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Summary

Although globalization has shaped the world economy in recent decades, emerging economies
have experienced impressive growth compared to developed economies, suggesting specific co-
movements within developed and emerging business cycles. Using observed developed and
emerging real economy activity variables, we investigate whether the latter assertion can be
supported by observed data. Based on a two-level factor model, we assume these activity vari-
ables can be decomposed into global components, emerging or developed common components,
and idiosyncratic national shocks. We propose a statistical test for the null hypothesis of a
one-level specification, where it is irrelevant to distinguish between emerging and developed
latent factors against the two-level alternative. This paper provides a theoretical justification
and Monte Carlo simulations that document the testing procedure. An application of the test
to various datasets of developed and emerging countries leads to strong statistical evidence of
specific comovements within these two groups.

Keywords: statistical test, latent factors, specific comovements, emerging economies, devel-
oped economies.

JEL classification: C12, C55, F44, O47.

1 Introduction

The empirical and theoretical econometric analysis of high-dimensional factor models has been a
heavily researched area since the seminal paper of Stock and Watson (2002). These models allow
the reduction of a large set of macroeconomic and financial variables into a very small number
of indexes, which are useful for bridging various types of information related to economic agents.
Factor models generally assume a one-level structure, where the comovements within a large panel
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of variables can be summarized into a few latent factors affecting all variables. In particular, each
variable in the large panel can decomposed into an idiosyncratic error component and a common
component. See, for example, Stock and Watson (2002), Bai and Ng (2002), and Bai (2003) for
details. In many prediction and policy exercises, empirical researchers have found it useful to
extract factors from a large set of series. Among others, Ludvigson and Ng (2007) investigated
the risk-return relation in the U.S. equity market based on extracted factors from a large panel of
macroeconomic indicators. More recently, Aastveit, Bjørnland, and Thorsrud (2015) studied the
role of the increased demand from emerging economies compared to that of developed economies
as drivers of the real price of oil, using a structural factor-augmented vector auto-regression, with
factors from a large panel of emerging and developed economies activity variables.

Because the factors are latent, they are generally estimated in practice using the principal
component method (PCM) assuming the one-level factor model. However, in many economic
applications, such as international business cycle studies, multi-level structures naturally arise in
the specification of the common component. In such a case, specific factors of some groups of
countries are allowed, in addition to global factors. The illustration in this paper is similar to the
one in Kose, Otrok, and Prasad (2012), and contributes to the debate on the existence of specific
developed and emerging economy activity factors. Kose, Otrok, and Prasad (2012) investigated the
decoupling between developed and emerging economy activity factors, using these models. Their
motivation was twofold. First, the global economy has become interconnected through a large
increase in trade and free movement of capital. Second, a large share of the global growth has
been accounted for by emerging economies. This high economic growth has seemed, at times, to
have been unaffected by weak economic activity in developed countries. While the first point of
view suggests a strong influence of global economy real activity factors, the second suggests specific
emerging economy activity factors different from those in developed economies.

As is well-known, the PCM estimates of factors converge to a rotation of the true factor space;
see Bai (2003). In particular, if one is interested in understanding the role of these specific factors, it
is important to know the functional form relating them to the estimated factors, which is impossible
in practice. As Breitung and Eickmeier (2014) and Han (2016) also argued, the standard principal
component is not able to separately identify specific factor spaces when multi-level common factor
structures arise. Han (2016) suggested a shrinkage estimator as an alternative and used it to
disentangle global macroeconomic factors that are Europe specific and U.S. specific. He found that
these specific estimated factors have high explanatory power for the leading economic indicators
in Europe and the United States. Furthermore, Wang (2010) studied the estimation of multi-
level factor models. In his empirical application, he decomposed the comovements within real and
financial sectors in the U.S. economy.

Statistical evidence of the existence of factors that are specific to groups of variables has not
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been studied. Suppose, for example, that one is interested in the structural implications of specific
real economy activity factors within developed and emerging economies. It is crucial to check
whether the data is mainly driven by global factors, or whether factors specific to developed and
emerging economies arise. In this paper, we propose a test, which we justify to be theoretically
valid, and document its finite sample performance through simulation experiments.

Although the theoretical results can be applied in other contexts, this work focuses exclusively
on international business cycle developments. It provides a statistical framework that can be used
to analyze whether developed and emerging economy business cycles decouple. We propose a
statistic that formally tests the one-level factor model specification against the two-level factor
model specification with developed and emerging activity factors. In the empirical application, we
find strong statistical evidence against the null hypothesis that developed and emerging business
cycles emerge.

The rest of the paper is organized as follows. In Section 2, we present the two-level factor model,
discuss the limit of the usual PCM for estimating specific factors, and propose a test of the one-level
representation without specific comovements within developed and emerging economies against the
two-level representation with specific comovements within developed and emerging economies. In
Section 3, we investigate the finite sample properties of the proposed test. In Section 4, we apply the
test to various datasets of developed and emerging economies real activity variables. In Section 5,
we conclude. Proofs are relegated to the appendix. Throughout the paper, C, I, b·c, and ‖·‖
denote a generic finite constant, a generic identity matrix, the integer part of a number, and the
Euclidean norm, respectively. When M is a matrix, M > 0 means that M is positive definite.

2 Global, Emerging, and Developed Economy Activity Factors

Emerging economies have become major players in the global economy. On one hand, they have
had high economic growth in recent decades compared to many developed economies. On the other
hand, it is generally admitted that globalization has increased world economic interdependence,
subsequently increasing the predominance of global economy activity factors (Kose, Otrok, and
Prasad, 2012). This paper contributes to the debate on the existence of specific comovements
within the real activity of developed and emerging economies. We formally answer that question
by investigating whether the distinction between specific factors of developed and emerging economy
activities is relevant, using a statistical test.

For this study, we consider a large set ofN economic activity variables
(
X = {Xit}t=1,...,T ; i=1,...,N

)
for developed and emerging countries. We suppose that the N1 = bαNc first rows of X contain
information on developed countries. Furthermore, we assume that the comovements within X are
captured by latent global, developed, and emerging economy activity factors, which are denoted
by f0t : r0 × 1, fDt : rD × 1, and fEt : rE × 1, respectively. Therefore, more than one factor for
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developed or emerging countries is allowed. Further, given the heterogeneity within developed and
emerging countries, it may happen that they are driven by a different number of specific factors.
To separate these common international factors from idiosyncratic national shocks, we model the
comovements within X using a two-level factor model specification. This model allows us to iden-
tify some common factors that capture comovements across the entire dataset or across subsets
of the series. In this case, the global factors f0t reflect fluctuations that are common across all
variables and countries. The developed economy activity factors fDt and the emerging economy
activity factors fEt capture fluctuations that are common to developed and emerging economies,
respectively. The factor panel model can be written as

Xit = λ′0if0t + λ′DifDt + eit if i = 1, . . . , N1, t = 1, . . . , T, (1)

and

Xit = λ′0if0t + λ′EifEt + eit if i = N1 + 1, . . . , N, t = 1, . . . , T, (2)

where eit are the idiosyncratic errors. The vector of factor loadings λ0i measures the exposure
of variable i to the global economic activity factors, whereas λDi and λEi reflect the variable Xit

exposure to developed and emerging country economy activity factors, respectively. The vectors of
latent factors fDt and fEt contain only information specific to each group of countries and not in
the global economy activity factors f0t. Therefore, the global factors are allowed to affect all the
variables, while the specific factors affect only the variables within their corresponding groups. In
consequence, specificities like a change in the volatility within developed and emerging economies
will be assumed to be generated by the specific factors fDt and fEt, respectively. Although, these
specific factors are distinct, they are allowed to be correlated. When the distinction between
the developed and emerging economy real activity factors is irrelevant, there is a factor model
representation where only global factors matter, i.e.,

Xit = λ′0if0t + eit, i = 1, . . . , N, t = 1, . . . , T. (3)

In the following subsection, we discuss the PCM estimation of the latent factors.

2.1 Principal Component Method and Specific Latent Factors

In practice, the real economic activity factors are latent, and must be estimated. When all latent
factors are global, a popular approach consists of relying on principal component estimation. Since
the seminal paper of Stock and Watson (2002), where the extracted factors were used in the
forecasting context, this approach has received considerable attention in empirical and theoretical
works.

When no specific factors emerge, the PCM estimates F̂ =
[
f̂1 · · · f̂T

]′
: T × r0 and Λ̂0 =[

λ̂01 · · · λ̂0N
]′

: N × r0 of the latent factor matrix F0 = [f01 · · ·f0T ]′ and the latent factor load-
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ing matrix Λ = [λ01 · · ·λ0N ]′, respectively, are obtained by minimizing the sum of the squared
idiosyncratic residuals under the restriction that Λ̂′Λ̂/N = I. The resulting matrix of the esti-
mated factor loadings corresponds to

√
N times the eigenvectors corresponding to the r0 largest

eigenvalues of XX ′/ (TN) in decreasing order. The matrix of the latent factors is estimated
with F̂ = X ′Λ̂

(
Λ̂′Λ̂

)−1
= X ′Λ̂/N (Bai and Ng, 2008). Alternatively, the PCM estimates

F̃ =
[
f̃1 · · · f̃T

]′
: T × r0 and Λ̃ =

[
λ̃1 · · · λ̃N

]′
: N × r0 of the latent factors matrix F0 and

the latent factor loading matrix Λ, respectively, can be obtained by minimizing the sum of the
squared idiosyncratic residuals under the restriction that F̃ ′F̃ /T = I. In this case, F̃ is

√
T times

the eigenvectors corresponding to the r0 largest eigenvalues ofX ′X/ (TN) in decreasing order, and
Λ̃ = XF̃ /T .

As is well-known, the PCM consistently estimates the space spanned by the true factors, i.e.,
f̂t = Ĥ ′f0t + oP (1), t = 1, . . . , T , where we denote the rotation matrix by Ĥ : r0 × r0. See also
Bai (2003). Consequently, the vector of the estimated factor loadings λ̂i converges to a rotation of
λi, Ĥ

−1λi, such that

Xit = λ
′
0if0t + eit =

(
Ĥ−1λ0i

)′ (
Ĥ ′f0t

)
+ eit. (4)

Bai and Ng (2013) provided conditions that help identify the factors. However, these conditions rely
on latent factors, and cannot be verified in practice. As a consequence, the principal component
estimates jointly identify the true factor space.

In the presence of specific developed or emerging economy activity factors, we can write the
one-level representation of Equation (1) and Equation (2) by

Xit = φ′0if0t + φ′DifDt + φ′EifEt + eit, i = 1, . . . , N, t = 1, . . . , T, (5)

where

φ0i = λ0i, φDi = λDi, φEi = 0, i = 1, . . . , N1,

φ0i = λ0i, φD = 0, φEi = λEi, i = N1 + 1, . . . , N .

This implies that the real activity variables of developed economies have zero exposure to the
real activity variables of emerging economies (φEi = 0, i = 1, . . . , N1). Similarly, the real activity
variables of emerging economies have zero exposure to the real activity variables of developed
economies (φDi = 0, i = N1, . . . , N). Equivalently, Equation (5) can be written as

Xit = φ′igt + eit, i = 1, . . . , N, t = 1, . . . , T, (6)

where the vector of factors is gt = [f ′0t f ′Dt f ′Et]
′ : r × 1, the vector of the factor loadings is

φi = [φ′0t φ′Dt φ′Et]
′ : r × 1, and r = r0 + rD + rE .

Therefore, unless we know the linear relationship between the true latent factors and the es-
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timated factors, comovements specific to emerging or developed economies cannot be identified
directly applying the PCM. In practice, if one is interested only in simply forecasting a given vari-
able using the PCM estimated factors, then it is sufficient to consider (rD+rE) additional common
factors as needed. However, if the interest is to understand how potential specific activity factors
contribute to the fluctuation of a given variable (e.g., oil prices), it is crucial to be able to identify
them individually. Alternatively, Han (2016) proposed a shrinkage estimator to consistently iden-
tify the true model specification. This method estimates multi-level factors based on two adaptive
group least absolute shrinkage and selection operator (LASSO) estimators using a penalty term.
An alternative procedure consists of employing a sequential principal component estimation, as
described by Breitung and Eickmeier (2014) and Wang (2010, Section 4.2). This approach updates
the initial factor and factor loading estimates until convergence, and is easy to implement.

An important question that arises is whether there is statistical evidence for specific comove-
ments within the real economic activity of developed and emerging economies. In the following
subsection, we propose a statistical test that can be used to answer this question.

2.2 Testing for Specific Comovements

To investigate whether we can separately identify the specific real economic activity comovements,
we develop a statistical test for the one-level factor model representation against the two-level one.
Consider the matrix notation of the two-level alternative in Equation (5), where the factor loadings
associated with developed countries are defined as

ΦD = [φ1 · · ·φN1 ]′ =

 λ′01 λ′D1 0
...

...
...

λ′0N1
λ′DN1

0

 : N1 × r.

The associated factor loadings with emerging economies are

ΦE = [φN1+1 · · ·φN ]′ =


λ′0(N1+1) 0 λ′E(N1+1)

...
...

...
λ′0N 0 λ′EN

 : (N −N1)× r.

Under the alternative, Equation (1) and Equation (2) together are equivalent to

X = ΦG′ + e, (7)

where G = [g1 · · · gT ]′ : T × r and Φ =
[

ΦD

ΦE

]
. This testing problem can be viewed as similar to

the problem for testing the structural changes in factor loadings studied by Han and Inoue (2015),
with the factor playing a similar role as the factor loadings. Using arguments that are close to
theirs, we compare developed and emerging countries’ subsample second moments of estimated
factor loadings. The intuition behind the proposed statistical test can be understood by analyzing
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the difference in the infeasible subsample of factor loading second moments. We find that the limit
of the difference of the subsample factor loading scaled products 1

N1
Φ′DΦD − 1

N−N1
Φ′EΦE in the

equivalent one-level representation Equation (7) of Equation (1) and Equation (2),
1
N1

∑N1
i=1 λ0iλ

′
0i − 1

N−N1

∑N
i=N1+1 λ0iλ

′
0i

1
N1

∑N1
i=1 λ0iλ

′
Di − 1

N−N1

∑N
i=N1+1 λ0iλ

′
Ei

1
N1

∑N1
i=1 λDiλ

′
0i

1
N1

∑N1
i=1 λDiλ

′
Di 0

− 1
N−N1

∑N
i=N1+1 λEiλ

′
0i 0 − 1

N−N1

∑N
i=N1+1 λEiλ

′
Ei

 ,
is asymptotically nonzero. Define ΣDD = E (λDiλ′Di), ΣEE = E (λEiλ′Ei), ΣΛ = E (λ0iλ

′
0i),

Σ0D = E (λ0iλ
′
0D), and Σ0E = E (λ0iλ

′
0E). Under the assumptions that λDi,λEi, and λ0i are

independent across i, and have a finite fourth moment, we have

1
N1

Φ′DΦD −
1

N −N1
Φ′EΦE =

 0 Σ0D −Σ0E
Σ′0D ΣDD 0
−Σ′0E 0 −ΣEE

+ oP (1). (8)

This limit is necessarily nonzero, because ΣDD or ΣEE is necessarily different from zero if specific
developed or emerging real economic activity factors appear. Otherwise, the exposure of activity
variables to specific factors would be zero. Thus, the scaled products of the factor loadings over
the subsamples change. Therefore,

√
N
(

1
N1

Φ′DΦD − 1
N−N1

Φ′EΦE

)
diverges under the alternative.

In contrast, the difference in the second moments of the factor loadings over the subsamples is
asymptotically a matrix with all elements being zero under the null hypothesis. Equation (3) is
equivalent to

X = ΛF ′0 + e, (9)

where the matrix of the global factors and the associated matrices of the latent factor loadings

are F0 = [f01 · · ·f0T ]′ : T × r0 and Λ =
[

ΛD

ΛE

]
, with ΛD = [λ01 · · ·λ0N1 ]′ : N1 × r0, and

ΛE =
[
λ0(N−N1) · · ·λ0N

]′
: (N −N1) × r0. In this case, the difference in the second moments

of the factor loadings over the subsamples, 1
N1

Λ′DΛD − 1
N−N1

Λ′EΛE = 0r0×r0 + oP (1) = oP (1).
Therefore, we propose a Lagrange multiplier-type statistic, which tests if the second moment of the
factor loadings changes over developed and emerging economies.

2.2.1 The Statistical Test

Because the factors and the factor loadings are latent, they need to be estimated. Suppose r number
of factors are selected using existing model selection criteria. See, for example, Bai and Ng (2002)
or Onatski (2010). Under the null hypothesis, the principal component estimates F̂ : T × r0 and
Λ̂ : N × r0 converge to their rotated versions F0Ĥ and ΛĤ ′−1, respectively, such that

X = ΛF ′0 + e =
(
ΛĤ ′−1

) (
F0Ĥ

)′
+ e,
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with Ĥ an r0× r0 random matrix converging in probability to a nonsingular matrix Ȟ. Therefore,
we construct the test statistic based on the rotated latent factor loadings ΛȞ ′−1. We derive the
asymptotic distribution of the r0(r0+1)

2 -dimensional vectorized rotated latent difference, given by
A
(
α,ΛȞ ′−1

)
= Vech

(√
NȞ−1

(
1
N1

Λ′DΛD − 1
N−N1

Λ′EΛE

)
Ȟ ′−1

)
.

Under the independence and the existence of slightly more than fourth-moment conditions on
λi, we show in Lemma A.2 (Equation (A.11)) that

A
(
α,ΛȞ ′−1

)
=
√
NVech

 1
N1

N1∑
i=1
Ȟ−1λiλ

′
iȞ
′−1 − 1

N −N1

N∑
i=N1+1

Ȟ−1λiλ
′
iȞ
′−1


is asymptotically normal. Consequently, the infeasible statistic

LMN

(
α,ΛȞ ′−1

)
= A

(
α,ΛȞ ′−1

)′ (
S
(
α,ΛȞ ′−1

))−1
A
(
α,ΛȞ ′−1

)
d−→ χ2

(
r0(r0 + 1)

2

)
,

where

S
(
α,ΛȞ ′−1

)
=
( 1
α

+ 1
1− α

) 1
N

N∑
i=1

Vech
(
Ȟ−1λiλ

′
iȞ
′−1 − I

)
Vech

(
Ȟ−1λiλ

′
iȞ
′−1 − I

)′
converges in probability to the variance of A

(
α,ΛȞ ′−1

)
. See Lemma A.2 (Equation (A.10)) .

Thus, we define the proposed statistic by

LMN

(
α, Λ̂

)
= A

(
α, Λ̂

)′ (
Ŝ
(
α, Λ̂

))−1
A
(
α, Λ̂

)
, (10)

where

A
(
α, Λ̂

)
= Vech

√N
 1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i

 , (11)

and S
(
α, Λ̂

)
is the restricted variance estimator of A

(
α, Λ̂

)
, with

S
(
α, Λ̂

)
=
( 1
α

+ 1
1− α

) 1
N

N∑
i=1

Vech
(
λ̂iλ̂

′
i − I

)
Vech

(
λ̂iλ̂

′
i − I

)′
. (12)

However, under the two-level alternative, r, greater than r0, factors are selected, and estimated.
Using the fact that

√
N
(

1
N1

Φ′DΦD − 1
N−N1

Φ′EΦE

)
diverges under the alternative, we show that

A
(
α, Λ̂

)
diverges. Therefore, the test statistic, LMN

(
α, Λ̂

)
, becomes unbounded, and leads to

the rejection of the null hypothesis. In the following section, we present the asymptotic results.

2.2.2 Asymptotics under the Null Hypothesis

To obtain the limit distribution of the test statistic under the null hypothesis, the previous dis-
cussions are combined with Lemma 2.1. This lemma establishes that A

(
α, Λ̂

)
and S

(
α, Λ̂

)
are

close enough to their respective infeasible analogue A
(
α,ΛȞ ′−1

)
and S

(
α,ΛȞ ′−1

)
uniformly in

α ∈ [α1, α2] ⊂ (0, 1). To study the limiting null distribution of the proposed statistical test, we in-
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voke the following assumptions of the approximate factor model, Xit = λ′0if0t+eit, i = 1, . . . , N, t =
1, . . . , T .

Assumption 1. (Factor model and idiosyncratic errors)

(a) E ‖f0t‖4 ≤ C and 1
T F
′
0F0 = 1

T

∑T
t=1 f0tf

′
0t

P−→ ΣF > 0, where ΣF is non-random.

(b) E ‖λ0i‖4+ξ ≤ C for some ξ > 0 and the factor loadings {λ0i}i=1,...,N are independent across i,
E (λ0iλ

′
0i) = ΣΛ > 0, where ΣΛ is non-random.

(c) The eigenvalues of the r0 × r0 matrix (ΣF ×ΣΛ) are distinct.

(d) E (eit) = 0, E |eit|8 ≤ C.

(e) E (eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s) and |σij,ts| ≤ τst for all (i, j), with 1
N

∑N
i,j=1 σij ≤ C,

1
T

∑T
t,s=1 τst ≤ C, and 1

NT

∑
i,j,t,s=1 |σij,ts| ≤ C.

(f) E
∣∣∣ 1√

N

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤ C for all (t, s) .

Assumption 2. (Moment conditions and weak dependence among {f0t}, {λ0i}, and {eit})

(a) E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 f0teitιmi

∥∥∥2
)
≤ C, m = D,E, where E (f0teit) = 0 for every (i, t).

(b) For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 f0s (eiteis − E (eiteis))

∥∥∥2
≤ C.

(c) E
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 f0tλ

′
0ieitιmi

∥∥∥2
≤ C, m = D,E, where E (f0tλ

′
0ieit) = 0 for all (i, t).

(d) E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λ0ieitιmi

∥∥∥2
)
≤ C, m = D,E, where E (λ0ieit) = 0 for all (i, t).

(e) E
((

Vech
(
Ȟ−1λ0iλ

′
0iȞ

′−1
))′

Vech
(
Ȟ−1λ0iλ

′
0iȞ

′−1
))

= ΣΛΛ and the limit of Var
(
A
(
α,ΛȞ ′−1

))
is bounded and positive definite.

Assumptions 1 and 2 allow for weak dependence and heteroskedasticity in the idiosyncratic
errors, and are similar to the assumptions A−D of Bai and Ng (2002), 1−3 of Djogbenou, Gonçalves,
and Perron (2015) and 1−2 of Djogbenou (2019). However, Assumption 2 (a), (c) and (d) which
restrict the dependence between f0t, λ0i and eit among specific groups of variables are slightly
stronger, and Assumption 1 (b) and Assumption 2 (e) are stronger and useful for deriving the
asymptotic distribution of A

(
α,ΛȞ ′−1

)
using the central limit theorem.

Lemma 2.1. Suppose that Assumptions 1 and 2 are satisfied. As N,T →∞, if
√
N/T → 0, then

it holds that under the null hypothesis,
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∥∥∥A (α, Λ̂)−A (α,ΛȞ ′−1
)∥∥∥ = oP (1) , (13)

and ∥∥∥S (α, Λ̂)− S (α,ΛȞ ′−1
)∥∥∥ = oP (1) , (14)

uniformly in α ∈ [α1, α2].

The following theorem, proved in the appendix, states the asymptotic null distribution of the
statistical test.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. As N,T →∞, if
√
N/T → 0, then

it holds that under the null hypothesis,

LMN

(
α, Λ̂

)
d−→ χ2

(
r0(r0 + 1)

2

)
,

uniformly in α ∈ [α1, α2].

Theorem 1 suggests that we could test the null hypothesis of the one-level factor specification
against the two-level one using the LMN

(
α, Λ̂

)
statistic, based on critical values from a chi-

squared distribution with r0(r0+1)
2 degrees of freedom. As an alternate to the restricted variance

estimator, one could have considered a test statistic using an unrestricted estimator of the long run
variance based on variance estimates over each subsample. However, the resulting statistical test is
asymptotically equivalent to the version suggested here, and in the simulation studies, we find that
both statistics have similar size properties. Therefore, we focus on the simpler version presented
here.

2.2.3 Asymptotics under the Alternative

The next theorem shows that the test statistic has power against the alternative hypothesis. To
derive the result under the alternative, we make additional assumptions. We let ιDi ≡ I (i ≤ bαNc)
and ιEi ≡ I (i ≥ bαNc+ 1), where I (·) is an indicator function. Under the alternative, we recall
that G = [g1 · · · gT ]′ : T × r and Φ = [φ1 · · ·φN ]′ : N × r. In this case, the PCM estimate of
the factors, F̂ , is a rotation the true latent factors G. We denote Ξ̌ : r × r as the limit of the
associated r× r rotation matrix Ξ̂ when the underlying data-generating process (DGP) has a two-
level structure. Moreover, the PCM estimate of the factor loadings, Λ̂, is a rotation of the true
latent factor loadings Φ.

Assumption 3. (Additional conditions for the two-level factor model)

(a) E ‖gt‖4 ≤ C and 1
TG

′G = 1
T

∑T
t=1 gtg

′
t

P−→ ΣG > 0, where ΣG is non-random.

(b) E ‖φi‖4 ≤ C and 1
NΦ′Φ = 1

N

∑N
i=1φiφ

′
i

P−→ ΣΦ > 0, where ΣΦ is non-random.

10



(c) The eigenvalues of the r × r matrix (ΣG ×ΣΦ) are distinct.

(d) E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 gteitιmi

∥∥∥2
)
≤ C, m = D,E, where E (gteit) = 0 for every (i, t).

(e) For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 gs (eiteis − E (eiteis))

∥∥∥2
≤ C.

(f) E
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 gtφ

′
ieitιmi

∥∥∥2
≤ C, m = D,E, where E (gtφ′ieit) = 0 for all (i, t).

(g) E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1φieitιmi

∥∥∥2
)
≤ C, m = D,E, where E (φieit) = 0 for all (i, t).

(h) The factor loadings {φi}i=1,...,N are independent across i and E (λmiλ′mi) = Σmm, m = D,E.

(i) The limit S0 of S
(
A
(
α,ΦΞ̌′−1

))
is bounded and positive definite.

Assumption 3 (a)−(g) to complement Assumptions 1 and 2 as additional factors arise in the
one-level representation of the two-level alternative hypothesis. Assumption 3 (h) allows distinct
second moments for specific factor loadings. Assumption 3 (i) imposes positive definiteness on the
limit of the variance estimator under the alternative.

Theorem 2. Suppose that Assumptions 1–3 are satisfied. As N,T →∞, if
√
N/T → 0, then there

exists, under the two-level alternative, a non-random matrix R0 6= 0 such that

1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i

P−→ R0

and

LMN

(
α, Λ̂

)
= NVech (R0)′ S−1

0 Vech (R0) + oP (N),

uniformly in α ∈ [α1, α2], with S0 a constant matrix and Vech (R0)′ S−1
0 Vech (R0) > 0.

Theorem 2 implies that under the alternative LMN

(
α, Λ̂

)
diverges as the sample sizes increase.

In fact, A
(
α, Λ̂

)
will tend to infinity given its

√
N scaling. The proposed statistical test is easy

to implement. Given the large N × T panel X with the first N1 rows related to the developed
countries and the remaining rows related to the emerging countries, the steps for the statistical test
can be summarized as the following algorithm.

Algorithm for Implementing the Test Procedure.

1. Compute the estimated factors (Λ̂) :
√
N times the eigenvectors corresponding to the r largest

eigenvalues of XX ′/ (TN) in decreasing order and using the normalization Λ̂′Λ̂/N = I.

2. Find the scaled difference between the estimated second moments

A
(
α, Λ̂

)
=
√
NVech

 1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i

 .
11



3. Compute S
(
α, Λ̂

)
, the variance estimator of A

(
α, Λ̂

)
given by

( 1
α

+ 1
1− α

) 1
N

N∑
i=1

Vech
(
λ̂iλ̂

′
i − I

)
Vech

(
λ̂iλ̂

′
i − I

)′
.

4. Obtain the test statistic

LMN

(
α, Λ̂

)
= A

(
α, Λ̂

)′ (
S
(
α, Λ̂

))−1
A
(
α, Λ̂

)
.

5. Reject or do not using critical values or P -values from a χ2
(
r(r+1)

2

)
.

The number of factors r is greater than r0 under the alternative hypothesis, but equal to r0

under the null hypothesis. In practice, the appropriate number of factors can be selected using the
criteria suggested by Bai and Ng (2002) or Onatski (2010).

2.3 Discussion of Some Special Situations

We now discuss a number of alternatives with developed and emerging specific heterogeneity ignored
for the ease of exposition. The first alternative concerns cases where there is no global factor,
i.e., r0 = 0. The two-level alternative remains the same as in the one-level representation in
Equation (7), with the number of r = rD + rE factors and loading factors, such that the developed
economies and the emerging economies real activity factor loadings are

ΦD = [φ1 · · ·φN1 ]′ =

 λ′D1 0
...

...
λ′DN1

0

 : N1 × r,

and

ΦE = [φN1+1 · · ·φN ]′ =


0 λ′E(N1+1)
...

...
0 λ′EN

 : (N −N1)× r

respectively. Further, 1
N1

Φ′DΦD − 1
N−N1

Φ′EΦE =
[

ΣDD 0
0 −ΣEE

]
+ oP (1), where ΣDD 6= 0 or

ΣEE 6= 0, which ensures as described above, the divergence of the test statistic. This is a special
case of the two-level model discussed previously. The results that our test statistic has power
against such alternatives immediately follow from Theorem 2.

It may occur that there is no specific factor within one of the groups of countries (rD =
0 or rE = 0). As an illustration, suppose that is no specific factor within the developed economies,
and r = r0 + rE . The factor loadings could be written as

ΦD = [φ1 · · ·φN1 ]′ =

 λ′01 0
...

...
λ′0N1

0

 : N1 × r

12



and

ΦE = [φN1+1 · · ·φN ]′ =


λ′0(N1+1) λ′E(N1+1)

...
...

λ′0(N1+1) λ′EN

 : (N −N1)× r.

Consequently, 1
N1

Φ′DΦD− 1
N−N1

Φ′EΦE =
[

0 Σ0E
−Σ′0E −ΣEE

]
+ oP (1), with ΣEE 6= 0, which helps

to obtain the divergence of the proposed statistic. It is also a particular case of the setting in
Section 2.2.3. Thus, the proposed test statistic has power against this type of alternative.

In all the situations discussed in this subsection, the suggested algorithm remains valid. First,
the appropriate number of factors in the one-level representation of the two-level alternative is se-
lected. Second, the emergence of specific developed and emerging real economic activity factors are
tested by comparing the change in exposure to this factors from developed to emerging economies
as argued above.

Although we focus on the statistical test of the existence of specific comovements within de-
veloped and emerging business cycles, these results can be applied to other contexts, and easily
extended to a case with more than two specific groups, or with a multi-level structure, using ar-
guments that are similar. These aspects are beyond the scope of this paper. The asymptotic
results presented in Section 2.2.2 and Section 2.2.3 suggest that the proposed statistical test should
have good control of the size and power, as the cross-sectional and time dimensions increase. In
Section 3, we report simulation studies we used to assess its finite sample properties.

3 Simulation Experiments

We conduct Monte Carlo simulations based on six different DGPs, DGP 1-a, DGP 2-a, DGP 3-a,
DGP 1-b, DGP 2-b, and DGP 3-b. DGP 1-a, DGP 2-a and DGP 3-a, to investigate the test size,
while DGP 1-b, DGP 2-b, and DGP 3-b evaluate the power of the test statistic. The six DGPs are
all based on modifications of the simulation designs in Han and Inoue (2015) work to incorporate
two-level alternatives.

The first specification called DGP 1-a considers

Xit = λ0if0t + λ1if1t + κeit, i = 1, . . . , N and t = 1, . . . , T, (15)

with

eit ∼ NID (0, 1) , fjt ∼ NID (0, 1) , λji ∼ NID (c, 1) , j = 0, 1.

We choose κ =
√

2 (1 + c2) such that R2 = 1− trace(E(ee′))
trace(E(XX′)) = 0.50. DGP 2-a allows cross-sectional

13



dependence in idiosyncratic errors

eit = σi

uit +
∑

1≤|j|≤P
θu(i−j)t

 , uit ∼ NID (0, 1) , (16)

σi ∼ U (0.5, 1.5) and κ =
√

24 (1 + c2)
13 (1 + 2Pθ2) , (17)

where θ = 0.1 and P = 2. DGP 3-a allows time dependence in e and F . It differs from DGP 1-a
by fjt = ρffj(t−1) + vt, eit = uitσi and uit = ρeui(t−1) + wit, with

vt ∼ NID
(
0, 1− ρ2

f

)
, wit ∼ NID

(
0, 1− ρ2

e

)
and σi ∼ U (0.5, 1.5) , (18)

where ρe = 0.1, ρf = 0.1, κ =
√

24(1+c2)
13 , and U is the uniform distribution. In all settings,

we simulate the data M = 10, 000 times, set c = 1, and use sample sizes (N,T ) that belong to
{50, 100} × {25, 50, 75, 100, 125}. From Table 1, it follows that for different numbers of series and
time periods, the sizes of the tests improves as N and T increase.

Table 1: Rejection frequencies (%) for DGPs 1-a, 2-a, and 3-a

DGP 1-a T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 3.99 3.95 4.09 4.08 3.86
N = 100 4.70 4.30 4.61 4.99 4.63

DGP 2-a T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 5.66 5.42 4.91 5.02 5.06
N = 100 6.05 5.58 4.85 5.38 5.02

DGP 3-a T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 3.75 4.11 3.74 3.80 3.79
N = 100 4.80 4.08 4.69 4.47 4.88

a This table presents the rejection frequencies over 10, 000 simulated data when there are no specific factors,
and the significance level of the test is 5%.

DGP 1-a, DGP 2-a, and DGP 3-a are now modified to allow for two-level specification, and
renamed DGP 1-b, DGP 2-b, and DGP 3-b. These DGPs differ from DGP 1-a, DGP 2-a, and DGP
3-a by the fact that f1t is replaced by fDt when i ≤ N

2 , and by fEt when i ≥ N
2 + 1, which suggests

specific factors when i ≤ N
2 and i ≥ N

2 + 1. In DGP 1-b and DGP 2-b,

fjt ∼ NID (0, 1) ,

and in DGP 3-b,

fjt = ρffj(t−1) + vjt with vjt ∼ NID
(
0, 1− ρ2

f

)
,

j = D,E. However, we introduce a parameter ρ representing the correlation between fDt and fEt
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under the considered alternative hypothesis, because they are not required to be independent in
our theory. For DGP 1-b and DGP 2-b, this is done by simply drawing fDt and fEt jointly from a

normal distribution with mean
(

0
0

)
and variance

[
1 ρ
ρ 1

]
. For DGP 3-b, we set the innovations

in the AR(1) representation of fDt and fEt to have a correlation ρ
(
1− ρ2

f

)
, implying a correlation

ρ between fDt and fEt. In particular, we assume fDt = ρffD(t−1) + vEt and fEt = ρffE(t−1) + vEt,
with (

vDt
vEt

)
∼ NID

(
0,
(
1− ρ2

f

) [ 1 ρ
ρ 1

])
.

We set ρ = 0.5.

Table 2: Rejection frequencies (%) for DGPs 1-b, 2-b, and 3-b

DGP 1-b T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 76.44 89.24 95.27 9766 98.71
N = 100 87.45 98.19 99.79 99.96 100.00

DGP 2-b T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 84.61 95.01 98.13 99.16 99.66
N = 100 90.31 98.79 99.88 100.00 100.30

DGP 3-b T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 79.29 91.03 96.38 97.93 98.79
N = 100 88.37 98.05 99.76 99.98 100.00

b This table presents the rejection frequencies over 10, 000 simulated data when specific factors arise, and
the significance level of the test is 5%.

In these three cases, the test rejection frequencies of the null hypothesis over the 10, 000 simu-
lations are above 76% (see Table 2), which is a quiet high power. We also observe that the increase
in the rejection frequencies is associated with an increase in the cross-sectional dimension.

We now modify DGP 3-b to investigate how an increase in the correlation between the two
specific factors affects the power of the test. In this case, the correlation parameter ρ is set to
0.4, 0.6, 0.7 and 0.8. Although the rejection frequencies decrease when the correlation between fDt
and fEt increases, we recover the power as the sample sizes increase. See Table 3. Overall, the
simulation exercises for different DGPs exhibit good control of size and power, as the cross-sectional
and time dimensions change.

4 Application of the Test

The high economic growth in emerging economies has led researchers to investigate the implication
of specific comovements within developed and emerging economies for key economic variables,
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Table 3: Rejection frequencies (%) for DGP 3-b when ρ changes

ρ = 0.4 T = 25 T = 50 T = 75 T = 100 T = 125

N = 100 87.94 96.62 99.05 99.59 99.87
N = 200 94.58 99.67 99.96 100.00 100.00

ρ = 0.6 T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 64.60 76.84 85.39 90.00 92.96
N = 100 74.82 90.99 97.75 99.41 99.91

ρ = 0.7 T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 43.94 49.97 57.16 63.37 67.94
N = 100 52.44 65.96 81.61 90.74 95.72

ρ = 0.8 T = 25 T = 50 T = 75 T = 100 T = 125

N = 50 22.27 19.86 19.92 20.49 21.13
N = 100 27.55 26.15 31.46 38.90 48.76

c See Table 2 b

for example, oil prices. For instance, Aastveit, Bjørnland, and Thorsrud (2015) examined how
the heterogeneity within developed and emerging real economic activities contributes to make the
price of oil fluctuate. In other papers, the interest has been to quantify the contribution of these
specific comovements to the international real economic activity. See, for example, Kose, Otrok,
and Prasad (2012). More recently, Hirata, Kose, and Otrok (2013) studied the implication of
regionalization, facilitated by regional policies or regional integration agreements, for the emergence
of specific comovements within international business cycles. Although most papers in the literature
agree on the existence of specific factors within developed and emerging economies, few others
have argued that the worldwide economy has been mainly driven by global factors (e.g., Flood
and Rose (2010), Wälti (2012)). In this application section, we investigate whether we can find
statistical evidence supporting developed and emerging specific heterogeneity in the international
real economic activity. In other words, we answered the following question using various datasets:
Are there specific comovements in the real activity within emerging economies that are different
from those in the real activity within developed economies?

We construct a dataset similar to the one used by Aastveit, Bjørnland, and Thorsrud (2015).
This dataset has the advantage of being quarterly, so that intra-annual international movements
could be captured, and was downloaded from the Global Economic Monitor DataBank. The dataset
covers the period from the third quarter of 1996 to the last quarter of 2018. We consider 22 devel-
oped and 33 emerging countries combining the classification in Aastveit, Bjørnland, and Thorsrud
(2015) and Caldara, Cavallo, and Iacoviello (2016) and a recent classification by the International
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Monetary Fund. The developed countries are Australia, Austria, Belgium, Canada, Denmark, Fin-
land, France, Germany, Greece, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand,
Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States. In
addition, we have as emerging countries: Argentina, Brazil, Bulgaria, Chile, China, Costa Rica,
Cyprus, Czech Republic, Estonia, Hong Kong, Hungary, India, Indonesia, Israel, Jordan, South Ko-
rea, Latvia, Lithuania, Malaysia, Mexico, Paraguay, Peru, Philippines, Poland, Romania, Russia,
Singapore, Slovakia, Slovenia, South Africa, Taiwan, Thailand, and Turkey. This sample contains
the major developed countries which are United States, United Kingdom, Canada, France, and
Japan. The emerging countries include the BRICS countries composed of Brazil, Russia, India,
China, and South Africa. We employ 88 series of the real gross domestic product (GDP) and
industrial production including 22 series of real gross domestic product and 15 series of industrial
production for developed countries. However, we use 30 series of gross domestic product and 21
series of industrial production for emerging countries. Due to a large number of periods with miss-
ing observations, we do not include gross domestic product series and industrial production series
for some of the countries.

Using this dataset, we obtain a P -value of 1.1927×10−5. Thus, we conclude that there is strong
statistical evidence against the null hypothesis that specific factors do not emerge within developed
and emerging economies. This finding supports the assertion that the comovements in the real
activity of emerging economies have become different from those of developed economies in recent
decades. The finding is in line with that of Aastveit, Bjørnland, and Thorsrud (2015), who used a
similar quarterly dataset. They found that there is heterogeneity in the fluctuation of developed and
emerging economies’ real activities, and the associated heterogeneous demand source are important
in explaining the fluctuation of the price of oil. The present result suggests the existence of at least
one specific factor within developed and emerging economies which contributes to making their
real economic activity heterogeneous. We now connect the previous result to the existing literature
on specific comovements within developed and emerging economies. To that end, we consider
alternative datasets used in this literature on heterogeneous real economic activity, and apply the
proposed testing procedure.

In a seminal paper on global business cycles, Kose, Otrok, and Prasad (2012) analyzed the
evolution of the degree of global cyclical interdependence among developed economies and among
emerging economies. The authors decomposed the real economic activity measured by output,
consumption, and investment into a global factor, factors specific to country groups, and country-
specific factors using a factor model. Comparing the magnitude of the variance decomposition of
the macroeconomic variables explained by the developed and emerging specific factors, the authors
found an increase in the relative importance in explaining the international real economic activity
during the period 1985− 2008, and concluded convergence of business cycle fluctuations occurred
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among developed economies and among emerging economies.
We reconstruct their dataset1 which includes the growth rates of output, consumption, and

investment over the period 1961 − 2008, and apply the proposed test statistic, to find statistical
evidence of specific comovements. We follow Kose, Otrok, and Prasad (2012) and use real GDP,
the real private consumption, and real fixed asset investment to measure the national output,
consumption, and investment, respectively. To focus on the specific analysis of developed and
emerging economies, we restrict our attention to the 23 developed economies and 24 emerging
economies in Kose, Otrok, and Prasad (2012). Their data contains two more developed countries
(Finland and Iceland), and excludes 14 (mostly recent) emerging economies (Bulgaria, Costa Rica,
Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Paraguay, Poland, Romania, Russia,
Slovakia, and Slovenia) but includes others (Colombia, Egypt, Morocco, Pakistan, and Venezuela).
To model the corresponding large dataset of real economic activity variables, we impose the two-
level factor structure in Equation (1) and Equation (2). Although that specification does not
include country-specific components, the proposed statistical test is derived under flexible enough
assumptions on the idiosyncratic error to accommodate cross-correlated idiosyncratic components.

The computed P -value is 1.1102×10−16, which suggests statistical evidence against the null hy-
pothesis that no specific real economic activity factor emerges in developed and emerging economies.
This evidence remains strong when the sampling period is extended to 2015, to incorporate the
recent development in the international economy. The findings are in line with other works where
the heterogeneity within developed and emerging business cycles is captured through economic
regions.

Hirata, Kose, and Otrok (2013) employed a dynamic factor model to study the implications of
the emergence of specific comovements for the evolution of global and regional business cycles. The
authors showed that, there is an increase in economic region business cycles. Moreover, this regional
cyclical dependence is stronger in regions where financial and trade flows have increased. Mumtaz,
Simonelli, and Surico (2011) investigated the existence of comovements between national inflation
rates and national real activities. Among other results, they found that economic regions have
contributed considerably to the international business cycle heterogeneity. Breitung and Eickmeier
(2014) revisited their analysis using the sequential least-squares and canonical correlation analyses
and compared them to the two-step PCM and the quasi maximum-likelihood estimation, as well as
the Bayesian approach for estimating the factors. Their results suggested that regionalization has
increased, and supported the emergence of specificities in the international real economic activity.
The obtained P -values based on the real economic activity variables in Hirata, Kose, and Otrok
(2013) and Mumtaz, Simonelli, and Surico (2011) relying on the previous classification of countries

1This dataset was reconstructed based on the data used by Hirata, Kose, and Otrok (2013). The author is grateful
to Hideaki Hirata and Ayhan M. Kose, who kindly provided their dataset.
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confirmed the existence of specific comovements within developed and emerging economies.
Nevertheless, Flood and Rose (2010) established that there is limited empirical evidence sug-

gesting the importance of specific factors within developed and emerging economies, known as
decoupling. Wälti (2012) argued that there is a myth of decoupling. The paper finds that de-
coupling has not occurred over the periods from 1980 to 2007. Wälti (2012) contended that the
increase in the trend of the growth rate within emerging economies during recent decades did not
necessarily indicate “deviations from [the] trend have diverged between emerging markets and ad-
vanced economies.” To circumvent this issue, the author suggested the use of the output gap of each
country in the sample as a measure of business cycles. First, Wälti (2012) inspected a measure
of synchronicity based on the distance between developed and emerging economies output gap.
Second, the author regressed the output gap of emerging economies on the aggregate output gap
of developed economies. In both cases, that paper concluded that there was no evidence of decou-
pling, as the tests indicated statistically significant slope parameters, meaning that emerging and
developed economies strongly comove. The business cycles were measured at an annual frequency,
and the dataset covered the period from 1983 to 2008.

We also reconstruct Wälti’s dataset by computing the output gap are the detrended GDP
using the Hodrick-Prescott filter, divided by the trend GDP. We collected the data from the World
Economic Outlook database, and considered a sample of 26 developed countries and 30 emerging
countries. The main difference with the sets of countries in the first application is that Cyprus,
Israel, Hong Kong, and South Korea are treated as developed economies. In addition, Iceland was
included in the group of developed countries, while Ecuador was in the group of emerging countries.
Due to a large number of missing values, we dropped Czech Republic, Estonia, Latvia, Lithuania,
Russia, Slovak Republic, Ukraine, and Venezuela while reconstructing this dataset. We find using
the proposed test statistic a P -value of 2.5998 × 10−5 and conclude strong evidence of developed
and emerging specific factors. Increasing the sample size up to 2017 makes this evidence stronger
as we notice a drop in the P -value to 1.2529× 10−5.

The difference with the results in Wälti (2012) may be explained by the fact that the devel-
oped (emerging) economies output gap also includes the global real economic activity. Using these
variables as regressors will not only capture the sensitivity to each group of economies. In this
paper, we view business cycles forces as latent variables that are global or specific factors affecting
countries’ real economic activity differently. The specific factors capture commonalities that are
not already captured by the global factors. Whenever the impact of the specific factors on de-
veloped and emerging economies, captured through their loadings, are large enough, the test will
hypothesis reject the null that no specific factor emerges. Overall, the statistical evidence for spe-
cific comovements within developed and emerging economies remains important, independently of
whether economic activity is measured at a quarterly or yearly frequency, or detrended real activity
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variables are used or not.

5 Conclusion

In this paper, we investigated the existence of specific real economic activity factors within emerging
economies, different from the ones within developed economies. The paper proposed a statistic to
test the ability to identify specific economy activity factors from a large panel of economic activity
variables. We showed the validity of the proposed testing procedure, provided evidence for its finite
sample performance through Monte Carlo experiments, and applied the test to various datasets.
In the empirical application, we found strong statistical evidence against the null hypothesis that
no developed or emerging economy activity factors emerged.

The proposed statistical test could be used in other contexts. For instance, one could use it to
test whether the risk in the international agricultural market is fully characterized by global risk, or
whether some low- and high-income country risks matter as well. This work could also be extended
to cases with more than two specific groups, and more than two levels. These aspects are beyond
the scope of this paper, and are left for future research. In a different paper, we are investigating
how this heterogeneity in international business cycles contributes to explaining the fluctuation in
the price of oil.

Appendix A: Proofs

Throughout this appendix, we let δNT = min
[√
N,
√
T
]
. Note again that under the null, Λ =

[λ1 · · ·λN ]′ : N×r0 and F0 = [f01 · · ·f0T ]′ : T×r0. The PCM estimates are obtained by minimizing
the sum of the squared idiosyncratic residuals under the identification condition that Λ̂′Λ̂/N = I.
These estimates are denoted by F̂ =

[
f̂1 · · · f̂T

]′
and Λ̂ =

[
λ̂1 · · · λ̂N

]′
. From Bai and Ng (2008,

Equation 6),

F̂ = F̃ VNT
1/2, Λ̂ = Λ̃V −1/2

NT , (A.1)

where F̃ =
[
f̃1 · · · f̃T

]′
and Λ̃ =

[
λ̃1 · · · λ̃N

]′
are the PCM estimates by minimizing the sum of

squared idiosyncratic residuals under the condition that F̃ ′F̃ /T = I. The matrix VNT is diagonal,
and contains the r0 largest eigenvalues of X ′X/(NT ) in decreasing order on the diagonal. As is
well-known, the principal component estimator f̃t consistently estimates a rotation of f0t given by
H̃ ′f0t. See, for example, Bai and Ng (2002), and Gonçalves and Perron (2014). As shown by Bai
and Ng (2002), H̃ = Λ′Λ

N
F ′0F̃
T V −1

NT . Therefore, f̂t = V
1/2
NT f̃t estimates a rotation Ĥ ′f0t of f0t, where

the rotation matrix Ĥ = H̃V
1/2
NT = Λ′Λ

N
F ′0F̂
T V −1

NT . Consequently, λ̂i = V
−1/2
NT λ̃i also estimates a

rotation Ĥ−1λ0i of λ0i. In the proofs of the results, we rely on the relationship between these two
types of identification of the PCM. The discussed relationships also hold under the alternative with
F0, Λ and H replaced by G : T × r, Φ : N × r and Ξ : T × r.

20



To establish the results under the null hypothesis, we impose the identification condition
Λ̂′Λ̂/N = I, which implies that Ȟ−1E(λ0iλ

′
0i)Ȟ ′−1 = I. To obtain that result, we first observe

that plimΛ′Λ
N = ΣΛ from Assumption 1 (b). Second, plimF ′0F̃

T = Σ−1/2
Λ ΥV 1/2 (Bai, 2003, Proposi-

tion 1), with V = plimVNT , the diagonal matrix with the eigenvalues of Σ1/2
Λ ΣFΣ1/2

Λ in decreasing
order, and Υ the associated matrix of eigenvectors such that Υ′Υ = I and Σ1/2

Λ ΣFΣ1/2
Λ Υ = VΥ.

See also Han and Inoue (2015, Equation (2.8)) for a similar argument. Therefore,

Ȟ = plimĤ = plimH̃V 1/2
NT = plimΛ′Λ

N

F ′0F̃

T
V
−1/2
NT = ΣΛΣ−1/2

Λ ΥV 1/2V −1/2 = Σ1/2
Λ Υ. (A.2)

Thus,

Ȟ−1E
(
λ0iλ

′
0i
)
Ȟ ′−1 =

(
Ȟ ′Σ−1

Λ Ȟ
)−1

=
(
ΥΣ1/2

Λ Σ−1
Λ Σ1/2

Λ Υ
)−1

= I, (A.3)

and the estimated factor loadings converge to a rotation Ȟ−1λ0i, in which the second moment is
I. We state the following results, which help to prove Lemma 2.1, Theorem 1, and Theorem 2.

Lemma A.1. Suppose that Assumptions 1 and 2 are satisfied. If as N,T →∞,
√
N/T → 0, then

for any α ∈ [α1, α2], it holds that

1
bαNc

bαNc∑
i=1

(
λ̂i − Ĥ−1λ0i

)
λ′0i = OP

(
1
δ2
NT

)
, (A.4)

1
N − bαNc

N∑
i=bαNc+1

(
λ̂i − Ĥ−1λ0i

)
λ′0i = OP

(
1
δ2
NT

)
, (A.5)

1
bαNc

bαNc∑
i=1

∥∥∥λ̂i − Ĥ−1λ0i
∥∥∥2

= OP

(
1
δ2
NT

)
, (A.6)

1
N − bαNc

N∑
i=bαNc+1

∥∥∥λ̂i − Ĥ−1λ0i
∥∥∥2

= OP

(
1
δ2
NT

)
(A.7)

uniformly in α. It also holds that

1
N

N∑
i=1

∥∥∥λ̂iλ̂′i − Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2

= OP

(
N

T 2

)
(A.8)

and
1
N

N∑
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

−1′ − Ȟ−1λ0iλ
′
0iȞ

′−1
∥∥∥2

= oP (1) . (A.9)

,

Lemma A.2. Suppose that Assumption 1 (b) and Assumption 2 (e) are satisfied. As N →∞, for
any α such that α ∈ [α1, α2], it holds uniformly in α that

plim
N→∞

S
(
α,ΛȞ ′−1

)
= lim

N→∞
Var

(
A
(
α,ΛȞ ′−1

))
, (A.10)
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A
(
α,ΛȞ ′−1

)
d−→ N

(
0, lim

N→∞
Var

(
A
(
α,ΛȞ ′−1

)))
, (A.11)

√
N

bαNc

bαNc∑
i=1

(
λ0iλ

′
0i −ΣΛ

)
= OP (1) and

√
N

N − bαNc

N∑
i=bαNc+1

(
λ0iλ

′
0i −ΣΛ

)
= OP (1) . (A.12)

The proof of (A.4) and (A.6) uses similar steps with the ones in Bai and Ng (2004, Lemma
A3). Since (A.5) and (A.7) can be proved following nearly identical steps to (A.4) and (A.6) , they
are omitted. The results (A.8) and (A.9) show how close are to the rotated cross-product of factor
loading to their estimates. (A.10), (A.11) and (A.12) are useful to derive the limit distribution
of the proposed test statistic. To obtain results under the alternative hypothesis, we rely on the
following lemma.

Lemma A.3. Suppose that Assumptions 1–3 are satisfied. If as N,T →∞,
√
N/T → 0, then for

any α ∈ [α1, α2], it holds uniformly in α that

1
bαNc

bαNc∑
i=1

(
λ̂i − Ξ̂−1φi

)
φ′i = OP

(
δ−2
NT

)
, (A.13)

1
N − bαNc

N∑
i=bαNc+1

(
λ̂i − Ξ̂−1φi

)
φ′i = OP

(
δ−2
NT

)
, (A.14)

1
bαNc

bαNc∑
i=1

∥∥∥λ̂i − Ξ̂−1φi
∥∥∥2

= OP
(
δ−2
NT

)
, (A.15)

1
N − bαNc

N∑
i=bαNc+1

∥∥∥λ̂i − Ξ̂−1φi
∥∥∥2

= OP
(
δ−2
NT

)
, (A.16)

1
N

N∑
i=1

∥∥∥λ̂iλ̂′i − Ξ̂−1φiφ
′
iΞ̂′−1

∥∥∥2
= OP

(
N

T 2

)
(A.17)

and
1
N

N∑
i=1

∥∥∥Ξ̂−1φiφ
′
iΞ̂′−1 − Ξ̌−1φiφ

′
iΞ̌′−1

∥∥∥2
= oP (1) . (A.18)

.
It also holds that ∥∥∥S (α, Λ̂)− S (α,ΦΞ̌′−1

)∥∥∥ = oP (1) (A.19)

uniformly in α.

We next present the proof of Lemma A.1, Lemma A.2, Lemma 2.1, Theorem 1, Lemma A.3
Theorem 2.
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A.1 Proof of Lemma A.1

The proof is subdivided into four parts corresponding to the proofs of (A.4), (A.6), (A.8) and
(A.9). Because Λ̂ = Λ̃V −1/2

NT , Ĥ = H̃V
1/2
NT and VNT

P−→ V , where V is positive definite (Bai,
2003, Lemma A3), proving (A.4), (A.6), (A.8) and (A.9) are equivalent to proving the results with
the hat replaced by a tilde.

Proof of (A.4) To demonstrate that uniformly in α, 1
bαNc

∑bαNc
i=1

(
λ̃i − H̃−1λ0i

)
λ′0i = OP

(
1

δ2
NT

)
,

we use the following identity from the proof of Bai and Ng (2004, Lemma A2).

λ̃i − H̃−1λ0i = 1
T
H̃ ′F ′0ei + 1

T
F̃ ′
(
F0 − F̃ H̃−1

)
λ0i + 1

T

(
F̃ − F0H̃

)′
ei, (A.20)

where ei = (ei1, ei2, . . . , eiT )′ . It follows uniformly in α that 1
bαNc

∑bαNc
i=1

(
λ̃i − H̃−1λ0i

)
λ′0i equals

1
bαNc

bαNc∑
i=1

1
T
H̃ ′F ′0eiλ

′
0i︸ ︷︷ ︸

A1

+ 1
bαNc

bαNc∑
i=1

1
T
F̃ ′
(
F0 − F̃ H̃−1

)
λ0iλ

′
0i︸ ︷︷ ︸

A2

+ 1
bαNc

bαNc∑
i=1

1
T

(
F̃ − F0H̃

)′
eiλ
′
i︸ ︷︷ ︸

A3

.

Since E
∥∥∥ 1
NT

∑bαNc
i=1

∑T
t=1 f0teitλ

′
0i

∥∥∥ = O
(

1√
NT

)
by Assumption 2 (c) and H̃ = OP (1), we have

A1 = H̃ 1
bαNcT

∑bαNc
i=1

∑T
t=1 f0teitλ

′
0i = OP

(
1√
NT

)
, uniformly in α. Moreover, we also have A2 =

1
T F̃
′
(
F0 − F̃ H̃−1

)
1
bαNc

∑bαNc
i=1 λ0iλ

′
0i = OP

(
1

δ2
NT

)
, uniformly in α because 1

T F̃
′
(
F0 − F̃ H̃−1

)
=

OP

(
1

δ2
NT

)
given Bai (2003, Lemma B3), and E

∥∥∥ 1
bαNc

∑bαNc
i=1 λ0iλ

′
0i

∥∥∥ is bounded by sup1≤i≤N E ‖λi‖2 ≤
C given Assumption 1 (b). To study A3, we use the following identity

f̃0t − H̃ ′f0t = V −1
NT

(
1
T

T∑
s=1

f̃sγst + 1
T

T∑
s=1

f̃sζst + 1
T

T∑
s=1

f̃sηst + 1
T

T∑
s=1

f̃sξst

)
,

where γst = E
(

1
N

∑N
i=1 eiseit

)
, ζst = 1

N

∑N
i=1

(
eiseit − E

(
1
N

∑N
i=1 eiseit

))
, ηst = 1

N

∑N
i=1 λ

′
if0seit, ξst =

1
N

∑N
i=1 λ

′
0if0teis and V −1

NT = OP (1) as VNT
P−→ V > 0. Thus A3 = V −1

NT (B1 +B2 +B3 +B4),
with

B1 ≡ 1
T 2

T∑
t=1

T∑
s=1

f̃sγst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

 ,
B2 ≡ 1

T 2

T∑
t=1

T∑
s=1

f̃sζst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

 ,
B3 ≡ 1

T 2

T∑
t=1

T∑
s=1

f̃sηst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i


and

B4 ≡
1
T 2

T∑
t=1

T∑
s=1

f̃sξst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

 .
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For B1, we write

B1 = 1
T 2

T∑
t=1

T∑
s=1

(
f̃s − H̃ ′f0s

)
γst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

+ H̃ ′ 1
T 2

T∑
t=1

T∑
s=1

f0sγst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i


≡ B11 +B12.

By an application of Cauchy-Schwarz inequality, B11 is bounded for any α ∈ [α1, α2] by

1
T

T∑
s=1

∥∥∥f̃s − H̃ ′f0s
∥∥∥( 1

T

T∑
t=1

γ2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

≤
(

1
T

T∑
s=1

∥∥∥f̃s − H̃ ′f0s
∥∥∥2
)1/2(

1
T 2

T∑
s=1

T∑
t=1

γ2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1
δNT
√
NT

)
,

where from Bai and Ng (2002, Theorem 1), 1
T

∑T
s=1

∥∥∥f̃s − H̃ ′f0s
∥∥∥2

= OP
(
1/δ2

NT

)
, 1
T

∑T
s=1

∑T
t=1 γ

2
st =

O (1) (see Bai and Ng (2002, Lemma 1(i))) and E
(∥∥∥ 1√

N

∑bαNc
i=1 eitλ

′
0i

∥∥∥)2
≤ C by Assumption 2 (d).

Similarly, the second term B12 is bounded by

∥∥∥H̃∥∥∥( 1
T

T∑
s=1
‖f0s‖2

)1/2(
1
T 2

T∑
s=1

T∑
t=1

γ2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1√
TN

)
,

given that
∥∥∥H̃∥∥∥ = OP (1) and E ‖f0s‖2 ≤ C. Because B11 = OP

(
1

δNT
√
NT

)
and B12 = OP

(
1√
NT

)
,

we deduce that B1 = OP
(

1√
NT

)
. For B2, we start with the decomposition

B2 = 1
T 2

T∑
t=1

T∑
s=1

(
f̃s − H̃ ′f0s

)
ζst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

+ H̃ ′ 1
T 2

T∑
t=1

T∑
s=1

f0sζst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i


≡ B21 +B22.

The first term B21 is bounded by

(
1
T

T∑
s=1

∥∥∥f̃0s −H ′f0s
∥∥∥2
)1/2(

1
T 2

T∑
s=1

T∑
t=1

ζ2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1
δNT
√
TN

)
,

where by Jensen inequality and Assumption 1 (f),

E
(
ζ2
st

)
≤
(
E
(
ζ4
st

))1/2
= 1
N

E
∣∣∣∣∣ 1√
N

N∑
i=1

(
eiseit − E

(
1
N

N∑
i=1

eiseit

))∣∣∣∣∣
41/2

≤ 1
N
C,

and 1
T 2
∑T
s=1

∑T
t=1 ζ

2
st = OP

(
1√
N

)
. Using similar arguments and uniformly in α,

B22 ≤
(

1
T

T∑
s=1
‖f0s‖2

)1/2(
1
T 2

T∑
s=1

T∑
t=1

ζ2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1√
TN

)
.
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Consequently, B2 = OP
(

1√
TN

)
. We again write B3 = B31 +B32, with

B31 = 1
T 2

T∑
t=1

T∑
s=1

(
f̃0s − H̃ ′f0s

)
ηst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

 and B32 = H̃ ′
1
T 2

T∑
t=1

T∑
s=1

f0sηst

 1
bαNc

bαNc∑
i=1

eitλ
′
0i

 .
We start with B31. By Cauchy-Schwarz inequality, we have

1
T 2

T∑
s=1

T∑
t=1

η2
st = 1

T 2

T∑
s=1

T∑
t=1

(
f ′0s

1
N

N∑
i=1
λif0seit

)2

≤ 1
T 2

T∑
s=1

T∑
t=1
‖f0s‖2

∥∥∥∥∥ 1
N

N∑
i=1
λ′0ieit

∥∥∥∥∥
2

=
(

1
T

T∑
s=1
‖f0s‖2

)
1
N

 1
T

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
i=1
λ′0ieit

∥∥∥∥∥
2 = OP

( 1
N

)
,

as E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λ

′
0ieit

∥∥∥2
)
≤ C follows from Assumption 2 (d) and the cr inequality. Thus,

using also 1
T

∑T
s=1

∥∥∥f̃s − H̃ ′f0s
∥∥∥2

= OP

(
1

δ2
NT

)
and Assumption 2 (d),

‖B31‖ ≤
(

1
T

T∑
s=1

∥∥∥f̃s − H̃ ′f0s
∥∥∥2
)1/2(

1
T 2

T∑
s=1

T∑
t=1

η2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1
δNTN

)
.

By the same steps, we also obtain

‖B32‖ ≤
∥∥∥H̃∥∥∥( 1

T

T∑
s=1
‖f0s‖2

)1/2(
1
T 2

T∑
s=1

T∑
t=1

η2
st

)1/2
 1
T

T∑
t=1

∥∥∥∥∥∥ 1
bαNc

bαNc∑
i=1

eitλ
′
0i

∥∥∥∥∥∥
2


1/2

= OP

( 1
N

)
.

Hence, B3 = OP
(

1
N

)
. The proof for B4 is similar to the proof of B3 and is therefore omitted.

From the order of B1, B2, B3 and B4, we deduce that A3 = OP
(
δ−2
NT

)
uniformly in α. Finally,

we conclude that 1
bαNc

∑bαNc
i=1

(
λ̃i − H̃−1λ0i

)
λ′0i = OP

(
1

δ2
NT

)
uniformly in α.

Proof of (A.6) For this proof, we use the decomposition (A.20), and obtain that uniformly in α,

1
bαNc

bαNc∑
i=1

∥∥∥λ̃i − H̃−1λ0i
∥∥∥2

≤ 1
bαNc

bαNc∑
i=1

∥∥∥∥ 1
T
H̃ ′F ′0ei

∥∥∥∥2

︸ ︷︷ ︸
C1

+ 1
bαNc

bαNc∑
i=1

∥∥∥∥ 1
T
F̃ ′
(
F0 − F̃ H̃−1

)
λ0i

∥∥∥∥2

︸ ︷︷ ︸
C2

+ 1
bαNc

bαNc∑
i=1

∥∥∥∥ 1
T

(
F̃ − H̃F0

)′
ei

∥∥∥∥2

︸ ︷︷ ︸
C3

.

Since 1
bαNc

∑bαNc
i=1 E

∥∥∥ 1√
T
F ′0ei

∥∥∥2
≤ C by Assumption 2 (a) and H̃ = OP (1), we note that

C1 ≤
1
T

∥∥∥H̃∥∥∥2 1
bαNc

bαNc∑
i=1

E
∥∥∥∥ 1√

T
F ′0ei

∥∥∥∥2
= OP

( 1
T

)
,
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uniformly in α. Furthermore, we also have uniformly in α that

C2 =
∥∥∥∥ 1
T
F̃ ′
(
F0 − F̃ H̃−1

)∥∥∥∥2 1
bαNc

bαNc∑
i=1
‖λ0i‖2 = OP

(
1
δ4
NT

)

because 1
T F̃
′
(
F0 − F̃ H̃−1

)
= OP

(
1

δ2
NT

)
from Bai (2003, Lemma B3) and 1

bαNc
∑bαNc
i=1 ‖λ0i‖2 =

OP (1) as E
(
‖λ0i‖2

)
≤ C. We now similarly observe that by Cauchy-Schwarz inequality,
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.

From the bound for C1, C2 and C3, 1
bαNc

∑bαNc
i=1

∥∥∥λ̃i − H̃−1λ0i
∥∥∥2

= OP

(
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)
uniformly in α.

Proof of (A.8) Using the identity that λ̃iλ̃′i − H̃−1λ0iλ
′
0i
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)′
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) (
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(
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)
λ′0i
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,

we can write by the cr inequality and an application of the Cauchy-Schwarz inequality that
1
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∑N
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′
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(
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.

Since H̃ P−→H, with H is nonsingular, H̃−1 = OP (1). Moreover, since E
(
‖λ0i‖4

)
, we also have

that 1
N

∑N
i=1 ‖λ0i‖4 = OP (1). Hence, we only need to show that 1
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∑N
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∥∥∥λ̃i − H̃−1λ0i
∥∥∥4 P−→ 0.

We use here nearly identical steps to the proof of (A.6), with 1
N

∑N
i=1

∥∥∥λ̃i −H−1λ0i
∥∥∥4

lower than
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based on (A.20) and the cr inequality. As H̃ = OP (1) and 1
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Moreover, because 1
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′
(
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0

)
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(
1

δ2
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)
and 1

N

∑N
i=1 ‖λ0i‖4 = OP (1) given E

(
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)
≤

C, we obtain I2 =
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. We also have by Cauchy-
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Schwarz inequality that
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where the first equality employs Jensen inequality. From the bound for I1, I2 and I3, we deduce
1
N

∑N
i=1
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N
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. Hence, 1
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Proof of (A.9) The result follows from the decomposition H̃−1λ0iλ
′
0iH̃

′−1−H−1λ0iλ
′
0iH

′−1 =
H̃−1λ0iλ

′
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)′
+
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λ0iλ
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′−1, and the cr inequality. We note that
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using in particular the fact that H̃−1 −H−1 = oP (1) as H̃ P−→H, which is nonsingular.

A.2 Proof of Lemma A.2

For simplicity, we will let N1 = αN in this proofs.

Proof of (A.10) Define

A1
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and
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Since S
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)
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, where
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Ȟ−1 (λ0iλ

′
0i −ΣΛ

)
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the proof proceeds by showing that
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and
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N→∞
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)
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We start with (A.23). From Assumption 1 (a) and Assumption 2 (e), Var
(
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is
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In consequence, to show (A.23), we only need to prove that a′
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α,ΛȞ ′−1

)))
a′ =

oP (1) where a is a r0(r0+1)
2 ×1-vector of real numbers such that a′a = 1. We have a′S1

(
α,ΛȞ ′−1
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Since E (si) = 0, N−1/2∑N
i=1 si = OP (1) if E (|si|) ≤ C. To show that E (|si|) ≤ C, we first apply

the triangle inequality and the Jensen inequality to have
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and using the Cauchy Schwarz inequality and the cr inequality, we find that
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Hence 1
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Using a similar argument, plim
N→∞

S2
(
α,ΛȞ ′−1
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Proof of (A.11) Recall that A1
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Ȟ ′−1

)
.

It follows that, E
(∑αN

i=1 zi
)

= 0 and E
(∑αN

i=1 z
2
i

)
= 1. Therefore (A.11) follows from the Lya-

punov Central Limit Theorem for heterogeneous, independent random variables if for some ξ > 0,∑αN
i=1 E|zi|2+ξ → 0 (Lyapunov’s condition). To prove the latter, we use the bound

αN∑
i=1

E|zi|2+ξ ≤
∥∥∥∥(Var

(
A1

(
α,ΛȞ ′−1
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By an application of the cr inequality, the fact that E (λ0iλ
′
0i) = ΣΛ and the Jensen inequal-

ity, we have E
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Because A1
(
α,ΛȞ ′−1

)
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)
are independent, with mean zero and
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Proof of (A.12) Let a be an r0(r0+1)
2 × 1-vector such that a′a = 1. Assumption 1 (b) implies
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A.3 Proof of Lemma 2.1

We first note that the results in this section hold uniformly in α and we start with (13).
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) 1
bαNc

bαNc∑
i=1

λ0iλ
′
0i −

1
N − bαNc

N∑
i=bαNc+1

λ0iλ
′
0i

(Ĥ−1
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Therefore, to complete the proof of (13), we only need to show that J11 = oP (1) , J12 = oP (1) ,
J21 = oP (1) and J22 = oP (1) . Note that J12 = oP (1) and J22 = oP (1) follow by identical steps to
J11 = oP (1) and J12 = oP (1), and are omitted. From a triangle inequality, J11 is bounded by
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λ̂i − Ĥ−1λ0i

) (
λ̂i − Ĥ−1λ0i
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∥∥∥
∥∥∥∥∥∥
√
N

bαNc

bαNc∑
i=1

λ0iλ
′
0i −

√
N

N − bαNc

N∑
i=bαNc+1

λ0iλ
′
0i

∥∥∥∥∥∥
∥∥∥Ĥ−1
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which is oP (1) using again Ĥ−1 − Ȟ−1 = oP (1) , Ĥ−1 = OP (1) and Equation (A.12).

Proof of (14) To show the consistency of the variance estimator S
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(A.27)
the next steps will consist of showing that
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)

+
(
λ̂iλ̂

′
i − I

)
,

we obtain S
(
α, Λ̂

)
− S

(
α,ΛĤ ′−1

)
=
(

1
α + 1

1−α

)
(C1 +C2), where

C1 = 1
N

N∑
i=1

Vech
(
λ̂iλ̂

′
i − I

)
Vech

(
λ̂iλ̂

′
i − Ĥ−1λ0iλ

′
0iĤ

′−1
)′
,

C2 = 1
N

N∑
i=1

Vech
(
λ̂iλ̂

′
i − Ĥ−1λ0iλ

′
0iĤ

′−1
)

Vech
(
Ĥ−1λ0iλ

′
0iĤ

′−1 − I
)′
.
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From the Cauchy-Schwarz inequality and the cr inequality,∥∥∥S (α, Λ̂)− S (α, Ĥ−1Λ
)∥∥∥ ≤ ( 1

α
+ 1

1− α

)
(‖C1‖+ ‖C2‖) ,

where

‖C1‖ ≤ 21/2
(

1
N

N∑
i=1

∥∥∥λ̂iλ̂′i∥∥∥2
+ ‖I‖2

)1/2(
1
N

N∑
i=1

∥∥∥λ̂iλ̂′i − Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2
)1/2

= OP
(√

N/T
)
,

and

‖C2‖ ≤ 21/2
(

1
N

N∑
i=1

∥∥∥Ĥ−1λiλ
′
iĤ
′−1
∥∥∥2

+ ‖I‖2
)1/2(

1
N

N∑
i=1

∥∥∥λ̂iλ̂′i − Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2
)1/2

= OP
(√

N/T
)
,

because 1
N

∑N
i=1

∥∥∥λ̂iλ̂′i − Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2

= OP
(√

N/T
)
, using (A.8). We also use the fact that

1
N

∑N
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2

is bounded by
∥∥∥Ĥ−1

∥∥∥4 1
N

∑N
i=1 ‖λ0i‖4 = OP (1), and 1

N

∑N
i=1

∥∥∥Ĥ−1λi
∥∥∥2

=∥∥∥Ĥ−1
∥∥∥2 1

N

∑N
i=1 ‖λ0i‖2 = OP (1). Note that by the cr inequality, we have

1
N

N∑
i=1

∥∥∥λ̂iλ̂′i∥∥∥2
≤ 2 1

N

N∑
i=1

∥∥∥λ̂iλ̂′i − Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2

+ 2 1
N

N∑
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

′−1
∥∥∥2

= OP (1) .

In consequence, S
(
α, Λ̂

)
− S

(
α,ΛĤ ′−1

)
= OP

(√
N/T

)
= oP (1) as

√
N/T → 0. To show that

S
(
α,ΛĤ ′−1

)
− S

(
α,ΛȞ ′−1

)
= oP (1) , we combine the Cauchy-Schwarz inequality and the cr

inequality to have that
∥∥∥S (α, Ĥ−1Λ

)
− S

(
α, Ȟ−1Λ

)∥∥∥ is lower than

21/2
( 1
α

+ 1
1− α

)( 1
N

N∑
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

′−1 − Ȟ−1λ0iλ
′
0iȞ

′−1
∥∥∥2
)1/2(

1
N

N∑
i=1

∥∥∥Ĥ−1λ0i
∥∥∥4

+ ‖I‖4
)1/2

+21/2
( 1
α

+ 1
1− α

)( 1
N

N∑
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

′−1 − Ȟ−1λ0iλ
′
0iȞ

′−1
∥∥∥2
)1/2(

1
N

N∑
i=1

∥∥∥Ȟ−1λ0i
∥∥∥4

+ ‖I‖4
)1/2

.

Since 1
N

∑N
i=1

∥∥∥Ĥ−1λ0iλ
′
0iĤ

′−1 − Ȟ−1λ0iλ
′
0iȞ

′−1
∥∥∥2

= oP (1) from (A.9), and also that 1
N

∑N
i=1

∥∥∥Ĥ−1λi
∥∥∥4
≤∥∥∥Ĥ−1

∥∥∥4 1
N

∑N
i=1 ‖λ0i‖4 = OP (1), we obtain the second needed result, which is∥∥∥S (α,ΛĤ ′−1

)
− S

(
α,ΛȞ ′−1

)∥∥∥ = oP (1) .

A.4 Proof of Theorem 1

We begin by proving that LMN

(
α, Λ̂

)
−LMN

(
α,ΛȞ ′−1

)
= oP (1). Using the triangular inequal-

ity, we have
∣∣∣LMN

(
α, Λ̂

)
− LMN

(
α,ΛȞ ′−1

)∣∣∣ ≤M1 +M2 +M3, where uniformly in α,

M1 =
∥∥∥A (α, Λ̂)∥∥∥ ∥∥∥∥S (α, Λ̂)−1

− S
(
α,ΛȞ ′−1

)−1
∥∥∥∥ ∥∥∥A (α, Λ̂)∥∥∥

M2 =
∥∥∥A (α, Λ̃)−A (α,ΛȞ ′−1

)∥∥∥ ∥∥∥∥S (α,ΛȞ ′−1
)−1

∥∥∥∥ ∥∥∥A (α, Λ̂)∥∥∥
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and

M3 =
∥∥∥A (α,ΛȞ ′−1

)∥∥∥ ∥∥∥∥S (α,ΛȞ ′−1
)−1

∥∥∥∥ ∥∥∥A (α, Λ̂)−A (α,ΛȞ ′−1
)∥∥∥ .

The proof uses the auxiliary results that (a)A
(
α, Λ̂

)
−A

(
α,ΛȞ ′−1

)
= oP (1) , (b)A

(
α,Λ

(
Ȟ ′
)−1

)
=

OP (1) and A
(
α, Λ̂

)
= OP (1) and (c)

∥∥∥∥∥S (α, Λ̂)−1
− S

(
α,Λ

(
Ȟ ′
)−1

)−1
∥∥∥∥∥ = oP (1) uniformly in

α. We note that (a) follows from (13). Second, note that
∥∥∥∥A(α,Λ (Ȟ ′)−1

)∥∥∥∥ is equal to∥∥∥∥∥∥
√
NȞ−1

 1
bαNc

bαNc∑
i=1

λiλ
′
i −

1
N − bαNc

N∑
i=bαNc+1

λiλ
′
i

 Ȟ ′−1

∥∥∥∥∥∥ = OP (1)

uniformly in α given Lemma A.2 (A.11). We also have uniformly in α, that∥∥∥A (α, Λ̂)∥∥∥ ≤ ∥∥∥A (α, Λ̂)−A (α,ΛȞ ′−1
)∥∥∥+

∥∥∥A (α,ΛȞ ′−1
)∥∥∥ = oP (1) +OP (1) = OP (1) .

Thus, (b) holds. Third,
∥∥∥∥S (α, Λ̂)−1

− S
(
α,ΛȞ ′−1

)−1
∥∥∥∥ is dominated by∥∥∥∥S (α,ΛȞ ′−1

)−1 (
S
(
α,ΛȞ ′−1

)
− S

(
α, Λ̂

))
S
(
α, Λ̂

)−1
∥∥∥∥

≤
∥∥∥∥S (α,ΛȞ ′−1

)−1
∥∥∥∥ ∥∥∥S (α, Λ̂)− S (α,ΛȞ ′−1

)∥∥∥ ∥∥∥∥S (α, Λ̂)−1
∥∥∥∥ ,

where S
(
α, Λ̂

)
−S

(
α,ΛȞ ′−1

)
P−→ 0 by Lemma 2.1 (14) and the limit in probability of S

(
α,ΛȞ ′−1

)
is positive definite from Assumption 2 (e). Hence,

∥∥∥S (α, Λ̂)− S (α,ΛȞ ′−1
)∥∥∥ = oP (1),

∥∥∥∥S (α, Λ̂)−1
∥∥∥∥ =

OP (1),
∥∥∥∥S (α,ΛȞ ′−1

)−1
∥∥∥∥ = OP (1). Thus, we can see that

∥∥∥∥S (α, Λ̂)−1
− S

(
α,ΛȞ ′−1

)−1
∥∥∥∥ =

oP (1), which is result (c). From (a), (b) and (c),
∣∣∣LMN

(
α, Λ̂

)
− LMN

(
α,ΛȞ ′−1

)∣∣∣ = oP (1).

Because LMN

(
α,ΛȞ ′−1

)
d−→ χ2

(
r0(r0+1)

2

)
from Lemma A.2 (A.11), the result follows, applying

the asymptotic equivalence lemma.

A.5 Proof of Lemma A.3

The proof of this lemma relies on showing that the required conditions in Lemma A.1 and Lemma 2.1
(14) are satisfied in the context of the one-level representation of the two-level alternative. This is
the case if Assumption 3 complemented Assumptions 1 and 2. The analogue of Lemma A.1 follows
with Ξ̂−1 and Ξ̌−1 in the place Ĥ−1 and Ȟ−1, respectively, using the same the steps as in the
proof of Lemma A.1.

A.6 Proof of Theorem 2

Recall the matrix of factor loadings Φ = [φ1 · · ·φN ]′ : N × r of the one-level representation under
the two-level alternative. From Bai (2003), the PCM estimates Λ̂ converge to a rotation ΦΞ̂′−1
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with Ξ̂ an r × r rotation matrix. Thus, we can write

1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i = R1 +R2 −R3, (A.28)

where

R1 = 1
N1

N1∑
i=1

Ξ̂−1φiφ
′
iΞ̂′−1 − 1

N −N1

N∑
i=N1+1

Ξ̂−1φiφ
′
iΞ̂′−1

R2 = 1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N1

N1∑
i=1

Ξ̂−1φiφ
′
iΞ̂′−1

R3 = 1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i −

1
N −N1

N∑
i=N1+1

Ξ̂−1φiφ
′
iΞ̂′−1.

Given that

R2 = 1
N1

N1∑
i=1

(
λ̂i − Ξ̂−1φi

) (
λ̂i − Ξ̂−1φi

)′
+ 1
N1

N1∑
i=1

Ξ̂−1φi
(
λ̂i − Ξ̂−1φi

)′
+ 1
N1

N1∑
i=1

(
λ̂i − Ξ̂−1φi

)
φ′iΞ̂′−1,

we deduce from Lemma A.3 that R2 = OP
(
δ−2
NT

)
. Similarly, R3 = OP

(
δ−2
NT

)
. Hence,

1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i = R1 +OP

(
δ−2
NT

)
.

In addition, Ξ̂−1 = Ξ̌−1 + oP (1). Using Assumption 3 (b) and the same steps as in Lemma A.2
(A.12), 1

N1

∑N1
i=1φiφ

′
i = OP (1) and 1

N−N1

∑N
i=N1+1φiφ

′
i = OP (1). More precisely, R1 = R0 +

oP (1), where

R0 = Ξ̌−1 plim
N→∞

 1
N1

N1∑
i=1
φiφ

′
i −

1
N −N1

N∑
i=N1+1

φiφ
′
i

 Ξ̌′−1 = Ξ̌−1

 0 Σ0D −Σ0E
Σ′0D ΣDD 0
−Σ′0E 0 −ΣEE

 Ξ̌′−1

(A.29)
is different from 0 since the second term is nonzero as ΣDD 6= 0 or ΣEE 6= 0, and the rows of Ξ̌′−1

are linearly independent. Hence,

1
N1

N1∑
i=1
λ̂iλ̂

′
i −

1
N −N1

N∑
i=N1+1

λ̂iλ̂
′
i = R0 + oP (1) , (A.30)

with R0 6= 0. The second part of Theorem 2 follows from the fact that∥∥∥S (α, Λ̂)− S (α,ΦΞ̌′−1
)∥∥∥ = oP (1) , (A.31)

given Lemma A.3 (A.19), and the positive definiteness of the limit in probability S0 of S
(
α,ΦΞ̌′−1

)
given Assumption 3 (i).
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