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Abstract. Classical unit root tests are known to suffer from potentially crippling size distortions,
and a range of procedures have been proposed to attenuate this problem, including the use of
bootstrap procedures. It is also known that the estimating equation’s functional form can affect
the outcome of the test, and various model selection procedures have been proposed to overcome this
limitation. In this paper, we adopt a model averaging procedure to deal with model uncertainty at
the testing stage. In addition, we leverage an automatic model-free dependent bootstrap procedure
where the null is imposed by simple differencing (the block length is automatically determined using
recent developments for bootstrapping dependent processes). Monte Carlo simulations indicate that
this approach exhibits the lowest size distortions among its peers in settings that confound existing
approaches, while it has superior power relative to those peers whose size distortions do not preclude
their general use. The proposed approach is fully automatic, and there are no nuisance parameters
that have to be set by the user, which ought to appeal to practitioners.

1. Introduction

Though unit root tests were developed over four decades ago, problems with the various ap-

proaches that have been proposed persist and, perhaps surprisingly, there remains room for im-

provement. When testing for a unit root, the null is that the series contains a unit root, with

rejection of the null in one direction indicating that a series is stationary, and rejection in the other
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direction indicating explosiveness. If these tests exhibit large upwards size distortions, practitioners

may wrongly conclude that a time series is stationary (or explosive) when in fact it is not, which

can render subsequent inference invalid. Size distortions surface surprisingly often in this setting

since practitioners must select from among a range of candidate estimating equations when testing

for the presence of a unit root, and estimating equation mis-specification leads to bias in estimated

parameters. To deal with the size distortions arising from mis-specification, bootstrap procedures

have been proposed (Park (2003), Palm, Smeekes & Urbain (2008)). However, for many of these

tests, size distortions and sub-optimal power concerns persist in part because they rely on a model

specification which must be selected by the practitioner from amount a set of mis-specified candi-

date models. In order to attenuate the size distortions arising from the choice of a mis-specified

estimating equation, the use of model selection criteria such as the Bayes Information Criterion

(BIC) (Schwarz 1978) has been advocated (Ng & Perron 2001). Ng & Perron (2001) assert that the

BIC selects overly parsimonious models and propose a Modified Information Criteria (MIC). For Ng

& Perron’s (2001) approach, size distortions are attenuated as the dimension of the selected model

increases, however this is not without cost as power falls as the dimension increases. Furthermore,

the maximum lag that must be set by the practitioner affects the outcome of the test and ad-hoc

rules are frequently adopted for its selection (Schwert 1989).

As an alternative to model selection, we could instead exploit recent developments in (frequentist)

model averaging (Hansen (2007, Mallows Model Averaging (MMA)), Hansen & Racine (2012,

Jackknife Model Averaging (JMA)), Hansen (2014)), as it is known that model averaging can

overcome limitations associated with the use of model selection methods. In the present context,

we propose a unit root statistic that is a weighted average of unit root statistics taken from a

set of candidate estimating equations that are the same as those used for Ng & Perron’s (2001)

or Dickey & Fuller’s (1979) approaches. We also adopt an automatic, model-free, time series

bootstrap procedure for constructing the null distribution of the proposed statistic, from which

nonparametric critical values or nonparametric P -values can be obtained. Most existing bootstrap

unit root procedures are model-based, and one problem with model-based resampling is that the

data generating process (DGP) is unknown and must be identified from the series at hand. In

order to ensure that the bootstrap samples have the same structure as the series at hand, this
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identification must be correct. Swensen (2003) considers model-based and model-free bootstrap

approaches and demonstrates that a difference-based model-free approach (along the lines of that

proposed herein) delivers a bootstrap distribution that approaches the true asymptotic distribution

under the null of a unit root (see also Palm et al. (2008, Section 2.4)).

We will see that when model averaging is combined with a model-free, automatic, time series

bootstrap procedure (Politis & Romano 1994, Politis & White 2004, Patton, Politis & White 2009),

we can obtain a fully automatic data-driven procedure that has superior size and power relative

to those peers whose size distortions do not preclude their general use, while the sensitivity to the

dimension of the model (i.e., the maximum lag that must be set by the practitioner) is attenuated

by averaging over a set of candidate estimating equations in a particular manner. Furthermore,

unlike its peers, the procedure is very robust to the number of and maximum dimension of the

candidate estimating equations over which the averaging is performed (size and power are largely

unaffected whether you use augmented Dickey-Fuller models with, e.g., one through two, four,

eight, sixteen, or twenty four differenced lags of the time series). To the best of our knowledge,

ours is the first to consider model averaging procedures in the unit root setting.

We compare the proposed bootstrap model average approach with the classic Dickey & Fuller

(1979) method, Phillips & Perron’s (1988) procedure, and with Ng & Perron’s (2001) procedure

(using the detrending approach of Perron & Qu (2007)) which is a state-of-the-art procedure that

appears to be the go-to method for most practitioners. The proposed bootstrap model average

approach emerges as the procedure of choice based upon a fairly extensive Monte Carlo comparison

with the existing go-to and classical approaches. Ng & Perron’s (2001) procedure is based on

the same estimating equations as Dickey & Fuller (1979), but they first detrend the series (this

reduces size distortions when there is a large negative moving average root in the differenced series)

and then use a novel lag selection procedure that chooses a larger lag length than traditional lag

selection procedures. The Dickey & Fuller (1979) and Ng & Perron (2001) tests use a parametric

autoregression to approximate the ARMA structure of the errors in the test regression, while Phillips

& Perron’s (1988) procedure instead corrects for any serial correlation and heteroskedasticity in

the errors of the estimating equation by directly modifying the test statistic. We direct the reader

to the original references for further details.
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It has been established that the classical approach (Dickey & Fuller 1979) which uses tabulated

critical values sometimes suffers from crippling size distortions. MacKinnon’s (1996) improved

tabulated critical values do not attenuate such size distortions, unfortunately. Schwert (1989)

conducted extensive Monte Carlo simulations and demonstrated how there can exist considerable

bias present in a mis-specified estimating equation for unit root testing in the presence of a moving

average error process (i.e., in the presence of a large negative moving average root). In such cases,

the critical values depend on the unknown parameters hence tabulated Dickey-Fuller critical values

should be avoided, and appropriate bootstrap procedures may be necessary for sound inference

in this setting. DeJong, Nankervis, Savin & Whiteman (1992), again via extensive simulations,

demonstrate that the augmented Dickey-Fuller tests have low power in the presence of a large

autoregressive root. One important practical aspect for augmented Dickey-Fuller unit root tests is

the specification of the lag length. If it is too small, then the remaining serial correlation in the

errors will bias the test. If it is too large, then the power of the test will suffer. Hansen (1995)

demonstrates how large power gains can be achieved by including correlated stationary covariates

in the estimating equation (this could be incorporated in our proposed bootstrap model average

approach). Ng & Perron (2001) point out that a high order augmented autoregression is often

necessary for unit root tests to have good size, but that information criteria such as the BIC tend

to select a truncation lag that is small, and propose a Modified Information Criteria (MIC) along

with GLS detrended data and demonstrate how this improves size but can lead to a loss in power.

Perron & Qu (2007) propose an improved method for detrending for the Ng & Perron (2001)

approach. We direct the interested reader to Choi (2015) who presents a state-of-the art treatment

of unit root inference.

The rest of this paper proceeds as follows. Section 2 presents some background on unit root

inference and presents theoretical underpinnings and the distribution of the weighted average ADF

statistic with fixed weights. Section 3 outlines the proposed approach. Section 4 presents results

from a Monte Carlo simulation that compares the proposed approach with the classic Dickey

& Fuller (1979) procedure, that of Ng & Perron (2001), and a bootstrap BIC model selection

procedure. An R (R Core Team 2018) package exists that implements the proposed method (Racine

2018).
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2. Testing for a Unit Root

Consider a time series yt which satisfies an autoregressive equation

(1) yt = ρyt−1 + ut

for t = 1, . . . , T , where ut is a stationary I(0) process. The latter includes i.i.d. processes, white

noise, and mean-reverting stationary processes. When ρ = 1 then yt is I(1) and we say that yt has

a unit root in its autoregressive representation. On the other hand when |ρ| < 1 then yt is I(0),

is stationary, and does not have a unit root. When ρ > 1 then yt is explosive. Testing H0 : ρ = 1

versus either H1 : ρ 6= 1 or H1 : ρ < 1 are important practical issues in applied time series modeling.

The most common method for testing the unit root hypothesis is to use the Augmented Dickey-

Fuller (ADF) statistic, which is based on the least-squares estimation of an autoregressive (AR)

model for yt. The test can be described as follows. For some lag order k, estimate by least squares

the kth order autoregression

∆yt = γ̂(k)yt−1 +

k−1∑

j=1

âj(k)∆yt−j + β̂(k) + ǫ̂t(k).

Form a t-statistic for the null that γ = 0, that is

ADF (k) =
γ̂(k)

s (γ̂(k))

where s (γ̂(k)) is a standard error for γ̂(k). The test rejects in favour of a stationary alternative for

large negative values of ADF (k) and in favour of non-stationary explosive alternatives for positive

(or small negative) values. For stationary trend alternatives a linear time trend is also included in

the regression.

The conventional asymptotic distribution theory approximates the null distribution of ADF (k)

by either assuming that k is the true autoregressive order (so that the estimated model is correctly

specified) or by assuming that k → ∞ as T → ∞ so that the model is approximately correct. We

take a different approach and derive the asymptotic distribution without either of these assump-

tions.

We use the following regularity condition on the fundamental errors ut defined in (1).
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Assumption 2.1. For some p > r > 2 , ut is a strictly stationary, zero mean, strong mixing

process of size −pr/(p− r), E |ui|p < ∞, and ω2 > 0 where

ω2 =
∞∑

j=−∞

E (utut−j) .

Assumption 2.1 is a mild set of standard mixing conditions which allow for broad I(0) processes,

and encompasses standard AR and ARMA processes. The assumption that the long-run variance

ω2 is positive excludes over-differenced processes.

Our representation of the asymptotic distribution of the ADF statistic will be written in terms

of the approximating models. For each k define the approximate model

ut =
k−1∑

j=1

aj(k)ut−j + ǫt(k)

by projection. That is, the coefficients aj(k) are defined so that E (ut−jǫt(k)) = 0 for j = 1, . . . , k−1.

This defines the AR(k) approximate model and error. Given the error ǫt(k), we can define its

variance, autocovariance and long-run variance

σ2(k) = E
(
ǫt(k)

2
)

(2)

λ(k) =

∞∑

j=1

E (ǫt(k)ǫt−j(k))(3)

ν2(k) = σ2(k) + 2λ(k).(4)

The parameter σ2(k) is the variance of ǫt(k), λ(k) is the sum of its autocovariances, and ν2(k) is its

long-run variance. Under mis-specification the error ǫt(k) has serial correlation so that λ(k) 6= 0 and

σ2(k) 6= ν2(k). Under correct specification the error is white noise so λ(k) = 0 and σ2(k) = ν2(k).

Thus for small k we expect λ(k) 6= 0 and σ2(k) 6= ν2(k) but for large k we expect λ(k) ≃ 0 and

σ2(k) ≃ ν2(k), though there is no reason to expect equality for any finite k.

Theorem 2.1. Under Assumption 2.1 and H0 : ρ = 1, jointly over k = 1, . . . ,K, as T → ∞

(5) ADF (k)
d→ ν(k)

σ(k)

∫ 1
0 W ∗dW

(∫ 1
0 W ∗2

)1/2 +
λ(k)

ωσ(k)
(∫ 1

0 W ∗2
)1/2
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where W (r) is a standard Brownian motion, and W ∗(r) = W (r) −
∫ 1
0 W (r)dr (or a detrended

Brownian motion if a time trend is included).

Theorem 2.1 shows that the ADF t-statistics converge jointly to mis-specified versions of the

classic Dickey-Fuller t-distribution. The distortions are due to mis-specified serial correlation.

When the autoregression is correctly specified so that the error is white noise, then λ(k) = 0 in

which case the distribution in (5) simplifies to the classical
∫ 1
0 W ∗dW/

(∫ 1
0 W ∗2

)1/2
found by Dickey

& Fuller (1979).

Theorem 2.1 also shows that the sequence of t-statistics (for different autoregressive orders)

converge jointly, and are all functions of the same Brownian motion process W (r).

The asymptotic distribution in Theorem 2.1 is generally unknown as it depends on the unknown

parameters σ(k) and λ(k). However, the distribution can be approximated by bootstrap methods

since these parameters can be consistently estimated.

By picking a suitably large autoregressive order k the distributional distortions can be minimized.

Larger values of k, however, reduce the power of unit root tests in finite samples. Thus it has been

viewed as desirable to use an autoregressive order k which is large enough to minimize the size

distortions but not so large as to reduce the power of the test. This requires a data-dependent rule

k̂ for selection of k. One popular method is BIC selection. However, Ng & Perron (2001) argued

that this produces a k̂ which is too small to alleviate the size distortion, and proposed instead a

Modified Information Criteria (MIC) designed for the unit root testing problem.

A data-dependent selection rule k̂ leads to a data-dependent ADF test ADF (k̂). The appropriate

null distribution for ADF (k̂) is unclear, however, as the use of a selected lag length invalidates the

conventional limit theory unless used with an ad hoc assumption that k̂ diverges with T . Bootstrap

critical values could be used instead though no formal justification has been provided.

Instead of selection rules, we propose an averaging statistic. For k = 1, . . . ,K let w(k) be a set

of non-negative weights which sum to one, and set w = (w(1), . . . , w(K)). Then an averaging ADF

statistic is

ADF (w) =
K∑

k=1

w(k)ADF (k).



8 BOOTSTRAP MODEL AVERAGING UNIT ROOT INFERENCE

The asymptotic distribution of the averaging ADF statistic can be deduced directly from Theo-

rem 2.1.

Theorem 2.2. As T → ∞

ADF (w)
d→
(

K∑

k=1

w(k)
ν(k)

σ(k)

) ∫ 1
0 W ∗dW

(∫ 1
0 W ∗2

)1/2 +

(
K∑

k=1

w(k)
λ(k)

ωσ(k)

)
1

(∫ 1
0 W ∗2

)1/2 .

Theorem 2.2 provides the asymptotic distribution of the averaging ADF statistic for fixed

weights. Like the distribution in Theorem 2.1, it is a distorted version of the classic Dickey-Fuller

t-distribution.

While the distribution in Theorem 2.2 is generally unknown, and dependent on the unknown se-

rial correlation properties of the series ∆yt, it can be approximated by standard bootstrap methods

since the serial correlation properties can be consistently estimated.

Proof of Theorem 2.1. For simplicity we omit the deterministic components from the exposition.

By the Herrndorf (1984) functional central limit theorem

1√
T

[Tr]∑

t=1

ut ⇒ ωW (r)

1√
T

[Tr]∑

t=1

ǫt(k) ⇒ ν(k)W (r)

where W (r) is standard Brownian motion. This convergence holds jointly over both equations and

over k since the ǫt(k) are linear transformations of the errors ut. Applying Theorem 4.1 of Hansen

(1992)

1

T

T∑

t=1

yt−1ǫt(k)
d→ ων(k)

∫ 1

0
WdW + λ(k)

jointly over k.

Let â(k) = (â1(k), . . . , âk−1(k))
′ and a(k) = (a1(k), . . . , ak−1(k))

′. Define xt(k) =

(yt−1, . . . , yt−k+1)
′, Q(k) = E (xt(k)xt(k)

′) and

Ω(k) =
∞∑

j=−∞

E
(
xt(k)ǫt(k)xt−j(k)

′ǫt−j(k)
)
.
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By standard manipulations for the asymptotic theory of integrated processes


 T γ̂(k)

√
T (â(k)− a(k))


 d→


 ω2

∫ 1
0 W 2 0

0 Q(k)




−1
 ων(k)

∫ 1
0 WdW + λ(k)

ξ(k)




where ξ(k) ∼ N(0,Ω(k)). This convergence is joint across k.

Furthermore, the standard errors satisfy

T (s (γ̂(k)))2
d→
(
ω2

∫ 1

0
W 2

)−1

σ2(k).

Together, we find

ADF (k)
d→ ων(k)

∫ 1
0 WdW + λ(k)

(
ω2
∫ 1
0 W 2

)1/2
σ(k)

=
ν(k)

σ(k)

∫ 1
0 WdW

(∫ 1
0 W 2

)1/2 +
λ(k)

ωσ(k)
(∫ 1

0 W 2
)1/2

as claimed. �

3. A Model Averaging Bootstrap Procedure

3.1. Model Average Estimators. The goal in model averaging is to reduce estimation vari-

ance while controlling mis-specification bias. The Mallows (Mallows 1973) Criterion for the model

average estimator (Hansen 2007) is

Cn(w) = w′Ê′Êw + 2σ2K′w,

where Ê is the T ×M matrix with columns containing the residual vector from the mth candidate

estimating equation, K the M × 1 vector of the number of parameters in each model, and σ2 the

variance from the largest dimensional model.1 This criterion is used to select the weight vector ŵ,

i.e.,

ŵ = argmin
w

Cn(w).

Because argminw Cn(w) has no closed-form solution, the weight vector is found numerically. The

solution involves constrained minimization subject to non-negativity and summation constraints,

which constitutes a classic quadratic programming problem. This criterion involves nothing more

1Note that the residual vectors will be of different lengths when the model incorporates lags, so some care must be

exercised when populating Ê, i.e., the first k−1 elements from the residual vector for the estimating equation models
not containing lags must be discarded.
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than computing the residuals for each candidate estimating equation, obtaining the rank of each

candidate estimating equation, and solving a simple quadratic program. The MMA Cn(w) criterion

provides an estimate of the average squared error from the model average fit, and has been shown

to be asymptotically optimal in the sense of achieving the lowest possible squared error in a class

of model average estimators. See Hansen (2007) for further details. See also Hansen (2014) who

explores the use of the Mallows criterion in a time series autoregression setting and notes that

averaging estimators have reduced risk relative to unconstrained estimation when the covariates

are grouped in sets of four or larger so that a Stein shrinkage effect holds, and suggests that

averaging estimators be restricted to models in which the regressors have been grouped in this

manner. See also the related work of Hansen (2010) who uses a Mallows criterion for combining

forecasts local to a unit root. In our procedure we use Schwert’s (1989) rule for determining the

dimension of the largest ADF model that is averaged over, and group candidate models per Hansen

(2014).

Hansen & Racine (2012) propose an alternative jackknife model averaging (JMA) criterion for

the model average estimator given by

CVn(w) =
1

n
(y − X̃w)′(y − X̃w),

where X̃ is the T × M matrix with columns containing the jackknife estimator from the mth

candidate estimating equation formed by deleting the t observation when constructing the tth

prediction. Like its Mallows counterpart, this involves solving a quadratic program where we

minimize (y − X̃w)′(y − X̃w) = y′y + w′X̃ ′X̃w − 2y′X̃w and the first term is ignorable. In the

presence of homoskedastic errors, JMA and MMA are nearly equivalent, but when the errors are

heteroskedastic, JMA has significantly lower MSE.

To obtain a model average test statistic, we take the ADF (k) statistic from each of the K

candidate estimating equations and average them using the weight vector ŵ, and call this averaged

statistic ADF (w) =
∑K

k=1 ŵ(k)ADF (k). In order to obtain the null distribution of this statistic,

we use a time series bootstrap with automatic choice of the expected block length.

3.2. A Unit Root Model Average Bootstrap Procedure. We consider a first-difference-based

bootstrap procedure for obtaining the sampling distribution of ADF (w) under the null of a unit root
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along the lines of Swensen (2003), who proves the consistency of the standard (non-averaged) test

without deterministic components based on the stationary bootstrap (deterministic components

can be added in the same manner as in Psaradakis (2001); see Palm et al. (2008, page 382)). The

bootstrap procedure is as follows:

(1) Take the first difference of the series at hand ǫt = ∆yt, t = 1, . . . , T (ǫt could be, e.g., an

ARMA process)

(2) Apply a time series bootstrap with automated block length choice to ǫt, t = 1, . . . , T (l is

the expected block length obtained for the geometric bootstrap; see Patton et al. (2009),

Politis & White (2004), Politis & Romano (1994))

(3) Take the cumulative sum of this bootstrap residual ǫ∗t , t = 1, . . . , T initializing the sum to

the first realization of the series, which will generate a bootstrap series containing a unit

root, i.e., y∗t = y1 +
∑t

i=2 ǫ
∗

i = y∗t−1 + ǫ∗t

(4) Next, take the bootstrap ADF (k)∗ statistics from each of the K candidate estimating

equations and average them using the weight vector for the original series ŵ, which delivers

a bootstrap model average statistic ADF (w)∗ generated under the null

(5) Repeat this processB times to obtain theB bootstrap statisticsADF (w)∗1,K , . . . , ADF (w)∗B,K .

(6) For the one-sided stationary alternative H1 : ρ < 1 compute the α empirical quantile qα

from the bootstrap statistics. Reject H0 : ρ = 1 in favor of H1 : ρ < 1 if ADF (w) < qα.

(7) For the two-sided alternative H1 : ρ 6= 1 compute the α/2 and 1 − α/2 empirical quantiles

qα/2 and q1−α/2 from the bootstrap statistics. Reject H0 : ρ = 1 in favor of H1 : ρ 6= 1 if

ADF (w) < qα/2 or ADF (w) > q1−α/2.

4. Monte Carlo Simulation for Bootstrap Unit Root Test

In order to assess the finite-sample performance of the proposed approach relative to its peers, we

conduct a series of Monte Carlo simulation experiments. In particular, we construct power curves

for a handful of procedures based upon three DGPs, one a simple AR(1), one an ARMA(1,1),

and one an ARMA(1,2). The ARMA(1,1) DGP was used in simulations appearing in Palm et al.

(2008) (yt = ρyt−1 + ǫt − 0.8ǫt−1) and is known to confound existing tests. It is noteworthy

that Phillips & Perron (1988, p. 344) point out a limitation of their approach writing that their
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tests “have significant size distortions and are too liberal to be useful for θ = −0.5,−0.8” (here

θ = −0.8 is the MA coefficient in the ARMA(1,1) model). For the ARMA(1,2) DGP we use

yt = ρyt−1 + ǫt + 0.3ǫt−1 − 0.2ǫt−1, while for the AR(1) DGP we use yt = ρyt−1 + ǫt.

We conduct B = 399 bootstrap replications and M = 2500 Monte Carlo replications for sample

sizes T = (50, 100, 200, 400). We then conduct the two-sided bootstrap test described above using

the MMA and JMA weighting scheme and report the empirical rejection frequency of it and the

one-sided tests of Ng & Perron (2001), Phillips & Perron (1988) and Dickey & Fuller (1979), where

each test is conducted using a 5% nominal level. When ρ = 1 we can assess each test’s empirical

size. We examine power against stationary alternatives ρ < 1, and we consider ρ ∈ [0.75, 1] using

a grid of 15 equally spaced values for ρ when constructing each power curve.

It might seem odd that we compare our proposed two-sided tests with existing one-sided tests.

We select our two-sided test as we believe it is important to be agnostic about the alternative. We

use existing one-sided tests as these are the common implementation. If we replace the latter tests

by two-sided versions this substantially decreases their power, so this is a fair comparison regarding

power.

The legends in the figures that follow use the following abbreviations; MMA (proposed bootstrap

model average ADF test with Hansen (2007) weight selection); JMA (proposed test with Hansen &

Racine (2012) weight selection); N-P (Ng & Perron (2001) with MIC model selection using Perron

& Qu (2007) detrending based on asymptotic critical values); P-P (Phillips & Perron (1988) based

on asymptotic critical values); ADF (Dickey & Fuller (1979) with BIC model selection based on

MacKinnon’s (1996) asymptotic critical values). The N-P and ADF tests are from the R package

CADFtest (Lupi 2009) while the P-P test is from the R package tseries (Trapletti & Hornik 2018).

The proposed test is from the R package hr (Racine 2018).

Among all tests considered, the preferred test would have a power curve that would exhibit

correct size (i.e., when ρ = 1 would have an empirical rejection frequency that is approximately

5% or otherwise exhibit the lowest size distortions), and otherwise would have uniformly higher

power than its peers (i.e., when ρ < 1 its power curve would lie above those of its peers). Any test

procedure exhibiting large upwards size distortions in standard settings cannot in good conscience

be recommended to practitioners since it could lead to the rejection of the null at levels far in excess
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of the nominal level of the test when the null is in fact correct. Results for each DGP and a brief

discussion follow.

4.1. AR(1) DGP. Figure 1 presents power curves generated under the AR(1) DGP. For the

proposed test we present results using both the MMA or JMA weight selection schemes outlined

in Section 3 based upon the bootstrap procedure outlined in Section 3. For the remaining tests we

use asymptotic critical values as outlined above.

Figure 1 reveals that this is a textbook case where all tests are approximately correctly sized,

though it is evident that the proposed approach dominates in terms of power. As expected, for a

given value of ρ (< 1), power increases as the sample size increases for all tests. For the proposed

test, Hansen’s (2007) MMA weight selection scheme delivers a test with more power than that based

on Hansen & Racine’s (2012) JMA approach for this DGP. Based on this set of power curves, for

this DGP the proposed approach with MMA weight selection dominates its peers.

Next, we address the question of the fact that there are two comparisons being made, one between

model selection and model averaging, and one between asymptotic and bootstrap inference. To

assess these interplay of these issues we report both the asymptotic and bootstrapped versions of

the N-P approach in Figure 2. We report this simply because the reader might reasonably wonder

whether the power gains associated with the proposed procedure arise from the use of the bootstrap

procedure rather than from the use of model averaging.

By way of illustration, compare the performance of the asymptotic and bootstrapped MIC model

selected Ng & Perron (2001) test (N-P and N-P∗, respectively) with the bootstrapped model av-

eraged ADF test (MMA or JMA) in Figure 2. A comparison of the asymptotic and bootstrapped

versions of Ng & Perron’s (2001) MIC model selected test reveals no consequential power gains

associated with bootstrapping the process using the identical bootstrap procedure that underpins

the proposed approach (we present results for T = 50 and T = 100 only as results do not differ

qualitatively for T = 200 and T = 400). We can therefore safely conclude that any power gains

associated with the proposed approach arise from the use of model averaging versus model selection

and cannot be attributed to the use of a bootstrap procedure.
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Figure 1. Power curves for the AR(1) DGP yt = ρyt−1+εt for unit root tests using
a α = 0.05 level of significance. When ρ = 1 a unit root is present (empirical size is
the height of the power curve at ρ = 1, i.e., at the right of each figure).

4.2. ARMA(1,1) DGP. Figure 3 presents power curves generated under the ARMA(1,1) DGP

containing a coefficient of -0.8 on the lagged MA component that is known to confound existing

tests.
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Figure 2. Power curves for the AR(1) DGP yt = ρyt−1 + εt for unit root tests
using a α = 0.05 level of significance. When ρ = 1 a unit root is present (empirical
size is the height of the power curve at ρ = 1, i.e., at the right of each figure).
The power curve N-P is based on asymptotic critical values, while N-P∗ is based on
bootstrapped critical values.

It is evident from Figure 3 that the Phillips & Perron (1988) and Dickey & Fuller (1979) ap-

proaches completely fail for this DGP as was pointed out by Phillips & Perron (1988) and Palm

et al. (2008). In particular, for this DGP the Phillips & Perron (1988) test has empirical size equal

to 1.00 for any T when α = 0.05 thereby rejecting 100% of the time when in fact the null is true,

while the Dickey & Fuller (1979) approach displays similarly crippling upward size distortions that

very slowly approach nominal size as T increases but otherwise remain unacceptably high.

In light of the extreme size distortions that surface for this (and similar) DGPs when using the

Phillips & Perron (1988) and Dickey & Fuller (1979) tests, it is difficult to recommend either test

to practitioners, therefore the choice of tests therefore comes down to either Ng & Perron’s (2001)

procedure or the proposed bootstrap model averaging approach.

For this DGP, the proposed approach is slightly over-sized for T ≤ 100 (for the MMA weighting

scheme the empirical rejection frequencies are approximately 8% for T = 50 and 6% for T = 100,

respectively; for the JMA weighting scheme the empirical rejection frequencies are approximately

7% for T = 50 and 5% for T = 100, respectively) while Ng & Perron’s (2001) approach exhibits
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Figure 3. Power curves for the ARMA(1,1) DGP yt = ρyt−1+ εt−0.8εt−1 for unit
root tests using a α = 0.05 level of significance. When ρ = 1 a unit root is present
(empirical size is the height of the power curve at ρ = 1, i.e., at the right of each
figure).

substantially larger size distortions for samples of size T ≤ 100 (approximately 18% and 10% for

T = 50 and T = 100, respectively), while both tests are approximately correctly sized for T ≥ 200.

In addition, the proposed approach has substantially higher power than Ng & Perron’s (2001)

approach for this DGP, size distortions notwithstanding, regardless of whether the MMA or JMA
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weighting schemes are adopted. For this DGP, the proposed approach is first among its peers when

judged by its power curve.

4.3. ARMA(1,2) DGP. Figure 4 presents power curves generated under the ARMA(1,2) DGP.

Given that neither the Phillips & Perron (1988) nor Dickey & Fuller (1979) tests can be recom-

mended to practitioners given their failure for the ARMA(1,1) DGP above and for a range of similar

DGPs, we drop them in the power analysis that follows.

Figure 4 reveals that, for this DGP, all three procedures are approximately correctly sized for

all T while the proposed approach that employs the MMA weight scheme dominates in terms of

power.

4.4. Discussion. On the basis of our simulation results, we feel confident recommending the pro-

posed procedure for testing for the presence of a unit root (extensive simulations that examine the

effect of the largest dimension model that is averaged over, the distribution of the weight vector

and so forth are available upon request). Our approach attenuates the large size distortions that

can arise when using the classical approach (Dickey & Fuller 1979) that relies on tabulated critical

values, distortions that can also arise when using in Ng & Perron’s (2001) approach. Furthermore,

the proposed approach exhibits higher power, does not require specification of the model from which

the bootstrap resamples are drawn, and uses and an automatic block length selection procedure for

the dependent bootstrap method. Though the MMA procedure has higher power than the JMA

procedure for the DGPs considered above, extensive simulations not reported here indicate that the

JMA procedure exhibits lower size distortions, when present, than the MMA approach, particularly

when a trend is included in the model. A conservative approach would therefore be to use the JMA

weight selection scheme for this reason. This procedure ought to appeal to practitioners as there

are no unknown parameters that must be specified by the user, an R implementation exists, and

the procedure is not computationally demanding.

5. Conclusion

We propose a bootstrap model averaging procedure capable of attenuating large upward size

distortions that can arise when testing for the presence of a unit root while possessing power

that dominates its peers. We adopt a model-free bootstrap procedure where the null is imposed
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Figure 4. Power curves for the DGP yt = ρyt−1 + εt + 0.3εt−1 − 0.2εt−2 for unit
root tests using a α = 0.05 level of significance. When ρ = 1 a unit root is present
(empirical size is the height of the power curve at ρ = 1, i.e., at the right of each
figure).

by simple differencing, exploit recent developments in automatic block length selection for the

geometric bootstrap procedure invoked, and adopt a novel model averaging procedure to address

model uncertainty. Theoretical support is provided, and a set of simulation exercises underscore

its advantages relative to its peers. An R (R Core Team 2018) package exists that implements the
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proposed method (Racine 2018). Since there are no nuisance parameters to be set by the user, and

in light of its performance in a range of simulated scenarios, we are optimistic that the proposed

approach will appeal to practitioners.
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