regression-based approaches which are popular in

applied work. However, our approach only provides a consistent estimate of the cointegration
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rank, and formal tests of the cointegration rank or levels of confidence are not available except

for the important special case of testing the null of non-cointegration.

The ability to accommodate both stationary and nonstationary processes follows from ap-

plying the exact local Whittle analysis of Shimotsu and Phillips (2005), which generalizes the

local Whittle approach of Künsch (1987) and Robinson (1995) to accommodate any value of the

fractional differencing parameter, d. This feature is very attractive when analyzing economic

data, because many economic time series are known to exhibit (possibly unit root) nonstation-

arity, and at the same time there is no strong a priori reason to assume that the unobservable

equilibrium error is I(0). By allowing both stationary and nonstationary fractionally integrated

series, the approach advocated here relaxes a limitation of Robinson and Yajima (2002), who

admit only stationary data.

Chen and Hurvich (2003a) also examine the rank of an averaged periodogram matrix of

tapered, differenced observations, where the number of frequencies used in the periodogram

average is held fixed as the sample size grows. Their method accommodates both stationary

and nonstationary series and shares a similar advantage with ours, and their assumption that

the cointegrating rank r needs to be strictly positive has been relaxed by Chen and Hurvich

(2004) to cover the null of no cointegration. In addition, Marmol and Velasco (2004) and

Hassler and Breitung (2005) propose residual-based tests of the same null hypothesis.

Similar to other semiparametric methods the exact local Whittle approach advocated here

does rely on bandwidth and threshold parameters which have to be chosen in practical ap-

plications. Furthermore, formal tests of the cointegration rank or levels of confidence are not

available, except for the special case of no cointegration (r = 0), where Theorem 6(b) below

provides a valid asymptotic test. Hence, Theorem 6(b) can be considered an alternative formal

test of the hypothesis of no cointegration also examined by, e.g., Marmol and Velasco (2004)

and Hassler and Breitung (2005), using residuals from an estimated cointegration vector.

We apply the proposed methodology to the analysis of exchange rate dynamics following

Baillie and Bollerslev (1989, 1994), Nielsen (2004b), and Hassler et al. (2006). Previous studies

have focused on the estimation of the cointegration vector and the memory parameter of the

equilibrium errors, but formal determination of the cointegrating rank has been somewhat

neglected, at least in a fractional (co)integration framework. We concentrate on examining

the presence of (fractional) cointegration and on determining the cointegrating rank. The data

set is a system of exchange rates for seven major currencies against the US Dollar. Applying

the parametric approaches of Johansen (1988, 1991) (integer-based) and Breitung and Hassler

(2002) (fractional) to the data indicates that at most one cointegrating relation exists among

the seven exchange rates. However, using our proposed exact local Whittle methodology we
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find that three or possibly even four cointegrating relations exist in the data.

The remainder of the paper is organized as follows. Section 2 introduces the model of

fractional cointegration. Section 3 analyses the asymptotic behavior of the semiparametric

exact local Whittle estimator of d. Section 4 derives the limit distribution of the estimate

of the spectral density matrix of the d’th differenced process at the origin and describes the

method of determining the cointegrating rank r also presented in Robinson and Yajima (2002).

In Section 5 we present the results of a simulation study that demonstrates the finite sample

feasibility of our procedure. An empirical application to exchange rate data is presented in

Section 6. Proofs are collected in the Appendix in Section 7.

2 A Model of Fractional Cointegration

We consider the p-vector fractional process Xt generated by the model

∆ (L; d1, . . . , dp)Xt = utI {t ≥ 1} , t = 1, 2, . . . , (1)

where I {·} is the indicator function, ∆ (L; d1, . . . , dp) = diag((1− L)d1 , . . . , (1− L)dp), and

ut = C (L) εt is a p-vector stationary zero mean process with spectral density matrix fu(λ).

The covariance matrix of εt has full rank, so without loss of generality we normalize it to Ip

(the p× p identity matrix), see also Assumption 3 below. The rank of C (1) is p− r ≤ p.

The rank condition on C(1) determines the cointegrating rank of Xt. As in the standard

scenario, this implies that the number of cointegrating vectors is r or equivalently that the

system is driven by p− r common stochastic trends. Thus, the system could be generated by

a triangular form like the model

(1− L)d−b
¡
X1t − α0X2t

¢
= v1tI {t ≥ 1} , t = 0, 1, 2, . . . , (2)

(1− L)dX2t = v2tI {t ≥ 1} , t = 0, 1, 2, . . . , (3)

where X1t is an r-vector, X2t is a (p− r)-vector, and α is a (p− r)× r matrix. For simplicity,

the model in (2)-(3) has equal integration orders for all the observed variables (d) and for

the cointegrating errors (d − b). The triangular form has a straightforward interpretation

as equilibrium relations given by (2) and stochastic trends given by (3). Note that in this

representation, the cointegrating vectors are the rows of the r × p matrix (Ir;−α0). Also

note that (1) is more general than the triangular representation and also incorporates, e.g.,

the possibility of fractional multicointegration and/or polynomial cointegration which is not

present in (2)-(3). However, the triangular system is simple and easy to interpret as a possible

generating mechanism for Xt.
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There are two main characterizations of fractional integration that have been employed in

the literature, see e.g. Marinucci and Robinson (1999) and Robinson (2005). The model (1)

is a convenient and unified characterization that applies for both (asymptotically) stationary

and nonstationary processes. The generating process for Xat is

(1− L)da Xat = uatI {t ≥ 1} , t = 1, 2, . . . (4)

Expanding the binomial in (4) gives the form

tX
k=0

(−da)k
k!

Xa,t−k = uatI {t ≥ 1} , (5)

where (d)k = Γ(d + k)/Γ(d) = (d)(d + 1) . . . (d + k − 1) is the forward factorial function and
Γ(·) is the gamma function. When da is a positive integer, the series in (4) terminates, giving

the usual formula in terms of the differences and higher order differences of Xat. Inverting (4)

gives a valid linear representation of Xat for all values of da,

Xat = (1− L)−da uatI {t ≥ 1} =
t−1X
k=0

(da)k
k!

ua,t−k. (6)

3 Exact Local Whittle Estimation of d

3.1 Exact Local Whittle Likelihood and Estimator

Since it is not known a priori whether there is cointegration (C (1) has reduced rank) or not

(C (1) has full rank), it is preferable to employ an estimator of d that makes no assumptions

about the presence of cointegration and is consistent in both cases. Furthermore, cointegration

is often a property associated with nonstationary time series, especially in empirical applica-

tions, so the estimator should be applicable in both the stationary and nonstationary case.

Thus, we employ the univariate exact local Whittle (ELW) estimator of Shimotsu and Phillips

(2005).

Define the discrete Fourier transform and the periodogram of a generic time series Zt,

t = 1, . . . , n, evaluated at the fundamental frequencies as

wz (λj) =
1√
2πn

nX
t=1

Zte
itλj , λj =

2πj

n
, j = 0, 1, . . . , n, (7)

Iz (λj) = wz (λj)wz (λj)
∗ ,

where the asterisk denotes complex conjugation and transposition.
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Let fu(0) = G and fa (λ) be the a’th diagonal element of fu (λ). For a univariate time

series Xat generated by (6), Shimotsu and Phillips (2005) propose to estimate (da, Gaa) by

minimizing the objective function

Qm (d,G) =
1

m

mX
j=1

∙
log
³
Gλ−2dj

´
+
1

G
I∆dxa (λj)

¸
. (8)

Concentrating Qm(d,G) with respect to G, Shimotsu and Phillips (2005) define the ELW

estimator as

d̂a = arg min
d∈[∆1,∆2]

Ra (d) , (9)

where

Ra (d) = log Ĝaa (d)− 2d 1
m

mX
j=1

log λj , Ĝaa (d) =
1

m

mX
j=1

I∆dxa (λj) ,

and −∞ < ∆1 < ∆2 < ∞ are the lower and upper bounds of the admissible values of d.

The number m = m (n) is a bandwidth parameter that determines the number of periodogram

ordinates used in the estimation.

3.2 Consistency

We introduce the following assumptions on the bandwidth m and the stationary component ut
in (1), which are straightforward multivariate generalizations of the assumptions in Shimotsu

and Phillips (2005).

Assumption 1 The spectral density matrix fu (λ) satisfies

fu (λ) ∼ G as λ→ 0+,

where G is a finite and non-zero matrix with strictly positive diagonal elements.

Assumption 2 In a neighborhood (0, δ) of the origin, fu (λ) is differentiable and

d

dλ
log fu (λ) = O

¡
λ−1

¢
as λ→ 0+.

Assumption 3 The errors ut satisfy

ut = C (L) εt =
∞X
j=0

Cjεt−j ,
∞X
j=0

tr
¡
C 0jCj

¢
<∞, (10)

where E (εt| Ft−1) = 0, E (εtε
0
t| Ft−1) = Ip a.s., t = 0,±1, . . ., Ft = σ ({εs, s ≤ t}),

rank(C (1)) = p − r ≤ p, and there exists a random variable ε such that Eε2 < ∞ and

for all η > 0, all non-null p-vectors ζ, and some K > 0, P
¡¯̄
ζ 0εt

¯̄
> η

¢ ≤ KP (|ε| > η).

6



Assumption 4 As n→∞,

1

m
+

m (logm)1/2

n
+
logn

mγ
→ 0 for any γ > 0.

Assumption 5

∆2 −∆1 ≤ 9/2.

Assumptions 1-3 are analogous to Assumptions A1-A3 of Robinson (1995) (for scalar Xt)

and Assumptions A1-A3 of Lobato (1999), although our assumptions apply to ut rather than

Xt. The condition that Gaa > 0 is satisfied if
P∞

j=0

P∞
k=0Ca,jC

0
a,k > 0, where Gab is the

(a, b)’th element of G and Ca,j is the a’th row of Cj , and is relatively innocuous. It is basically

to ensure that uat cannot be overdifferenced, i.e. that uat is indeed I (0) and hence that Xat

through (1) is I (da) for a = 1, ..., p.

In Assumption 3 the possibility of cointegration is introduced by letting C (1) have possibly

reduced rank. If C (1) has rank less than p, i.e. reduced rank, there is cointegration among the

elements of Xt, whereas if C (1) has full rank, p, then there is no cointegration. Assumption 4

is slightly stronger than the corresponding assumptions of Robinson (1995) and Lobato (1999).

Assumption 5 is identical to Assumption 5 of Shimotsu and Phillips (2005).

Note that the matrix G = C (1)C (1)0 / (2π) has reduced rank if there is cointegration and
full rank otherwise, see e.g. Robinson and Yajima (2002) or Nielsen (2004a). Thus, as pointed

out by Robinson and Yajima (2002, page 229), the multivariate local Whittle estimation devel-

oped by Lobato (1999) and Lobato and Velasco (2000) is not appropriate under cointegration

since it assumes full rank of G.

Under these conditions we may now establish the consistency of d̂a under both the presence

and absence of cointegration. In what follows we redefine d = (d1, . . . , dp)
0 and d̂ = (d̂1, . . . , d̂p)0.

Theorem 1 Suppose Xt is generated by (1) and Assumptions 1-5 hold. Then, for d ∈ [∆1,∆2]p ,
d̂→p d as n→∞.

3.3 Asymptotic Normality

We proceed to derive the joint asymptotic distribution of d̂, which requires a strengthening of

our assumptions as in Shimotsu and Phillips (2005), see also Robinson and Yajima (2002).

Assumption 1
0
For some β ∈ (0, 2] ,

fu (0) = G(1 +O(λβ)) as λ→ 0+,
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and G = fu (0) = C (1)C (1)0 / (2π) is a finite and non-zero matrix with strictly positive
diagonal elements.

Assumption 2
0
In a neighborhood (0, δ) of the origin, C(eiλ) is differentiable and

d

dλ
C(eiλ) = O

¡
λ−1

¢
as λ→ 0+.

Assumption 3
0
Assumption 3 holds and furthermore the matrices E (εt ⊗ εtε

0
t| Ft−1) and

E (εtε
0
t ⊗ εtε

0
t| Ft−1) are nonstochastic, finite, and do not depend on t.

Assumption 4
0
As n→∞,

1

m
+

m1+2β (logm)2

n2β
+
logn

mγ
→ 0 for any γ > 0.

Assumption 5
0
Assumption 5 holds.

Assumptions 1
0
-3

0
are multivariate extensions of Assumptions 1

0
-3

0
of Shimotsu and Phillips

(2005) and are analogous to Assumptions A1-A3 of Lobato (1999) and Assumptions B-D of

Robinson and Yajima (2002). Similarly to Assumptions 1-3 we impose our assumptions on

the spectral density of ut, whereas Lobato (1999) and Robinson and Yajima (2002) impose

their assumptions on the spectral density of Xt. Assumption 4
0
is slightly stronger than the

comparable Assumption A4 of Lobato (1999) and Assumption E of Robinson and Yajima

(2002).

Due to the approximation of the spectral density of (4) near the origin, the value of β is

bounded by min1≤a≤r ba, where ba is the reduction in the integration order implied by the a’th
cointegration vector. For example, if the system (1) is generated by (2)-(3) the approximation of

the spectral density of the first element of X1t is G11
¡
1 +O

¡
λb1
¢
+O

¡
λβ
¢¢
under Assumption

1
0
, see Nielsen (2004a). A similar condition seems to be missing in Robinson and Yajima

(2002). The practical implication of this condition on β is that stronger cointegration allows

one to choose a wider bandwidth. In most economic applications with nonstationary data,

the cointegrating strength (ba) will presumably be at least 1/2 which means that at least

β = 1/2 can be used in Assumption 4
0
if also the data is assumed to be generated by certain

multivariate ARFIMA models (which imply β = 2). Thus, Assumption 4
0
essentially reduces

to m = o
¡
n1/2

¢
in that case.

The next theorem establishes the joint asymptotic normality of the univariate ELW estima-

tors when d ∈ (∆1,∆2)p. We define D = diag (G11, . . . , Gpp), where Gab is the (a, b)’th element

of G, and denote the Hadamard product by ◦.
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Theorem 2 Suppose Xt is generated by (1) and Assumptions 1
0
-5

0
hold. Then, for d ∈

(∆1,∆2)
p,

√
m(d̂− d) → dN

µ
0,
1

4
D−1 (G ◦G)D−1

¶
and

Ĝ(d̂) =
1

m

mX
j=1

Re
h
I∆(L;d̂)x(λj)

i
→p G as n→∞.

3.4 Remark

In many economic applications, the mean (initial value) of Xt is unknown and the data gener-

ating process is given by

∆ (L; d1, . . . dp) (Xt − μ) = utI {t ≥ 1} . t = 1, 2, . . . , (11)

where μ is a nonrandom p-vector. Let μa be the a’th element of μ. Shimotsu (2004) proposes

to estimate μa by bμa (d) = w(d)Xa + (1− w(d))Xa1,

where Xa = n−1
Pn

t=1Xat, the sample average, and w(d) is a smooth (twice continuously

differentiable) weight function such that w(d) = 1 for d ≤ 1/2, w (d) ∈ [0, 1] for 1/2 ≤ d ≤ 3/4,
and w(d) = 0 for d ≥ 3/4. With this substitution, the objective function takes the form

R¦a (d) = log Ĝ
¦
aa (d)− 2d

1

m

mX
j=1

logλj , Ĝ¦aa (d) =
1

m

mX
j=1

I∆d(xa−bμa(d)) (λj) .
Shimotsu (2004, Theorem 5) shows that the two-step feasible ELW estimator, which is

based on the objective function R¦a (d) and uses a tapered estimator by Velasco (1999) as the
first stage estimator, is consistent and has the same N(0, 1/4) limiting distribution as the

ELW estimator for d ∈ (−1/2, 2) under the additional assumption that fu(λ) is bounded for
λ ∈ [0, π].1 Therefore, if the data are generated by (11), all the results in this section hold if we
assume fu(λ) is bounded and estimate da by the two-step feasible ELW estimator. Shimotsu

(2004) also shows that the presence of a polynomial time trend can be dealt with simply by

prior detrending of the data.

1 Indeed, Shimotsu (2004) also assumes fu(λ) = G + Eβλ
β + o(λβ) with Eβ < ∞ and β ∈ (1, 2], following

the assumptions in Velasco (1999). However, in view of the results of Lobato and Velasco (2000, page 415),

fu(λ) = G(1 +O(λβ)) is sufficient.
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3.5 Testing Equality of Integration Orders

With the above result of Theorem 2, we are now able to test joint hypotheses on the integration

orders, d. For instance, we could test the hypothesis of pairwise equality of the integration

orders,

Hab : da = db,

or the hypothesis of equality of all the integration orders,

H0 : da = d∗, a = 1, ..., p,

for some d∗ ∈ (∆1,∆2). The test statistics suggested by Robinson and Yajima (2002) to test
Hab and H0 are

T̂ab =
m1/2(d̂a − d̂b)³

1
2

³
1− Ĝ2ab/

³
ĜaaĜbb

´´´1/2
+ h (n)

,

T̂0 = m
³
Sd̂
´0µ

S
1

4
D̂−1

³
Ĝ ◦ Ĝ

´
D̂−1S0 + h (n)2 Ip−1

¶−1 ³
Sd̂
´
,

where S = [Ip−1;−ι], ι is the (p−1)-vector of ones, and h (n) > 0 satisfies the following assump-
tion. Note that h(n) = (logn)−k for any k > 0 satisfies Assumption 6 if (logm)2m1+2β/n2β =

o((logn)−k).

Assumption 6 As n→∞,

h (n) +
(logm)2m1+2β/n2β + (logm)2m−1/6

h (n)
→ 0.

Theorem 3 Suppose Xt is generated by (1) and Assumptions 10-50 and 6 hold. Then, under
Hab and d ∈ (∆1,∆2)p, as n→∞,

(i) If Xat and Xbt are not cointegrated, T̂ab → dN (0, 1) ,

(ii) If Xat and Xbt are cointegrated, T̂ab → p0,

and under H0 and d∗ ∈ (∆1,∆2), as n→∞,

(iii) If Xt is not cointegrated, i.e. r = 0, T̂0 →d χ
2
p−1,

(iv) If Xt is cointegrated, i.e. r ≥ 1, T̂0 →p 0,
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The proof of the theorem is identical to that of Theorem 2 of Robinson and Yajima (2002)

and is omitted. Note that h(n) is included in the definition of T̂ab because 1 − Ĝ2ab/(ĜaaĜbb)

converges to 0 in probability under cointegration and h(n)2 is included in T̂0 for an analogous

reason. See Robinson and Yajima (2002, p. 227) for further discussion. In practice, both T̂ab

and T̂0 may be sensitive to the choice of h(n). Choosing h(n) too large leads to underrejection

of H0 under non-cointegration, while choosing h(n) too small leads to overrejection of H0 under

cointegration.

It follows from Theorem 3 that tests of equality of the integration orders of the observed

variables can be carried out by the approach of Robinson and Yajima (2002, pp. 227-228) even

in the present model with potentially nonstationary data. It follows straightforwardly from

Theorem 2 that (i) T̂ab diverges to infinity under the alternative where Hab does not hold, and

(ii) T̂0 diverges to infinity under the alternative where H0 does not hold.

4 Exact Local Whittle Estimation of G

Now we consider the estimation of the cointegrating rank of Xt by estimating G and its eigen-

values. For simplicity, we assume in the following that the integration orders are equal for each

of the observed variables and denote the common value of d1, . . . , dp by d∗. Define

Ĝ(d∗) =
1

m1

m1X
j=1

Re
£
I∆(L;d∗,...,d∗)x(λj)

¤
, (12)

where I∆(L;d∗,...,d∗)x(λj) is the periodogram of (∆d∗X1t, . . . ,∆
d∗Xpt)

0, and let Ga be the a’th

column of G. The estimator Ĝ(d∗) uses a new bandwidth parameter m1 (n) in anticipation of

the complications that arise when d∗ is estimated.

Lemma 4 Suppose Xt is generated by (1) and Assumptions 1
0
-5

0
hold with m replaced by m1.

Then, as n→∞,

m
1/2
1 vec(Ĝ(d∗)−G)→d N(0,

1
2(G⊗G+ (G⊗G1, . . . , G⊗Gp)).

Because d∗ is unknown, we need to substitute it with an estimate. As previously mentioned,
we cannot use the multivariate version of the exact local Whittle estimator to estimate d∗,
because G does not have full rank when Xt is cointegrated. The estimator also needs to

converge to d∗ at a faster rate than m
1/2
1 . Therefore, we estimate G by (12) based on m1

periodogram ordinates and each da by d̂a based on (9) using m ordinates with m/m1 → 0, and

define d̄∗ = p−1
Pp

a=1 d̂a. In particular, we need the following assumption on m and m1.
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Assumption 6
0
As n→∞,

1

m1
+
logn

mγ
1

+
m
1/2
1 (logn)2

m1/2
+

m1+2β (logm)2

n2β
+
logn

mγ
→ 0 for any γ > 0.

The last three terms of this assumption are analogous to Assumption H of Robinson and

Yajima (2002). We conjecture their Proposition 3 still holds if their Assumption H is replaced

by the weaker assumption that m−1/2m1/2
1 (logn)2+n−2βm1+2β(logm)2 → 0 (in our notation).

Lemma 5 Suppose Xt is generated by (1) and Assumptions 10-30, 50-60 hold. Then, as n→∞,

m
1/2
1 vec(Ĝ(d̄∗)−G)→d N(0,

1
2(G⊗G+ (G⊗G1, . . . , G⊗Gp)).

When Xt has an unknown mean and is generated by (11), Lemmas 4 and 5 still hold if we

use the two-step feasible ELW estimator to estimate da and replace Xat with Xat − bμa(bda) in
the periodograms in (12).

With Lemmas 4 and 5 in hand, we can use the results in Robinson and Yajima (2002)

along with Ĝ(d̄∗) defined in (12) to estimate the cointegrating rank r and conduct inference.

The following proposal to determine the cointegrating rank of r via model selection procedures

follows the proposal of Robinson and Yajima (2002, pp. 229-231), and is summarized here for

completeness.

First, we state the assumption on the cointegrating rank.

Assumption 7
0
Rank(G) = p−r, for 0 ≤ r < p, and the nonzero eigenvalues of G are distinct.

Let δa and δ̂a be the a’th eigenvalues of G and Ĝ(d̄∗), respectively, a = 1, ..., p, and ordered
descendingly with δ1 > ... > δp−r > 0 and δp−r+1 = ... = δp = 0. Define, for j = 1, ..., p − 1,
the statistics

πj =

Pp
a=p−j+1 δaPp

a=1 δa
, (13)

π̂j =

Pp
a=p−j+1 δ̂aPp

a=1 δ̂a
, (14)

s2j =

³Pp
a=p−j+1 δ̂a

´2Pp−j
a=1 δ̂

2
a +

³Pp−j
a=1 δ̂a

´2Pp
a=p−j+1 δ̂

2
a³Pp

a=1 δ̂a

´4 . (15)

Then a hypothesis testing procedure based on the π̂j can be employed to determine the coin-

tegrating rank r using the asymptotic theory described below.

12



Another possibility is to apply a model selection procedure to determine r. We follow the

model selection procedure proposed by Robinson and Yajima (2002) (c.f. Fujikoshi and Veitch,

1979; Fujikoshi, 1985; Gunderson and Muirhead, 1997) and estimate r by

r̂ = arg min
u=0,...,p−1L (u) , (16)

where

L (u) = v (n) (p− u)−
p−uX
a=1

δ̂a,

for some v (n) > 0 which is assumed to satisfy the following assumption.

Assumption 8
0
As n→∞,

v (n) +
1

m
1/2
1 v (n)

→ 0.

Theorem 6 (a) Suppose Xt is generated by (1) and Assumptions 10-30, 50-70 hold. Then, as
n → ∞, √m1

³
δ̂a − δa

´
are asymptotically independent for a = 1, . . . , p,

√
m1

³
δ̂a − δa

´
→d

N
¡
0, δ2a

¢
for a = 1, ..., p− r, and

√
m1

³
δ̂a − δa

´
→p 0 for a = p− r + 1, ..., p.

(b) Suppose Xt is generated by (1), Assumptions 10-30, 50-70 hold, and r = 0. Then, as n→∞,

m
1/2
1 (π̂j − πj)/sj →d N (0, 1) for j = 1, . . . , p− 1,

where π̂j , πj and sj are defined in (13)-(15) and computed using Ĝ(d̄∗) in (12).
(c) Suppose Xt is generated by (1) and Assumptions 10-30, 50-80 hold. Then

lim
n→∞Pr(r̂ = r) = 1,

where r̂ is defined in (16) and computed using Ĝ(d̄∗) in (12).

The proof of the theorem is identical to that of Theorems 3 and 4 of Robinson and Yajima

(2002) and is omitted. Indeed, Robinson and Yajima’s model selection procedure estimates r

by er = argminu=1,...,p−1 L (u) , thereby not allowing for the possibility of r = 0, but their proof
holds for the important case with r = 0, i.e. in the absence of cointegration. As mentioned

in Robinson and Yajima (2002), the model selection procedure may be conducted using the

correlation matrix P̂ (d̄∗) = D̂(d̄∗)−1/2Ĝ(d̄∗)D̂(d̄∗)−1/2, where D̂(d̄∗) is the diagonal matrix
whose a’th diagonal element is the same as that of Ĝ(d̄∗). In simulations we found that the
model selection procedure performs substantially better when it is based on P̂ (d̄∗) rather than
Ĝ(d̄∗).

13



As discussed by Robinson and Yajima (2002), part (b) of the theorem could be applied to

determine r by hypothesis testing following Phillips and Ouliaris (1988), although this method

suffers from the assumption that r = 0 in part (b). The suggestion is that there is evidence in

favor of the hypothesis that the cointegrating rank is r (against the alternative that the rank

is greater than r) when the 100(1− α)% upper confidence interval for πr,

CI(α, r) = π̂r + srzα/m
1/2
1 , (17)

is smaller than some prescribed threshold such as 0.1/p, where zα is the 100 (1− α)% point of

the standard normal distribution.

5 Simulations

This section reports the results of some simulations that were conducted to examine the finite

sample performance of the proposed procedure. The dimension of the system (p) is set to 4, and

X1t and X2t are generated from (2) and (3) with (v01t, v02t)0 ∼ iidN (0, I4). The cointegration co-

efficient α is set to α = (1, 1,−1)0 for r = 1, α = ((1, 0.5)0, (0.5, 1)0) for r = 2, and α = (1, 1,−1)
for r = 3. Note that the cointegrating vectors are the rows of (Ir;−α0). The integration orders
da are estimated by the ELW estimator without allowance for a non-zero mean, where ∆1 and

∆2 are set to −1 and 3. Two sample sizes, n = 128 and n = 512, and 1,000 replications are

used. The bandwidth parameters (m,m1, v(n)) are chosen to be
¡£
n0.65

¤
,
£
n0.6

¤
,m−0.31

¢
, where

[x] denotes the largest integer smaller than or equal to x. The value of d is chosen to be 1,

and the value of b is selected from {0.2, 0.4, 0.6, 0.8}. Given the range of the data generating
mechanism that the model (1) accommodates, this example is far from exhaustive, but an

extensive simulation exercise is beyond the scope of this paper.

Tables 1 and 2 report the simulation results with n = 128 and n = 512, respectively. In both

tables, freq(π̂r) denotes the frequency of (CI(0.05, 1) < 0.1/p,CI(0.05, 2) < 0.1/p,CI(0.05, 3) <

0.1/p), i.e. α = 0.05, and freq(r̂) denotes the frequency of (r̂ = 0, r̂ = 1, r̂ = 2, r̂ = 3). The

model selection procedure is based on the correlation matrix P̂ (d̄∗). Furthermore, rej(T̂0) de-
notes the rejection frequency of the test of the equality of the integration orders, T̂0, with the

5% asymptotic critical value and two choices of h(n), 1/(logn)1/2 and 1/ logn, from left to

right.

Tables 1 and 2 about here

The rank determination based on CI(α, r) does not appear to perform very well. Although

it never selects r ≥ 1 when the true r is zero, it tends to choose r too small when r ≥ 1. This is
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because the upper confidence interval, π̂r + srzα/m
1/2
1 , does not take a sufficiently small value

for r ≥ 2.
On the other hand, the model selection procedure appears to perform very well, even when

n = 128. For the small sample size, n = 128, it chooses the correct r in many cases except

when r = 3 and b ≤ 0.4. For the same value of n, its performance improves as b increases.
Furthermore, the accuracy of the procedure increases as n increases except for b = 0.2 and

r = 3.

In the above simulations, v(n) = m−0.31 is chosen so that r̂ = 0 is chosen with frequency

higher than 95% when r = 0 and n = 128. Note that a large r̂ is more likely to be chosen

when a large v(n) is used and a small v(n) leads to a conservative (small) estimate of r. Since

the outcome of the model selection procedure may strongly depend on the choice of v(n), it is

prudent to compute r̂ for different choices of v(n) in practical applications.

The test based on T̂0 works reasonably well with h(n) = 1/(logn)1/2. But the test over-

rejects substantially with h(n) = 1/ logn. Overall, the test is sensitive to the choice of h(n),

but non-rejection of H0 with small h(n) would strongly suggest the equality of the integration

orders.

6 Empirical Application

The analysis of exchange rate dynamics and potential (fractional) cointegrating relations be-

tween exchange rates for different currencies has attracted much attention recently. Baillie and

Bollerslev (1989) find evidence of a cointegrating relation between seven different (log) spot ex-

change rates using conventional cointegration methods. This finding is challenged by Diebold,

Gardeazabal, and Yilmaz (1994) who show that when including an intercept the conclusion

may change for the Baillie and Bollerslev (1989) data set. Diebold et al. (1994) find further

support of this in an analysis of a different data set covering a longer span of time.

Baillie and Bollerslev (1994) argue that the failure of conventional cointegration tests to

find evidence of cointegration in the Baillie and Bollerslev (1989) exchange rate data is due to

the presence of fractional cointegration. Thus, they estimate the cointegration vector by OLS

following Cheung and Lai (1993) and fit a simple fractionally integrated white noise model to

the residuals. They conclude that there exists a cointegrating relationship between the exchange

rates with d = 1 and b = 0.11 (in the notation from the introduction). However, their estimate

of the integration order of the equilibrium errors (d − b = 0.89) may be upwards biased since

relevant short-run dynamics may have been left out. This is indeed what is concluded by

Kim and Phillips (2001) who employ their fractional fully modified estimation procedure to a
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different data set covering a longer time span but the same exchange rates. They find that the

equilibrium errors are best described by an ARFIMA(1,d,0) process with d = 0.33.

All the above studies concentrate on the estimation of the cointegration vector and/or the

estimation of the memory parameter of the equilibrium errors, but no formal testing of the hy-

pothesis of fractional cointegration is attempted. Nielsen (2004b) and Hassler et al. (2006) take

the opposite approach and concentrate on testing for the presence of cointegration against frac-

tional alternatives. In applications to the same exchange rates as in the above studies, Nielsen

(2004b) finds evidence of cointegration possibly with fractional integration in the cointegrating

relation and Hassler et al. (2006) find two (polynomial) fractional cointegrating vectors.

We take the same focus as in Nielsen (2004b) and Hassler et al. (2006), and apply our new

procedure to the same data set as in Nielsen (2004b) to determine the cointegrating rank. The

data set is a system of log exchange rates for the currencies of the following seven countries:

(West) Germany, United Kingdom, Japan, Canada, France, Italy, and Switzerland against the

US Dollar. The same currencies are examined in the studies cited above. However, where

Baillie and Bollerslev (1989, 1994) and Diebold et al. (1994) consider approximately 5 years of

daily observations and Kim and Phillips (2001) consider 40 years of quarterly observations, our

data set is comprised of monthly averages of noon (EST) buying rates and runs from January

1974 through December 2001 for a total of n = 336 observations. Thus, our data set, which

is extracted from the Federal Reserve Board of Governors G.5 release, covers only the period

of the current flexible exchange rate regime, but a much longer span of time than the Baillie

and Bollerslev (1989) data set. A long time span has generally been found to be important in

detecting long-run relations. Figure 1 shows a time series plot of the seven log-exchange rate

data series.

Figure 1 about here

Table 3 presents the fractional integration analysis of the data set applying the feasible

exact local Whittle estimator of Shimotsu (2004) with allowance for a non-zero mean. In this

case, w(d) is chosen to be (1/2)[1+cos(4πd)] for d ∈ [1/2, 3/4]. The two rows are the estimates
of the fractional integration orders estimated with bandwidth parameter m =

£
n0.6

¤
= 32 and

m =
£
n0.55

¤
= 18 (note that [x] denotes the largest integer less than or equal to x). The

standard errors reported in parenthesis are calculated as (4m)−1/2. When m = 32, the values

of the T̂0 statistic are 5.31 and 6.80 with h(n) = 1/(logn)1/2 and 1/ logn, respectively. When

m = 18, the T̂0 statistic takes the values 3.05 and 5.01 with h(n) = 1/(logn)1/2 and 1/ logn,

respectively. Since the 95% critical value of the χ2(5) distribution is 11.01, we easily accept

the null of equality of the integration orders. The final column gives estimates of a common
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integration order d̄∗, which we use in our fractional cointegration analysis, computed simply as
an average of the estimated integration orders for each exchange rate.

Table 3 about here

From the estimates in Table 3 it is clear that the exchange rates can be well described as I (1)

processes. Indeed, none of the estimates are significantly different from unity at conventional

significance levels. Hence, the results of Table 3 support the overwhelming evidence in the

previous literature that exchange rates are I(1). E.g. Baillie and Bollerslev (1989) conduct

unit root tests of the I(1) hypothesis against the I(0) alternative, whereas Baillie (1996) and

Nielsen (2004b) provide evidence from fractional models. These results in particular support

the use of a rank determination procedure that allows for nonstationary data.

Table 4 about here

In Table 4 the estimated eigenvalues of Ĝ(d̄∗) from (12) with Xat − bμa(bda) replacing Xat

as well as the eigenvalues of the correlation matrix P̂ (d̄∗) = D̂(d̄∗)−1/2Ĝ(d̄∗)D̂(d̄∗)−1/2 are dis-
played for our exchange rate data. The two rows in each panel are the estimated eigenvalues for

bandwidth parameters
¡
m1 =

£
n0.55

¤
= 24,m = 32

¢
and

¡
m1 =

£
n0.45

¤
= 13,m = 18

¢
, respec-

tively. These intermediate results seem to indicate that at least a few of the eigenvalues of G

could be zero. Thus, we expect that there will be evidence in favor of cointegration and possibly

with more than one cointegrating relation, i.e. we expect that the rank could be greater than

unity.

Table 5 about here

Table 5 displays the results of the rank determination analysis applied to the exchange rate

data using the model selection procedure with P̂ (d̄∗). The results quite clearly indicate the
presence of at least three but possibly four cointegrating relations. Indeed, for the case with

the largest v (n), i.e. with v (n) = m−0.051 , some evidence that the rank may be as high as five

is found. All other choices of bandwidth parameters and v (n) support the finding that the

cointegration rank is either three or four.

Table 6 about here

For comparison, we have also computed some parametric rank tests which are shown in

Table 6. The first panel of the table shows results from the Johansen (1988, 1991) trace tests

17



with unrestricted constant term and lag augmentations 0, 3, 6, and 12, respectively, as well as

the asymptotic 95% critical values for each r. The second panel shows results from applying

the Breitung and Hassler (2002) parametric fractional cointegration rank tests (allowing for a

nonzero mean in the levels) with the same lag augmentations as for the Johansen trace tests.

The final column gives the 95% critical values for the Breitung and Hassler tests for each value

of r based on their asymptotic χ2
³
(p− r)2

´
distribution.

The Johansen tests in Table 6 all give borderline results between r = 0 and r = 1, and

the Breitung-Hassler tests indicate r = 1 (except with no lag augmentation). Intuitively, there

may be several reasons for the parametric testing procedures to indicate a lower rank. The

Johansen tests may fail to detect some cointegrating relations if the cointegrating strength,

b, for those relations is low. In particular, if d = 1 and b < 1/2, say, the linear combination

is nonstationary and may thus not be detected as a cointegrating relation by the I (0) /I (1)-

motivated Johansen tests. Some evidence that this may in fact be the case is given in Nielsen

(2004b). On the other hand, the Johansen tests may have non-trivial power for small b, even

if they are designed for stationary alternatives, similar to other alternative procedures such

as Dickey-Fuller tests, see Krämer and Marmol (2004). The Breitung-Hassler tests should be

able to detect the presence of such “weak” cointegrating relations, requiring only that d > 1/2

and b > 0. The inability of the Breitung-Hassler tests may instead be due to their parametric

nature, i.e. possibly misspecified autocorrelation structure and lag augmentation. Hence, this

illustrates the usefulness of our new methodology, and in particular highlights the advantages of

its semiparametric nature and its ability to detect fractional cointegration among nonstationary

fractionally integrated variables.

7 Appendix: Proofs

7.1 Proof of Theorem 1

We show that the consistency assumptions in Shimotsu and Phillips (2005) are satisfied for

each component of Xt, i.e. for each uat, a = 1, .., p. Denote by Ca,j the a’th row of Cj and

write uat as

uat =
∞X
j=0

Ca,jεt−j =
∞X
j=0

c̃j ε̃t−j ,

defining ε̃t = kCa,0k−1Ca,0εt, ε̃t−1 = kCa,1k−1Ca,1εt−1, ..., ε̃t−j = kCa,jk−1Ca,jεt−j , ..., and
c̃j = kCa,jk, where for any column vector y, kyk = (y0y)1/2 is the vector Euclidean norm. If
kCa,kk = 0 we set c̃k = ε̃t−k = 0.
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To show that Assumption 3 of Shimotsu and Phillips (2005) is satisfied, first note that ε̃t
and ε̃2t − 1 are martingale difference sequences since

E ( ε̃t| Ft−1) =
Ca,0

kCa,0kE (εt| Ft−1) = 0

E
¡
ε̃2t
¯̄Ft−1

¢
=

1

kCa,0k2
Ca,0E

¡
εtε

0
t

¯̄Ft−1
¢
C 0a,0

=
1

kCa,0k2
Ca,0C

0
a,0 = 1.

Second, the coefficients c̃j satisfy

∞X
j=0

c̃2j =
∞X
j=0

Ca,jC
0
a,j <

∞X
j=0

tr
¡
C 0jCj

¢
<∞.

Third, by definition of ε̃t the domination condition in our Assumption 3 with ζ 0 = kCa,0k−1Ca,0,

implies that the domination condition in Assumption 3 of Shimotsu and Phillips (2005) is

satisfied.

In light of our Assumptions 1 and 2, it follows that also Assumptions 1 and 2 of Shimotsu

and Phillips (2005) are satisfied. Their Assumptions 4 and 5 are identical to ours, and it thus

follows that all their consistency assumptions are satisfied for each component of Xt, i.e. that

d̂a →p da for a = 1, ..., p.

7.2 Proof of Theorem 2

By Theorem 1, with probability one as n→∞, d̂a satisfies

0 = R(1)a (d̂a) = R(1)a (da) +R(2)a (d̄a)(d̂a − da),

where R(i)a (ξ) =
∂iRa(ξ)

∂ξi
and

¯̄
d̄a − da

¯̄ ≤ ¯̄̄d̂a − da

¯̄̄
. We need to show that

√
m
³
R
(1)
1 (d1), . . . , R

(1)
p (dp)

´0 → dN
¡
0, 4D−1 (G ◦G)D−1¢ , (18)

R(2)a (d̄a) → p4, a = 1, . . . p. (19)

To show (19) we note that, defining Ĝ(i)aa (ξ) =
∂iĜaa(ξ)

∂ξi
,

R(2)a (ξ) =
Ĝ
(2)
aa (ξ) Ĝaa (ξ)− Ĝ

(1)
aa (ξ)

2

Ĝaa (ξ)
2

,

and follow the arguments in Shimotsu and Phillips (2005, pp. 1912-1916).
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For (18) we apply the Cramér-Wold device and examine

pX
a=1

ηa
√
mR(1)a (da) =

pX
a=1

ηa
√
m

⎡⎣Ĝ(1)aa (da)

Ĝaa (da)
− 2

m

mX
j=1

log λj

⎤⎦ .
Following Shimotsu and Phillips (2005, pp. 1916-1918) this expression is

pX
a=1

ηa
2m−1/2

Pm
1 νjIua (λj) + op (1)

Gaa + op (1)
, (20)

where νj = log j −m−1
Pm
1 log j. Since

Pm
1 νj = 0, (20) is, apart from op (1) terms,

pX
a=1

ηa
2m−1/2

Gaa

mX
j=1

νj (Iua (λj)−Gaa)

=

pX
a=1

ηa
2

m1/2

mX
j=1

νj
Gaa

(Ca (λj) Iε (λj)Ca (λj)
∗ −Gaa)

=

pX
a=1

ηa
2

m1/2

mX
j=1

νj
Gaa

Ã
Ca (λj)

1

2πn

nX
t=1

εtε
0
tCa (λj)

∗ −Gaa

!
(21)

+

pX
a=1

ηa
2

m1/2

mX
j=1

νj
Gaa

Ca (λj)
1

2πn

nX
t=1

X
s6=t

εtε
0
se
−i(t−s)λjCa (λj)

∗ , (22)

where Ca (λ) denotes the a’th row of C (λ) =
P∞

j=1Cje
iλj . Rewrite (21) as

pX
a=1

ηa
2

m1/2

mX
j=1

νj
Gaa

µ
1

2π
Ca (λj)Ca (λj)

∗ −Gaa

¶
(23)

+

pX
a=1

ηa
2

m1/2

mX
j=1

νj
Gaa

Ã
1

2π
Ca (λj)

Ã
1

n

nX
t=1

εtε
0
t − Ip

!
Ca (λj)

∗
!
. (24)

By Assumption 10 (b), (23) is O
³
m−1/2

Pm
1 νjλ

β
j

´
= O

³
m1+2β

n2β
(logm)2

´
and, since εtε0t−Ip is

a martingale difference sequence, (24) is op
³
m−1/2

Pm
1 νj(1 +O(λβj ))

´
= op

³
m1+2β

n2β
(logm)2

´
.

Now, equation (22) can be written as
Pn

t=1 ztn, where

ztn = ε0t
t−1X
s=1

ct−s,nεs,

ctn =
1

πn
√
m

mX
j=1

νjθj cos (tλj) ,

θj = 2

pX
a=1

ηaG
−1
aa Re

¡
Ca (λj)

0 C̄a (λj)
¢
,
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C̄a(λj) is conjugate of Ca(λj), and ztn is a martingale difference sequence. Thus, we can apply

the central limit theorem of Brown (1971) if

nX
t=1

E
¡
z2tn
¯̄Ft−1

¢− pX
a=1

pX
b=1

ηaηb
4G2ab
GaaGbb

→ p0, (25)

nX
t=1

E
¡
z4tn
¢ → 0. (26)

The proofs of (25) and (26) follow those in Lobato (1999, pp. 142-143).

The second statement of the theorem follows from a simple multivariate extension of the

arguments in Shimotsu and Phillips (2005, pp. 1912-1916).

7.3 Proof of Lemma 4

Observe that

m
1/2
1 (Ĝ(d∗)−G) =

1√
m1

m1X
j=1

[Re Iu(λj)−G] = I + II + III,

where

I =
1√
m1

m1X
j=1

Re
h
Iu(λj)− C(eiλj )Iε(λj)C(e

iλj )∗
i
,

II =
1√
m1

m1X
j=1

Re
h
C(eiλj ) (Iε(λj)− Ip/2π)C(e

iλj )∗
i
,

III =
1√
m1

m1X
j=1

Re [fu(λj)−G] .

III is O(mβ+1/2
1 n−β) by Assumption 10 . For I and II, Robinson and Yajima (2002, pp. 237-

238) show that

I = op(1), vec(II)→d N(0,
1
2(G⊗G+ (G⊗G1, . . . , G⊗Gp)),

giving the required result.

7.4 Proof of Lemma 5

From Lemma 4, if suffices to show Ĝ(d̄∗)− Ĝ(d∗) = op(m
−1/2
1 ).With a slight abuse of notation,

for a scalar variable d defineM = {d : m1/2|d−d∗| ≤ logn}. From Theorem 2, Pr(d̄∗ /∈M)→ 0

as n→∞. Therefore, for any ε > 0,

Pr(m
1/2
1 ||Ĝ(d̄∗)− Ĝ(d∗)|| > ε) = Pr(m

1/2
1 ||Ĝ(d̄∗)− Ĝ(d∗)|| > ε, d̄∗ ∈M) + o (1) .
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Thus we assume d̄∗ ∈M in the following. Define θ = d−d∗, then we may rewriteM in terms of θ

asM = {θ : m1/2|θ| ≤ logn}. Because m1/2
1 [Ĝ(d̄∗)−Ĝ(d∗)] = m

−1/2
1

Pm1
j=1Re[I∆(L;θ,...,θ)u(λj)−

Iu(λj)], the desired result follows if, for a, b = 1, . . . , p,

sup
θ∈M

¯̄̄
Rab
n (θ)

¯̄̄
→p 0, as n→∞,

where Rab
n (θ) = m

−1/2
1

Pm1
j=1Re[w∆θua(λj)w

∗
∆θub

(λj)− wua(λj)w
∗
ub
(λj)]. Applying Lemma 5.1

(a) of Shimotsu and Phillips (2005) to (∆θuat, uat) and reversing the role of Xt and ut, we

obtain

w∆θua(λj) = Dn(e
iλj ; θ)wua(λj)− (2πn)−1/2Ũa,λjn(θ),

whereDn(e
iλ; θ) =

Pn
k=0(−θ)keikλ/k!, Ũa,λn(θ) =

Pn−1
p=0 θ̃λpe

−ipλua,n−p, and θ̃λp =
Pn

k=p+1(−θ)keikλ/k!.
As shown in the proof of Theorem 1, each component of ut satisfies the consistency assumptions

in Shimotsu and Phillips (2005), and we have E supθ∈M |nθ−1/2j1/2−θŨa,λjn(θ)|2 = O((logn)2).

Since

|nθ − 1| ≤ n|θ|(logn)|θ| = O(m−1/2(logn)2), θ ∈M, (27)

by the mean value theorem, it follows that E supθ∈M |(2πn)−1/2Ũa,λjn(θ)|2 = O(j−1(logn)2)
for j = 1, . . . ,m1. Therefore,

Rab
n (θ) =

1√
m1

m1X
j=1

Re
h³
|Dn(e

iλj ; θ)|2 − 1
´
wua(λj)w

∗
ub
(λj)

i
− 1√

m1

m1X
j=1

Re
h
Dn(e

iλj ; θ)wua(λj) (2πn)
−1/2 eU∗b,λjn(θ)i

− 1√
m1

m1X
j=1

Re
h
Dn(e

iλj ; θ)∗w∗ub(λj) (2πn)
−1/2 Ũa,λjn(θ)

i
+ op(1), (28)

where the op(1) term is uniform in θ ∈ M . Lemma 5.2 of Shimotsu and Phillips (2005) gives,

uniformly in θ ∈M ,

λ−2θj |Dn(e
iλj ; θ)|2 − 1 = O(λ2j ) +O(j−1−θ). (29)

In view of (27), (29), and E|Iu(λj)| <∞ for j = 1, . . . ,m1, the first term on the right hand side

of (28) is Op(m
5/2
1 n−2 +m

−1/4
1 +m

1/2
1 m−1/2(logn)2) = op(1) uniformly in θ ∈ M . The proof

completes if we show that the second and third terms on the right hand side of (28) are op(1)

uniformly in θ ∈M . Equation (67) on page 1920 and equation (72) on page 1921 of Shimotsu
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and Phillips (2005) give the decomposition of Ũa,λjn(θ) as

Ũa,λjn(θ) =
n−2X
p=0

bnp(θ)

pX
q=0

ua,n−q

+
(−θ)n
n!

"
eiλj

1− eiλj

nX
k=1

uk − eiλj

1− eiλj
(2πn)1/2wua(λj)

#
,

where, as in Shimotsu and Phillips (2005),

bnp(θ) =
n−1X

k=p+1

(1 + θ)Γ(k − θ)

Γ(−θ)Γ(k + 2) e
i(k−p)λj .

Using the product definition of the gamma function by Weierstrass, we can show |zΓ(z)| ∈
(0,∞) for |z| ≤ 1/2. See, c.f., Chapter 12 of Whittaker and Watson (1927). Consequently,
multiplying bnp(θ) by 1/θ does not change the bound of bnp(θ) shown in equation (69) on

page 1920 of Shimotsu and Phillips (2005). Furthermore, (1/θ)[(−θ)n/n!] = −Γ(n− θ)/[Γ(1−
θ)Γ(n+1)] = O(n−θ−1). Therefore, the argument on pages 1920-1921 of Shimotsu and Phillips
(2005) carries through even if we multiply Ũa,λjn(θ) by 1/θ, and it follows that

E sup
θ∈M

|θ−1n−1/2Ũa,λjn(θ)|2 = O(j−1(logn)2).

In conjunction with (27) and (29), we find that the second and third terms on the right hand

side of (28) are, uniformly in θ ∈M ,

Op

⎛⎝ 1√
m1

m1X
j=1

|θ| j−1/2 logn
⎞⎠ = Op(m

−1/2(logn)2) = op(1),

and we complete the proof.
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Table 1. Simulation results for n = 128

r = 0 r = 1 r = 2 r = 3

b = 0.2

freq(π̂r) (0,0,0) (132,0,0) (38,0,0) (181,0,0)

freq(r̂) (981,19,0,0) (0,997,3,0) (0,120,880,0) (0,170,617,213)

rej(T̂0) 0.078, 0.155 0.063, 0.163 0.065, 0.170 0.048, 0.155

b = 0.4

freq(π̂r) (0,0,0) (304,0,0) (123,0,0) (362,0,0)

freq(r̂) (981,19,0,0) (0,998,2,0) (0,29,971,0) (0,38,446,516)

rej(T̂0) 0.078, 0.155 0.067, 0.173 0.074, 0.210 0.072, 0.222

b = 0.6

freq(π̂r) (0,0,0) (456,0,0) (240,0,0) (485,0,0)

freq(r̂) (981,19,0,0) (0,998,2,0) (0,7,993,0) (0,9,214,777)

rej(T̂0) 0.078, 0.155 0.070, 0.192 0.088, 0.230 0.087, 0.309

b = 0.8

freq(π̂r) (0,0,0) (577,0,0) (407,0,0) (619,0,0)

freq(r̂) (981,19,0,0) (0,997,3,0) (0,3,997,0) (0,1,83,916)

rej(T̂0) 0.078, 0.155 0.070, 0.191 0.096, 0.243 0.092, 0.363

Note: freq(r̂) denotes frequency of (r̂ = 0, r̂ = 1, r̂ = 2, r̂ = 3), freq(π̂r)

denotes frequency of CI(0.05, r) < 0.1/p for (r = 1, r = 2, r = 3), and

rej(T̂0) denotes the rejection frequency of T̂0 with the 5% asymptotic

critical value and h(n) = 1/(logn)1/2 and h(n) = 1/ logn, resp.
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Table 2. Simulation results for n = 512

r = 0 r = 1 r = 2 r = 3

b = 0.2

freq(π̂r) (0,0,0) (475,0,0) (93,0,0) (443,0,0)

freq(r̂) (1000,0,0,0) (0,1000,0,0) (0,105,895,0) (0,356,555,89)

rej(T̂0) 0.046, 0.099 0.036, 0.110 0.052, 0.147 0.068, 0.222

b = 0.4

freq(π̂r) (0,0,0) (956,0,0) (658,0,0) (919,0,0)

freq(r̂) (1000,0,0,0) (0,1000,0,0) (0,1,999,0) (0,1,155,844)

rej(T̂0) 0.046, 0.099 0.041, 0.120 0.058, 0.170 0.116, 0.409

b = 0.6

freq(π̂r) (0,0,0) (995,0,0) (970,0,0) (998,0,0)

freq(r̂) (1000,0,0,0) (0,1000,0,0) (0,0,1000,0) (0,0,1,999)

rej(T̂0) 0.046, 0.099 0.043, 0.119 0.050, 0.165 0.114, 0.517

b = 0.8

freq(π̂r) (0,0,0) (998,0,0) (998,4,0) (1000,2,0)

freq(r̂) (1000,0,0,0) (0,1000,0,0) (0,0,1000,0) (0,0,0,1000)

rej(T̂0) 0.046, 0.099 0.039, 0.110 0.041, 0.151 0.072, 0.534

Note: freq(r̂) denotes frequency of (r̂ = 0, r̂ = 1, r̂ = 2, r̂ = 3), freq(π̂r)

denotes frequency of CI(0.05, r) < 0.1/p for (r = 1, r = 2, r = 3), and

rej(T̂0) denotes the rejection frequency of T̂0 with the 5% asymptotic

critical value and h(n) = 1/(logn)1/2 and h(n) = 1/ logn, resp.
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Table 3. Feasible ELW estimates of fractional integration orders for log exchange rates

Bandwidth CAN SWE FRA GER ITA JPN UK d̄∗
m =

£
n0.6

¤
= 32 1.1614

(0.0884)
1.0064
(0.0884)

1.1080
(0.0884)

1.0392
(0.0884)

1.0759
(0.0884)

0.9621
(0.0884)

0.9847
(0.0884)

1.0482

m =
£
n0.5

¤
= 18 1.2055

(0.1179)
1.1138
(0.1179)

1.2145
(0.1179)

1.2076
(0.1179)

1.1429
(0.1179)

1.0996
(0.1179)

0.9098
(0.1179)

1.1277

Note: Standard errors are given in parenthesis, see Shimotsu and Phillips (2005) and

Shimotsu (2004). A nonzero mean was allowed in the estimation, c.f. (11).

Table 4. Estimated eigenvalues of 10, 000× Ĝ(d̄∗) and P̂ (d̄∗) for log exchange rates

Bandwidth δ̂1 δ̂2 δ̂3 δ̂4 δ̂5 δ̂6 δ̂7

Eigenvalues of 10, 000× Ĝ(d̄∗)
m1 =

£
n0.55

¤
= 24,m = 32 7.0356 1.7711 0.9248 0.3588 0.1339 0.1086 0.0697

m1 =
£
n0.45

¤
= 13,m = 18 6.1708 1.5718 1.3095 0.2424 0.1080 0.0746 0.0389

Eigenvalues of P̂ (d̄∗)
m1 =

£
n0.55

¤
= 24,m = 32 4.2937 1.0300 0.8235 0.5004 0.2134 0.0835 0.0554

m1 =
£
n0.45

¤
= 13,m = 18 4.2012 1.2079 0.8669 0.4497 0.1633 0.0639 0.0470

Note: The estimation allowed for a nonzero mean as in Section 3.4 and Table 3.
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Table 5. Rank estimates for log exchange rates using the model selection procedure with P̂ (d̄∗)

L(u) v (n) = m−0.451 v (n) = m−0.351 v (n) = m−0.251 v (n) = m−0.151 v (n) = m−0.051

m1 = 24,m = 32

L(0) −5.3250 −4.6984 −3.8374 −2.6542 −1.0284
L(1) −5.5089 −4.9718 −4.2338 −3.2196 −1.8261
L(2) −5.6647 −5.2171 −4.6021 −3.7570 −2.5957
L(3) −5.6905 −5.3325 −4.8405 −4.1644 −3.2353
L(4) −5.4294 −5.1608 −4.7918 −4.2848 −3.5880
L(5) −4.8452 −4.6661 −4.4201 −4.0821 −3.6176
L(6) −4.0545 −3.9649 −3.8419 −3.6729 −3.4407
r̂ 3 3 3 4 5

m1 = 13,m = 18

L(0) −4.7929 −4.1476 −3.3135 −2.2356 −0.8426
L(1) −5.0612 −4.5080 −3.7931 −2.8692 −1.6752
L(2) −5.3126 −4.8516 −4.2559 −3.4859 −2.4909
L(3) −5.4645 −5.0958 −4.6192 −4.0032 −3.2072
L(4) −5.3301 −5.0536 −4.6961 −4.2342 −3.6371
L(5) −4.7785 −4.5941 −4.3558 −4.0478 −3.6498
L(6) −3.8859 −3.7937 −3.6745 −3.5205 −3.3215
r̂ 3 3 4 4 5

Note: The model selection procedure determines r̂ as the arg min of L (u), and the calculation

of L (u) allowed for a nonzero mean as in Tables 3 and 4.
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Table 6. Parametric rank tests for log exchange rates

Johansen (1988, 1991) trace tests Breitung and Hassler (2002) tests

r no lags 3 lags 6 lags 12 lags 95% C.V. no lags 3 lags 6 lags 12 lags 95% C.V.

0 112.02 108.18 114.52 128.19 123.04 288.26 142.39 90.34 83.91 66.34

1 65.88 69.58 73.55 86.71 93.92 111.77 43.25 47.88 46.01 51.00

2 33.92 41.16 47.69 53.57 68.68 80.86 25.19 24.81 18.82 37.65

3 14.82 18.14 23.66 29.71 47.21 54.28 15.44 11.59 9.58 26.30

4 8.07 9.28 8.41 13.64 29.38 31.29 6.89 4.41 4.92 16.92

5 2.76 2.53 3.38 6.32 15.34 12.83 1.75 1.01 .54 9.49

6 0.44 0.43 0.33 0.22 3.84 3.36 0.05 0.11 0.15 3.84

Rank 0 0 0 1 − 6 1 1 1 −
Note: The Johansen (1988, 1991) trace tests were calculated with an unrestricted constant term, and the

Breitung and Hassler (2002) tests allowed for a nonzero mean in the levels of the time series.
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Figure 1: Time series plot of log exchange rate data
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